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ABSTRACT
Manipulation of models and mappings is a common task in the de-
sign and development of information systems. Research in Model
Management aims at supporting these tasks by providing a set of
operators to manipulate models and mappings. As a framework,
GeRoMeSuite provides an environment to simplify the implemen-
tation of model management operators. GeRoMeSuite is based on
the generic role based metamodel GeRoMe [10], which represents
models from different modeling languages (such as XML Schema,
OWL, SQL) in a generic way. Thereby, the management of models
in a polymorphic fashion is enabled, i.e. the same operator imple-
mentations are used regardless of the original modeling language of
the schemas. In addition to providing a framework for model man-
agement, GeRoMeSuite implements several fundamental operators
such as Match, Merge, and Compose.

1. INTRODUCTION
Information systems often contain components that are based on

different models or schemas of the same or intersecting domains
of discourse. This is by nature the case for peer data management
systems or information integration systems but it is also a common
problem of other information systems. Furthermore, these different
models of related domains are described in modeling languages (or
metamodels) that fit certain requirements of the components such
as representation power or tractability. For instance, a database
may use SQL or an object oriented modeling language. A web
service described in XML Schema may be enriched with semantics
by employing an ontology of the domain. The business objects in
the middle tier may be implemented using another object oriented
language such as Java or C#.

Integrating these heterogeneous models requires different means
of manipulation for models and schema mappings. Research in
model management aims at developing an algebra for manipulation
of models and mappings. This includes operators such as Match
that computes a mapping between two models [15], Compose that
composes two mappings [6], ModelGen that transforms models be-
tween modeling languages [1], or Merge [14] that integrates two
models based on a mapping in between.
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Scenarios for the application of model management operators
have been described in [3, 5]. For instance, consider a system that
integrates data from various sources (with models M1, . . . , Mn)
into an integrated model M representing the data of a data ware-
house or a semantic integration system in the semantic web. In
such a heterogeneous environment, different modeling languages
are used to model the data sources. If a new source with model
Mn+1 is added, the model has first to be matched with the existing
integrated model to create a mapping between Mn+1 and M .1 If
the new model Mn+1 contains elements which cannot be mapped
to the integrated model M , the models have to be integrated using
the Merge operator to create a new integrated model M ′. In addi-
tion, the Merge operator will deliver a mapping from the original
model M to the new model M ′. This mapping has to be composed
with the existing mappings from M1, . . . , Mn to M to create new
mappings with the updated M ′ as target.

Apart from studying these metadata management tasks in an
isolated fashion, a holistic framework for performing the opera-
tions is required that supports end-to-end model manipulation as
the various models and mappings depend on each other. Our tool
GeRoMeSuite is a framework for such model manipulations and is
based on the generic role based metamodel GeRoMe [10]. It is a
framework as it allows for fast and easy integration of new model
management operator implementations. It includes a workspace
for storing and loading models, mappings, and operator configu-
rations. GeRoMeSuite provides a framework for holistic generic
model management; unlike other model management systems it is
neither limited by nature to certain modeling languages [8, 13] nor
to certain model management operators [1, 2].

We integrated an implementation of the Match operator for com-
puting correspondences between model elements. The implemen-
tation is highly configurable by enabling the definition of arbitrary
matching strategies including individual and composite matchers,
aggregation strategies and the configuration of each step. The cor-
respondences computed by Match serve as the starting point for
defining formal intensional mappings between models that are used
by the Merge operator [14]. These mappings can be extended to ex-
tensional mappings for data translation. In our framework, the ex-
tensional mappings are based on second order tuple generating de-
pendencies (SO tgds) [6]. GeRoMeSuite includes a mapping com-
position algorithm and a component to execute SO tgds by trans-
lating them into several query languages such as XQuery and SQL.

The next section describes our tool in general and dwells on the
operator implementations that we already integrated into the tool.
The last section describes our demonstration.

1There are other possibilities than using Match to create this map-
ping, but for simplicity of the presentation here, we just consider
this scenario.
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2. SYSTEM COMPONENTS AND ARCHI-
TECTURE

The system is based on GeRoMe [10] that employs the role based
modeling approach. Each elementary feature of a modeling con-
struct is represented by a role class such as Attribute, Association,
Reference, or Abstract. A single model element is described by let-
ting it play an appropriate set of roles. In doing so, the element is
decorated with features represented by roles that serve as interfaces
to model elements. Operator implementations are indifferent to the
native underlying metamodel such as XML Schema or OWL and
are only interested in the roles exhibited by the manipulated model
elements. Therefore, the operators can be used polymorphically
regardless of the concrete metamodels. In addition, operators may
focus only on roles relevant for their execution and may remain
agnostic about other roles of a model element. Thus, operator im-
plementation is simplified as irrelevant features of a model element
may be ignored by the programmer.

GeRoMeSuite provides currently import and export operators for
SQL, XML Schema, and OWL, but the tool is open for new mod-
eling languages. As the import/export operators are implemented
declaratively using a rule-based approach [9], a new metamodel
can be integrated by specifying equivalence rules expressing the
relationships between a concrete modeling language and GeRoMe.
The use of equivalence rules guarantees a consistent implemen-
tation of the import and export operators. The rules are evalu-
ated using a meta-program implemented in SWI-Prolog (http:
//www.swi-prolog.org). The main part of GeRoMeSuite is im-
plemented in Java using SWT for the user interface and the Eclipse
Modeling Framework (http://www.eclipse.org/emf/) for the
representation of mappings.

GeRoMeSuite supports three different types of schema mappings.
Informal morphisms are the result of the Match operator. These
mappings are similarity values for pairs of elements from two mod-
els. Such morphisms usually serve as the starting point for defin-
ing formal intensional or extensional mappings. Intensional map-
pings describe the relation between the real world sets represented
by model elements using statements about equality, disjointness
or subset relationships. These mappings are necessary for schema
merging and ontology alignment [14]. GeRoMeSuite contains an
editor for intensional mappings that takes morphisms as input. On
the other hand, extensional mappings are queries that can be actu-
ally executed for data and query translation. Our implementation
of the Compose operator uses this type of mappings.

In addition to the genericness provided by GeRoMe, the tool sup-
ports holistic model management. That is, it is not limited by nature
to certain operators such as Match. Instead, it provides appropriate
hooks for storing and accessing the objects manipulated by model
management operators. Models, different kinds of mappings, and
operator configurations are managed in a central repository. Opera-
tor configurations are created through the user interface and stored
uniformly no matter what operators they configure. Every config-
urable operator is required to provide a default configuration that is
the basis for the definition of new configurations.

New operator implementations that use GeRoMe as their model
representation can be integrated into the tool. All the necessary
objects are available to operators through the workspace repository.
So far, we have integrated implementations of the Match, Merge,
and Compose operators into GeRoMeSuite. The following sections
describe how to work with these implementations within our tool.

2.1 Schema Matching
A wide range of schema or ontology matching systems already

exist, such as COMA++ [2] or Protoplasm [4]. In a survey on

Figure 1: Creating a Match configuration

schema matching [15], existing approaches have been classified
into somewhat orthogonal categories. One of the important dimen-
sions that has been exploited already by the two mentioned tools is
the combination of individual matchers to new composite matchers.

The Match implementation, that we integrated into GeRoMe-
Suite, also allows for definition of composite matchers. We provide
high flexibility for matcher combination: element level matchers,
structure level matchers, morphism filters, and aggregation strate-
gies for combining match results can be assigned to subsequent
steps. Thereby, it is possible to define new composite matchers that
can serve again as building blocks for other more complex compos-
ite matchers. Fig. 1 shows such a configuration dialog.

New matcher steps can be easily added, named and configured.
After storing the new match configuration, it can be used as a de-
fault component configuration in a new matcher configuration. When
executing the match operator, an existing matcher configuration is
chosen and can be adapted in a dialog that contains all the parame-
ters exposed by its components in distinct panels.

We currently provide several element-level matchers to compare
string labels, and structural matchers such as ‘ChildrenMatcher’
(the similarity of nodes is given by the similarity of their children)
and Similarity Flooding [12]. Especially the structural matchers
can exploit the semantically rich structure of a GeRoMe model. For
example, a GeRoMe model can be iterated in several different ways
using either the inheritance, namespace or aggregation/association
hierarchy. A comparison with existing matching systems has shown
that the uniform representation of models in GeRoMe is beneficial
in particular for heterogeneous matching problems, such as match-
ing an XML Schema with an OWL ontology. New filters, aggre-
gation strategies, element level and structure level matchers can be

Figure 2: Filtering result morphisms
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integrated by implementing the appropriate interface and providing
a default configuration for the new component.

Like in other matching tools, the result of Match is a set of con-
fidence measures that assess the similarity of the respective model
elements informally. As a first step these can be filtered using dif-
ferent filters (similar to those available in COMA++ [2]), a simple
threshold, a maximum distance from the best match, and a param-
eter k that specifies the number of best matches to be kept. These
can be combined conjunctively. Fig. 2 shows this filtering step.
These filters can also be integrated as components into a matching
strategy which affects the operation of subsequent matching steps.

2.2 Schema Merging
The informal morphism, that is the result of schema matching,

can be used as input for the intensional mapping editor that pro-
duces a formal mapping which is necessary for merging models.
Our intensional mappings [14] are nested mappings that contain
correspondence assertions such as equality, subset or disjointness
relationships. Fig. 3 shows the intensional mapping editor. The
implementation of the Merge operator is based on a well-defined
theoretical foundation that defines the intensional mappings as set
relationships between the real world semantics (RWS) of the cor-
responding model elements. The RWS is used to formally char-
acterize the merged model which can be described in brief as the
duplicate-free least upper bound which retains the granularity of
the input models (details are given in [14]).

As the result of Merge also depends heavily on the application
scenario, such as database or view integration, preferences have to
be set here as well. In the first step of our merging algorithm [14] el-
ements equally related in the mapping are grouped. Such groups of
equivalent elements are collapsed into one element. Conflicts aris-
ing in this step must then be resolved. Subsequent steps similarly
deal with other mapping relationships such as IsA or Overlapping.
Conflicts are resolved according to configurable strategies. These
may be automatic resolution strategies which use the semantic in-
formation given in the model and the mapping, or some simpler
predefined default strategies such as always preferring the repre-
sentation chosen in one of the two input models. The final fallback
for conflict handling asks the user for manual conflict resolution.

The result of merging is a valid GeRoMe model. However, it
need not be a valid model according to some certain native meta-
model. For instance, when merging an XML Schema with a rela-
tional schema the result is most likely not a valid relational schema.
Thus, the merge result has to be transformed to the target meta-
model using the ModelGen operator before it can be exported.

Figure 3: Defining intensional mappings and configuring Merge

2.3 Mapping Composition
Schema merging requires intensional mappings that describe the

relationships of the real world sets represented by model elements.
On the other hand, these mappings are less useful for mapping ex-
ecution. For this task we need extensional mappings that describe
the relationships between two models on the instance level, includ-
ing conversion functions.

We integrated into GeRoMeSuite both, an implementation of the
Compose operator for extensional mappings as second order tu-
ple generating dependencies (SO tgds) between GeRoMe models,
and an export functionality that produces a program from such an
extensional mapping that migrates data between combinations of
relational and XML schemas [11]. Our extensional mappings are
closed under composition as they are based on the second order
dependencies introduced in [6] and they also support grouping of
elements such as the mappings of [7]. In doing so, complex trans-
formations such as restructuring of data are possible which is a fun-
damental requirement for data translation between different mod-
eling languages. Figure 4 shows an example of a mapping between
two GeRoMe models representing XML Schemas, the generated
XQuery to retrieve the data from the source, and example docu-
ments for source and target.

In accordance to the definition of SO tgds, the mapping allows
universal quantifiers over variables, existential quantifiers over func-
tion symbols, and equalitites. To reflect the structure of GeRoMe
instances [10], its body contains combinations of inst, part, value,
attrvalue predicates. Basically, these predicates describe the in-
stances of a GeRoMe model using reification. The first component
of each predicate is an abstract identifier for the object. The pred-
icate inst(o, x) specifies that the abstract object o is an instance
of the model element x. In GeRoMe, XML Schema elements are
represented as associations between the nesting complex type and
the nested type (simple or complex). The entry into an XML doc-
ument using an association hierarchy is a special case as the root
element specifies an association between a “virtual” document ob-
ject and the root object. In the example of fig. 4, the ‘source’ el-
ement o1 is an association between the “virtual” document object
o0 and the object o2 representing the root of the document. o0

and o2 are specified as participators of the association o1 by us-
ing the part predicate. The next level of nesting is represented as
an association (o3) between the root object o2 and the nested ‘per-
son’ object o4. The value predicate retrieves the value for simple
typed XML elements such as ‘name’ and ‘school’. The predicate
attrvalue(o, a, v) specifies that v is a value of the attribute a for
the object o.

The structure of the target document is determined by the skolem
functions which are introduced in the conclusion part of the rule.
For example, for each instance of the ‘source’ element, we will
have one corresponding ‘target’ element. This is trivial because
there is only one such element (note that a valid XML document
must have exactly one root element). For the ‘school’ element, we
assume that the name s of the school is the key. Therefore, the
skolem function fs for the school element depends on s. Thereby,
the grouping of all students of a school is enabled. If we would
have chosen a different skolem term (e.g. fs(o3)), the target would
contain a school element for each school/student pair, thus having
repeated school elements for “Manuden School”.

The example uses only skolem functions for which no explicit
semantics has to be defined, i.e. the skolem functions determine
only the structure of the generated code for the mappings but are
not evaluated during mapping execution. For value conversions
or some other data translation functions, explicit functions can be
specified by giving the name of a Java class that implements the
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∃f∃fs∃fsc∃fst∃fstc ∀o0∀o1∀o2∀o3∀o4∀o5∀o6∀o7∀o8∀n∀s
inst(o1, ‘source’) ∧ part(o1, ‘parent’, o0) ∧ part(o1, ‘child’, o2) ∧ inst(o3, ‘person’) ∧ part(o3, ‘parent’, o2) ∧ part(o3, ‘child’, o4) ∧
inst(o5, ‘name’) ∧ part(o5, ‘parent’, o4) ∧ part(o5, ‘child’, o6) ∧ value(o6, n) ∧
inst(o7, ‘school’) ∧ part(o7, ‘parent’, o4) ∧ part(o7, ‘child’, o8) ∧ value(o8, s) →

inst(f(o1), ‘target’) ∧ part(f(o1), ‘parent’, f(o0)) ∧ part(f(o1), ‘child’, f(o2)) ∧
inst(fs(s), ‘school’) ∧ part(fs(s), ‘parent’, f(o2)) ∧ part(fs(s), ‘child’, fsc(s)) ∧ attrvalue(fsc(s), ‘name’, s) ∧
inst(fst(s, n), ‘student’) ∧ part(fst(s, n), ‘parent’, fsc(s)) ∧ part(fst(s, n), ‘child’, fstc(s, n)) ∧ value(fstc(s, n), n)

for $o2 in fn:doc(fname)/source
for $o4 in $o2/person

for $o6 in $o4/name
for $o8 in $o4/school

return
<result>

<s>$o6/text()</s>
<n>$o8/text()</n>

</result>

<source>
<person>

<name>John Parker</name>
<school>Manuden School</school>
<school>York School</school>

</person>
<person>

<name>Robert Adam</name>
<school>Manuden School</school>
<school>King School</school>

</person>
</source>

<target>
<school name="Manuden School">
<student>John Parker</student>
<student>Robert Adam</student>

</school>
<school name="York School">
<student>John Parker</student>

</school>
<school name="King School">
<student>Robert Adam</student>

</school>
</target>

Figure 4: SO tgd between two XML Schemas, the generated XQuery, and the corresponding input and output documents

function. This class will then be used during mapping execution.
As the example shows, extensional mappings are very complex; we
will therefore develop a graphical mapping editor also for this type
of mappings which will be based on the editors for morphisms and
intensional mappings.

As it would be very inefficient to transform the source data into
GeRoMe instances, we translate the mappings into queries which
can be directly evaluated on the source data. Fig. 4 shows the gen-
erated XQuery to retrieve the data from the source. The result is
a list of flat tuples with names of schools and persons which will
be used to generate the target data. Due to the genericness of our
approach, we do not generate the target XML document directly, as
the target could be also a relational database or a Java object model.

3. DEMONSTRATION
The demo scenario will be based on the scenario sketched in the

introduction. For two given input models, a relational schema and
an XML Schema, we will first adapt and use a match configura-
tion to execute the matcher subsystem. This will yield a morphism
between the two input models. We will then use this mapping
as the starting point for formulating a formal intensional mapping
which serves as the input to our Merge implementation. A pre-
defined merge configuration is adapted to the scenario and then ap-
plied. The merge operator will have to ask for user advice at certain
stages, e.g. for choosing the result name of two collapsed model el-
ements. The result will be a GeRoMe model that can be exported to
a valid XML schema. As variations of this basic scenario, we can
also match an XML schema and an ontology, or match and merge
two ontologies to show the genericness of GeRoMeSuite.

In the next step, we will show the mapping composition and ex-
ecution component. Two formal extensional mappings between the
input models and the merged model will be composed. The execu-
tion of the composed mapping can be compared with the execution
of the individual mappings. Again, the genericness of GeRoMe-
Suite can be shown by applying the mapping composition algo-
rithm to mappings between models originally represented in dif-
ferent modeling languages, and by translating the mappings into
executable queries in different query languages.
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