
A Partition-Based Approach to Structure Similarity Search

Xiang Zhao† Chuan Xiao‡ Xuemin Lin † § Qing Liu♮ Wenjie Zhang†

†The University of New South Wales, Australia ‡Nagoya University, Japan
§Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, China ♮CSIRO, Australia

{xzhao, lxue, zhangw}@cse.unsw.edu.au chuanx@nagoya-u.jp q.liu@csiro.com

ABSTRACT
Graphs are widely used to model complex data in many
applications, such as bioinformatics, chemistry, social net-
works, pattern recognition, etc. A fundamental and critical
query primitive is to efficiently search similar structures in
a large collection of graphs. This paper studies the graph
similarity queries with edit distance constraints. Existing so-
lutions to the problem utilize fixed-size overlapping substruc-
tures to generate candidates, and thus become susceptible
to large vertex degrees or large distance thresholds. In this
paper, we present a partition-based approach to tackle the
problem. By dividing data graphs into variable-size non-
overlapping partitions, the edit distance constraint is con-
verted to a graph containment constraint for candidate gen-
eration. We develop efficient query processing algorithms
based on the new paradigm. A candidate pruning technique
and an improved graph edit distance algorithm are also de-
veloped to further boost the performance. In addition, a
cost-aware graph partitioning technique is devised to op-
timize the index. Extensive experiments demonstrate our
approach significantly outperforms existing approaches.

1. INTRODUCTION
Recent decades have witnessed a rapid proliferation of

data modeled as graphs, such as chemical and biological
structures, business processes and program dependencies.
As a fundamental and critical query primitive, graph search,
which retrieves the occurrence of a query structure in the
database, is frequently issued in these application domains,
and hence, has attracted extensive attention lately. Due to
the existence of data inconsistency, such as erroneous data
entry, natural noise, and different data representation in dif-
ferent sources, a recent trend is to study similarity queries.

A structure similarity search finds all data graphs from
a graph collection that are similar to a given query graph.
Various similarity or distance measures have been utilized
to quantify the similarity between graphs, e.g., the mea-
sures based on maximum common subgraphs (MCS) [12,
16], or missing edges [19, 22]. Among them, graph edit dis-

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license.Contact
copyright holder by emailing info@vldb.org. Articles fromthis volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 3
Copyright 2013 VLDB Endowment 2150-8097/13/11.

tance (GED) stands out for its elegant property: (1) It is a
metric applicable to all types of graphs; and (2) It captures
precisely the structural difference (both vertex and edge) be-
tween graphs. For this reason, we study structure similarity
search with edit distance constraints in this paper: given
a data graph collection and a query, we find all the data
graphs whose GED to the query is within a threshold.

However, the NP-hardness of GED computation poses
serious algorithmic challenges. Therefore, state-of-the-art
solutions are mainly based on a filter-and-verify strategy,
which first generates a set of promising candidates under a
looser constraint and then verifies them with the expensive
GED computation. Inspired by the q-gram idea for string
similarity queries, the notions of tree-based q-gram [14] and
path-based q-gram [21] were proposed. Both studies convert
the distance constraint to a count filtering condition, i.e., a
requirement on the number of common q-grams, based on
the observation that if the GED between two graphs is small,
the majority of q-grams in one graph are preserved. Besides
q-gram features, star structure [17] was also proposed, which
is exactly the same as tree-based 1-gram. Rather than count
common features, [17] developed a method to compute the
lower and upper bounds of GED through bipartite match-
ing between the star representations of two graphs. The
method was later equipped with a two-level index and a
cascaded search strategy to find candidates [15].

We summarize the aforementioned work, i.e., (tree-based
and path-based) q-grams and star structures, as fixed-size
overlapping substructure-based approaches, as the adopted
features share two common characteristics: (1) fixed-size
– being trees of the same depth (tree-based q-grams and
star structures) or paths of the same length (path-based q-
grams); and (2) overlapping – sharing vertices and/or edges
in the original graphs. As a consequence, these approaches
inevitably suffer from the following drawbacks: (1) They do
not take full advantage of the global topological structure of
the graphs and the distributions of data graphs/query work-
loads, and the fixing substructure size limits its selectivity,
being nonadaptive to the database and queries. (2) Redun-
dancy exists among features, hence making their filtering
conditions – all of which are established in a pessimistic way
to evaluate the effect of edit operations – vulnerable to large
vertex degrees or large distance thresholds.

In this paper, we propose a novel filtering paradigm by
dividing data graphs into variable-size non-overlapping par-
titions. We observe that such partition-based scheme is not
prone to be affected by vertex degrees, and can accommo-
date larger distance thresholds in practice. This enables us
to conduct similarity search on a wider range of applications

169

with larger thresholds. Another novelty is to dynamically re-
arrange partitions to adapt the online query by recycling and
making use of the information in mismatching partitions. A
filtering technique is accordingly proposed to reduce candi-
dates, in case the partitioning of data graphs does not well fit
the structural characteristics of the query. For GED evalua-
tion, we design a verification method by extending matching
partitions. Additionally, a cost model is devised to compute
high-quality partitioning of data graphs for a workload of
queries. The proposed techniques constitute a new graph
similarity search algorithm, the superiority of which is wit-
nessed by empirical results.

To summarize, we make the following contributions:

• We propose a novel partition-based filtering scheme for
processing graph similarity search queries with edit dis-
tance constraints. To the best of our knowledge, this
is among the first to use variable-size non-overlapping
substructures for graph indexing and filtering.

• We design a dynamic partition filtering technique to
strengthen the partition-based scheme. We devise a
verification method to efficiently compute GED utiliz-
ing the matching partition between the data graph and
the query. We develop a cost-aware algorithm to par-
tition data graphs into half-edge graphs for indexing.

• We present a new framework integrating the proposed
techniques, and develop an algorithm Pars implement-
ing the framework. We conduct extensive experiments
using public datasets in different application domains.
The proposed algorithm is demonstrated to outper-
form other alternatives.

The rest of the paper is organized as follows. Section 2
presents the problem definition and the background informa-
tion. Section 3 proposes a partition-based filtering paradigm.
Sections 4 and 5 elaborate a dynamic partition filtering and
an extension-based verification method, respectively. A cost-
aware graph partitioning approach for index construction is
investigated in Section 6. We provide the experimental re-
sults and analyses in Section 7. Section 8 briefs the related
work, followed by conclusion in Section 9.

Note that apart from GED-based model, there is one ex-
isting work [23] on graph similarity search, which measures
the similarity between two graphs based on MCS 1. Based
on the discussion in Appendix B of [20], we argue that GED
may potentially provide richer semantics than that of MCS-
based models. Thus, we adopt GED as the similarity mea-
sure in this paper.

2. PRELIMINARIES

2.1 Problem Definition
For ease of exposition, we focus on simple graphs, i.e.,

undirected graphs with neither self-loops nor multiple edges.
Our approaches can be extended to directed graphs or multi-
graphs. A graph g is represented in a triple (Vg, Eg, lg),
where Vg is a set of vertices, Eg ⊆ Vg × Vg is a set of edges,
and lg is a labeling function that assigns labels to vertices
and edges. |Vg| and |Eg| are the number of vertices and
edges in g, respectively. lg(v) denotes the label of a vertex

1There is more literature on subgraph similarity search based on
MCS, e.g., [7, 12, 16].

v. lg((u, v)) denotes the label of the edge between u and v.
γg denotes the maximum vertex degree in g.

A graph edit operation is an edit operation to transform
one graph to another [1, 11], including:

• insert an isolated labeled vertex into the graph;

• delete an isolated labeled vertex from the graph;

• change the label of a vertex;

• insert a labeled edge into the graph;

• delete a labeled edge from the graph;

• change the label of an edge.

The graph edit distance (GED) between g and g′, denoted
by GED(g, g′), is the minimum number of edit operations
that transform g to g′. Graph edit distance is a metric. Nev-
ertheless, computing graph edit distance between two graphs
is NP-hard [17]. For brevity, we may use “edit distance” for
“graph edit distance” when there is no ambiguity.

Next, we formalize the problem of graph similarity search.

Problem 1 (graph similarity search). Given a data
graph collection G, a query graph q, and an edit distance
threshold τ , a graph similarity search finds all the data graphs
whose edit distances to q do not exceed τ .

Example 1. Consider in Figure 1 a data graph collection
G containing g and g′. Two molecules are modeled with ver-
tex labels representing atom symbols and edges being chemical
bonds. Subscripts are added to vertices with identical labels
for the purpose of differentiation, while they correspond to the
same atom symbol. A graph similarity search of query graph q
with τ = 3 returns g′ as the answer, because GED(g′, q) = 3:
relabel P to N, delete the edge between S and C3, and insert an
edge between N and C3.

In the rest of the paper, we will focus on in-memory im-
plementation when describing algorithms.

2.2 Prior Work
Approaching the problem with sequential scan is extremely

costly, because one has to not only access the whole database
but also one by one conduct the NP-hard GED computa-
tions. Thus, the state-of-the-art solutions address the prob-
lem in a filter-and-verify fashion: first generate a set of can-
didates that satisfy necessary conditions of the edit distance
constraints, and then verify with edit distance computation.
Inspired by the q-gram concept in string similarity queries,
κ-AT algorithm [14] defines tree-based q-grams on graphs.
For each vertex v, a κ-AT (or a q-gram) is a tree rooted at v
with all vertices reachable in κ hops. A count filtering con-
dition on the minimum number of common κ-ATs between
the data and the query graphs is established as

max(|Vg| − τ · Λ(g), |Vq | − τ · Λ(q)),

where Λ = 1 + γ · (γ−1)κ−1
γ−2

. The lower bound tends to be

small, and even below zero if there is a large vertex degree
in the graph or the distance threshold is high, hence ren-
dering it useful only on sparse graphs. To relieve the issue,
[21] proposed path-based q-grams, and techniques exploit-
ing both matching and mismatching q-grams. Nonetheless,
the exponential number of paths in graphs imposes a per-
formance concern. Moreover, the inability to handle large
vertex degree and distance threshold is inherited.

2

170

N

C1

C2

O

C3

C4

g

p1 p2

P

C1

C2

S

C3

C4

g′

C1

C2

C3

SN

C4

q

Figure 1: Sample Data and Query Graphs

A star structure [17] is exactly a 1-gram defined by κ-
AT. It employs a disparate philosophy for filtering based on
bipartite matching between star structures of two graphs.
Denote SED(g, q) as the sum of pairwise distances from the
bipartite matching of stars between g and q. It establishes
a filtering condition on the upper bound of SED(g, q) as

τ ·max(4, 1 +max(γg, γq)),

which is also proportional to the maximum vertex degree.
Based on star structures, a two-level index and a cascaded
search strategy were presented by SEGOS [15]. While it is su-
perior to star structure in search strategy, the basic filtering
principle remains the same. Its performance is dependent on
the parameters controlling the index access, whereas choos-
ing appropriate parameter values is by no means an easy
task. In addition, verification was not involved in the evalu-
ation, and thus, the overall performance is not unveiled.

We summarize the aforementioned solutions as fixed-size
overlapping substructure-based approaches. Intuitively, fewer
candidates are usually associated with more selective fea-
tures for filtering. Fixed-size features express little global
structural information within the graphs and with respect
to the whole database, and thus, feature selectivity is not
well considered. In other words, the selectivities of frequent
and infrequent features cannot be balanced to achieve a col-
lective goal on the number of candidates. Moreover, they are
forced to accept the worst case assumption that edit opera-
tions occur at locations with the greatest feature coverage,
i.e., modifying the most features. This effect is exacerbated
by the overlap among features, and consequently, they are
vulnerable to large vertex degrees and edit distance thresh-
olds. The example below illustrates such disadvantages on
graphs, even without large degrees or distance thresholds.

Example 2. Consider in Figure 1 data graph g and query
graph q. Figure 2(a) shows the 1-ATs (or stars) of g, and in
Figure 2(b) are its path-based 1-grams. Consider τ = 1. The
count filtering condition is max(6 − 1 × 4, 6 − 1 × 5) = 2,
while they do share two 1-ATs. For path-based 1-grams, g
also satisfies the count filtering condition. For star structures,
bipartite matching on stars of g and q returns SED(g, q) as 4,
while the allowed SED upper bound is 1 ·max(4, (1+4)) = 5,
and thus, it cannot disqualify g either. In conclusion, all of
them include g as a candidate, whereas GED(g, q) = 4.

3. A PARTITION-BASED ALGORITHM
In this section, we propose our partition-based algorithm

for graph similarity search. We first introduce the filtering
principle, and then detail an algorithmic framework realizing
the new filtering paradigm.

3.1 Partition-based Filtering Scheme

N

C
O

C

O

C
N

C

C

C O
(× 2)

C

N

(× 2)

(a) 1-ATs (Stars)

C N (× 2) N O O C (× 2) C C

(b) Path-based 1-grams

Figure 2: Fixed-size Substructures

We illustrate the idea of partition-based filtering by an
example, and formalize the scheme afterwards.

Example 3. Consider graphs g and q in Figure 1, and
τ = 1. We divide g into two partitions p1 and p2. It can be
seen that neither partitions are contained by q. Since an edit
operation can occur in only one of the two partition, at least
two edit operations are required to make them not contained
by q. Thus, g does not satisfy the query constraint. Recall
Example 2 that all existing solutions take g as q’s candidate.

The example shows the possibility of filtering data graphs
by partitioning data graphs and carrying out a containment
test against the query graph. Assume each data graph g
is partitioned into τ + 1 non-overlapping partitions. From
the pigeonhole principle, GED(g, q) must exceed τ if none
of the τ + 1 partitions is contained by q. Before formally
presenting the filtering principle, we start with the concept
of a half-edge graph for defining data graph partitions.

Definition 1 (half-edge). A half-edge is an edge with
only one end vertex, denoted by (u, ·).

Definition 2 (half-edge graph). A half-edge graph g
is a labeled graph, denoted by a triple (Vg, Eg, lg), where Vg is
a set of vertices, Eg ⊆ Vg × Vg ∪ Vg ×{·}, and lg is a labeling
function that assigns labels to vertices and edges.

Definition 3 (half-edge subgraph isomorphism). A
half-edge graph g is subgraph isomorphic to a graph g′, de-
noted as g ⊑ g′, if there exists an injection f : Vg → Vg′ such
that (1) ∀u ∈ Vg, f(u) ∈ Vg′ ∧ lg(u) = lg′(f(u)); (2) ∀(u, v) ∈
Eg, (f(u), f(v)) ∈ Eg′ ∧ lg((u, v)) = lg′((f(u), f(v))); and
(3) ∀(u, ·) ∈ Eg, (f(u), w) ∈ Eg′ ∧ lg((u, ·)) = lg′((f(u), w)),
w ∈ Vg′ \ f(Vg).

If g is half-edge subgraph isomorphic to g′, we say g is a
half-edge subgraph of g′, or g is contained by g′. It is imme-
diate that half-edge subgraph isomorphism test is at least
as hard as subgraph isomorphism test (NP-complete [4]).
Hereafter, we shorten “half-edge subgraph isomorphism” to
“subgraph isomorphism” when the context is clear.

Definition 4 (graph partitioning). Apartitioning of
a graph g is a division of the vertices Vg and edges Eg into col-
lectively exhaustive and mutually exclusive non-empty groups
with respect to Vg and Eg; i.e., P (g) = { pi | ∪ipi = Vg∪Eg∧
pi ∩ pj = ∅, ∀i, j, i 6= j }, where each pi is a half-edge graph,
called a partition of g 2.

Example 4. Consider graph g′ in Figure 1. Figure 3 de-
picts one partitioning P (g′) = { p′1, p

′
2 } among many others,

where p′1 and p′2 are two half-edge graphs with half-edges.

2A partition can be either connected or disconnected.

3

171

P

C1 C2S
p′1

C3

C4

p′2

Figure 3: Example of Partitioning of g′ in Figure 1

Next, we state our partition-based filtering principle.

Theorem 1 (Partition-based Filtering Principle).
Consider a query q and a data graph g with a partitioning P (g)
of τ +1 partitions. If GED(g, q) ≤ τ , at least one of the τ +1
partitions is subgraph isomorphic to q.

Proof. See Appendix A of [20].

We call a partition a matching partition if it is half-edge
subgraph isomorphic to the query, or otherwise a mismatch-
ing partition. It is also of interest to see that given a data
graph g partitioned into τ +1 half-edge graphs, the filtering
principle can be extended to all thresholds no larger than τ .

Corollary 1. Consider a query q, a data graph g and its
τ + 1 partitions. If GED(g, q) ≤ τ ′ ≤ τ , at least τ + 1 − τ ′

partitions are subgraph isomorphic to q.

Due to Corollary 1, we are able to build an index offline
with a pre-defined τmax, which works for all thresholds τ no
larger than τmax. We focus on the τ = τmax case hereafter.

3.2 Graph Similarity Search Algorithm
In light of Theorem 1, we propose a partition-based similarity

search framework Pars. It encompasses two stages – index-
ing (Algorithm 1) and query processing (Algorithm 2). In
the indexing stage, which can be done offline, it takes as
input a graph database G and an edit distance threshold τ ,
and constructs an inverted index. For each data graph g, it
first divides g into τ +1 partitions by calling PartitionGraph
(Line 2, to be introduced in Section 6). Then, for each parti-
tion, it inserts g’s identifier into the corresponding postings
list of the partition (Lines 3 – 4).

In the online query processing stage, Algorithm 2 receives
a query q, and starts probing the inverted index for candi-
date generation. We utilize a map to indicate the states of
data graphs, which can be uninitialized, true or false. At
first, the states are set to uninitialized for all data graphs
(Line 1). Then, for each partition p in the inverted list, it
tests whether p is contained by the query (Line 3). If so, for
each data graph with an uninitialized state in the postings
list of p, it examines the graph through size filtering and la-
bel filtering. Size (resp. label) filtering tests whether the
difference exceeds τ between the data graph and the query
in terms of vertex and edge numbers (resp. numbers of ver-
tex and edge relabeling). The states of the qualified graphs
are set to true and become candidates, while the states of
the disqualified are set to false and will not be tested in
the future (Lines 4 – 8). Finally, candidates are sent to
GraphEditDistance, and results are returned in R (Line 9).

3.3 Cost Analysis
In the query processing stage, the major concern is the

response time, including filtering and verification time. Let
P denote the universe of indexed partitions, each associated

Algorithm 1: ParsIndex (R, τ)

Input :G is a collection of data graphs; τ is an edit
distance threshold.

Output :An inverted index I, initialized as ∅.
1 foreach g ∈ G do
2 Pg ← PartitionGraph (g);
3 foreach p ∈ Pg do
4 Ip ← Ip ∪ { g };

5 return I

Algorithm 2: ParsQuery (q, I , τ)

Input :q is a query graph; I is an inverted index built on G;
τ is an edit distance threshold.

Output :R = { g | GED(g, q) ≤ τ, g ∈ G }.
1 M← empty map from graph identifier to boolean;
2 foreach p in I do
3 if SubgraphIsomorphism (p, q, ∅) then
4 foreach g in Ip such thatM[g] is not initialized do
5 if SizeFiltering (g, q) ∧ LabelFiltering (g, q) then
6 M[g]← true ; /* find a candidate */

7 else
8 M[g]← false ; /* pruned by size or label

filtering */

9 R← GraphEditDistance (q,M);
10 return R

with a list of graphs Dp = { g | p ⊑ g, g ∈ G }, p ∈ P . We
analyze the overall cost of processing a query:

|P| · ts + tm + |Cq| · td,

where (1) ts is the average running time of a subgraph iso-
morphism test; (2) tm is the running time of retrieving and
merging the postings lists of the matching partitions; and
(3) td is the average running time of a GED computation.

Since the postings lists are usually short due to judicious
graph partitioning (to be discussed in Section 6), subgraph
isomorphism tests and GED computations play the major
role. Thanks to recent advances, subgraph isomorphism test
can be done efficiently on small graphs [13] and even large
sparse graphs (with hundreds of distinct labels and up to
millions of vertices) [5]. Our empirical study also demon-
strates that subgraph isomorphism test is on average three
orders of magnitude faster than GED computation. There-
fore, we argue that the major factor of the overall cost lies in
GED computation, and the key to improve system response
time is to minimize the candidate set Cq.

It has been observed that the filtering performance of al-
gorithms relying on inclusive logic over inverted index is
determined by the selectivity of the indexed features. A
matching feature 3 is prone to produce many candidates if
its postings lists is long, i.e., it frequently appears in data
graphs. Fixed-size features are generated irrespectively of
frequency, and hence selectivity; while variable-size parti-
tions offer more flexibility in constructing the feature-based
inverted index. We are able to choose the features reflect-
ing the global structural information within data graphs and
database, and thus to obtain statistically more selective fea-
tures than the previous approaches. Furthermore, partition-
based features distinguish from those utilized in previous
approaches in that the partitions are non-overlapping. This

3E.g., for Pars, a partition contained by the query; for κ-AT and
GSimSearch, a q-gram appearing in the query’s q-gram multiset.

4

172

P

S

C2

C1

seqp′
1

C3

C4

seqp′
2

P

seqp′
1

S

C3

C4

C1

C2

seqp′
2

Figure 4: Example of QISequences.

property restricts that an edit operation can affect at most
one feature, and thus, the number of features hit by τ edit op-
erations is drastically reduced. As a result, unlike previous
approaches, partition-based algorithm does not suffer from
the drawback of loose bounds when handling large thresh-
olds and data graphs/queries with large degree vertices.

Before delving into the graph partitioning algorithm, we
will first exploit the optimizations to reduce candidates on
top of the partition-based filtering (Section 4), and discuss
efficient verification of candidates (Section 5).

4. DYNAMIC PARTITION FILTERING
We start with an illustrating example to show the idea of

dynamic partition filtering.

Example 5. Consider in Figure 1 data graph g′ and query
graph q, and τ = 1. Assume we have partitioned g′ to p′1 and
p′2 in Figure 3. p′1 is not contained by q but p′2 is, making g′ a
candidate. However, if we adjust the partitioning by moving
the vertex S from p′1 to p′2, neither p

′
1 nor p′2 will be contained

by q, hence disqualifying g′ being a candidate.

This example evidences the chance of adjusting the parti-
tions according an online query so that the pruning power of
partition-based filtering is enhanced. This section conceives
a novel filtering technique to exploit the observation, and we
integrate the technique into the subgraph isomorphism test.
Next, we first adapts a graph encoding techniqueQISequence

for efficient half-edge subgraph isomorphism test, based on
which a dynamic partition filtering will be presented.

4.1 Half-edge Subgraph Isomorphism Test
QISequence [13] is a graph encoding technique originally

proposed for efficient (non-half-edge) subgraph isomorphism
test. We extend it to support the half-edge case. The
QISequence of a partition p is a regular expression seqp =

[[vie
∗
ij]

|Vp|] encoded based on the spanning trees of p’s con-
nected components. For all i > j, eij encodes (1) sEdge –
the spanning edge between vi and vj in the spanning tree;
(2) bEdge – the backward edges between vi and vj in p but
not in the spanning tree; (3) hEdge – the half-edges incident
to vi. For the first term of each connected component, sEdge
equals nil. For ease of exposition, we assume p has only one
connected component 4. To generate the QISequence of p,
we start with an empty sequence at the root of a spanning
tree. Then, vertices vi ∈ Vp are appended to QISequence in
the order of the spanning tree, each along with a spanning
edge, as well as possible backward edges and half-edges.

4For multiple connected components, sequences are generated for
each component and concatenated as QISequence.

Algorithm 3: BasicSubgraphIsomorphism (p, q, F)

Input :p is a partition; q is a query graph; F is a mapping
vector.

Output :A boolean indicating whether p ⊑ q.
1 if |F| = |Vp| then
2 return true

3 v ← next vertex in seqp;
4 U ← {u | u ∈ FindValidCandidates(v, seqp, q, F) };
5 foreach u ∈ U do
6 F ′ ← F ∪ { v → u };
7 if BasicSubgraphIsomorphism (p, q, F ′) then
8 return true

9 return false

Example 6. Consider partition p′1 in Figure 3. Based on a
spanning trees rooted at P, the sequence seqp′

1

of p′1 is shown in

the leftmost of Figure 4, where solid lines represent spanning
edges and half-edges, and dashed lines denote backward edges.

Algorithm 3 tests if a partition p is subgraph isomorphic
to the query q. It maps the vertices of p one after another,
following the order of the QISequence of p to find a ver-
tex mapping F between p and q in a depth-first search.
For the current vertex v of p, if seqp[v] is the first term
of a connected component with sEdge = nil, it finds candi-
date vertices from all unmapped vertices in Vq ; otherwise,
it utilizes seqp[v].sEdge to shrink the search space. Can-
didate vertices are further checked by label (lp(v)), back-
ward edge (seqp[v].bEdge) and half-edge (seqp[v].hEdge) con-
straints. These are realized by FindValidCandidates (omitted,
Line 4). Then, we map v to one of the qualified vertices, and
proceed with the next vertex. We call F a partial mapping
if |F| < |Vp|, or a full mapping if |F| = |Vp|. If the current
mapping cannot be extended to a full mapping, it backtracks
to the previous vertex of p and tries another mapping. The
algorithm terminates when a full mapping is found, indicat-
ing p is subgraph isomorphic to q; or it fails to find any full
mapping, indicating p is not subgraph isomorphic to q.

Correctness and Complexity Analysis. It can be ver-
ified that if there exits a half-edge subgraph isomorphism
from p to q, Algorithm 3 must find it, and hence, its correct-
ness follows. The worst case time complexity remains the
same as traditional subgraph isomorphism: O((γp · γp)

|Vp|).

4.2 Recycling Mismatching Partitions
We call |F|, the cardinality of the mapping from p to q, the

depth of the mapping F . Among all the mappings explored
by the algorithm, there is a maximum depth dmax. A full
mapping is found if and only if dmax equals |Vp|. Contrarily,
if no full mapping is found, it implies that the vertices, which
are not included in the mapping that yields dmax, make p
not contained by q. In other words, we could have allocated
less vertices to p. We show how to recycle these vertices and
append to other partitions, starting with an example.

Example 7. Consider data graph g′, the query q in Fig-
ure 1, the partitioning of g′ in Figure 3, and τ = 1. We
depict the QISequences of the two partitions in Figure 4. We
first conduct subgraph isomorphism test from p′1 to q, and no
mapping is found for the first vertex P. Thus, dmax = 0 for
p′1. Then, we conduct subgraph isomorphism test from p′2 to
q, and observe that p′2 has a full mapping, and include g′ as a

5

173

Algorithm 4: RecyclingSubgraphIsomorphism (p, q, F)

Input :p is a partition; q is a query graph; F is a mapping
vector.

Output :A boolean indicating whether p ⊑ q.
1 if dmax < |F| then dmax ← |F| if |F| = |Vp| then
2 return true

3 v ← next vertex in seqp;
4 U ← {u | u ∈ FindValidCandidates(v, seqp, q, F) };
5 foreach u ∈ U do
6 F ′ ← F ∪ { v → u };
7 if RecyclingSubgraphIsomorphism (p, q, F ′) then
8 return true

9 if this is the outmost call then
10 foreach g in Ip such thatM[g] is not initialized do
11 foreach vi ∈ seqp, i > dmax + 1 do

12 add vi and its incident edges in g into ∆g;

13 return false

candidate. However, after testing p′1, if we recycle S, C1, C2
5,

and incident edges from p′1, and append to p′2, the QISequence

of p′2 becomes as shown in the rightmost of Figure 4. The new
p′2 is not contained by q, and thus, g′ is no longer a candidate.

The basic idea of dynamic partition filtering is to lever-
age the mismatching partition and to dynamically add, if
possible, additional vertices and edges to a partition tested
to be contained by the query. Algorithm 4 implements the
subgraph isomorphism test equipped with the dynamic par-
tition filtering. dmax is initialized to 0 in the first call. If
the algorithm returns false in the outmost call, the max-
imum depth dmax advises that the subgraph induced by
the first dmax + 1 vertices is enough to prevent this parti-
tion from matching. As a byproduct of the subgraph iso-
morphism test for future use, for every data graph g hav-
ing p as its partition, we respectively recycle the vertices
vi ∈ seqp, i > dmax + 1 as well as their incident edges in g.

The recycled vertices and edges are utilized once the sub-
graph isomorphism test invoked by Line 3 of Algorithm 2
returns true. In particular, for each data graph g in p’s
postings list, we append g’s recycled vertices and edges to
p and perform another subgraph isomorphism test. Only
if the new partition is contained by q, g becomes a candi-
date and is verified by GED computation. Note that if the
new subgraph isomorphism test fails, the vertices and edges
beyond dmax + 1 can be recycled again.

Correctness and Complexity Analysis. It can be ver-
ified Algorithm 4 correctly compute the containment rela-
tion between p and q, and the maximum mapping depth. In
addition to half-edge subgraph isomorphism test, O((|Vp| −
dmax−1)·δp) effort is required to collect the unused subgraph
of p, where δp is the average vertex degree of p.

5. VERIFICATION
In this section, we present an efficient algorithm that ad-

vises whether a candidate is a result. Since for each can-
didate, its matching partitions have been identified through
index probing, the partitions can be collected to expedite the
verification. We first review a state-of-the-art GED compu-
tation algorithm, followed by the speed-up on top of it.

5.1 Graph Edit Distance Computation
5Note that we have to leave P in p′1 to make p′1 6⊑ q.

Algorithm 5: GraphEditDistance (g, q)

Input :g is a data graph; q is a query graph.
Output :GED(g, q), if GED(g, q) ≤ τ ; or τ + 1, otherwise.

1 O ← order the vertices of g;
2 F ← ∅,Q.push(F);
3 while Q 6= ∅ do
4 F ← Q.pop();
5 if |F| = |Vg| then
6 return g(F)

7 u← next unmapped vertex in Vg as per O;
8 foreach v ∈ Vq such that v 6∈ F and

|deg(u)− deg(v)| ≤ τ or a dummy vertex do
9 F ← F ∪ {u→ v };

10 g(F)← ExistingDistance(F);
11 h(F)← EstimateDistance(F);
12 if f(F) = g(F) + h(F) ≤ τ then Q.push(F)

13 return τ + 1

The most widely used algorithm to compute GED is based
on A∗ [10], which explores all possible vertex mappings be-
tween graphs in a best-first search fashion. It maintains a
priority queue of states, each representing a partial vertex
mapping F of the graphs associated with a priority via a
function f(F). f(F) is the sum of: (1) g(F), the distance
between the partial graphs regarding the current mapping;
and (2) h(F), the distance estimated from the current to
the goal – a state with all the vertices mapped. For h(F)
in weighted graphs, [3] proposes an estimation via bipartite
matching. In unweighed case, it becomes exactly the num-
bers of vertex and edge relabeling between the remaining
parts of g and q, which can be done in O(|Vg|+ |Vq|).

We encapsulate the details in Algorithm 5. It takes as
input a data graph, a query graph and a distance threshold,
and returns the edit distance if GED(g, q) ≤ τ , or τ + 1
otherwise. First, it arranges the vertices of g in an order
O (Line 1), e.g., ascending order of vertex identifers [10].
The mapping F is initialized empty and inserted in a pri-
ority queue Q (Line 2). Next, it goes through an iterative
mapping extension procedure till (1) all vertices of g are
mapped with an edit distance no more than τ (Line 6); or
(2) the queue is empty, meaning the edit distance exceeds τ
(Line 13). In each iteration, it retrieves the mapping with
the minimum f(F) in the queue (Line 4). Then, it tries to
map the next unmapped vertex of g as per O (Line 7), to
either an unmapped vertex of q, or a dummy vertex to indi-
cate a vertex deletion. Thereupon, a new mapping state is
composed, and evaluated by ExistingDistance (omitted) and
EstimateDistance (omitted) to calculate the values of g(F)
and h(F), respectively. Only if f(F) ≤ τ is the state in-
serted into the queue (Lines 9 – 12).

The search space of Algorithm 5 is exponential in the
number of vertices. Next, we present our improvement.

5.2 Extending Matching Partition
Recall Algorithm 2 admits a list of graphs as candidates if

the corresponding partition of the postings list is contained
by the query via subgraph isomorphism test. As each g in
the list shares with q a common subgraph, i.e., the match-
ing partition, we can use this common part as the starting
point to verify the pair. Based on this intuition, we devise a
verification algorithm by extending the matching partitions.

The basic idea of the extension-based verification tech-
nique is to fix the existing mapping F between the matching

6

174

Algorithm 6: ExtensionBasedDistance (g, q, p, F)

1 while F 6= ∅ do
2 distance← GraphEditDistance(g, q, F);
3 if distance ≤ τ then
4 return distance

5 else F ← EnumerateNextMapping(p, q)

6 return τ + 1

Algorithm 7: Replacement of Lines 1 – 2 of Algorithm 5

1 g(F)← ExistingDistance(F) ; /* F is a subgraph
isomorphic mapping of p in q */

2 h(F)← EstimateDistance(F);
3 if f(F) = g(F) + h(F) ≤ τ then
4 O ← order the vertices in Vg \ Vp ; /* p is one and only

matching partition of g */
5 Q.push(F);

C

O1 O2 N

g

C O1

O2 N

p1 :

p2 :

P (g)

C O1

O2 N

q

Figure 5: Example of Extension-based Verification

partition p and q from the subgraph isomorphism test in the
filtering phase, and further match the remaining subgraph
g \ p with q \ F(p) using Algorithm 5. In order not to miss
real results, if g has multiple matching partitions, we need
to run such procedure multiple times, each starting with a
matching partition. However, it is not easy to share the com-
putation among different runs of the verification. In order to
strike a balance, we choose to conduct the extension-based
verification if g has only one matching partition; otherwise,
we use the traditional A∗ verification. Our experiment (Sec-
tion 7.3) shows that more than half candidates have only
one matching partition when τ ∈ [1, 4].

Theorem 2 (Correctness of Algorithm 6). Extension-
based verification correctly computes the complete set of re-
sults over the candidates having only one matching partition.

Proof. See Appendix A of [20].

Algorithm 6 outlines the extension-based verification. It
takes as input a data graph g, a query q, the only matching
partition p, and the vertex mapping F obtained from sub-
graph isomorphism test. Then, it enumerates all possible
mappings of p in q, and computes GED starting with the
mapping. If a distance in Line 2 is no larger than τ , it re-
turns the distance immediately; otherwise, it proceeds with
the next mapping until all mappings are attempted. In each
run of Algorithm 5, we let it take as input the mapping F ,
and modify Lines 1 – 2 as per Algorithm 7. g(F) and h(F)
are computed first, and F is inserted as the initial state into
the priority queue if f(F) does not exceed the threshold.
Hence, the remaining unmapped vertices of g, i.e., Vg \ Vp,
are given an order and processed by the A∗ algorithm.

Example 8. Consider a data graph g with its two parti-
tions and a query graph q shown in Figure 5, and τ = 1. The
partition -C-O1 is contained by q via a mapping to either -C-O1
or -C-O2. To carry out the extension-based verification, as-
sume the first mapping is to -C-O1, and then we try to match
N and O2 in succession. After it fails to find a mapping with

GED within τ , we proceed with the next mapping -C-O2. Even-
tually, we can verify g is not an answer since GED(g, q) = 2.

Correctness and Complexity Analysis. The correct-
ness of Algorithm 6 is guaranteed by Theorem 2. The worst
case complexity is in O((|Vq | · (|Vg |+ |Eg|+ γg))

|Vg |).
We remark that the search space of our solution is usually

much smaller than that of Algorithm 5, as demonstrated by
the empirical result in Section 7.3. By fixing the matching
partition p to F(p), we only match an unmapped vertex in
g \ p to a vertex in q \ F(p); if the matching partition has
more embeddings in q, the cost of locating other embeddings
is also much smaller via subgraph isomorphism. Therefore,
the proposed solution effectively shrink the search space,
and share the computation between verification and filter-
ing phases. To integrate Algorithm 6 into Algorithm 2, we
need a counter instead of a boolean state to record candi-
dates. Whenever the index probing is done, the data graphs
are (1) to be verified in an extension-based fashion if the
counters equal to 1; (2) to be verified by the traditional A∗

algorithm if the counters exceed 1; or (3) not to become
candidates if the counters equal to 0.

6. COST-AWARE GRAPH PARTITION
In this section, we investigate the graph partitioning method

for index construction. We propose a cost model to analyze
the effect of graph partitioning on query processing, based
on which a practical partitioning algorithm is devised.

6.1 Effect of Graph Partitioning
Recall Algorithm 2. It tests subgraph isomorphism from

each indexed partition p to the query q. Ignoring the effect of
size filtering, label filtering and dynamic partition filtering,
graphs in the postings list of p are included as candidates,
if p ⊑ q. Therefore, the candidate set Cq = ∪p{Dp | p ⊑
q, p ∈ P }, where Dp = { g | p ⊑ g, g ∈ G }. Incorporating
a binary integer ϕp to indicate whether p ⊑ q, we rewrite the
candidate number as |Cq | =

∑
p ϕp · |Ip|, p ∈ P , where Ip

is the postings list of p. Suppose there is a query workload
Q, and denote φp as the probability that p ⊑ q, q ∈ Q; i.e.,

φp = |{ q|p⊑q∧q∈Q }|
|Q|

. The expected number of candidates

of a query q ∈ Q is |Cq | =
∑

p φp · |Ip|, p ∈ P . Since
the postings lists are composed of data graph identifiers, we
rewrite it using a binary integer variable πp

g ,

|Cq | =
∑

g

∑

p

φp · πp
g , p ∈ P , g ∈ G,

where πp
g is 1 if p is one of g’s partitions, and 0 otherwise.

We interpret the expected candidate number as a com-
modity contributed by all data graphs. As g is partitioned
into τ + 1 partitions P = { pi }, i ∈ [1, τ + 1], the expected
number of contributed candidate from a data graph g is

cg , cP =

τ+1∑

i=1

φpi · |G|, (1)

In light of this, we observe that data graphs are mutually in-
dependent for minimizing candidates from a partition-based
index. Immediate is that Cq =

∑
g cg , g ∈ G.

Example 9. Consider τ = 1, the data graph g in Figure
5, and the three graphs in Figure 1 as Q. A partitioning P (g)
is shown in Figure 5. Testing p1 against Q confirms that no

7

175

Algorithm 8: RandomPartition (g, τ)

Input :g is a data graph; τ is an edit distance threshold.
Output :A graph partitioning P , initialized as ∅.

1 M ← empty map from vertex identifier to boolean ;
/* record whether a vertex has been considered */

2 for i ∈ [1, τ + 1] do
3 randomly choose a vertex v ∈ Vg such that M [v] = false;
4 pi ← ({ v }, ∅, { lv });
5 M [v]← true;

6 while ∃ a vertex v such that M [v] = false do

7 foreach pi ∈ P do
8 u← ChooseVertexToExpand (pi);
9 ExpandInducedSubgraph (pi, u);

10 while ∃ an edge (u, v) ∈ Eg with end vertices in different
partitions do

11 randomly assign e to either pu or pv ; /* half-edges */

12 return P

graph in Q contains p1, and thus φp1 = 0; similarly, φp2 = 0.
cP = (φp1 + φp2) · |G| = 0. Moving vertex O 1 from p1 to p2
yields P ′ = { p′1, p′2 }. cP ′ = (φp′

1
+ φp′

2
) · |G| = (3/3 + 0) ·

|G| = |G|. P is better than P ′ in terms of Equation (1). In
fact, P is one of the best partitionings of g regarding Q.

In case that a historical query workload is not available,
we may, as an alternative, sample a portion of the database
to act as a surrogate of Q. To this end, a sample ratio ρ
is introduced to control the sample size |Q| = ρ · |G|. We
extract graphs from the database as queries in our experi-
mental evaluation. Thus, we adopt this option so that the
index is built to work well with these queries. We also in-
vestigate how ρ influences the performance (Section 7.5).

Now, we are able to minimize the total number of candi-
dates by minimizing the candidate number from each data
graph. We will show how to solve this problem in the sequel.

6.2 A Practical Partitioning Algorithm
We formulate the graph partitioning of index construction

as an optimization problem.

Problem 2 (minimum graph partitioning). Given a
data graph g and a distance threshold τ , partition the graph
into τ + 1 subgraphs such that Equation (1) is minimized.

As expected, even for a trivial cost function, e.g., the av-
erage number of vertices of the partitions, the above opti-
mization problem is NP-hard 6. Seeing the difficulty of the
problem, we propose a practical algorithm as a remedy to
select a good partitioning: first randomly generate a parti-
tioning of the data graph and then refine it.

Algorithm 8 presents the pseudocode of the random par-
titioning phase of our algorithm. It takes a data graph and
a distance threshold as input, and produces τ +1 partitions
as per Definition 4. It maintains a boolean map M to indi-
cate the vertex states – true if a vertex has been assigned
to a subgraph, and false otherwise. Firstly, it randomly dis-
tributes τ +1 distinct vertices into pi, i ∈ [1, τ +1] (Lines 2
– 5). This ensures every pi is non-empty and contains at
least one vertex. Then, for each pi, we extend it with 1-hop

6The special case of τ = 1 is polynomially reducible from the
partition problem that decides whether a givenmultiset of numbers
can be partitioned into two subsets such that the sums of elements
in both subsets are equal, and thus, is NP-hard already.

Algorithm 9: RefinePartition (P, Q)

Input :P is a graph partitioning; Q is a set of query graphs.
Output :P is an optimized graph partitioning.

1 cg ← ComputeSupport (P, Q), updated ← true;
2 while updated = true do
3 cmin ← cg;
4 foreach (u, v) ∈ Eg do
5 P ′ ← P ;
6 p′u ← ShrinkInducedSubgraph(p′u, u);
7 p′v ← ExpandInducedSubgraph(p′v, u);
8 randomly assign remaining edges between p′u and p′v;
9 c′g ← ComputeSupport(P ′, Q);

10 if c′g < cmin then

11 Pmin ← P ′, cmin ← c′g;

12 if cmin < cg then P ← Pmin, cg ← cmin else
updated ← false

13 return P

by ChooseVertexToExpand (omitted): randomly select a ver-
tex v ∈ Vpi and include another vertex u, which has not
been assigned to any partitions, and its edges connected to
the vertices in pi. If v fails to extend pi, we select one of v’s
neighbors in pi to replace v, and try the expansion again till
there is no option to grow (Lines 6 – 9). This offers each pi
a chance to grow, and hence the sizes and the selectivities of
the partitions are balanced. Finally, it assigns the remain-
ing edges (u, v), whose end vertices are assigned to different
partitions, randomly to either the partition containing u or
v as half-edges.

In the refine phase, we take the opportunity to improve
the quality of the initial partition, as shown in Algorithm 9.
It takes as input a graph partitioning P and a workload
of query graphs Q, and outputs the optimized partitioning.
Our algorithm optimizes the current partitioning by select-
ing the best option of moving a vertex u from one partition
pu to another pv such that (u, v) ∈ Eg. In particular, Line 6
removes u from p′u by excluding u and its incident edges in
p′u, where p

′
u is the partition containing u. Then, in Line 7, it

adds u and edges between u and vertices in p′v. Afterwards,
the remaining extracted edges are randomly assigned to ei-
ther p′u or p′v as half-edges, since they have end vertices in
both partitions. Hence, we have a new partitioning P ′. c′g is
computed in Line 9. If it is less than the current best option
cmin, we replace cmin with c′g. As a consequence, the best
option that reduces cg the most is taken as the move for
the current round in Line 12. The above procedure repeats
until cg cannot be improved by cmin. To evaluate cg and
c′g in Lines 1 and 9, respectively, we can conduct subgraph
isomorphism test to collect partitions’ support in Q, fulfilled
by ComputeSupport (omitted).

Correctness and Complexity Analysis. Immediate is
that Algorithms 8 and 9 compute a graph partitioning con-
forming to Definition 4. For Algorithm 8, it takes O(V +E)
time to assign vertices and edges. The complexity of Al-
gorithm 9 is mostly determined by ComputeSupport, which
carries out subgraph isomorphism tests from the partitions
to Q. In each iteration of the refinement, we need to conduct
|E| rounds of ComputeSupport, through which the supports
of two newly constructed partitions are re-evaluated.

7. EXPERIMENTS
This section reports experimental results and analyses.

8

176

Table 1: Dataset Statistics
Dataset |G| avg |V |/|E| |lV |/|lE | γ

AIDS 42,687 25.60 / 27.60 62 / 3 12
PROTEIN 600 32.63 / 62.14 3 / 5 9
NASA 36,790 33.24 / 32.24 10 / 1 245

7.1 Experiment Setup
We conducted experiments on public real datasets:

• AIDS is an antivirus screen compound dataset from
the Developmental Therapeutics Program at NCI/NIH 7.
It contains 42,687 chemical compound structures.

• PROTEIN is a protein database from the Protein
Data Bank 8, constituted of 600 protein structures.
Vertices represent secondary structure elements, labeled
by types; edges are labeled with lengths in amino acids.

• NASA is an XML dataset storing metadata of an as-
tronomical repository 9, including 36,790 graphs. We
randomly assigned 10 vertex labels to the graphs, as
the original graphs are nearly of unique vertex labels.

Table 1 lists the statistics of the datasets. AIDS is a pop-
ular benchmark for structure search, PROTEIN is denser
and less label-informative, and NASA has more skewed ver-
tex degree distribution. We randomly sampled 100 graphs
from every dataset to make up the corresponding query set.
Thus, the queries are of similar data distribution to the data
graphs. The average |Vq| for AIDS, PROTEIN and NASA
are 26.70, 31.67 and 42.51, respectively. In addition, the
scalability tests involve synthetic data, which were gener-
ated by a graph generator 10. It measures graph size in

terms of |E|, and density is defined as d = 2|E|
|V |(|V |−1)

, equal

0.3 by default. The cardinalities of vertex and edge label
domains were 2 and 1, respectively.

Experiments were conducted on a machine of Quad-Core
AMD Opteron Processor 8378@800MHz with 96G RAM 11,
running Ubuntu 10.04 LTS. All the algorithms were imple-
mented in C++, and ran in main memory. We evaluated our
solution with identical thresholds at indexing and query pro-
cessing stages, i.e., τ = τmax. We measured (1) index size;
(2) indexing time; (3) number of candidates that need GED
computation; and (4) query response time, including candi-
date generation and GED computation. Candidate number
and running time are reported on the basis of 100 queries.

7.2 Evaluating Filtering Methods
We first evaluate the proposed filtering methods. We

use “Basic Partition” to denote the basic implementation of
our partition-based similarity search algorithm, and “+ Dy-
namic” to denote the implementation of integrating Basic

Partition with dynamic partition filtering.
Figure 6(a) shows the candidate number on AIDS. The

candidates returned by both methods increase with the growth
of τ , and the gap is more remarkable when τ is large. The
number of real results is also shown for reference. The mar-
gin is substantial, and when τ = 1, + Dynamic provides
7
http://dtp.nci.nih.gov/docs/aids/aids_data.html

8
http://www.iam.unibe.ch/fki/databases/

iam-graph-database/download-the-iam-graph-database
9
http://www.cs.washington.edu/research/xmldatasets/

10
http://www.cse.ust.hk/graphgen/

11ThisRAMconfiguration is to accommodate theA∗-based verifica-
tion algorithm, which needs to maintain a large number of partial
mappings in a priority queue.

a reduction over Basic Partition by 51%. To reflect the fil-
tering effect on response time, we appended the basic A∗

algorithm (denoted “A∗”, Algorithm 5) to verify the can-
didates.The query response time is plotted in Figure 6(b).
“BP” and “AD” are short for Basic Partition and + Dynamic,
respectively. The filtering time of +Dynamic is greater than
Basic Partition; whereas, as an immediate consequence of less
candidate number, the overall response time of + Dynamic
is smaller by up to 64% among all the thresholds. Thus, dy-
namic partition filtering needs more computation in filtering
but improves the overall runtime performance in return.

7.3 Evaluating Verification Methods
To evaluate the extension-based verification technique, we

verify the candidates returned by +Dynamic with two meth-
ods on AIDS. Besides “A∗”, an algorithm “+ Extension” im-
plementing our extension-based verification is involved.

Figure 6(c) reports the running time to verify the same
set of candidates under different τ ’s. We observe an im-
provement of + Extension over A∗ as much as 76%. This
advantage is attributed to (1) the shrink of possible map-
ping space between unmatched portions of query and data
graphs; (2) the computation sharing on the matching par-
tition between filtering and verification phases. To further
validate its effectiveness, we logged how often + Extension

is triggered. The percentages of the candidates having only
one matching partition are 86%, 71%, 64%, 51%, 37%, 25%
for τ ∈ [1, 6], respectively. Thus, the chance of conducting
+ Extension is high, especially when τ is small. The drop is
intuitive, since the larger τ is, the more partitions there are
for each graph, hence with the smaller each partition and
the greater chance of being contained by queries. Although
the ratio downgrades towards τ = 6, the margin of response
time is still great, as + Extension contributes speedups by
exploring smaller search spaces.

7.4 Evaluating Index Construction
We evaluate two graph partitioning methods for index

construction: (1) Random, labeled by “RD”, is the basic
graph partitioning method that randomly assigns vertices
and edges into partitions (Algorithm 8); and (2) + Refine,
labeled by “RF”, is a partitioning method outlined in Algo-
rithms 8 and 9, i.e., the complete partitioning algorithm.

Figure 6(d) compares the indexing time of the two algo-
rithms. The logged time does not include the time of con-
structing index for estimating the probability that a parti-
tion is contained by a query, i.e., the index for subgraph
isomorphism test, as it is reasonable to assume it is avail-
able in a graph database. We used Swift-index [13] for fast
subgraph isomorphism test. Random is quite fast for all
the thresholds. + Refine is more computationally demand-
ing, typically two orders of magnitude slower than Random

due to the high complexity of (1) graph partitioning opti-
mization, and (2) partition support evaluation. Running +

Dynamic on the indexes, we plot candidate number and re-
sponse time in Figures 6(e) and 6(f), respectively. Together,
they advise that refining random partitioning brings down
candidate number by as much as 47%, and thus, response
time by up to 69%.

7.5 Evaluating Sample Ratio
This set of experiments study the effect of sample ratio

ρ = |Q|
|G|

. Figures 6(g) – 6(i) show the indexing time, the

9

177

102

103

104

105

 1 2 3 4 5 6

C
an

di
da

te
 N

um
be

r

GED Threshold (τ)

Basic Pars
+ Dynamic

Real Result

(a) AIDS, Candidate Number

10-1
100
101
102
103
104
105

BP AD BP AD BP AD BP AD BP AD BP AD

τ=1 τ=2 τ=3 τ=4 τ=5 τ=6

R
es

po
ns

e
T

im
e

(s
)

GED Threshold (τ)

GED Computation
Candidate Generation

(b) AIDS, Query Response Time

10-2
10-1
100
101
102
103
104

 1 2 3 4 5 6G
E

D
 C

om
pu

ta
tio

n
T

im
e

(s
)

GED Threshold (τ)

A*
+ Extension

(c) AIDS, GED Computation Time

100
101
102
103
104
105
106
107

 1 2 3 4 5 6

In
de

xi
ng

 T
im

e
(s

)

GED Threshold (τ)

Random
+ Refine

(d) AIDS, Indexing Time

102

103

104

105

 1 2 3 4 5 6

C
an

di
da

te
 N

um
be

r

GED Threshold (τ)

Random
+ Refine

Real Result

(e) AIDS, Candidate Number

100
101
102
103
104
105

RD RF RD RF RD RF RD RF RD RF RD RF

τ=1 τ=2 τ=3 τ=4 τ=5 τ=6

R
es

po
ns

e
T

im
e

(s
)

GED Threshold (τ)

GED Computation
Candidate Generation

(f) AIDS, Query Response Time

103

104

105

 1 2 3 4 5 6

In
de

xi
ng

 T
im

e
(s

)

GED Threshold (τ)

ρ = 0.2
ρ = 0.4

ρ = 0.6
ρ = 0.8

(g) AIDS, Indexing Time

102

103

104

105

 1 2 3 4 5 6

C
an

di
da

te
 N

um
be

r

GED Threshold (τ)

ρ = 0.2
ρ = 0.4

ρ = 0.6
ρ = 0.8

(h) AIDS, Candidate Number

100

101

102

103

104

 1 2 3 4 5 6

R
es

po
ns

e
T

im
e

(s
)

GED Threshold (τ)

ρ = 0.2
ρ = 0.4

ρ = 0.6
ρ = 0.8

(i) AIDS, Query Response Time

100
101
102
103
104
105
106
107
108

 1 2 3 4 5 6

In
de

xi
ng

 T
im

e
(s

)

GED Threshold (τ)

SEGOS
GSimSearch

Pars

(j) AIDS, Indexing Time

10-2

10-1

100

101

102

103

 1 2 3 4 5 6

In
de

xi
ng

 T
im

e
(s

)

GED Threshold (τ)

SEGOS
GSimSearch

Pars

(k) PROTEIN, Indexing Time

100
101
102
103
104
105
106
107

 1 2 3 4 5 6

In
de

xi
ng

 T
im

e
(s

)
GED Threshold (τ)

SEGOS
GSimSearch

Pars

(l) NASA, Indexing Time

102

103

104

105

106

107

 1 2 3 4 5 6

C
an

di
da

te
 N

um
be

r

GED Threshold (τ)

SEGOS
GSimSearch

Pars
Real Results

(m) AIDS, Candidate Number

102

103

 1 2 3 4 5 6

C
an

di
da

te
 N

um
be

r

GED Threshold (τ)

SEGOS
GSimSearch

Pars
Real Results

(n) PROTEIN, Candidate Number

101

102

103

104

105

106

 1 2 3 4 5 6

C
an

di
da

te
 N

um
be

r

GED Threshold (τ)

SEGOS
GSimSearch

Pars
Real Result

(o) NASA, Candidate Number

100
101
102
103
104
105

S G P S G P S G P S G P S G P S G P

τ=1 τ=2 τ=3 τ=4 τ=5 τ=6

R
es

po
ns

e
T

im
e

(s
)

GED Threshold (τ)

GED Computation
Candidate Generation

(p) AIDS, Query Response Time

10-2
10-1
100
101
102
103

S G P S G P S G P S G P S G P S G P

τ=1 τ=2 τ=3 τ=4 τ=5 τ=6

R
es

po
ns

e
T

im
e

(s
)

GED Threshold (τ)

GED Computation
Candidate Generation

(q) PROTEIN, Query Response Time

10-1

100

101

102

103

S G P S G P S G P S G P S G P S G P

τ=1 τ=2 τ=3 τ=4 τ=5 τ=6

R
es

po
ns

e
T

im
e

(s
)

GED Threshold (τ)

GED Computation
Candidate Generation

(r) NASA, Query Response Time

100

101

102

103

S G P S G P S G P S G P S G P

|G|=20k |G|=40k |G|=60k |G|=80k |G|=100k

R
es

po
ns

e
T

im
e

(s
)

Dataset Cardinality (|G|)

GED Computation
Candidate Generation

(s) Synthetic, Query Response Time

10-1
100
101
102
103
104
105

S G P S G P S G P S G P S G P

|E|=100 |E|=200 |E|=300 |E|=400 |E|=500

R
es

po
ns

e
T

im
e

(s
)

Graph Size (|E|)

GED Computation
Candidate Generation

(t) Synthetic, Query Response Time

10-1

100

101

102

103

S G P S G P S G P S G P

d=0.2 d=0.4 d=0.6 d=0.8

R
es

po
ns

e
T

im
e

(s
)

Graph Density (d)

GED Computation
Candidate Generation

(u) Synthetic, Query Response Time

Figure 6: Experiment Results

10

178

Table 2: Index Size (MB, τ = 6)
Dataset SEGOS GSimSearch Pars

AIDS 5.06 31.51 12.87
PROTEIN 0.16 2.60 0.38
NASA 11.97 8.66 14.40

Table 3: Pars Index Statistics (τ = 6)
Dataset |P| avg |Ip|

AIDS 45,263 6.60
PROTEIN 3,485 1.21
NASA 46,343 5.56

candidate number and the query response time, respectively,
with varying ρ. It can be seen that indexing time rises along
with larger sample size, while candidate number and query
response time exhibit slight decrease. To balance the cost
and benefit of index construction, we chose ρ = 0.4 for sub-
sequent experiments. We remark that system performance
improves if we directly use the query graphs as Q for index-
ing. Hereafter, we use + Refine for indexing, and apply +
Dynamic and + Extension for filtering and verification, re-
spectively, to achieve the best performance.

7.6 Comparing with Existing Methods
This subsection compares the proposed method with the

state-of-the-art solutions, involving:

• Pars, labeled by “P”, is our partition-based algorithm,
integrating all the proposed techniques.

• SEGOS, labeled by “S”, is an algorithm based on stars,
incorporating novel indexing and search strategies [15].
We received the source code from the authors. As ver-
ification was not covered in the original evaluation, we
appended A∗ to verify the candidates. SEGOS is pa-
rameterized by step-controlling variables k and h, set
as 100 and 1, 000, respectively, for best performance.

• GSimSearch, labeled by “G”, is a path-based q-gram
approach for processing similarity queries [21]. The
performance of q-gram-based approaches is influenced
by q-gram size. For best performance, we chose q = 4
for AIDS, q = 3 for PROTEIN, and q = 1 for NASA. κ-
AT was omitted, since GSimSearch was demonstrated
to outperform κ-AT under all settings.

We first compare the index size. Table 2 displays the
index sizes of the algorithms on three datasets for τ = 6.
Similar pattern is observed under other τ values. While all
the algorithms exhibit small index sizes, there is no overall
winner. On AIDS and PROTEIN, GSimSearch needs more
space than SEGOS and Pars; on NASA, SEGOS and Pars
build larger index than GSimSearch. The reason why Pars

constructs a smaller index on AIDS than on NASA is that
NASA possesses more large graphs. Thus, the index size
of Pars is largely dependent on graph size. To get more
insight of the inverted index, we list the number of distinct
partitions and the average length of a postings list in Table 3.
Due to judicious partitioning, the average lengths of posting
lists are small. On PROTEIN, postings lists are shorter
than the other two, because of its less number of graphs and
diversity in substructure caused by higher degree.

Indexing time is provided in Figures 6(j) – 6(l). Pars
spends more time to build index, since it involves complex
graph partitioning and subgraph isomorphism tests in the

refine phase of index construction. We note that on PRO-
TEIN, GSimSearch overtakes Pars when τ > 3, due to larger
density of PROTEIN graphs, and hence greater difficulty in
computing minimum prefix length for path-based q-grams.

Regarding query processing, Pars offers the best perfor-
mance on both candidate size and response time, as shown in
Figures 6(m) – 6(o) and 6(p) – 6(r), respectively. The gaps
between Pars and other competitors on NASA are larger
than those on AIDS. We argue that Pars is less vulnerable to
large maximum vertex degrees. The numbers of candidates
from SEGOS, GSimSearch and Pars are up to 114.1x, 87.0x
and 53.2x that of real results, respectively. Hence, the re-
sult on response time becomes expectable. We highlight the
follows: (1) Pars always demonstrates the best overall run-
time performance; (2) For filtering time, GSimSearch takes
more on PROTEIN, while SEGOS spends more on NASA;
(3) Verification dominates the query processing phase, and
GED computation on PROTEIN is more expensive than on
other datasets; (4) The margins on candidate number and
response time between Pars and competitors enlarge when τ
approaches large values. We also observe that advantage of
Pars is more remarkable on datasets with higher degrees like
PROTEIN and NASA. For instance, when τ = 4, Pars has
6.1x speedup over SEGOS on AIDS, 56.7x on PROTEIN and
15.3x on NASA. In comparison with GSimSearch, Pars is 2.9x,
42.6x and 7.1x faster, respectively on the three datasets.

7.7 Evaluating Scalability
All the scalability tests were conducted on synthetic data,

and we fixed τ as 2. To evaluate the scalability against
dataset cardinality, we generated five datasets, constituted
of 20k – 100k graphs. Results are provided in Figure 6(s).
The query response time grows steadily when the dataset
cardinality increases. Pars has a lower starting point when
dataset is small, and showcases a smaller growth ratio, with
up to 18.5x speedup over SEGOS and 6.6x over GSimSearch.

Next, we evaluate the scalability against graph size and
density on synthetic data. Each set of data graphs was of
cardinality 10k, and we randomly sampled 100 graphs from
data graphs and added a random number ([1, τ +1]) of edit
operations to make up the corresponding query graphs.

Five datasets with density 0.1 were generated, with aver-
age graph size ranging in [100, 500]. As shown in Figure 6(t),
the query response time grows gradually with the graph size.
Pars scales the best at both filtering and verification stages.
This is credited to its (1) fast filtering with substantial can-
didate reduction, and (2) efficient verification for evaluating
the candidates. On large graphs, GSimSearch spends more
time on filtering, while SEGOS scales better in filtering time
but becomes less effective in overall time.

Figure 6(u) shows the response time against graph den-
sity. Pars scales the best with density in terms of overall
query response time, while SEGOS has the smallest growth
ratio for filtering time. When graphs become dense, more
candidates are admitted by SEGOS and GSimSearch, due to
the shortcomings we discussed in Section 2.2. Pars exhibits
good filtering and overall performance, offering up to 18.2x
speedup over SEGOS and 3.2x over GSimSearch.

8. RELATED WORK
Structure similarity search has received considerable at-

tention recently. Closure-Tree was proposed to identify top-k
graphs nearly isomorphic to query [6]. The notion of star

11

179

structures [17] were proposed, and the edit distance con-
straint can be converted to lower and upper bounds of star
structure distance via bipartite matching. It was followed
by a recent effort SEGOS [15] that proposed an indexing
and search paradigm based on star structures. Another ad-
vance defined q-grams on graphs [14], which was inspired by
the idea of q-grams on strings. It builds index by generat-
ing tree-based q-grams, and produces candidates against a
count filtering condition on the number of common q-grams
between graphs. Similarly, GSimSearch [21] approaches the
problem by utilizing paths as q-grams, exploiting both the
matching and mismatching features. These approaches uti-
lize fixed-size overlapping substructures for indexing, and
thus, suffer from the issues summarized in Section 2.2. As
opposed to this type of substructures, we propose to index
the variable-size non-overlapping partitions of data graphs.

Subgraph similarity search is to retrieve the data graphs
that approximately contain the query; most work focuses
on MCS-based similarity [7, 12, 16]. Grafil [16] proposed the
problem, where similarity was defined as the number of miss-
ing edges regarding maximum common subgraph. GrafD-
index [12] dealt with similarity based on maximum connected
common subgraph, and it exploits the triangle inequality to
develop pruning and validation rules. PRAGUE [7] developed
a more efficient solution utilizing system response time un-
der the visual query formulation and processing paradigm.
Subgraph similarity queries were studied over single large
graphs as well, [9, 22] to name a few recent efforts.

Research on using GED for chemical molecular analysis
dates back to 1990s [18]. To compute GED, so far the fastest
exact solution is attributed to an A∗-based algorithm incor-
porating a bipartite heuristic [10]. Our extension-based veri-
fication inherits the merit, and further conducts the search in
a more efficient manner under the partition-based paradigm.
To render it less computationally demanding, approximate
methods were proposed to find suboptimal answers, e.g., [3].

We are also aware of a large volume of literatures on graph
partitioning with various targets, METIS [8] and Mcut [2], to
name a few. All these algorithms solve the graph partition-
ing problem with disparate objective functions, which are
different from the cost model presented in this paper.

9. CONCLUSION
We study the problem of graph similarity search with

edit distance constraints. Unlike the existing solutions that
adopt fixed-size overlapping features for filtering, we pro-
pose a framework utilizing a novel filtering scheme based
on variable-size non-overlapping partitions of data graphs.
We devise a dynamic partitioning technique to enhance the
filtering power, as well as an improved edit distance verifica-
tion algorithm leveraging matching partitions. A cost-aware
graph partitioning method is proposed to optimize the index.
Empirical studies show the advantage of our method.

We observe that applications may have certain context-
aware requirements (constraints); e.g., an atom Omay change
to S but not C. Although current filtering techniques do not
miss such results, system performance may deteriorate un-
der certain scenarios. As future work, we may improve the
filtering power by taking advantages of these constraints.

Acknowledgements. X. Lin and W. Zhang were in part sup-

ported by NSFC61232006, NSFC61021004, ARC DP120104168,

DP110102937 andDE120102144. C.Xiaowas supportedbyFIRST

Program, Japan and KAKENHI (23650047 and 25280039).

10. REFERENCES
[1] H. Bunke and G. Allermann. Inexact graph matching for

structural pattern recognition. Pattern Recognition Letters,
1(4):245 – 253, 1983.

[2] C. H. Q. Ding, X. He, H. Zha, M. Gu, and H. D. Simon. A
min-max cut algorithm for graph partitioning and data
clustering. In ICDM, pages 107–114, 2001.

[3] S. Fankhauser, K. Riesen, and H. Bunke. Speeding up graph
edit distance computation through fast bipartite matching.
In GbRPR, pages 102–111, 2011.

[4] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman, first edition edition, Jan. 1979.

[5] W.-S. Han, J. Lee, and J.-H. Lee. Turboiso: towards ultrafast
and robust subgraph isomorphism search in large graph
databases. In SIGMOD Conference, pages 337–348, 2013.

[6] H. He and A. K. Singh. Closure-Tree: An index structure for
graph queries. In ICDE, page 38, 2006.

[7] C. Jin, S. S. Bhowmick, B. Choi, and S. Zhou. PRAGUE:
Towards blending practical visual subgraph query
formulation and query processing. In ICDE, pages 222–233,
2012.

[8] G. Karypis and V. Kumar. A fast and high quality multilevel
scheme for partitioning irregular graphs. In ICPP (3), pages
113–122, 1995.

[9] A. Khan, Y. Wu, C. C. Aggarwal, and X. Yan. NeMa: Fast
graph search with label similarity. PVLDB, 6(3):181–192,
2013.

[10] K. Riesen, S. Fankhauser, and H. Bunke. Speeding up graph
edit distance computation with a bipartite heuristic. In
MLG, 2007.

[11] A. Sanfeliu and K.-S. Fu. A distance measure between
attributed relational graphs for pattern recognition. IEEE
transactions on systems, man, and cybernetics,
13(3):353–362, 1983.

[12] H. Shang, X. Lin, Y. Zhang, J. X. Yu, and W. Wang.
Connected substructure similarity search. In SIGMOD
Conference, pages 903–914, 2010.

[13] H. Shang, Y. Zhang, X. Lin, and J. X. Yu. Taming
verification hardness: an efficient algorithm for testing
subgraph isomorphism. PVLDB, 1(1):364–375, 2008.

[14] G. Wang, B. Wang, X. Yang, and G. Yu. Efficiently indexing
large sparse graphs for similarity search. IEEE Trans.
Knowl. Data Eng., 24(3):440–451, march 2012.

[15] X. Wang, X. Ding, A. K. H. Tung, S. Ying, and H. Jin. An
efficient graph indexing method. In ICDE, pages 210–221,
2012.

[16] X. Yan, P. S. Yu, and J. Han. Substructure similarity search
in graph databases. In SIGMOD Conference, pages 766–777,
2005.

[17] Z. Zeng, A. K. H. Tung, J. Wang, J. Feng, and L. Zhou.
Comparing stars: On approximating graph edit distance.
PVLDB, 2(1):25–36, 2009.

[18] K. Zhang, J. T.-L. Wang, and D. Shasha. On the editing
distance between undirected acyclic graphs and related
problems. In CPM, pages 395–407, 1995.

[19] S. Zhang, J. Yang, and W. Jin. SAPPER: Subgraph indexing
and approximate matching in large graphs. PVLDB,
3(1):1185–1194, 2010.

[20] X. Zhao, C. Xiao, X. Lin, Q. Liu, and W. Zhang. A
partition-based approach to structure similarity search.
Technical Report UNSW-CSE-TR-201327, 2013.

[21] X. Zhao, C. Xiao, X. Lin, W. Wang, and Y. Ishikawa.
Efficient processing of graph similarity queries with edit
distance constraints. The VLDB Journal, pages 1–26, 2013.

[22] G. Zhu, X. Lin, K. Zhu, W. Zhang, and J. X. Yu. TreeSpan:
Efficiently computing similarity all-matching. In SIGMOD
Conference, pages 529–540, 2012.

[23] Y. Zhu, L. Qin, J. X. Yu, and H. Cheng. Finding top-k
similar graphs in graph databases. In EDBT, pages 456–467,
2012.

12

180

