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ABSTRACT
The problem of scaling up data integration, such that new sources
can be quickly utilized as they are discovered, remains elusive:
global schemas for integrated data are difficult to develop and ex-
pand, and schema and record matching techniques are limited by
the fact that data and metadata are often under-specified and must
be disambiguated by data experts. One promising approach is to
avoid using a global schema, and instead to develop keyword search-
based data integration — where the system lazily discovers associ-
ations enabling it to join together matches to keywords, and return
ranked results. The user is expected to understand the data domain
and provide feedback about answers’ quality. The system general-
izes such feedback to learn how to correctly integrate data.

A major open challenge is that under this model, the user on-
ly sees and offers feedback on a few “top-k” results: this result
set must be carefully selected to include answers of high relevance
and answers that are highly informative when feedback is given on
them. Existing systems merely focus on predicting relevance, by
composing the scores of various schema and record matching al-
gorithms. In this paper we show how to predict the uncertainty
associated with a query result’s score, as well as how informative
feedback is on a given result. We build upon these foundations to
develop an active learning approach to keyword search-based data
integration, and we validate the effectiveness of our solution over
real data from several very different domains.

1. INTRODUCTION
The vision of rapid information integration remains elusive, de-

spite steady progress in system architectures [13] and in alignment
techniques for discovering links among records [11] and schema el-
ements [28]. In general, the approach is to define one or more inte-
grated or mediated schemas capturing the data domain, use schema
mapping (alignment) and entity resolution (record linking) tools to
map data sources into the mediated schema, and finally allow users
to pose structured queries against mediated schemas.

A stumbling block is that string, pattern, and structural similari-
ties among data and metadata elements (the core techniques whose
outputs are combined by alignment tools) do not suffice to unique-
ly identify the correspondences between data or metadata items.
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The resulting ambiguous matches can only be resolved with do-
main (commonly, human) expertise. As a result, many of today’s
tools aim for semi-automated matching, where the system makes
predictions and relies on a human domain expert to correct any
mistakes or resolve any uncertainties (e.g., see [28, p. 345]).

There are several shortcomings to having a database administra-
tor inspect the output of a schema matching tool before adding the
mapping to an existing system: (1) administrator vetting becomes
a bottleneck to the system incorporating sources; (2) the metadata
might not clearly describe the data that must be mapped1; (3) subtle
variations in semantics may only show up in occasional, incorrect
query results. Moreover, the mediated schema itself can be a bot-
tleneck to adding new data, as new sources may have concepts that
do not yet exist at the global level.

For these reasons, recent work [4, 29, 34, 35] has proposed to
complement (or even replace) conventional integration with tech-
niques that do not rely on a mediated schema and schema mappings
created by an administrator. Instead the proposal is to adopt a key-
word search over databases model [5, 19, 20, 25] where matches
to individual keywords are assembled into query results by discov-
ering “join trees” that link the matches. This requires discovering
paths of associations (alignments across records, terms, or schema
elements in sources) that can join matching records together. Un-
der this model, the output of alignment algorithms is used directly
to answer queries, with no administrator intervention: the system
relies on the end user to have the domain expertise to vet the re-
sults, and to provide feedback [34, 35] on the system’s ranking of
(some) individual query results. Now instead of having a human
administrator correct bad associations, the system must learn the
correct score (possibly zero or infinite) of each individual associ-
ation, given the user’s feedback on query answers that are formed
from multiple associations [34].

This model is a form of “pay-as-you-go” integration [13], as it
enables the system and its users to focus their attention on those
associations that relate to actual information needs. The associ-
ations relevant to frequently posed queries should be the ones that
receive the most attention and refinement. In fact the pay-as-you-go
approach can be used to complement and inform more traditional
integration techniques: the keyword search log can help a human
administrator determine which parts of the data to prioritize inte-
grating, and provide clues for what mappings are most relevant.

However, to successfully learn to integrate data, the system must
balance its need to acquire feedback useful for answering future
queries, versus the requirement that each user immediately gets
the information he or she needs. Today’s keyword search systems

1Consider, e.g., the situation where users put data into comments
fields because there was no appropriate column in the schema.



have approached this problem by simply assuming the query scor-
ing function is accurate: they return the top-k results according to
the scoring function, which in turn bases its scores on the predicted
(but possibly incorrect) output of matching tools. Under this model
the user will attempt to remove false positives but has no way of
seeing — and providing feedback on — false negatives.

Such a model works well when the system returns a good mix
of correct and invalid results and the user can “separate” them.
However, as the number and complexity of sources and their at-
tributes increases, many potential queries are likely to have similar
scores, due to inherent uncertainty in combining low-confidence
results from various matching algorithms. The number of poten-
tial results can grow rapidly as the number of keyword matches
increases, whereas the number of results seen by the user remains
constrained by the dimensions of the screen and the limits of user
attention. Thus, when a keyword-based data integration system
selects queries to produce answers, it should not merely choose
alignments based on the relative scores of associations — but also
the uncertainty associated with a given query result, and the infor-
mativeness of feedback given on that particular result.

In this paper, we use active learning to help the system deter-
mine which query results to present, given a combination of their
predicted score, their inherent uncertainty, and the amount of infor-
mation gained about other potential queries. Intuitively, the infor-
mativeness of feedback on a query result is related to how much
uncertainty there is about the result’s relevance to the query, and
how many other similar share features with this result — mean-
ing that feedback on the first result also reduces their uncertain-
ty. We provide a more precise characterization of informativeness
later in the paper. Our work goes beyond previous attempts to
use uncertainty-directed ranking in the pay-as-you-go-integration
space, such as [24] which focused on individual mappings, by look-
ing at the total uncertainty associated with queries and their results,
and how this uncertainty should be combined with relevance rank-
ing.

The key questions addressed in this paper are how to estimate
the utility of a given query to the system and to the user, and how
to estimate the uncertainty of a query’s score, in applying active
learning to the problem of determining the relevance of associations
to a query. Specifically, we make the following contributions:

• Techniques for estimating the uncertainty associated with a
query, through the notions of entropy and variance, and by
combining the probability distributions of the output for in-
dividual schema matching or record linking outputs.

• Pruning and active learning techniques that focus the user’s
attention on the query results most likely to either be relevant,
or help the system produce better results.

• A scoring model using expected model change to relate the
user’s model of browsing data to how we should combine
and rank both useful and uncertain query answers.

• A method of clustering similar join queries, and choosing the
most useful representative.

• An experimental evaluation demonstrating the effectiveness
of our approach across several real data domains.

Section 2 provides the context of our problem, including the ba-
sic workflow of our integration task. Section 3 shows how we as-
sess the informativeness of each query. Section 4 then describes
how we combine informativeness and predicted score to return ranked
query results, and to learn from feedback on them. We experimen-
tally analyze our results in Section 5, describe related work in Sec-
tion 6, and conclude in Section 7.
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Figure 1: Search graph with keyword search terms. Each keyword
may match a node with a similarity score and each pair of attributes
may also match with a similarity score; this is captured by an edge cost
cci that can further be broken into weights plus features.

2. PROBLEM SETTING AND DEFINITION
Our goal in this paper is to effectively obtain and learn from user

feedback, in order to aid the system in finding the data integration
query results of greatest relevance to each user’s (ongoing or future)
information need. We assume that users express their information
need using a keyword search query model [5, 18, 19, 20, 25] in
which keywords get matched against elements in one or more rela-
tions in different data sources. Such elements will be represented
as nodes in a graph connected by weighted association edges —
typically foreign keys, containment relationships between nested
objects, or schema alignments and record links that were produced
by combining outputs from one or more automated matching al-
gorithms. See Figure 1 for an example, where rounded rectangles
represent relations, ellipses represent attributes, and squared rect-
angles represent fields in tuples; dashed edges represent matches
between keywords and schema or data nodes, unlabeled edges rep-
resent connections between attributes and relations (has-a) and be-
tween fields and attributes (is-a); bidirectional edges with labels
represent potential joins with a confidence score computed by one
or more schema alignment tools. In answering a query, the system
will attempt to find trees within the graph linking the relations or tu-
ples matching the given keywords, as indicated by bold lines in the
figure. In general, there may be multiple matches to a search key-
word, and there may be multiple edges between nodes, representing
different candidates for joining the associated relations. We target
users whose goal is to construct a set of correct query answers, and
who are thus incentivized to provide feedback indicating which tu-
ples should be removed from or re-ordered within the result set.

2.1 Preliminaries
We implement our techniques within the Q Query System, which

combines keyword search for data integration with feedback-based
learning from query answers. Our basic techniques could be adapt-
ed to other data integration systems that currently do not perfor-
m learning, such as Kite [29] and the system of Bergamaschi et
al. [4], as well as keyword search systems for databases, like Dis-
cover [20], DBXplorer [1], BANKS [5], and BLINKS [19]. We
show the basic architecture of the Q System in Figure 2.

Graph and Edge Weights. Q initially creates a search graph,
by cataloging and indexing known sources, and encoding metadata
and data items as nodes. Nodes may optionally receive an authority
score, e.g., from link analysis [3] or user feedback [35].

Certain association edges are then added to capture relationships
such as containment, subclassing, membership, and foreign key ref-
erences. Other edges, describing potential cross-source joins, are
lazily added by the Q system: as a user keyword query is entered,



a query formulator seeks to find trees within the schema graph that
connect nodes matching the search terms; as necessary, the query
formulator will call an association generator to induce new associ-
ation edges in the graph, by running schema matching and record
linking tools. The Q system can directly use the outputs of exist-
ing matchers and alignment tools from the literature, such as [9,
10, 28]. To facilitate this, each association edge’s cost or score
is comprised of a set of feature values, plus weights for each of
the features obtained from the schema matching and record linking
tools and adjusted from feedback.

Most “modern” schema matching tools comibine the results of
different base matchers, which focus on different characteristics of
the data and/or metadata [28]. In this paper we assume that we
have direct access to the base matcher scores from the alignment
tools, as is the case with the COMA++ system we used in our ex-
periments [9]. (We can also directly use the final output from any
matching tool, but we must have at least partial information about
the component scores it uses, so we can estimate its uncertainty.)

2.1.1 Search and Ranking
When the Q system is given a keyword query of the form Q =
{K1, . . . ,Km}, it first uses a keyword similarity metric2 to match
each keyword Ki ∈ Q against all search graph nodes (schema and
data elements). It “overlays” onto the search graph a node rep-
resenting each Ki (see keyword nodes, represented as boldfaced
italicized words, in Figure 1). It then adds an edge from Ki to each
graph node whose label matches the keyword with a similarity s-
core exceeding some threshold. Each such edge is assigned a cost
expression (e.g., c2 in the figure) that represents a dissimilarity or
semantic distance, and is lower for closer matches. In turn, an edge
weight such as c2 is actually comprised of two components, a simi-
larity score s2 from the similarity metric, and an adjustable weight
w2 that is learned by the system.

With respect to this overlaid search graph, each tree with leaf
nodes K1 . . .Km represents a possible join query (each relation n-
ode in the tree, or connected to a node in the tree by a zero-cost
edge, represents a query atom, and each non-zero-cost edge rep-
resents a join or selection condition). Like most keyword search-
over-database systems, Q generates queries that may produce rele-
vant answers by running an approximate Steiner tree algorithm [35]
to connect matching nodes in the search graph with the lowest-cost
tree, and executes them and unions their results together in ranked
order using a top-k query processing algorithm [12, 16, 22]. While
the Q system combines cost components (features) derived from
data as well as metadata, in this paper we focus on features that are
associated with the metadata and the query — particularly those
having to do with predicted schema matches — rather than those
derived from specific fields in the data. The tree has an associat-
ed cost function that weights and sums the costs on the edges (and
optionally nodes) in the tree. In turn, the set of underlying costs
can be represented as a binary feature vector representing the set
of participating alignments, and a weight vector representing the
weight values for those features: the cost represents the dot prod-
uct of those two vectors.

Probabilistic Interpretation of Cost. Typically we initialize the
feature and weight vectors to negative log likelihoods of the proba-
bilities that items match — meaning that the overall query cost also
represents a negative log likelihood and can be converted back to a
probability by computing 2−cost. We refer to this latter term as the
score of a result.

2By default tf-idf over the tuples in the data, although other metrics
such as edit distance or n-grams could be used.

2.1.2 User Feedback
In general the Q system’s task is not finished once it has returned

a set of query answers. Rather, the user may pose feedback over
these results, in the form of constraints on the preferred ordering of
the answers, or identification of good or bad results. In general we
assume that the user looks over a portion of the k answers returned,
and provides (1) a watermark indicating the set of results verified
and (2) feedback about which results are known to be incorrect.
In contrast to information retrieval where the user generally only
wants one valid answer and does not reuse query results, we expec-
t here that the user wishes to keep the set of correct answers to a
query, and that he or she may make the results persistent in the form
of a view. Hence the user is incentivized to provide feedback. We
assume in this paper that the task of determining correct vs. incor-
rect results is context-insensitive, meaning all users’ feedback can
be combined — as opposed to the more context-specific problem
of learning source authoritativeness [35].

2.2 Soliciting Feedback: Active Learning
The Q system encourages the user to “curate” the results of the

query, distinguishing good answers from bad ones and establishing
a preferred ranking order for the results. This leads to a tension be-
tween two desiderata: we must provide some relevant answers so
the user is motivated to look through the results; but we want the
system to continuously expand its ability to score new sources and
new edges, i.e., increase its recall, meaning that we must also solicit
feedback on results that include uncertain edges. These contrasting
goals motivate the focus of this paper: an active learning [30] ap-
proach incorporated into a component called the suggester module.

The Q system’s suggester module ranks queries based on its un-
certainty about their score, and how much feedback about their va-
lidity aids the system in predicting the score for other queries that
have features in common with them. Its top results will typically be
merged with the top-scoring query results, giving a mix of items for
the user’s inspection and feedback. Effective output from the sug-
gester will help the system accelerate learning convergence while
reducing the need for user intervention.

To achieve this, we incorporate the idea of active learning from
the machine learning literature. Active learning improves the ac-
curacy of learning while reducing the amount of training data: it
relies on the ability of the learning algorithm to choose the data
from which it learns. This is especially desirable for applications
where labeled training data (in our setting, correct scores or costs
for association edges, leading to correct query result rankings) is
difficult to obtain. Typically, an active learning algorithm has ac-
cess to an oracle and issues queries on unlabeled data. The oracle
answers the learning algorithm by assigning a label associated with
the query instance. In our setting, the user serves as the oracle.

The key question in applying active learning is how to select
the next unlabeled instance for the oracle’s annotation. A common
approach is to adopt uncertainty sampling, a query strategy based
on an uncertainty measure. This measure determines how uncertain
the label given to the instance will be, and indicates how much
extra information the underlying model may learn. In our setting, a
computed query result is a sample, and its label indicates whether
it satisfies the user’s information need with the correct ranking. We
develop a novel means of measuring a query result’s uncertainty,
given the uncertainty associated with its individual components like
join associations.

We also explore another aspect: estimating how much feedback
on a single tuple can help label a group of similar queries and
their results. We develop a clustering strategy where queries shar-
ing common edge and node structure are grouped together into
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Figure 2: In the Q system, a search graph is generated by indexing known data and metadata as nodes; association edges are lazily added. A
keyword query is fed to a query formulator, which finds matching trees within the search graph. As necessary, it calls an association generator to
induce new graph edges. This paper focuses on the suggester module, which uses active learning to ensure a mix of top-scoring answers and answers
for which feedback is most informative. User feedback goes to a learner, which improves the scores of the associations in the graph.

one cluster, and a representative is presented to the user. Such
clustering-ranking schemes have been previously used in other ac-
tive learning applications, such as guided data repair [36] and record
linking [2]. A major novelty of our work lies in determining and
ranking the uncertainty of clusters of queries. We develop a mea-
sure based on the uncertainty score from the alignment(s).

3. FINDING INFORMATIVE QUERIES
In this section, we develop mechanisms for measuring the uncer-

tainty of a query result, given knowledge of the uncertainty associ-
ated with the edge (schema match) and node (relation authoritative-
ness) components of the search graph. We then take into account
the fact that queries may have overlapping edges or relations, mean-
ing that feedback may benefit multiple queries. We seek to focus
on returning “more informative” query results.

Our approach is to build over existing schema matchers and their
underlying components. However, a challenge is that modern match-
ers [9, 10, 28] combine the results of many base matchers, but re-
turn a single similarity score that does not reveal any information
about how this was obtained. In order to determine the level of
uncertainty associated with each potential alignment, we seek to
estimate the probability distribution over the range of values, as
suggested by [15, 26]. To form this estimate, we compute a pre-
dicted distribution over all primitive matchers’ scores for each as-
sociation edge. We learn a weight for each of the base matchers,
and use each weighted value as a point within a probability dis-
tribution for the possible values for the composite matcher. (The
Q system learns how to best combine the weights from these base
matchers, as described in Section 4.3.2.) Modeling feature weights
as random variables enables us to estimate overall relevance of an
edge, as well as the amount of uncertainty associated with it. This
generalizes our previous model in [35], since the previous feature
weight corresponds to a sure event with only one possible value and
probability 1.

We consider in Section 3.1 how to compute weight distributions
for the search graph using features of two types: (1) those sug-
gesting attribute alignments (possible join edges) across relations
on an attribute; (2) those representing authoritativeness or quality
of relations or nodes. Section 3.2 then shows how such features’
uncertainties can be combined across multiple relations and joins
to get the uncertainty associated with a query (and its results). Fi-
nally, many queries may be similar: Section 3.3 shows how we can
cluster such queries to maximize our ability to include a diverse set
of results within the top-k answers returned to a user.

3.1 Uncertainty in the Search Graph

We first explain how the estimated probability distributions for
base matchers are incorporated into our search graph. We divide
our discussion into the basic features associated with edges and
nodes in the graph, and weights assigned to those features.

3.1.1 Graph Components and Features
We formalize the definition of search graph and features in our Q

system. Assume that we have R = {Ri} as the set of all relations
in the schema. Let G = (V,E) be the schema graph, where V is
the set of attribute nodes and E is the set of alignment edge. Each
alignment edge connects a pair of attributes and represents a possi-
ble join on that pair. The global feature set F = Fa ∪ Fr contains
alignment features Fa = {fAB |A,B ∈ V } and relation features
Fr = {fR|R ∈ R}, where features in Fa describe attribute align-
ments and features in Fr identify relation qualities. Every edge is
mapped to a vector of binary feature values, where each bit speci-
fies if that feature relates to the edge. We denote by fe

i the value
that a feature fi takes on edge e. In fact, given an edge (A,B) ∈ E,
where A is an attribute of relation R1 and B is an attribute of re-
lation R2, only the features fe

R1
, fe

R2
, and fe

AB will have value 1,
while all the remaining features take value 0.

Each feature has an associated weight, from which the cost of
an edge is derived. The weight of an alignment feature captures
the quality of that matching, and the weight of a relation feature
describes table authoritativeness. Feature weights are derived from
schema matching tools and further adjusted through user feedback.
We treat the weights as random variables, to model the uncertain-
ty of predictions of the schema and record alignment tools. For
each alignment feature fAB , we denote by WfAB the random vari-
able which maps a possible weight of the alignment feature to a
probability value. Hence, WfAB = w is the event that the feature
weight takes value w. Similarly, there is a weight random variable
WfRi

for each relation feature fRi ∈ Fr . Thus, the cost of an edge
e = (A,B) ∈ E, where A is an attribute of relation R1 and B is
an attribute of relation R2, is given by the random variable

C(e) =
∑
i

W (i)fe
i =WfR1

+WfR2
+WfAB . (1)

We now describe how features are computed for edges and n-
odes. (Our system also supports features whose values come from
the data, e.g., score attributes within tuples [23, 34], and our model
generalizes to this. For simplicity we focus on query rather than
instance-based attributes.)

3.1.2 Edge (Schema Alignment) Features
The Q system encodes schema matches (attribute alignments) as

alignment features, whose weights represent alignment qualities.



For any two attributes A and B, the random variable WfAB rep-
resents the score distribution we derive. We first focus on a single
pair of attributes, where we treat the set of base matchers’ outputs
as an ensemble of classifiers, and let them vote on a prediction.

Schema Matcher Ensemble. The initialization procedure utilizes
m matching primitives, i.e., base schema matchers. For any at-
tribute pair (A,B), the ith matching primitive algorithm produces
a normalized discrete cost score 0 ≤ si(A,B) ≤ 1. In our frame-
work, as described before, a low score indicates high similarity.

Voting Heuristic. Since precision varies from different matching
algorithms, we can assign each member a normalized preference
p(Mi), such that

∑
i p(Mi) = 1. This preference can be inter-

preted as the confidence level of a primitive. It also represents how
heavily a primitive contributes to the final aggregated matching s-
core. The values will be trained ahead of time, and will be learned
(see Section 4.3.2). For any possible weight value w ∈ [0, 1], we
have the following estimation formula based on voting from the
matching ensemble,

Pr(WfAB = w) =
∑

1≤i≤m

1(si(A,B) = w)p(Mi). (2)

The above formula states that the probability of the alignment hav-
ing a score w is the summation over all weights of matching prim-
itives yielding the same score.

Relevance and Uncertainty. We can reason about both relevance
and uncertainty of a particular alignment based on distributions
over weight values for alignment features. For example, we can
use the expectation E(WfAB ) to measure relevance, and then use
the entropy of WfAB , H(WfAB ), or its variance, V(WfAB ), to
measure uncertainty. We discuss this in more detail in Section 3.2.

3.1.3 Node (Relation Authoritativeness) Features
In some cases the user may have a certain preference for (or bias

against) a particular relation R, e.g., due to its authoritativeness.
We model this as a feature shared across all edges linking to the
node R and its attribute nodes, and we derive an initial weight dis-
tribution for this feature.

We exploit the user query log to form this initial weight distri-
bution, and then rely on feedback to adjust the weight. In the Q
system, users can have each result query saved as a view, and have
previous keywords stored as nodes in the schema graph. We as-
sume that these keywords roughly represent the distribution over
the user’s long-term set of queries. Let R(A1, A2, . . . Ap) be a
relation and VQ = {k1, k2, . . . kq} ⊆ V be the (nonempty) set
of keyword nodes from the user’s query history. We use matching
primitives for each (Ai, kj) pair to get a score distribution, encoded
by the random variable S(i, j).

We can apply Formula 2 to compute S(i, j) as the weight distri-
bution of an alignment feature. Hence, the weight random variable
corresponding to the relation feature fR is given by

WfR =

∑
1≤i≤p,1≤j≤q S(i, j)

pq
. (3)

Similarly to the case of edges, we can examine both relevance and
the amount of uncertainty associated with relation R, through its
corresponding feature.

3.2 Composing Uncertainty for Queries
In the Q system, keyword queries on the schema graph produce

a set of structured queries, each generated from a Steiner tree T
which is a subgraph of G. We combine uncertainty from each edge

and define the uncertainty of a query by examining its correspond-
ing Steiner tree as follows.

The cost of an edge e ∈ E with features f1, f2, . . . and associ-
ated weights W1,W2, . . . , where Wi is a random variable, can be
calculated using Formula 1. Abusing the notation a little, we have
the cost of a tree T derived from costs of all edges presented in T ,
as follows

C(T ) =
∑

e∈E(T )

C(e) =
∑
i

∑
e∈E(T )

fe
i Wfi , (4)

where E(T ) denotes the set of edges of tree T . We treat each Wi

as being independent of the others. While in reality this may not
be true, we will show experimentally that this heuristic is effective,
and that it simplifies the learning procedure.

Consider a structured query plan modeled by a Steiner Tree T ,
we can infer relevance and uncertainty of the query from its cost
expression. The Q system measures query relevance by the ex-
pectation E(C(T )), and it captures query uncertainty using either
entropy or variance. We describe each next.

Entropy. In information theory, entropy roughly represents the ex-
pected number of questions to be asked to decode a distribution.
The entropy for a given random variable X is defined as:

H(X) = −
∑
x∈X

Pr(X = x) log Pr(X = x).

However, since the distribution of C(T ) can be a set of possible
values each with a uniform probability, we need more contextu-
al information to derive more meaningful entropy values. Let D =
[smin, smax] be the domain of all scores, and {B1, B2, · · · , Bb} be
the scoring “bins” which uniformly partitionD into several ranges.
Each Bi represents the range [smin + (i − 1) smax−smin

b
, smin +

i smax−smin
b

). Let Gj denote the event C(T ) ∈ Bj . We have
Pr(Gj) =

∑
c 1(c ∈ Bj) Pr(C(T ) = c). In this case, we consid-

er the sample space to be all possible Bi. Hence, we can define the
entropy value as follows

H(C(T )) = −
∑

1≤j≤b

Pr(Gj) log Pr(Gj). (5)

In the Q system, given a tree T , we can compute its entropy by
maintaining the distribution over total cost when traversing T . As
Formula 4 suggests, when edge e is visited, we maintain the sum
SF (i) =

∑
e∈E(T ) f

e
i for feature fi. Finally, we can compute the

cost distribution by independence assumptions on Wi, and there-
fore derive the entropy. This can be done by dynamic programming
as shown in Algorithm 1

Variance. Much like entropy, the variance value of a probabilistic
distribution describes how diverse is the range of its possible out-
comes. Using Formula 4 and independence assumption on different
weights, we can compute the variance value as follows

V(C(T )) =
∑
i

SF 2(i)V(Wi). (6)

3.3 Clustering Queries
In active learning, the goal is to select query results such that the

system maximizes its ability to learn (in this case, from user feed-
back). The uncertainty measure developed previously identifies the
single sample (query result) with lowest confidence, in isolation.
However, in the Q system, the user labels derived query results as
positive or negative, but the feedback is converted into a modifi-
cation of weights on individual features on edges or nodes. Such
features may be shared with other queries and their results —



Algorithm 1 Computing entropy/variance for a query, or a tree
Input: A Steiner tree T
Output: Entropy and variance values for the total cost C(T )

1: for all feature fi do
2: SF (i)← 0
3: end for
4: for all edge e ∈ E(T ) do
5: for all feature fi appears on e do
6: SF (i)← SF (i) + fe

i

7: end for
8: end for
9: for all d in the value domain D do

10: P 0(d)← 0
11: end for
12: P 0(0)← 1.
13: for i← 1 to |F | do
14: for all d ∈ D do
15: P i(d)← 0.
16: end for
17: for all d in domain D s.t. P i−1(d) > 0 do
18: for all possible value w which Wi can take do
19: P i(d+ w)← P i−1(d) Pr(Wi = w)
20: end for
21: end for
22: end for
23: for all bin Bi of total cost do
24: Pr(Bi) =

∑
d∈Bi

P |F |(d)

25: end for
26: return H = −

∑
Bi

Pr(Bi) log Pr(Bi) and

V =
∑

i SF
2(i)V (Wi).

meaning that the system may improve its uncertainty on multiple
queries from feedback on a single result. Ideally, we can find a
few “representative” query results to return in the top-k results, and
learn about many other results’ scores from these representatives.

Our clustering strategy targets this problem. It presents to the
user the results of a query (Steiner tree) that shares some highly
uncertain edges with other, also-highly-uncertain, queries — such
that feedback given on results from the first query (tree) can also
reduce the uncertainty of the other queries. To achieve this, we
must estimate common uncertain information between two Steiner
trees and how informative a given Steiner tree is with respect to a
keyword query. We use these to cluster overlapping queries and
choose a representative query per cluster.

Clustering Algorithm. Our clustering algorithm takes a set of
query trees {T1, T2, · · · } as input and clusters them into k groups,
one associated with each top-k answer, similar to the k-means al-
gorithm. (Note that in our domain it is intractable to compute the
entire set of query results and then perform hierarchical agglom-
erative clustering; instead we can only produce some partial set of
results and return k of them. Hence k-clustering makes sense.)

We define the center tree T of a set of trees to be a tree where
each edge e has an associated appearance frequency rT (e), which
is the ratio of number of trees having e to the size of the set. For
any general Steiner tree T , rT (e) is defined as 1(e ∈ E(T )). Now,
we define the similarity between two trees as follows.

Ŝ(T1, T2) =
∑

e∈E(T1)∩E(T2)

U(e)min(rT1(e), rT2(e)).

This similarity roughly estimates the amount of common uncer-
tainty of the two trees by summing up uncertainty values on their
common edges. It can estimate the similarity between two Steiner
trees as well as similarity between a Steiner tree and a “center” tree
of a set. We use standard k-means clustering over this similarity
function to build clusters.

Choosing Cluster Representatives. Once we have a cluster of
similar queries, the next key question is how to choose one from
them for feedback, such that the Q system can learn as much in-
formation as possible. We determine such a representative based
on a notion of informativeness. Intuitively, the informativeness of
a query with respect to a cluster of queries measures how much un-
certainty this particular query shares with other trees in the cluster.
Formally, given a cluster of trees C and a tree T ∈ C, we define
the informativeness as follows:

IC(T ) =
∑

T ′∈C,T ′ 6=T

∑
e∈E(T )∩E(T ′)

U(e) (7)

where U(X) is any uncertainty measurement over a random vari-
able X . Thus, we vote on a representative according to the above
informativeness formalism, and choose the most informative tree
to represent the cluster.

4. RANKING AND LEARNING
The previous section showed how to estimate the relevance of a

query, how to cluster queries with shared edges, and how to iden-
tify representative queries based on informativeness. Once the Q
system identifies the set of Steiner trees and clusters, it must rank
the clusters such that they answer user’s initial query and maximize
the utility of potential user’s feedback.

In this section, we consider two closely related issues. First, we
need to rank the answers to a keyword queryQ = {K1,K2, . . . ,Km},
taking both relevance and uncertainty into account. We then con-
sider how the system can learn from the user’s feedback and update
the scores and probability distributions associated with individual
features.

4.1 Basic Ranking of Query Results
The cost of a query, i.e., a Steiner tree, derived in Formula 4, is a

random variable from which our Q system determines its rank. A
query’s rank should depend on relevance, i.e., how likely is a query
result to satisfy the user’s information need. However, the query al-
so has a certain amount of uncertainty in its score, which indicates
how much extra information the Q system can learn from possible
user feedback given on results derived from the query. A query’s
amount of uncertainty should also determine its rank since the user
only sees a few top results and the system needs to maximize its
learning gain. We have shown in Section 3 how to compute these
two measurements for a given query. We now consider how to rank
queries based on these values.

There is a tension between these two goals, rendering it semanti-
cally difficult to aggregate them for ranking and learning. We can-
not directly use the decision-theoretical notion of stochastic dom-
inance, nor skyline-based ranking, as these only produce partial
orderings of results. Moreover, they fail to consider how the order-
ing affects the way a user provides feedback. Our trade-off between
relevance and uncertainty in the long run is very similar to the prob-
lem of “exploration versus exploitation” in machine learning [30].
However, we must adapt existing techniques, because some of the
key metrics are intractable to obtain in our setting.

We first consider two orthogonal notions of ranking, one based
on the predicted relevance of results, and the other based purely



Algorithm 2 Computing top ranked queries
Input: Schema graph G
Output: A ranked list of trees

1: Compute all top-k′ Steiner trees {Ti}
w.r.t. minimum expected cost

2: Cluster these trees into k clusters,
each with representative Tr(ci)

3: Rank all clusters using one of the ranking methods

on uncertainty, followed by a weighted combination of the two. In
Section 4.2 we will consider a more sophisticated means of com-
bining the different facets.

Predicted-Relevance Ranking. A natural method of ranking is
based on predicted relevance, i.e., the score obtained by combining
the expected values of the features in the Steiner tree (query). Most
keyword search-based systems, including prior versions of the Q
system, adopt this ranking semantics. The final answer set in this
model is a list of the k lowest-cost trees, in increasing order of
expected cost. The top-k queries in this model can be computed by
taking the graph, computing the expected cost for each edge and
assigning it as the edge weight, then running a k-best Steiner tree
approximation algorithm [35], which is tractable in practice.

Uncertainty Ranking. Conceivably, one could instead rank queries
(and answers) according to the level of associated uncertainty. This
is in some sense what systems supporting active learning typically
do: focus the user’s attention on the results that have the highest
uncertainty, and thus the highest utility in learning how to rank.

The problem with this approach is that the entropy of a tree does
not follow the principle of optimality with respect to the entropy of
its subtrees. There is no obvious way to determine the top-k trees
with respect to entropy, without enumerating all trees. Moreover,
since a tree’s entropy is not directly related to its predicted rele-
vance, the highest-entropy query answers may not be useful to the
user. Similarly, query answers with high variance values may not
help answer the user’s information need. For these reasons we next
consider a more feasible hybrid strategy we term mixed ranking.

Mixed Ranking. The notion behind mixed ranking is that top an-
swers should include a predicted relevance component to try to sat-
isfy the user’s information need, while still including some uncer-
tain answers that are useful from an active learning perspective.
This can be achieved as follows. We first compute a large sub-
set of the queries predicted to be relevant, e.g., 2k most relevant
query trees, and then choose from among these (possibly clustering
them if they are highly overlapping) according to their uncertain-
ty scores. Since we can tractably obtain approximate Steiner trees
and compute entropy or variance for an individual tree, the overall
mixed ranking is tractable in practice.

The scheme incentivizes the user to provide feedback: some of
the query answers are likely to be of good quality, but they be mixed
with bad answers. The user will be able to see that a small amount
of feedback may result in an even more complete answer set.

4.2 Ranking by Expected Model Change
The previous ranking semantics fail to consider position bias:

the user typically examines results from top to bottom and stops at
some point. This behavior suggests that top items are more likely to
receive feedback. Even for the same set of results, different order-
ings may yield different amounts of feedback to the system. To ad-
dress this problem, we present a novel ranking semantics using the
notion of expected model change [32] and taking the user’s brows-
ing behavior into account. Briefly, the expected model change re-

sulted from an unlabeled sample quantifies the estimated change to
the current model if we knew its label. Typically, if a sample has a
higher value of expected model change, the system is likely to learn
more information if its label is revealed. Furthermore, our ranking
by expected model change algorithm yields a provable relevance
guarantee: we show a cost lower bound for the list of top-k results
obtained from this ranking method. This is desirable because query
answers need to satisfy the user’s information need.

4.2.1 Browsing and Feedback Model
We adopt a user browsing model very similar to [7, 17, 33]. The

user starts by looking at the first result in the list and gives feedback
on it. Then he or she continues to the second result with some
probability p, or terminates his or browsing with probability (1−p).
If he does examine and give feedback on the second result, he will
repeat the above behavior for the third result and so on. The user’s
browsing procedure terminates if he reaches the end of the list, or
when he or she stops at a certain position. This stop position is what
we refer to as the watermark, and we assume the user has vetted
each result up to the watermark, and given negative feedback on
any answers known to be incorrect.

Formally, if we let r1, r2, · · · , rk be the top-k results where ri is
displayed at position i and let Fi denote the event that ri is exam-
ined and feedback is given on it, we can model the user’s browsing
behavior as follows.

Pr(F1 = 1) = β1,

Pr(Fi = 1|Fi−1 = 0) = 0,

Pr(Fi = 1|Fi−1 = 1) = βi,

where 0 ≤ βj ≤ 1, ∀j.

The second formula assumes that the user stops browsing if he
does not examine the previous result in the list. The third formu-
la quantifies the probability that the user continues to the result at
position i if he has examined the result at position i− 1. We gener-
ally assume that probabilities for continuing may vary for different
positions. We also do not assume these conditional probabilities
diminish as position moves from top to bottom.

4.2.2 Expected Model Change
Given the browsing model, we now formalize the definition for

expected model change. This will allow us to quantify the aggre-
gated amount of relevance and that amount of uncertainty associ-
ated with the top-k results. Consider the top results {r1, · · · , rk},
where each ri has a corresponding Steiner tree Ti, whose cost is
a random variable. Informally, the expected model change for ri
is the expected amount of uncertainty reduction if ri is given feed-
back to and no other trees in the top list receive feedback. The
expected amount of uncertainty reduction can be computed by sim-
ulating our learning module, described in Section 4.3. The learning
algorithm takes the list of top-k trees and feedbacks given to each
tree (positive, negative or no feedback) as input, and changes prob-
ability distributions over feature weights in the schema graph ac-
cordingly. This results in change of cost variables for graph edges,
and therefore the uncertainty measure of cost functions associat-
ed with the schema graph G. We denote by G+ the new graph
if ri is given a positive feedback, and by G− the new graph if
ri is given a negative feedback. We also denote by U(G) the
total amount of uncertainty associated with schema graph G, ob-
tained by U(G) =

∑
e∈E(G) U(e), where U is a given uncertainty

measure, for instance, variance or entropy. Similarly, U(G+) and
U(G−) describe amount of uncertainty associated with G+ and



G−, respectively. If we let ∇Li be the amount of uncertainty re-
duction if ri is given a positive feedback and ∇Li be the amount
of uncertainty reduction if ri is given a negative feedback, we can
compute these values as follows.

∇Li = U(G)− U(G+), ∇Li = U(G)− U(G−).

According to the probabilistic interpretation of edge cost described
in Section 2, we assume that αi = 2−E[C(Ti)] estimates the prob-
ability that ri meets the user’s information need, which in turn es-
timates the probability that ri receives a positive feedback. Hence,
the expected model change if ri receives a feedback is given by

Ji = αi∇Li + (1− αi)∇Li.

Now that we have defined the expected model change for a given
unlabeled query, we consider how to maximize the expected total
amount of uncertainty reduction by incorporating our user brows-
ing model. For a given query ri, the user must first examine it
in order to provide feedback. Hence, we can compute the Q sys-
tem’s expected utility from learning feedback given to ri, denoted
by Ys(i), as follows

Ys(i) =

i∏
j=1

βjJi =

i∏
j=1

βj(αi∇Li + (1− αi)∇Li).

Denote Bi =
i∏

j=1

βj , which is the probability that the user has

examined ri. Similarly, we can obtain the relevance estimation, or
the user’s utility, for ri, denoted by Yu(i) as

Yu(i) =

i∏
j=1

βjαi = Biαi.

Combining utility scores for each individual result, we obtain the
following two objective functions, one utility function for Q sys-
tem’s learning, and the other for the overall relevance.

Ys =

k∑
i=1

Ys(i), Yu =

k∑
i=1

Yu(i).

We apply an active learning strategy to maximize Ys with respect
to an ordering of a candidate result set, so that the Q system can
learn as much information as possible. We will show that greedily
ranking by Ji maximizes this objective function. Furthermore, we
will show that Yu has a lower bound if we rank results by Ji. This
indicates that the total amount of relevance can be guaranteed.

THEOREM 1. Ys is maximized if {ri} is ranked by descending
Ji. Moreover, Yu ≥ Y ∗s√

k∑
i=1

J2
i

, where Y ∗s is the optimal maximized

value.

Proof Sketch. We omit the detailed proof here due to space con-
straints. The first part of the theorem can be proved based on an
exchange argument. The key step for proving the second part is to
apply the Cauchy-Schwarz inequality.

The above theorem establishes a nice connection between explo-
ration and exploitation: actively learning by the Q system still pro-
vides relevance lower bound. In practice, since computing the full
ranking requires enumerating all Steiner trees, which takes expo-
nential time, we instead compute a group of most relevant Steiner
trees and rank them by their values of expected model change.

4.3 Learning from User Feedback
Recall that the keyword search-based data integration model i-

dentifies correct attribute alignments by learning from user feed-
back over query answers. In our Q system implementation, two
modules — the interactive user interface and the feedback-based
learner — enable this capability. Once a keyword query is issued,
the Q system returns the results computed by the top-k Steiner
trees3, using one of the ranking algorithms. The system then con-
verts these trees to conjunctive queries, executes these queries, and
returns tuple answers [35]. The Q system displays resulting tuples
to the user annotated with provenance, in the form of a tree describ-
ing the query or queries that produced the answer.

The user examines a portion of the result set of tuples and gives
feedback, either positive (via explicit positive marking or by speci-
fying the “watermark”) or negative (via explicit negative marking).
From the cumulative feedback, the Q system learns which features
in the schema graph, i.e., attribute alignments and data source qual-
ities, are most relevant to the user.

In reality, there are two sets of weight parameters that must be
learned: those for correcting edge alignments, which take uncer-
tainty and the weighted scores of base schema matchers into ac-
count (Section 4.3.1), and the weights that should be given by de-
fault to each of those individual base schema matchers, before fur-
ther feedback is given (Section 4.3.2).

4.3.1 Learning Edge Costs
Our prior implementation for the Q system [35] incorporates the

MIRA [6] online learning algorithm, an online approximation to
support vector machines, to receive feedback from the user in a
streaming fashion and to update weight values. In a nutshell, MIRA
attempts to find a new weight vector which is closest to the previous
one and which satisfies constraints formalized from the feedback.

The implementation in this paper requires that feature weights be
random variables instead of scalar values. The challenge, then, is
how to adapt the online learning algorithm so that it can deal with
probability distributions over feature weights. We adapt MIRA to
our new setting as follows. The user indicates that a particular tree
T ∗ should be the top ranked tree among the set of all top-k trees
B. Let w be the vector where wi = E(Wi). We directly apply
the MIRA algorithm, which takes the weight vector w as input and
returns a new weight vector w′ as output.

Finally, we compare wi with w′i for each i. Ifwi = w′i, then we
keep the existing probability distribution for the weight on feature
fi, because fi does not separate correct alignments and incorrect
ones in the top-k trees and its weight does not need adjustment. On
the other hand, if wi 6= w′i for some i, the Q system will update
this feature weight to a sure event: the weight random variable Wi

will have value w′i with probability 1. We show pseudocode for
our learning algorithm in Algorithm 3, and the loop in Line 12
computes the new weight update. We use symmetric difference
between two trees as the loss function, as in [35]:

L(T, T ′) = |E(T )\E(T ′)|+ |E(T ′)\E(T )| (8)

The online learning algorithm takes an initial score for an edge,
based on a weighted combination of schema matcher outputs, and
adjusts it. We next discuss how we set the initial score weights.

4.3.2 Learning Weights for Schema Matchers

3For simplicity we describe the outcome as if each query produces
one result, although the system actually iteratively enumerates top-
scoring queries, even beyond k such queries, until it gets k answers.



Algorithm 3 Online learner
Input: Search graph G, user feedback stream U ,
required number of query trees k
Output: Updated weights W

1: Initialize W
2: r = 0
3: while U is not exhausted do
4: r = r + 1
5: (Sr, Tr) = U.Next()

6: w
(r)
i = E(Wi)

7: Cr−1(i, j) = w(r−1) · fij ∀(i, j) ∈ E(G)
8: B = KBestSteiner(G,Sr, Cr−1,K)

9: w(r) = argminw ||w −w(r−1)||
10: s.t. C(T,w)− C(Tr,w) ≥ L(Tr, T ), ∀T ∈ B
11: w · fij > 0 ∀(i, j) ∈ E(G)
12: for all i do
13: if w(r−1)

i 6= w
(r)
i then

14: Update Wi s.t. Pr(Wi = w
(r)
i ) = 1

15: end if
16: end for
17: end while
18: return W

The schema matching literature suggests that different matchers
should have different weights in order to achieve a matching predic-
tion with good precision and recall [28]. Such weight distributions
may be different for different databases.

In the Q system, matcher weights are first applied to form prob-
ability distributions over alignment scores which compute query
relevance and uncertainty. As the user poses more queries, the Q
system learns the cost of individual attribute alignment. Under this
model, it may seem that matcher weights are no longer needed after
initialization. However, consider the case where new data sources
are added into the current system. In order to apply the same active
learning module, we will still have to compute probability distribu-
tions over alignment features for new relations. The results of such
estimations directly depend on matcher weights. Hence, we need
to learn, and periodically re-learn, such weights in order to perform
more accurate predictions for new data sources. Note that, howev-
er, the newly learned matcher weights should not be propagated to
edges whose costs are already updated from user’s feedback.

We periodically use a linear regression model to relearn match-
er weights: we choose this learning method because the goal of
learning the best parameter settings fits naturally into the regres-
sion setting. Alternatives like Naive Bayesian or SVM learning are
more appropriate for classification tasks.

The aggregate matching score for an attribute alignment is a
weighted sum of individual matching scores obtained from base
matchers. Each alignment edge in the schema graph (after sever-
al rounds of learning edge costs) is a labeled sample, where the
expected value of the alignment feature weight serves as the ag-
gregated score. Formally, let {M1,M2, · · · ,Mm} be the set of
matches and p(Mi) be the normalized matcher weight of Mi. For
each attribute alignment edge e = (A,B), the estimated aggregat-
ed matching, computed by E(WfAB ), is its label and we assume
that the score correctly reflects alignment quality. Each matcher
Mi produces score si(A,B) on edge (A,B). The learning pro-
cedure aims to find {p(Mi)} and to minimize the loss objective
function

min
∑

e=(A,B)

((
∑
i

p(Mi)si(A,B))− E(WfAB ))2.

This is a classic linear regression problem, and we can invoke the
learning procedure periodically.

5. EXPERIMENTAL ANALYSIS
We now experimentally evaluate the different options for the

suggester module, and their impact on learning, in the Q system.
We seek to validate that active learning improves our ability to dis-
tinguish correct from incorrect schema mapping edges and return
better query results, and to understand the differences among the
ranking models and uncertainty metrics.
Datasets. A major challenge in conducting keyword search exper-
iments across integrated data sources is that it is very difficult to
identify the complete set of correct (“gold”) alignments, and even
more difficult to identify the set of correct answers. To simulate
this in a controlled way that matches real data, we focus on real da-
ta where the possible joins are known. We chose three well-curated
datasets and removed information about foreign keys, meaning the
Q system must use schema alignment tools to discover potential
edges, and learning to improve its knowledge of the correct scores.
The datasets were chosen to represent very different domains, and
include the bioinformatics testbed used in [34], which combines
the widely referenced Interpro and GeneOntology (GO) datasets;
the popular Internet Movie Database; and the Mondial geographic
encyclopedia. For each dataset, we choose a subset of the tables.
Details about the datasets are shown below.

Name Bioinformatics IMDB Mondial
No. Tables 9 7 9
No. Attributes 48 21 36
No. True alignments 9 6 9
Size (in MB) 172 1082 7

Query Workload. For each dataset, we generated a workload
comprising 7 (for Bioinformatics) or 10 (for IMDB and Mondi-
al) keyword queries, whose results are revisited (and new feed-
back is given) three times. The queries were based on common-
knowledge searches, and keywords with low selectivity were em-
phasized. Each of the visits (phases) is done in a randomly permut-
ed order. Sample queries include “isomerase protein” for Bioin-
formatics and “Greece ‘health organization”’ for Mondial. Queries
cover most possible join paths, including some with high and some
with low uncertainty. For example, the path (roles.movie id, movies.id)
in IMDB has low uncertainty, while the path (interpro interpro2go.go id,
GO term.id) in Bioinformatics has high uncertainty.
Methodology. Experiments were conducted using our implemen-
tation of the Q system, which comprises approximately 55,000
lines of Java code. Evaluation was done using on an Intel Xeon
CPU (2.83GHz, 2 processors) Windows Server 2008 (64-bit) ma-
chine with 8GB RAM, using JDK 1.60 11 (64-bit). For each dataset,
the Q system first loads its schema (without knowing foreign keys)
and constructs the schema graph. We run in parallel a set of schema
matching primitives from the COMA++ schema matcher to com-
pute a weight distribution between [0, 1] for every alignment fea-
ture. We prune potential edges for which all matching primitives
give low similarity scores. We also assign one of 10 possible uni-
form weight distributions over [0, 1] to each node (relation) feature.

Once the schema graph is constructed, we iteratively pose key-
word queries. In each iteration, the Q system returns the top-k
ranked Steiner trees for the keyword query, according to one of
our ranking algorithms to be evaluated. Then we simulate the us-
er’s feedback: a Steiner tree receives positive feedback if all of its
edges are correct alignments (according to the actual schema infor-
mation not provided to the system), and negative feedback other-
wise. Note that our definition of correct Steiner tree is very strict,



as there might be additional alignments that are not specified in the
schema. The Q system then uses the feedback to learn adjustments
to the feature weights, and updates the costs of edges in the schema
graph.

We consider two dimensions: the uncertainty metric, namely en-
tropy and variance; and the means of scoring results from relevance
and uncertainty, including using relevance only, mixed ranking, and
expected model change. Combining these options, we look at pre-
dicted relevance (Relevance), mixed ranking using entropy (Mixed
Ent), mixed ranking using variance (Mixed Var), expected mod-
el change using entropy (EMC Ent), and expected model change
using variance (EMC Var). We also present results for our query
clustering scheme: here we only present the EMC Var ranking
scheme, which proved to be the most effective.
Parameter Settings. We used k = 5 as the number of top queries
to compute answers for each keyword search. To consider both
relevance and uncertainty, we actually have the Q system fetch
the top-2k most relevant Steiner trees, and to choose from among
these the top-k trees according to the combined ranking metric of
study. When clustering, we use the top-4k trees, which we com-
bine into 2k clusters and then choose the top-scoring k results. We
use the following COMA++ [9] schema matching primitives: data
type similarity, string edit-distance, string q-gram distance, seman-
tic similarity, and instance matchers. Initial matcher weights are
trained offline before the experiment using a very small set of ex-
ample attribute pairs.

We consider the following questions:
• Which active learning schemes most reduce the amount of

training required to distinguish between gold and invalid schema
alignments? Does clustering help? (Section 5.1)
• Which schemes require the least feedback to help the system

discover correct alignments? (Section 5.2)
• Do the improvements in learning correct edges translate into

an improvement in initial (before feedback) answer quality
for keyword searches? (Section 5.3)

5.1 Speed of Learning
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Figure 3: Speed of learning to distinguish gold vs. invalid
edges

The focus of our work on active learning is speeding up (in terms
of feedback steps required) the Q system’s ability to discriminate
between valid (gold) and invalid edges. Hence in this first experi-
ment we measure how many feedback steps are required to sepa-
rate gold-standard and erroneous edges, where our test for separa-
tion is whether the intervals corresponding to the mean plus or mi-
nus one standard deviation, for gold-standard and erroneous edges,
are non-overlapping and remain non-overlapping.

We performed a comprehensive set of experiments comparing
the various algorithms across our three datasets. Space constraints
preclude presentation of all results, so we summarize in Figure 3

how many feedback steps (rounds) were required to separate the in-
tervals. Note that there are a maximum of 21 rounds for the Bioin-
formatics dataset and 30 for the other datasets. If separation was
not achieved within this limit, we mark this on the figure.

For both IMDB and Mondial, all of the active learning algorithm-
s perform better than the standard (Relevance) method, which does
not manage to achieve separation. For Mondial, which has a rela-
tively small set of edges, most methods have comparable perfor-
mance (with Clustering requiring slightly more work). For IMDB,
the mixed ranking method Mixed Ent and the Clustering method
(which uses expected model change plus variance) are most effec-
tive. The mixed ranking scheme Mixed Var and its expected model
change variation EMC Var also perform well. Surprisingly, ex-
pected model change plus entropy is ineffective here, given that
entropy itself is useful. For Bioinformatics, both of the expected
model change-based schemes only require 6 steps to achieve sep-
aration, and the clustering algorithm does even better, requiring 5
steps. These outperform Relevance, which uses 18 steps, and the
mixed ranking methods do not achieve separation.

To give a greater sense of the differences in costs, we provide
more detail for the Bioinformatics dataset. This is representative of
the other results, and focused on the target domain of the Q system.
We see in Figures 4–6 the one-standard-deviation intervals around
the mean score for gold-standard and invalid edges in the bioinfor-
matics dataset, as each round of feedback is given to the system.
(Recall that high scores mean high costs or dissimilarity.) In this
dataset it takes 18 rounds to achieve separation of intervals for the
Relevance method (Figure 4). The Mixed Ent method (Figure 5)
never achieves separation within the 21 rounds of feedback (as its
top-k answer set does not include results with several of the error-
producing features). The Clustering method (Figure 6) performs
best, achieving separation after only 5 feedback steps.

Although learning produces a large gap between the average
costs of gold and non-gold edges, in a few cases, full separation
is not achieved. Here the base schema matchers’ scores for the in-
correctly categorized edges have low variance and entropy — the
matchers are “certain” about wrong alignments — so such edges
do not show up in the top-k results and receive feedback.

Overall, expected model change with variance, with or without
clustering, does best in learning to separate gold and invalid edges.

5.2 Recovering Gold Edges
We next study when active learning helps the Q system to find

a more complete set of gold edges. The overall edge recall (ra-
tio of gold edges to edges the system predicts) is determined by a
combination of query load (which determines the set of nodes and
to some extent trees) and ranking scheme (which determines feed-
back), and it may not always hit 1.0. We show in Figure 7 how
rapidly the system reaches its maximum recall value given our lim-
ited number of queries and feedback steps (21 for Bioinformatics
and 30 for the others). We include in the captions, in parentheses,
the maximum recall value achieved for each dataset.

On average, active learning (particularly the expected model change-
based methods including Clustering) significantly speeds up the
rate at which the system achieves maximum recall. For Bioinfor-
matics all of our new methods converge more quickly than Rele-
vance, but the mixed ranking methods do not achieve separation
and thus include a significant number of invalid edges. For IMD-
B and Mondial, the Relevance method is the one that does not
achieve separation. We see that here the various active learning
methods have comparable performance.

For more detail on the methods’ behavior, we show in Figures 8
and 9 a visualization of a subset of the Q search graph, showing
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Figure 4: Separation for Relevance in the
Bioinformatics dataset
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Figure 5: Separation for Mixed Ent in the
Bioinformatics dataset
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Figure 6: Separation for Clustering in the
Bioinformatics dataset
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Figure 7: Feedback rounds required to reach maximum recall
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Figure 8: Feedback on edges using Relevance: width is propor-
tional to feedback steps; dotted lines indicate an invalid edge.

various relations and the edges among them. Dotted edges indicate
invalid edges predicted by the schema matchers, and the width of
the line indicates the amount of feedback given. We see that the
Relevance method (Figure 8) provides less overall feedback on the
edges, and explores fewer edges, than the EMC Ent method of
Figure 9. We conclude that expected model-change-based methods
achieve the best combination of separation plus edge recall. To give
an idea of how edge recall changes over time, we plot this for all
three of our datasets versus feedback rounds in Figure 10. Observe
that maximum recall is achieved within 5-9 rounds of feedback.

5.3 Initial Query Answer Quality
While the system’s goal is to learn correct rankings for the edges,

the user’s goal is to retrieve good query answers. Our final exper-
iment measures how quickly the system — given feedback on the
results from a set of training queries — can achieve 100% precision
in the set of answers returned for a different but related test set of 5
queries. Figure 11 shows the number of feedback rounds required
over the training data; arrows over the bars indicate that full pre-
cision was not achieved even after the maximum number of step-
s. The figure shows that for the first two datasets, active learning
makes a significant difference, and that the Clustering algorithm
shows measurable benefits over the expected model change meth-
ods. For Mondial the number of edges used in queries is small, so
all methods receive adequate feedback to achieve perfect answers.

5.4 Discussion
Overall, we conclude that EMC Var is effective in virtually al-

l scenarios, generally beating EMC Ent. The Clustering method
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Figure 9: Feedback on edges using EMC Ent: width is propor-
tional to feedback steps; dotted lines indicate an invalid edge.
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Figure 11: Quality of initial query answers
produces the best initial answer quality, though its speed of learning
and edge recall is sometimes slightly slower than the EMC method-
s. While our active learning techniques show significant benefits,
there remains room for improvement. We have assumed that the
different base matchers’ scores will be relatively uncorrelated, al-
lowing us to detect uncertainty. Section 5.1 showed that sometimes,
though, the base matchers do not provide enough score diversity to
indicate potentially incorrect alignments. In the future we hope to
study whether a greater diversity of base matchers would help.

6. RELATED WORK
We previously discussed related work on keyword search in Sec-

tion 2, including our prior work. The Q system incorporates off-
the-shelf schema matchers. Like most modern matchers [28], our



system combines output from multiple sub-matchers [9, 10, 27] (in
particular we use their base matchers and learn to compose them).
Our focus is on a general architecture for incorporating the output
of matchers while obtaining entropy information. The problem of
modeling uncertainty in schema matching is discussed in [14].

The problem of selecting the most informative feedback has been
studied in data cleaning [36] and data integration. For integration,
approaches include focusing on highest-value candidate schema
matches for dataspaces [24] and on active learning for refining
record linking in [2]. These are related in spirit to our approach,
but they get feedback over individual alignments whereas we seek
to understand the uncertainty associated with an entire query, and
combine high-scoring and uncertain queries’ results.

While active learning is a popular area of machine learning [30],
standard techniques cannot be directly used on tree-structured queries
in which individual edges have uncertainty. Three strategies have
been primarily used in prior research: (1) the least confident strat-
egy considers only the most likely prediction; (2) the maximum
margin strategy considers the top two predictions; (3) the entropy
maximization strategy considers all predictions, which can be ex-
ponential in the size of the structured object predicted. In contrast,
we explore an intermediate setting by clustering k-best predictions,
and considering a representative tree (query) from each cluster.

Prior work on active learning over structured output has sought
to select the next instance upon which to receive feedback, with
feedback directly over the predicted objects [30, Sec. 2.4]. Our
work differs in keeping the instance (keyword query) the same, and
soliciting feedback over different trees (interpretations) of the given
query. With the notable exception of [21], most previous work on
active learning over structured output involved sequences [8, 31],
whereas in the Q system we infer trees.Although cluster-based ac-
tive learning has been found to be useful in previous research [30,
Sec. 5.2], such work has focused on classification and not struc-
tured prediction. Moreover, clustering in those cases is performed
over the input instances, rather than the output Steiner trees corre-
sponding to the given keyword query.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we studied several techniques for incorporating ac-

tive learning into keyword search-based data integration. The pri-
mary challenges were how to estimate the amount of uncertainty
associated with a query built from edges induced during schema
matching, and how to rank results in a way that maximizes utility
to the user and the system, simultaneously. We showed experimen-
tally that the notion of expected model change, particularly using
clustering, was highly effective. In future work we plan to deploy
the system in the www.ieeg.org neuroscience portal and con-
duct user studies to see how it performs in practice.
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