
On Reconciling Data Exchange, Data Integration,
and Peer Data Management

Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Riccardo Rosati
Dipartimento di Informatica e Sistemistica

Sapienza Università di Roma
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ABSTRACT
Data exchange and virtual data integration have been the subject
of several investigations in the recent literature. At the same time,
the notion of peer data management has emerged as a powerful
abstraction of many forms of flexible and dynamic data-centered
distributed systems. Although research on the above issues has
progressed considerably in the last years, a clear understanding on
how to combine data exchange and data integration in peer data
management is still missing. This is the subject of the present pa-
per. We start our investigation by first proposing a novel frame-
work for peer data exchange, showing that it is a generalization of
the classical data exchange setting. We also present algorithms for
all the relevant data exchange tasks, and show that they can all be
done in polynomial time with respect to data complexity. Based
on the motivation that typical mappings and integrity constraints
found in data integration are not captured by peer data exchange,
we extend the framework to incorporate these features. One of the
main difficulties is that the constraints of this new class are not
amenable to materialization. We address this issue by resorting to
a suitable combination of virtual and materialized data exchange,
showing that the resulting framework is a generalization of both
classical data exchange and classical data integration, and that the
new setting incorporates the most expressive types of mapping and
constraints considered in the two contexts. Finally, we present al-
gorithms for all the relevant data management tasks also in the new
setting, and show that, again, their data complexity is polynomial.
Categories and Subject Descriptors: H.2 [Database Manage-
ment]: Heterogeneous Databases; F.2 [Analysis of Algorithms and
Problem Complexity]: General; H.2 [Database Management]: Sys-
tems
General Terms: Theory, Algorithms.
Keywords: Data Integration, Data Exchange, Peer-to-Peer.

1. INTRODUCTION
Data exchange [25, 14] and virtual data integration [27] have

been extensively studied in the last years to address the issue of
data residing in independent data sources that need to be moved to,
or accessed through, a new data schema (called target schema or
global schema in the two contexts, respectively). The target/global
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schema and the sources are related via mappings. While in data
exchange the focus is on materializing data in the target schema
through the mapping, in data integration no actual exchange of
data is generally needed, and the database conforming to the global
schema is virtual.

Recently, the notion of peer data management (PDM) system has
emerged as a powerful abstraction for many forms of flexible and
dynamic data-centered distributed systems [6, 22]. PDM systems
are characterized by a set of autonomous nodes (called, indeed,
peers) that hold data and that are linked to other nodes by means of
so-called peer-to-peer (P2P) mappings.

Although research in all the three above mentioned areas has
progressed considerably in the last years, a clear understanding on
how to combine data exchange and virtual data integration in peer
data management is still missing. In this paper we address this
subject by providing a new framework for P2P data exchange and
data integration, which admits traditional data integration and data
exchange frameworks as special cases.

We start our investigation by first concentrating on P2P data ex-
change, revisiting the basic data exchange definitions in this new
setting, providing new algorithms for all the relevant data exchange
tasks, and showing that they are polynomial in data complexity
(i.e., the complexity computed only w.r.t. the size of the underly-
ing database instance). Then, based on the motivation that typical
mappings and integrity constraints found in data integration are not
captured by peer data exchange, we extend the framework to incor-
porate these features. We present algorithms for the relevant data
management tasks also in the new setting, and show that, again,
their data complexity is polynomial.

Related Work. The basic notions of data exchange and its first
formalization were given in [14]. In particular, a solution to the
data exchange problem for a given source instance is a finite tar-
get instance that, together with the source instance, satisfies both
target dependencies and source-to-target dependencies. Target de-
pendencies are tuple generating dependencies (TGDs) and equality
generating dependencies (EGDs), whereas source-to-target depen-
dencies are TGDs mapping the source schema to the target schema.
The semantics of the queries posed over the target schema is given
in terms of the certain answers, i.e., those answers that are returned
by evaluating the query over each solution. A universal solution is
a special solution that is homomorphic to every possible solution.
Universal solutions are particularly important in data exchange,
since, as shown in [14], the certain answers to a union of conjunc-
tive queries q can be obtained by evaluating q over any universal
solution. Notably, in the case in which target TGDs belong to the
class of weakly-acyclic TGDs, a class of TGDs which admits lim-
ited forms of cycles among different relation arguments, a canoni-
cal universal solution can be computed in polynomial time in data
complexity. Consequently, also query answering in this setting is
polynomial w.r.t. the size of the data. The importance of imposing
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weak-acyclicity on the target TGDs, is also investigated in [26],
where it is shown that it is possible to construct an instance of the
data exchange problem with a single non-weakly-acyclic TGD on
the target schema for which such a problem is undecidable. With
the aim of identifying the “smallest” universal solution (and thus
optimizing materialization of data), [15] introduced the notion of
core. The core of a universal solution A is the smallest subset C of
A such that A has an homomorphism to C. The cores of all uni-
versal solutions are mutually isomorphic and are in turn universal
solutions. The core is therefore identified as the best solution for
the data exchange problem. A polynomial-time algorithm is given
in [15] for core computation in a setting where target dependen-
cies are only EGDs. A notable result in [20] shows that computing
the core can be done in polynomial time in the presence of both
weakly-acyclic TGDs and EGDs on the target schema. Previous
results in this direction had been presented in [19]. Other works on
data exchange studied, respectively, query answering (by first-order
rewriting) for first-order logic (FOL) queries [3], schema mapping
compositions [16], exchange of XML documents when both the
source and the target schemas are XML DTDs [5], and relationship
between data exchange and incomplete information [28]. We point
out that some of the motivations in [28] are also at the basis of the
semantics given in the present work.

Virtual data integration has similar logical foundations to those
of data exchange [27]. Again, mappings are specified in terms of
TGDs between the source and the global schema (although sev-
eral limitations on the form of such dependencies have also been
considered in the literature), and the semantics of data integration
systems and query answering is as in data exchange. Among the
papers addressing virtual data integration (we refer the reader to
[27, 24] for a picture on the subject), particularly interesting for the
present work are those facing the problem of integrating data in the
presence of powerful forms of integrity constraints specified on the
global schema. In particular, we recall the work done in [8] on data
integration in the presence of keys and foreign keys, where an al-
gorithm for computing the certain answers to unions of conjunctive
queries is provided. A more general result was given in [10], where
a practical algorithm based on query rewriting is proposed for an-
swering unions of conjunctive queries in the presence of key de-
pendencies and non-key-conflicting inclusion dependencies (IDs).
Non-key-conflicting IDs generalize foreign keys, while preventing
propagation of keys between different relations. As shown in [10]
and [9], query answering in such a setting can be solved in time
polynomial in data complexity, whereas as soon as we allow for IDs
outside the class of non-key-conflicting IDs, query answering (in
fact, already logical implication) becomes undecidable. Notably,
as shown in [30], logical implication (and therefore query answer-
ing) for the class of non-key-conflicting IDs becomes undecidable
if we admit only finite database instances, whereas it remains de-
cidable for the (strict) subclass of non-key-conflicting IDs, called
foreign key dependencies, which is still a generalization of foreign
keys.

Peer data management has recently been investigated in several
papers, and techniques have been provided for evolving from ba-
sic P2P systems supporting only file exchanges to more complex
systems supporting the integration and exchange of structured con-
tents [22, 6, 21, 12, 11, 17, 31, 4, 13]. Data integration in such
systems does not require to replicate in other peers data stored in
one peer, and when a query is posed to a peer, query processing
is done by both looking at local data, and collecting relevant data
from other peers according to the P2P mappings. As for the seman-
tics of P2P data integration, the usual approach is to adopt a first-
order logic interpretation of P2P mappings (followed, e.g., by [21,
22, 6]). However, the presence of cycles in the P2P mappings poses
challenging problems (in particular query answering turns out to be
undecidable, as shown in [22]). Therefore, some approaches have

imposed limitations on the form of P2P mappings in order to al-
low for decidable query answering. Other works [12, 11, 17] have
argued that such limitations are unrealistic in a fully decentralized
setting, and have proposed a weaker semantics for mappings, al-
lowing for both a better modelling of the modular structure of the
system, and decidable (even polynomially tractable w.r.t. data com-
plexity) query answering.

Data exchange in the context of peer data management is still
largely unexplored. Analogously to traditional data exchange, the
focus in this scenario is on materializing the data flowing from one
peer to another. Such a problem has been studied in [18] in a setting
in which only two peers (source and target) interact, and mappings
from the target peer to the source peer are interpreted as integrity
constraints. Notably, checking the existence of solutions, as well
as query answering, is shown to be intractable, even in the absence
of integrity constraints in the target schema. In [7] data exchange
is studied, but mainly under the perspective of repairing data in the
presence of violations of integrity constraints.

Contributions. As we said before, our goal is both to study P2P
data exchange, and to investigate the possibility of combining data
exchange and virtual data integration in peer data management.
The results of our investigation can be summarized as follows.

1. We extend traditional data exchange to P2P data exchange
(Section 2), under a semantic characterization of P2P map-
pings coherent with the epistemic semantics given in [12].
We show that our formalization is a generalization of tradi-
tional data exchange, in the sense that it fully captures the
framework of [14] for the case in which a P2P data exchange
system collapses to a classical data exchange system.

2. We study relevant data exchange tasks (Section 3), i.e., com-
putation of universal solutions and computation of the core,
in the P2P setting, and we show that, by virtue of our se-
mantic characterization, and of the usual restrictions on the
form of integrity constraints, such problems are solvable in
polynomial-time w.r.t. data complexity.

3. We combine data exchange and virtual data integration in the
P2P setting (Section 4), based again on our semantic inter-
pretation of P2P mappings. More precisely, we incorporate
in our framework new forms of schema dependencies, typ-
ical of virtual data integration [9, 30], together with virtual
mappings, which do not impose any actual exchange of data
between peers, but are used in both the computation of the
core and query answering. We discuss the relationship be-
tween our P2P framework and classical data integration for
the case in which no exchange of data is required, i.e., inte-
gration of data is purely virtual.

4. We show that in our P2P data exchange and integration
framework, the relevant data exchange and data integration
tasks still remain polynomial in data complexity, again un-
der suitable restrictions on the form of integrity constraints
(Section 5).

2. P2P DATA EXCHANGE
We first analyze the case of pure P2P data exchange systems. We

define syntax, semantics, and the main notions of admissible state,
universal solution, core, and certain answers.

2.1 Syntax
We start with a preliminary definition. Given a relational signa-

ture S:

• a tuple-generating dependency (TGD) is an assertion of the
form qi → qj , where qi and qj are conjunctive queries (CQs)
of the same arity over the signature S;
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• an equality-generating dependency (EGD) is an assertion of
the form q(x1, x2) → x1 = x2, where q(x1, x2) is a con-
junctive query over the signature S, and x1 and x2 are the
distinguished variables of q.

Intensional level. A P2P data exchange system (PDE-system) is a
triple S = 〈P, CE ,ME〉 where:

• P is a set of peers, each with a relational signature. We as-
sume that the signatures of the peers are pairwise disjoint;

• CE is a set of local constraints (or simply constraints), i.e.,
TGDs and EGDs over the signature of a single peer;

• ME is a set of P2P mappings, i.e., a set of TGDs of the form
qi → qj , where qi is a CQ over the signature of a peer Pi and
qj is a CQ of the same arity of qi over the signature of a peer
Pj .

Extensional level. We define a countably infinite set of constant
symbols C (representing ordinary values) and a countably infinite
set of constant symbols N (representing labeled null values). We
assume that C ∩ N = ∅ and define Γ = C ∪ N . We assume that Γ
is totally ordered.

An indefinite instance (or simply instance) for a signature S is a
(not necessarily finite) set of facts built upon the relation symbols
in S and the constant symbols in Γ. Given an instance B, we de-
note by nulls(B) the set of constants from N occurring in B. An
instance B is definite if nulls(B) = ∅. In the following, we use the
symbol B to denote a generic instance and the symbol D to denote
a definite instance.

We denote by S(P) the signature obtained as the union of the
signatures of the peers in P .

A state B for the PDE-system S = 〈P, CE ,ME〉 is an instance
for S(P). Such a state is called definite if it is a definite instance
for S(P). Given a state B, we denote by ΓB the set of values from
Γ occurring in B.

Queries. A query over a PDE-system S = 〈P, CE ,ME〉 is a
union of conjunctive queries (UCQ) over the signature of a peer
P ∈ P .

2.2 Semantics
Given a definite instance D for a signature S and a query q over

S, we denote by Eval(q, D) the standard (i.e., under CWA) evalu-
ation of q in D.

Given two states B1, B2 for S , a homomorphism from B1 to B2

is a function h : Γ → Γ such that

• h(c) = c, for every constant c ∈ C;
• r(h(t1), . . . , h(tn)) ∈ B2, for every fact r(t1, . . . , tn) ∈

B1.

We say that two states B1, B2 for S are homomorphically equiva-
lent if there exists a homomorphism from B1 to B2 and vice-versa.

Let B a state for S = 〈P, CE ,ME〉, a definite instance D for S
is called an instantiation of B if there exists an injective function
f : ΓB → C such that f(c) = c, for every constant c ∈ ΓB ∩ C,
and D = {r(f(t1), . . . , f(tn)) | r(t1, . . . , tn) ∈ B}. In other
words, the function f maps: (i) every constant value appearing in
B to itself; (ii) every null value appearing in B to a distinct constant
value not appearing in B. Also, Then we say that:

• a TGD qi → qj is satisfied in D if Eval(qi, D) ⊆
Eval(qj , D);

• an EGD q(x1, x2) → x1 = x2 is satisfied in D if, for each
〈t1, t2〉 ∈ Eval(q, D), t1 = t2.

Observe that P2P mappings are TGDs, hence we could interpret
them as above. Since P2P mappings are TGDs, we could adopt the

same notion of satisfaction as the one specified above. However,
since we are placing no constraints on the topology of the P2P map-
pings, and therefore we accept arbitrary cyclic configurations of the
TGDs in ME , this would induce to undecidability. In order to re-
gain decidability, here we take up the idea in [12] of weakening the
semantics of P2P mappings. In particular, we interpret P2P map-
pings as containments between certain answers. Notice that such
an interpretation is coherent with the idea that peers export certain
answers only (cf. [12]).

Let D be a set of definite instances and let qi → qj be a TGD.
We say that qi → qj is CERT-satisfied in D if

\
D∈D

Eval(qi, D) ⊆
\

D∈D
Eval(qj , D)

DEFINITION 1. Let S = 〈P, CE ,ME〉 be a PDE-system, B a
state for S , and D a set of definite instances for S(P). We say that
D satisfies S and B if:

1. for each D ∈ D there is a homomorphism from B to D;
2. for each D ∈ D and for each TGD and EGD φ in CE , φ is

satisfied in D;
3. for each P2P mapping φ in ME , φ is CERT-satisfied in D.

Notice that our notion of CERT-satisfaction of P2P mappings
applies to a set of definite instances as a whole. Therefore, in our
approach, “what satisfies” S and B is not a single instance, but a
set of definite instances. It can be immediately verified that, for
every pair of sets D and D′ that satisfy S and B, the set D ∪ D′
satisfies S and B. Consequently, for every PDE-system S and state
B, there is a unique maximal set of definite instances that satisfies
S and B. We denote by Sem(S, B) such a maximal set.

DEFINITION 2. (Consistent state) Let S be a PDE-system
and B a state for S. We say that a state B is S-consistent if
Sem(S, B) 6= ∅.

DEFINITION 3. (Admissible state) Let S be a PDE-system and
B a state for S. We say that B is S-admissible if (i) B is S-
consistent, (ii) every instantiation of B belongs to Sem(S, B).

Intuitively, an S-admissible state is both S-consistent, and such
that all data exchange specified by S has taken place.

DEFINITION 4. (Universal solution) Let S = 〈P, CE ,ME〉
be a PDE-system and B an S-consistent state. We say that a state
B′ for S is a universal S-solution of B if: (i) B′ is S-admissible;
(ii) Sem(S, B′) = Sem(S, B).

It is immediate to verify that, if B′ is a universal S-solution of
B, then for each D ∈ Sem(S, B) there exists a homomorphism
from B′ to D.

Informally, a universal S-solution for B is a “correct represen-
tative” of all the definite instances in Sem(S, B), in the sense that
a universal S-solution represents the “positive information” that is
common to all the definite instances in Sem(S, B). Observe that, if
a state B is S-admissible, then it is trivially a universal S-solution
of itself.

The notion of S-core below formalizes a property of “minimal-
ity” for a universal S-solution.

DEFINITION 5. (Core) Let S = 〈P, CE ,ME〉 be a PDE-
system and B an S-consistent state. We say that a state B′ for S is
an S-core of B if B′ is a universal S-solution of B and there exists
no proper subset B′′ of B′ such that B′′ is a universal S-solution
of B.
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The following propositions are consequences of the above defi-
nitions.

PROPOSITION 1. Let S be a PDE-system and B an S-
consistent state. Then, (i) there exists at least a universal S-
solution of B, and (ii) all universal S-solutions of B are homo-
morphically equivalent.

PROPOSITION 2. Let S be a PDE-system and B an S-
consistent state. Then, there exists a unique S-core of B up to
isomorphism.

Based on the above property, in the following we will indicate
any S-core of B as the S-core of B.

Finally, we define the semantics of queries in S-admissible
states.

DEFINITION 6. (Certain answers) Let S be a PDE-system, B
an S-admissible state, and q a query over S. Then, the set of cer-
tain answers to q in S and B is defined as follows:

Ans(q,S, B) =
\

D∈Sem(S,B)

Eval(q, D).

We now show that answering UCQs in an S-admissible state B
reduces to evaluating the query over the state B. To this aim, we
introduce a preliminary notion. Given an indefinite instance B for
a signature S and a query q over S, we define EvalNull(q, B) as the
evaluation of q in B when interpreting all the null values occurring
in B as ordinary constant values (i.e., EvalNull(q, B) corresponds
to Eval(q, B) when B is considered as a definite instance in which
null values are considered as ordinary constant values). More-
over, assuming that q is of arity k, we define EvalNull↓(q, B) =
EvalNull(q, B)∩ Ck, i.e., EvalNull↓(q, B) is the set of tuples from
EvalNull(q, B) in which null values do not occur. For instance, if
B = {r(a, n)}, with a ∈ C, n ∈ N , and q = {x, y | r(x, y)},
then EvalNull(q, B) = {〈a, n〉} while EvalNull↓(q, B) = ∅. With
the above notion in place, we can provide the following theorem.

THEOREM 1. Let S be a PDE-system and B an S-admissible
state. Then, Ans(q,S, B) = EvalNull↓(q, B).

EXAMPLE 1. Consider the PDE-system
S = 〈{P1, P2}, CE ,ME〉, where the signature of P1 con-
sists only of one binary relation symbol R1, the signature of
P2 consists of the two binary relation symbols R2 and R3, CE

contains the following set of dependencies:

{x | R2(y, x)} → {x | R3(x, z)}
{y, z | R3(x, y), R3(x, z)} → y = z,

and ME consists of the following set of dependencies:

{x | R1(x, y)} → {x | R2(x, z)}
{x | R3(y, x)} → {x | R1(z, x)}.

Assume that B = {R1(a, b), R2(a, d), R3(f, b), R3(h, d)}
is a state for S. Then, a universal S-solution of B is B′ =
{R1(a, b), R1(x1, b), R1(x2, d), R2(a, d), R2(a, x3), R3(d, x4),
R3(f, b), R3(h, d)}, where each xi denotes a dif-
ferent value from N , whereas the S-core is C =
{R1(a, b), R1(x2, d), R2(a, d), R3(d, x4), R3(f, b), R3(h, d)}.
Notice that, according to minimality of the core, C does not
contain facts R1(x1, b) and R2(a, x3), since it already contains
the ground atoms R1(a, b) and R2(a, d). Now, consider the query
q(x) ← R1(y, x) posed over peer P1. It is easy to see that
Ans(q,S, B) = {b, d}.

2.3 Relationship with classical data exchange
We now show that the setting presented above is in fact a gener-

alization of the “classical” data exchange setting as defined in [14,
15]. We remind the reader that the classical data exchange setting
M is a tuple (S,T, Σst, Σt) where S and T are relational sig-
natures called respectively source schema and target schema, Σst

is a set of source-to-target dependencies (i.e., TGDs of the form
qs → qt, where qs is a CQ over S and qt is a CQ over T), and
Σt is a set of target dependencies (i.e., weakly-acyclic TGDs and
EGDs specified over T). In the above setting, given a definite (i.e.,
without occurrences of null values) and finite instance I for S, the
following data exchange problems are studied: (i) existence of a
solution, i.e., find a finite instance J for T such that 〈I, J〉 satisfies
(in the sense of [14, 15]) Σst and Σt; (ii) find a universal solution
for I in M, i.e., a solution that is homomorphic to every possible
solution for I inM; (iii) find the core of the universal solutions for
I inM. The core C of a universal solution J is the smallest subset
of J such that J has homomorphism to C; as shown in [15], all
cores are identical up to isomorphism, therefore they are referred
to as the core of the universal solutions for I in M.

Given one such data exchange setting M, we define the corre-
sponding PDE-system SM as the triple 〈P, CE ,ME〉, where (i) P
is composed of only two peers: Ps with signature S, and Pt with
signature T; (ii) CE = Σt; (iii) ME = Σst. Moreover, a def-
inite and finite instance I for S simply corresponds to a definite
and finite instance for the signature of Ps. We point out that SM
is a PDE-system of special kind: P contains only Ps and Pt, the
TGDs in CE are weakly-acyclic, no local constraints on the signa-
ture of Ps can be defined, and ME contains only P2P mappings
from Ps to Pt (i.e., P2P mappings from Pt to Ps are not allowed).
Furthermore, the initial instance I corresponds to a state for SM
where neither occurrences of null values nor facts concerning the
signature of Pt are allowed.

We now show the correspondence between the problems of ex-
istence of a solution, computing a universal solution, and comput-
ing the core in the classical data exchange setting with the prob-
lems of checking S-consistency of a state, computing a universal
S-solution, and computing an S-core, respectively.

THEOREM 2. Let M = (S,T, Σst, Σt) be a classical data
exchange setting, as defined in [14, 15], I a finite definite instance
for S, and SM the PDE-system corresponding to M. Then:

1. I is an S-consistent state for SM iff there exists a solution
(in the sense of [14]) for I in M;

2. if I ′ is a finite universal S-solution of I , then (I ′ − I) is
a universal solution (in the sense of [14]) for I in M, and
vice-versa, if J is a universal solution for I inM, then I ∪J
is a (finite) universal S-solution of I;

3. if I ′ is the S-core of I , then I ′ − I is the core (in the sense
of [15]) of the universal solutions for I inM, and vice-versa,
if J is the core of the universal solutions for I in M, then
I ∪ J is the S-core of I .

The above properties show that the notions of universal S-
solution and of S-core of a state provide a generalization to the
P2P setting of the notions of universal solution and core of classical
data exchange systems. Note also that, in this light, Proposition 1
and 2 above are generalizations of well-known properties of uni-
versal solutions and core in the classical data exchange setting [14,
15].

Such a correspondence may look surprising at first, considering
the different interpretation of the P2P mappings (i.e., source-to-
target TGDs) in the two settings. However, since the source in-
stance B is a definite instance, then answers and certain answers to
CQs in B coincide, and therefore the difference between the two
semantics does not show up.
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3. REASONING IN P2P DATA EXCHANGE
In this section we consider reasoning in PDE-systems. In par-

ticular, we first define the E-CHASE for a given finite state B for
a PDE-system S, and prove some important semantic properties of
the E-CHASE. Then, we turn our attention to weakly-acyclic PDE-
systems, a class of PDE-systems where the constraint language is
suitably restricted, and characterize the complexity of state con-
sistency, state admissibility, computing universal solutions, query
answering, and computing the core for these PDE-systems.

3.1 The E-CHASE

We now introduce the notion of E-CHASE, which extends the
classical chase procedure for TGDs and EGDs to the treatment of
P2P mappings. Remember that P2P mappings are TGDs with a
special interpretation based on the notion of CERT-satisfaction. In
the following definition, with a little abuse of notation, we write
q(~x, ~y) to denote a conjunctive query whose distinguished vari-
ables are those of ~x, and whose existential variables are those of
~y. Moreover, ChS,B (i)[t1 ← t2] denotes the state obtained from
ChS,B (i) by replacing each occurrence of t1 with t2.

DEFINITION 7. (E-CHASE) Let S be a PDE-system and B a
finite state for S. Let ChS,B (0) = B. For every positive integer i,
let ChS,B (i + 1) be the state obtained from ChS,B (i) by applying
the following chase rules (fixing an arbitrary well-founded order of
application on the rules and of the null values in N ):

1. TGD-rule:
if q1(~x, ~y) → q2(~x, ~z) ∈ CE

and ~t ∈ EvalNull(q1,ChS,B (i))

and ~t 6∈ EvalNull(q2,ChS,B (i))

then ChS,B (i + 1) := ChS,B (i) ∪ {q2(~t, ~n)}, where ~n is
the k-tuple of the first k null values that do not appear in
ChS,B (i);

2. EGD-rule:
if q(x1, x2) → x1 = x2 ∈ CE

and 〈t1, t2〉 ∈ EvalNull(q,ChS,B (i))
and t1 6= t2

then if t1 ∈ N
then ChS,B (i + 1) := ChS,B (i)[t1 ← t2]
else if t2 ∈ C

then ChS,B (i + 1) := FAIL
else ChS,B (i + 1) := ChS,B (i)[t2 ← t1];

3. P2P-mapping-rule:
if q1(~x, ~y) → q2(~x, ~z) ∈ME

and ~t ∈ EvalNull↓(q1,ChS,B (i))

and ~t 6∈ EvalNull↓(q2,ChS,B (i))

then ChS,B (i + 1) := ChS,B (i) ∪ {q2(~t, ~n)}, where ~n is
the k-tuple of the first k null values that do not appear in
ChS,B (i).

Finally, we define E-CHASE(S, B) = FAIL if there exists i
such that ChS,B (i) = FAIL, otherwise E-CHASE(S, B) =[

i∈N
ChS,B (i).

We now show how to exploit E-CHASE for reasoning over PDE-
systems.

THEOREM 3. Let S = 〈P, CE ,ME〉 be a PDE-system and B
a finite state for S. Then,

• B is S-consistent iff E-CHASE(S, B) 6= FAIL;
• if E-CHASE(S, B) 6= FAIL, then E-CHASE(S, B) is a uni-

versal S-solution of B;
• B is S-admissible iff E-CHASE(S, B) = B.

3.2 Reasoning in weakly-acyclic PDE-systems
So far, we have not imposed any limitation on the form of the

constraints occurring in PDE-systems. In particular, general PDE-
systems allow arbitrary TGDs and EGDs. Notice, however, that in
the presence of arbitrary TGDs, a finite universal solution in gen-
eral does not exist [14, 26]. On the other hand, we are particularly
interested in those PDE-systems S that, given a finite state B for
S , admit a finite universal S-solution of B. To this aim, in the line
of [14, 15], we restrict the class of TGDs allowed in S to the class
of weakly-acyclic TGDs.

We call weakly-acyclic PDE-system a PDE-system S =
〈P, CE ,ME〉 such that the TGDs in CE are weakly-acyclic.

Let us consider a weakly-acyclic PDE-system S and a finite
state B for S . Based on the well-known complexity results for
the chase of weakly-acyclic TGDs and EGDs, and considering that
every P2P-mapping rule fires only for tuples of ordinary constants
already appearing in B (and hence each such rule can fire at most a
polynomial number of times w.r.t. data complexity), the tractability
result of the chase of weakly-acyclic TGDs and EGDs extends to
our notion of chase (E-CHASE). Consequently, the following upper
bounds hold.

THEOREM 4. Let S be a weakly-acyclic PDE-system and B a
finite state for S. Then,

• deciding whether B is S-consistent can be done in polyno-
mial time w.r.t. data complexity;

• deciding whether B is S-admissible can be done in polyno-
mial time w.r.t. data complexity;

• if B is S-consistent, then a universal S-solution of B can be
computed in polynomial time w.r.t. data complexity.

• if B is S-admissible, then query answering can be solved in
logarithmic space w.r.t. data complexity.

We remark that, even in weakly-acyclic PDE-systems, the set of
TGDs in CE and ME is in general non-weakly-acyclic (see, e.g.,
Example 1). Thus, even under the restriction that CE is weakly-
acyclic, a classical first-order interpretation of the P2P mappings
would lead to a situation where a finite universal S-solution does
not exist (and all the reasoning tasks studied above are undecid-
able). Conversely, the CERT -satisfaction of P2P mappings re-
quired in our framework guarantees the existence of a finite univer-
sal S-solution.

We now consider the problem of computing the S-core in
weakly-acyclic PDE-systems. It is easy to see that the problem
of computing the S-core of a PDE-system starting from an arbi-
trary finite state is in general NP-hard: such hardness is due to
the fact that a state may contain arbitrary combinations of null val-
ues (which implies that the so-called block size of B may be not
bounded [20]). So we look for significant classes of states which
admit a polynomial (w.r.t. data complexity) computation of the S-
core. To this aim, we introduce the class of ground S-evolutions.

DEFINITION 8. (Ground S-evolution) Let S be a weakly-
acyclic PDE-system. We say that a finite state B is a ground S-
evolution if there exists a sequence of finite S-consistent states
B1, . . . , Bn and a sequence of finite definite instances D1, . . . , Dn

such that:

1. B1 is a definite state;
2. for each i such that 1 ≤ i ≤ n − 1, Bi+1 is an S-core of

Bi ∪Di;
3. B = Bn ∪Dn.

Informally, a ground S-evolution is a state that is obtained by
(iteratively) adding ground facts to an S-core of a previous state.
From the practical viewpoint, this is a very interesting class of
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states, since each such state is obtained from a definite state by
repeatedly: (i) inserting new ground data; (ii) computing the new
S-core.

To compute an S-core of a ground S-evolution B, we essentially
re-use the algorithm FINDCORE for computing cores in a classical
data exchange setting (see [20]). This algorithm is constituted by
two parts. In the first part (steps 1 and 2), the algorithm computes
the chase with respect to a set of weakly-acyclic TGDs and EGDs,
starting from a set of facts. Essentially, such a chase is analogous
to our procedure for defining E-CHASE without the P2P-mapping-
rule, with the following differences: (i) it is based on an encoding
of EGDs through new TGDs (and hence it only considers TGDs);
(ii) since adding such new TGDs makes the whole set of TGDs non-
weakly-acyclic, to guarantee termination it imposes that the order
of application of rules in the chase must be nice, i.e., must satisfy a
given condition (we refer to [20] for more details).

In the following, by PDEFINDCORE we indicate a slight mod-
ification of the algorithm in [20], which: (i) starts from a state
(instead of a definite instance); (ii) computes a universal solution
(steps 1 and 2 of the algorithm) extending the chase procedure de-
fined in [20] with the P2P-mapping-rule of Definition 7 (which can
be executed in any order).

THEOREM 5. Let S be a weakly-acyclic PDE-system and
B a finite state for S . If B is a ground S-evolution, then
PDEFINDCORE(S, B) is an S-core of B.

Proof (sketch). The key properties for the correctness of the algo-
rithm PDEFINDCORE are the following: (i) the fact that the state B
is a ground S-evolution implies that the block size of B is bounded
to a value independent of the size of the data; (ii) the addition of
the P2P-mapping-rule does not change the bound on the maximal
depth [20] of null values in the chase, since by definition such a
rule does not propagate null values. This allows to extend the cor-
rectness proof of [20] to PDEFINDCORE.

From the complexity of E-CHASE (Theorem 4) and of the al-
gorithm FINDCORE [20], we can derive the following complexity
characterization for computing the S-core of an S-consistent state.

THEOREM 6. Let S be a weakly-acyclic PDE-system and B
a finite state that is both S-consistent and a ground S-evolution.
The S-core of B can be computed in time polynomial w.r.t. data
complexity.

Proof (sketch). The key property is that, since the P2P-mapping-
rule only propagates constant values, it follows that each P2P map-
ping can fire this rule at most nk times, where n is the number
of constant values occurring in B, and k is the arity of the P2P
mapping. Thus, adding this rule does not affect the polynomial up-
per bound of the chase, which in turn (based on the complexity of
FINDCORE shown in [20]) implies the polynomial upper bound of
the algorithm PDEFINDCORE.

4. ADDING VIRTUAL MAPPINGS AND
VIRTUAL CONSTRAINTS

The framework proposed so far does not capture the notion of
mappings as studied in virtual data integration. A virtual mapping
has the same syntactic form as a data exchange mapping. However,
while a mapping from peer P1 to peer P2 of the latter kind is satis-
fied if the data involved in the mapping have been exchanged from
P1 to P2, a virtual mapping is not interpreted as a condition to be
enforced on the data (which are only virtual), but rather as a cor-
respondence that is to be used when computing certain answers to
queries. This kind of mappings is typical of virtual data integration

[27], and is also used in commercial data federation tools such as
IBM DB2 Information Integrator or Oracle 10g Information Inte-
gration. The interest in virtual mappings stems from the fact that,
in data integration, the global schema represents a virtual database,
and the interpretation of the mappings between the sources and the
global schema (or, between two peers) should take into account
such virtual nature of data. This means that a state should be con-
sidered admissible even if its data do not explicitly satisfy a virtual
mapping, contrary to the idea behind data exchange mappings. At
the same time, when computing the certain answers, we should
obviously consider only those databases that satisfy all mappings
(including the virtual ones).

Another concept that is typical of data integration is the one of
virtual constraint. Since the global database of a data integration
system is virtual, if the global schema contains integrity constraints,
they should be considered “virtual”, i.e., they represent conditions
that all databases conforming to the schema should satisfy, rather
than conditions to be enforced on actual data. This means that the
source data, the virtual mappings, and the global schema constitute
a database with incomplete information (see [27, 23, 1]), i.e., they
are an abstraction for a set of databases, and the constraints in the
schema are part of the specification of such set of global databases.

The challenge we face in this section and in Section 5 is whether
we can add virtual mappings and virtual constraints to peer data ex-
change systems. To this aim, in the rest of this section we present
the notion of peer data exchange and integration system, while in
the next section we present techniques for all relevant data manage-
ment tasks in these systems.

4.1 Syntax
We present a new notion of peer data management system, aim-

ing at combining data exchange and data integration. According to
the discussion above, a system of this type has two types of con-
straints and two types of mappings. Constraints of the two classes
are called e-constraints and i-constraints, respectively, where the
former have the same interpretation as in Section 2, and the lat-
ter are virtual constraints. Mappings of the two classes are called
e-mappings, i.e., data exchange mappings (cf. Section 2), and i-
mappings, i.e., virtual (data integration) mappings, respectively.

A P2P data exchange and integration (PDEI) system is a 5-tuple
S = 〈P, CE ,ME , CI ,MI〉 where:

• P is a set of peers (each with a relational signature);
• CE is a set of e-constraints, and CI is a set of i-constraints;

each constraint of any of the two classes is either a TGD or
an EGD over a single peer;

• ME (e-mappings) andMI (i-mappings) are two sets of P2P
mappings.

Note that in the general definition above we do not pose any
limitation on constraints. Suitable limitations will be introduced in
Section 5 to ensure decidability of data management tasks.

4.2 Semantics
We now define the semantics of PDEI-systems. As in the case of

PDE-systems, the semantic structures for these systems are sets of
definite instances.

DEFINITION 9. Let S = 〈P, CE ,ME , CI ,MI〉 be a PDEI-
system. We say that a set of definite instances D satisfies S and B
if:

1. for each D ∈ D there is a homomorphism from B to D;
2. for each D ∈ D and for each TGD and EGD φ in CI ∪ CE ,

φ is satisfied in D;
3. for each mapping φ inMI ∪ME , φ is CERT-satisfied inD.
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It can be immediately verified that, analogously to the case of
PDE-systems, for every PDEI-system S and state B, there is a
unique maximal set of definite instances that satisfies S and B,
and we denote by Sem(S, B) such a maximal set. The defini-
tions of S-consistent state, universal S-solution, S-core, and cer-
tain answers are identical to the corresponding definitions given for
PDE-systems, except that they are based on the new definition of
Sem(S, B), and on the notion of S-admissible state, which is more
involved, and is discussed below.

As in the case of PDE-systems, a state should be considered ad-
missible if all the data exchange required by e-constraints and e-
mappings has taken place. However, for checking whether such
exchange has taken place, we should consider not only the actual
data at the peers, but also the facts implied by the virtual mappings
and the virtual constraints. Consider, for example, the e-mapping
e = q1 → q2 from peer P1 to peer P2, where q2 is constituted by
one atom with predicate p, and suppose that a tuple t satisfies q1

in peer P1. Obviously, the e-mapping e specifies that t should also
satisfy p. Should this mean that the fact p(t) should be in P2? We
argue that this is not necessary. Indeed, in order to fulfill the data
exchange specification represented by e, it is sufficient that p(t) is
logically implied by the virtual mappings to P2 and the virtual con-
straints in P2 (together with the data stored in the various peers).
This means that, for a state to be admissible, all the data exchange
required by e-constraints and e-mappings has taken place, modulo
the implicit knowledge represented by the virtual mappings and
constraints. In other words, for a state B to be admissible, the state
B′ obtained from B by adding all the consequence of B according
to virtual mappings and constraints must satisfy all e-mappings and
e-constraints.

To come up with the right definition according to the above in-
tuition, we need to introduce some preliminary notions. If S =
〈P, CE ,ME , CI ,MI〉 is a PDEI-system, we denote by SE the
PDE-system 〈P, CE ,ME , ∅, ∅〉, i.e., the system obtained from S
by dropping both virtual constraints and virtual mappings, and
we denote by SI the system 〈P, ∅, ∅, CI ,MI〉, i.e., the system
obtained from S by dropping both e-constraints and e-mappings.
Moreover, we denote by SI→E the PDE-system 〈P, CI ,MI , ∅, ∅〉,
i.e., the system obtained from S by dropping both e-constraints and
e-mappings, and by turning the virtual constraints CI and virtual
mappings MI into e-constraints and e-mappings, respectively.

DEFINITION 10. (Admissible state for PDEI-systems) Let
S = 〈P, CE ,ME , CI ,MI〉 be a PDEI-system and B a state for
S . We say that B is S-admissible if (i) B is S-consistent, and (ii)
there exists a universal SI→E-solution of B that is SE-admissible.

Note that, if for a system S, the sets CI and MI are empty,
then trivially B itself is a universal SI→E-solution of B and hence
the above definition coincides with the definition of admissibility
presented in Section 2.

The following theorem shows that, if we are in an S-admissible
state, and we have to compute the certain answers to a union of
conjunctive queries, then we can concentrate on virtual mappings
and virtual constraints only.

THEOREM 7. Let S = 〈P, CE , CI ,ME ,MI〉 be a PDEI-
system, B an S-admissible state, and q a query over S . Then,
Ans(q,S, B) = Ans(q,SI , B).

4.3 Relationship with classical
data integration

We briefly comment on the relationship between PDEI-systems
and traditional virtual data integration. We remind the reader that
a data integration system J is characterized by a triple 〈G,S,M〉,
where G is the global schema (possibly with integrity constraints),

S is the source schema, andM is the set of mappings, which spec-
ify the relationship between the global and the source schema [27].
The most general form of mappings considered in data integration
is called GLAV, and directly corresponds to the notion of TGD.
Given a database D for S , the set of databases for G which sat-
isfy the constraints in G and are coherent (in the sense of [27])
with D and M, denoted Mod(J , D), represents the semantics of
J . Indeed, the notion of certain answer to a query is based on
Mod(J , D): a tuple of constants is a certain answer to a query q
posed to J (i.e., a query over G) if it is an answer to q in every
database in Mod(J , D). Observe that the semantics of mappings
is the usual one in FOL, whereas in the PDEI-systems defined here,
virtual mappings are interpreted based on the notion of CERT-
satisfaction. Thus, it might seem that a data integration system
cannot be rendered as a PDEI-system. However, as observed for
the case of classical data exchange in Section 2.3, the source data-
base D is a database, i.e., a finite definite instance, in our terminol-
ogy, and hence answers and certain answers to CQs in D coincide.
Based on this observation, we show below that the notion of PDEI-
system is a generalization of virtual data integration.

Given one such data integration system J , we define a cor-
responding PDEI-system SJ with one peer PG having the same
schema as G and the constraints of G as i-constraints, one peer Pi

for each source Si in S , and having M as the set of i-mappings.

THEOREM 8. Let J = 〈G,S,M〉 be a virtual data integration
system, and let SJ be the corresponding PDEI-system. Then, for
each database D for S, Mod(J , D) = Sem(SJ , D).

We end this section by comparing PDEI-systems with another
family of virtual data integration systems, namely peer data man-
agement (PDM) systems [29, 22, 12].

The main observation in considering [29, 22] is that, there, map-
pings between peers are given the classical FOL semantics. Since,
as discussed earlier, such a semantics leads to undecidability, in or-
der to recover decidability of query answering, a suitable assump-
tion on the form of mapping (basically, acyclicity) is adopted. On
the other hand, here, we do not resort to any assumption on the
presence of cycles, but we use a weaker, non-classical interpre-
tation of virtual mappings. It follows that PDEI-systems and the
PDM systems of the kind proposed in [29, 22] are incomparable.

On the contrary, it is not hard to to see that the semantics pro-
posed here for virtual mappings directly corresponds to the seman-
tics adopted in [12], despite the fact that such a semantics was pre-
sented in [12] by resorting to a particular form of epistemic logic.
Therefore, the PDEI-systems proposed in this paper can be seen
as a generalization of the notion of P2P virtual data integration de-
fined in [12]. Obviously, the novel aspect of PDEI-systems is the
combination of virtual data integration and P2P data exchange.

5. REASONING IN P2P DATA EXCHANGE
AND INTEGRATION

In this section we consider reasoning in PDEI-systems. In par-
ticular, we first define the EI-CHASE for a given finite state B for
a PDEI-system S , and prove some important semantic properties
of the EI-CHASE. Then, we turn our attention to stratified PDEI-
systems, a class of PDEI-systems where the language for both e-
constraints and i-constraints is restricted, and characterize the com-
plexity of state consistency, state admissibility, computing univer-
sal solutions, and query answering in stratified PDEI-systems.

5.1 The EI-CHASE

To check consistency and admissibility, and to compute univer-
sal solutions in PDEI-systems, we now extend the chase procedure
defined in Section 3. Such an extension is not trivial, since the
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new chase must carefully take into account the presence of the con-
straints in CI and the P2P mappings inMI . Our idea is to keep the
constraints in CI and MI as “virtual” in the chase, and use them
during the chase procedure only to decide whether a constraint in
CE and ME fires.

In other words, our idea is that the chase has to “materialize”
tuples (i.e., add tuples to the chase) based on the constraints in CE

andME , but the firing of such constraints depends not only on the
tuples materialized in the chase, but also on the virtual constraints
in CI and MI . Definition 11 below formalizes the above idea.

As a preliminary notion, we define AnsNull(q,S ′, B), for a CQ
q of arity k, a PDEI-system S ′ of the form 〈P, ∅, ∅, CI ,MI〉,
and a finite state B, as follows. If B is not S ′-consistent, then
AnsNull(q,S ′, B) = Γk. For the case where B is S ′-consistent,
we first define σ as a substitution of the null values in B, i.e., a
function nulls(B) → C ∪ nulls(B), and let σ(B) denote the state
obtained from B by substituting each null value n with σ(n). Then,
we define σS′ as any most general substitution of null values in B
such that σS′(B) is S ′-consistent when considering the null values
as ordinary constants. Finally, AnsNull(q,S ′, B) is defined as the
set of certain answers to q in S ′ and σS′(B) computed under the
assumption that the null values in σS′(B) are ordinary constants.
Roughly speaking, in the above definition the most general substi-
tution σS′ represents the equalities (between pairs of null values
in B or a null value and a constant) that are enforced by the key
constraints in S.

DEFINITION 11. (EI-CHASE) Let S be a PDEI-system, and let
B a finite state for S. Let ChS,B (0) = B. For every positive inte-
ger i, let ChS,B (i + 1) be the state obtained from ChS,B (i) by ap-
plying the following chase rules (fixing an arbitrary well-founded
order of application on the rules and of the null values in N ):

• TGD-rule:
if q1(~x, ~y) → q2(~x, ~z) ∈ CE

and ~t ∈ AnsNull(q1,SI ,ChS,B (i))

and ~t 6∈ AnsNull(q2,SI ,ChS,B (i))

then ChS,B (i + 1) := ChS,B (i) ∪ {q2(~t, ~n)}, where ~n is
the k-tuple of the first k null values that do not appear in
ChS,B (i);

• EGD-rule:
if q(x1, x2) → x1 = x2 ∈ CE

and 〈t1, t2〉 ∈ AnsNull(q,SI ,ChS,B (i))
and t1 6= t2

then if t1 ∈ N
then ChS,B (i + 1) := ChS,B (i)[t1 ← t2]
else if t2 ∈ C

then ChS,B (i + 1) = FAIL
else ChS,B (i + 1) := ChS,B (i)[t2 ← t1];

• P2P-mapping-rule:
if q1(~x, ~y) → q2(~x, ~z) ∈ME

and ~t ∈ Ans(q1,SI ,ChS,B (i))

and ~t 6∈ Ans(q2,SI ,ChS,B (i))

then ChS,B (i + 1) := ChS,B (i) ∪ {q2(~t, ~n)}, where ~n is
the k-tuple of the first k null values that do not appear in
ChS,B (i).

Finally, let CH =
S

i∈N ChS,B (i). We define EI-CHASE(S, B)

as follows: EI-CHASE(S, B) = FAIL if either CH is not SI -
consistent or there exists i such that ChS,B (i) = FAIL, otherwise
EI-CHASE(S, B) = CH .

It turns out that EI-CHASE is the right tool for characterizing the
S-consistency and the S-admissibility of a finite state. Formally:

THEOREM 9. Let S be a PDEI-system and B a finite state for
S . Then,

• B is S-consistent iff EI-CHASE(S, B) 6= FAIL;
• if EI-CHASE(S, B) 6= FAIL, then EI-CHASE(S, B) is a

universal S-solution of B;
• B is S-admissible iff EI-CHASE(S, B) = B.

5.2 Reasoning in stratified PDEI-systems
So far, we have not imposed any limitation on the form of the

i-constraints and e-constraints occurring in PDEI-systems, and we
do not have looked in depth at the interaction between these two
kinds of constraints. Analogously to the case of PDE-systems,
we are again interested in enforcing on PDEI-systems the prop-
erty that, given a finite state B, there exists a finite universal S-
solution for B. A direct consequence of this requirement is that
we must limit the expressive power of the language used to specify
both e-constraints and i-constraints. As for e-constraints we again
resort to the assumption of weak-acyclicity. Actually the same as-
sumption could be adopted for i-constraints too, and the technical
development would be a relative simple extension of the one pre-
sented in Section 3. However, in this paper we take another ap-
proach, which turns out to be much more challenging. Indeed, we
consider a specific class of i-constraints that roughly correspond to
key and foreign key constraints, and constitute a maximally expres-
sive class of constraints considered in virtual data integration [30].
Thus, our choice of e-constraints and i-constraints is justified by
the goal of studying PDEI-systems with the most expressive class
of constraints considered in the two areas.

The i-constraints considered in this paper are of two types:

• A key constraint is a special form of EGD, stating that a set
of components forms a key for a given relation. Formally,
for a relation r of arity n, a key constraint has the form
key(r) = {i1, . . . , ik}, where for each ih, 1 ≤ ih ≤ n.
The set {i1, . . . , ik} is called the key of r.

• A foreign key dependency is a special form of inclusion de-
pendency (and, therefore, of TGD), stating that a certain
combination of components of a relation s (of arity m) refer-
ences a subset of the key of a relation r (of arity n). Formally,
a foreign key dependency has the form s[j1, . . . , jp] ⊆
r[i1, . . . , ip], where for each jh, 1 ≤ jh ≤ m, for each ih,
1 ≤ ih ≤ n, and {i1, . . . , ip} is a (not necessarily proper)
subset of the key of r. In what follows, r will be called the
head of the foreign key dependency.

A set of key constraints and foreign key dependencies is called
legal if it contains at most one key constraint for each relation sym-
bol. Note that no acyclicity assumption of any type is imposed on
foreign key dependencies, and therefore they are not subsumed by
weakly-acyclic TDGs. Nevertheless, as we said before, key con-
straints and foreign key dependencies form one of the maximally
expressive classes of constraints considered in the virtual data in-
tegration literature, and for which computing certain answers is
decidable [9, 30]. Interestingly, several information systems that
might be modeled as peers in our approach export their informa-
tion in terms of formalisms, such as Entity-Relationship model, or
UML-style languages, and such formalisms can be expressed in
terms of key constraints and foreign key dependencies, whereas
they are not captured by weakly-acyclic TGDs. An example is
shown in Figure 1. Since every instance of E is linked to an in-
stance of F by means of R, and every instance of F has a Q-link
to at least one instance of E, it is immediate to see that the TGDs
corresponding to the schema in Figure 1 are not weakly-acyclic.
On the other hand, it is not hard to see that the semantics of the
above schema is captured by a set of key constraints and foreign
key dependencies.

Unfortunately, simply combining weakly-acyclic e-constraints
with legal key constraints and foreign key dependencies is not yet
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Figure 1: Cyclic inclusion dependencies

sufficient to ensure nice properties of PDEI-systems, as shown in
the following theorem.

THEOREM 10. There exists a PDEI-system S =
〈P, CE ,ME , CI ,MI〉, where CE is a set of weakly-acyclic
TGDs, and CI is a set of legal key constraints and foreign key
dependencies, and a finite S-consistent state B such that every
universal S-solution of B is infinite.

Proof (sketch). Consider a system S constituted by a single peer
without mappings and with the following constraints: CE = {{x |
E(x)} → {x | R(x, y)}}, and CI = {R[2] ⊆ F [1], F [1] ⊆
Q[2], Q[1] ⊆ E[1]} (cf. Figure 1). Then, it is easy to verify that
the S-consistent state B = {E(a)} admits only infinite universal
S-solutions.

The above theorem tells us that, for our purpose, we need to im-
pose a suitable limitation on the interaction between e-constraints
and i-constraints in PDEI-systems. To meet this requirement, we
introduce the notion of stratified PDEI-systems.

DEFINITION 12. A PDEI-system S = 〈P, CE ,ME , CI ,MI〉
is said to be stratified if CE is a set of weakly-acyclic TGDs, CI

is a set of legal key constraints and foreign key dependencies, and
no head of a foreign key dependency in CI appears in the left-hand
side of any TGD in CE .

EXAMPLE 2. Consider now the PDEI-system
S = 〈{P1, P2, P3}, CE ,ME , CI ,MI〉 where CE , and the
signatures of P1 and P2 are as in Example 1, the signature
of P3 comprises the binary relation symbols R4, R5, and R6,
ME comprises the same dependencies of Example 1, plus the
dependency {x | R3(x, y)} → {x | R5(z, x)}, CI comprises the
following set of dependencies

key(R4) = {1} R6[1] ⊆ R5[1]
key(R5) = {1} R5[2] ⊆ R4[1]
key(R6) = {2} R4[2] ⊆ R6[2]

and MI consists of the only dependency

{x | R4(x, y)} → {x | R1(z, x)}.
It is easy to see the the system above is stratified. Assume now
that the state B for S is as in Example 1. Then, both B′ =
{R1(a, b), R1(x1, d), R2(a, d), R3(d, x2), R3(f, b), R3(h, d),
R5(x3, b), R5(x4, d)} and B′′ = B′ − {R1(x1, d)} are uni-
versal S-solutions. Indeed, it is easy to see that (i) for each
D ∈ Sem(S, B) there exists a homomorphism from B′′ to D, (ii)
B′′ is S-consistent, and (iii) B′ is a universal SI→E-solution of
B′′ that is SE-admissible (cf. Definition 10). Both universal solu-
tions can be obtained by applying our procedure for computing the
EI-CHASE starting to the initial state B by using a different order
in the application of the rules.

We now show that, under the above restriction, every S-
consistent state admits a finite universal S-solution.

THEOREM 11. Let S be a stratified PDEI-system and B a finite
state S-consistent state. Then, there exists a finite universal S-
solution of B.

We point out that the existence of a finite universal S-solution
of B does not imply that the chase of all (i.e., both exchange and
virtual) constraints and mappings of S terminates. Conversely, it
can be shown that there exists no finite state B′ such that computing
the certain answers to a union of conjunctive queries w.r.t. S and B
reduces to evaluating the query over B′.

Nevertheless, in the rest of the section, we will show that strat-
ification is sufficient to allow for developing techniques for data
management tasks in PDEI-systems.

We start with the next theorem that characterizes the complexity
of various reasoning tasks for a stratified PDEI-system S . Its proof
is based on the following facts: (i) the procedure EI-CHASE is anal-
ogous to E-CHASE, with the only difference that the conditions for
firing rules are based on computing AnsNull(q,SI ,ChS,B (i)), i.e.,
computing certain answers on a system with virtual mappings and
constraints, instead of evaluating queries over indefinite instances
through EvalNull(q,ChS,B (i)); (ii) AnsNull(q,SI ,ChS,B (i)) can
be computed in polynomial time w.r.t. data complexity; (iii) check-
ing SI consistency of a finite state can be done in polynomial time
w.r.t. data complexity.

THEOREM 12. Let S be a stratified PDEI-system and B a finite
state for S. Then,

• deciding whether B is S-consistent can be done in polyno-
mial time w.r.t. data complexity;

• deciding whether B is S-admissible can be done in polyno-
mial time w.r.t. data complexity;

• if B is S-consistent, then a universal S-solution of B can be
computed in polynomial time w.r.t. data complexity.

Query answering. Unfortunately, we cannot directly use
EI-CHASE to do query answering: although the state B′ =
EI-CHASE(S, B) is a universal S-solution of the initial state B,
we already observed that this property is not sufficient to reduce
query answering to query evaluation over B′. Indeed, Theorem 7
implies that, although we can ignore e-mappings and e-constraints
to compute the certain answers to a query in B′, we still have to
take into account both i-mappings and i-constraints.

The way in which we take into account i-mappings and i-
constraints is based on the notion perfect reformulation of a UCQ
under inclusion dependencies [10].

Rephrased in the present setting, the notion of perfect reformula-
tion of a query can be expressed as follows: given a set of local con-
straints CI over a peer P , and a query q, let S = 〈{P}, ∅, ∅, CI , ∅〉.
Then the perfect reformulation of q w.r.t. CI is a query q′ such that,
for each S-admissible state B, Ans(q,S, B) = EvalNull↓(q′, B).

In [10] it has been shown that, if CI is a set of arbitrary inclusion
dependencies, then the perfect reformulation of a UCQ q is a UCQ.
Moreover, an algorithm has been defined for computing the perfect
reformulation. We call COMPUTEPERFECTREF such algorithm,
which takes as input a UCQ q and a set of inclusion dependen-
cies I and returns a UCQ (a perfect reformulation of q) as output.
Moreover, a consequence of [10] is that the above perfect reformu-
lation is still correct for consistent states when CI is a set of legal
key constraints and foreign key dependencies. More precisely, if
CI is a set of legal key constraints and foreign key dependencies,
and I is the set of foreign key dependencies in CI , then the query
q′ returned by COMPUTEPERFECTREF(q, I) is such that for each
S-admissible state B, Ans(q,S, B) = EvalNull↓(q′, B).

Let us now turn our attention to PDEI-systems. To solve the
query answering problem, we resort to an encoding of stratified
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PDEI-systems into PDE-systems which actually add tuples accord-
ing to the P2P mappings in MI , and also considers a “composi-
tion” of the inclusion dependencies in CI with the P2P mappings in
MI . Informally, through this encoding we materialize a new state
B′ which is a finite portion of a universal S-solution of B. The
new state B′ has the crucial property of being an “almost-correct”
representative of Sem(S, B) with respect to UCQs, in the sense
that the certain answers to a UCQ q in B correspond to the eval-
uation in B′ of the perfect reformulation of q w.r.t. the inclusion
dependencies in CI .

Formally: let I be a set of inclusion dependencies and let φ be
the TGD q1 → q2. We define

Expand(φ, I) = {q′ → q2 | q′ ∈ COMPUTEPERFECTREF(q1, I)}
Moreover, given a set T of TGDs, we define

Expand(T , I) =
[

φ∈T
Expand(φ, I)

Let S = 〈P, CE ,ME , CI ,MI〉 be a PDEI-system and let I
be the set of inclusion dependencies in CI . We define τ(S) as the
PDE-system τ(S) = 〈P, ∅,Expand(MI , I), ∅, ∅〉.

THEOREM 13. Let S = 〈P, CE ,ME , CI ,MI〉 be a stratified
PDEI-system, I the set of foreign key dependencies in CI , B a finite
S-admissible state, and q a query over S . Then, Ans(q,S, B) =
EvalNull↓(COMPUTEPERFECTREF(q, I), E-CHASE(τ(S), B)).

Theorems 12 and 13, and the known complexity results for
COMPUTEPERFECTREF imply the following property.

THEOREM 14. Let S be a stratified PDEI-system and B a fi-
nite S-admissible state. Then, query answering can be solved in
polynomial time w.r.t. data complexity.

On S-cores. We now turn our attention to the notion of S-core in
PDEI-systems, and show that, differently from the case of PDE-
systems (see Proposition 2), a state of a PDEI-system S may admit
several S-cores.

EXAMPLE 3. Consider the following PDEI-system S formed
by three peers P1, P2 and P3, without e-constraints and i-
constraints, and with the following P2P mappings:

Me = {{x | R1(x)} → {x | R2(x)}}
Mi = {{x | R2(x)} → {x | R3(x)},

{x | R3(x)} → {x | R2(x)}}
Then the S-consistent state B = {R1(a)} admits two S-cores:
Bc = {R1(a), R2(a)} and B′

c = {R1(a), R3(a)}.

The example shows that the crucial property of the notion of
core, i.e., uniqueness, is lost in arbitrary PDEI-systems.

6. CONCLUSIONS
Several issues are left out by our investigation. We mention three

of them. First, it is open whether there are notable cases of PDEI-
systems in which an S-core can be computed in polynomial time.
Second, we have not addressed the issue of mapping composition,
which becomes particularly intriguing when we mix data exchange
and data integration mappings. Finally, it would be interesting to
look for more expressive combinations of data exchange and data
integration mappings and constraints that still retain nice computa-
tional properties.
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