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ABSTRACT
More and more resources are becoming available on the Web, and
there is a growing need for infrastructures that, based on advertised
descriptions, are able to semantically match demands with supplies.

We formalize general properties a matchmaker should have, then
we present a matchmaking facilitator, compliant with desired prop-
erties.

The system embeds a NeoClassic reasoner, whose structural sub-
sumption algorithm has been modified to allow match categoriza-
tion into potential and partial, and ranking of matches within cat-
egories. Experiments carried out show the good correspondence
between users and system rankings.

Categories and Subject Descriptors
H.4.2 [Information Systems Applications]: Decision Support; I.2.4
[Knowledge Representation Formalisms and Methods]: Repre-
sentation languages

General Terms
Algorithms, Languages, Economics

Keywords
E-commerce, Matchmaking, Knowledge Representation, Descrip-
tion Logics.

1. INTRODUCTION
Several models have been proposed to describe market transac-

tions in an electronic marketplace. Schmidd and Lindemann [35]
propose a classification based on four successive phases: (1) in-
formation (participants to the market seek potential partners); (2)
agreement (negotiation on the terms of the agreement and agree on
a contract); (3) settlement (payments and logistics); (4) after-sales
(customer-support). Many researchers have concentrated their ef-
forts on the second and third phases of market transactions; in par-
ticular a number of solutions for negotiation and brokerage have
been investigated and proposed. Nevertheless the initial phase is no
less important since, to begin negotiation of a business transaction,
potential counterparts have to be searched and found, at least in the
dynamic scenario a marketplace should be. The process of search-
ing the space of possible matches between demands and supplies
can be defined as Matchmaking. Notice that this process is quite
different from simply finding, given a demand a perfectly matching
supply (or vice versa). Instead it includes finding all those supplies
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that can to some extent fulfill a demand, and eventually propose the
best ones.

Widespread availability of resources and services enables — -
among other advantages — the interaction with a number of po-
tential counterparts. The bottleneck is that it is difficult finding
matches, possibly the best ones, between parties. Matchmaking is
more difficult, yet challenging, when counterparts are peer entities,
users or agents. As pointed out in [1] it is clear that bringing elec-
tronic commerce to its full potential requires a Peer-to-Peer (P2P)
approach: anybody must be able to trade and negotiate with any-
body else. The scenario envisaged by the Semantic Web initiative
is one where peer entities may propose their goods and services
and dynamically deal with counteroffers or further specifications,
through the mediation of a matchmaking infrastructure. The in-
frastructure should receive and store advertisement descriptions by
both demanders and suppliers and, as dynamically new demands or
supplies are submitted, find the most satisfying matches and return
them. The infrastructure has to treat in a uniform way suppliers and
demanders, and base the matches on common, extensible, ontolo-
gies for describing both supplies and demands [15].

The uniform treatment of supplies and demands calls for tech-
nical solutions that must be quite different from the database ones
usually employed in the Business-to-Consumer (B2C) scenario. In
P2P matchmaking, the choice of which is the data, and which is the
query depends just on the point of view — maybe, on who is more
willing to actively find the other partner.

Knowledge representation (KR) — in particular, Description Log-
ics (DL) — can deal with this uniform treatment of knowledge from
suppliers and demanders, by modelling both as generic concepts to
be matched. In fact, the logical approach allows for an open-world
assumption. Incomplete information is allowed (and can be filled
after a selection of possible matches), and absence of information
can be distinguished from negative information, allowing to dis-
card offers/requests without the necessary properties, and to ask
for missing information in the potential matches.

Matchmaking infrastructures have been proposed in the litera-
ture (see Section 2 for a survey), but they lack a formal framework
to logically classify and rank matches. The importance of rank-
ing can not be underestimated, as it is of extreme importance for
a practical use of the approach. The key questions that have to be
answered in a dynamic framework are how far is a given demand
(supply) from a potential counterpart? And which are the require-
ments that would eventually fulfill it? Such questions have to be
answered also relying on publicly available algorithms, to encour-
age trust, and prevent arising of doubts on fairness of the proposals
returned by the matchmaking facilitator.

If supplies and demands are simple names or strings, the only
possible match would be identity, resulting in an all-or-nothing



approach to matchmaking. Although effective for fixed technical
domains, such an approach misses the fact that supplies and de-
mands usually have some sort of structure in them. Such a struc-
ture could be exploited in order to evaluate “interesting” inexact
matches. Vector-based techniques taken by classical Information
Retrieval (IR) can be used, too, thus reverting matchmaking to sim-
ilarity between weighted vectors of stemmed terms, as proposed in
the COINS matchmaker [27] or in LARKS [38]. Obviously lack
of document structure in descriptions would make matching only
probabilistic and strange situations may ensue, e.g., consider a sim-
ple demand “apartment with two Rooms in Soho pets allowed no
smokers” and a supply “apartment with two Rooms in Soho, no
pets, smokers allowed”. They would correspond to a perfect match
although being in obvious conflict.

Our setting allows one to categorize and rank matches accord-
ing to their logical relation. In particular, we distinguish between
Exact match: all requests in Demand are available in Supply (or
vice versa); Potential match: some requests in Demand are not
specified in Supply (and further action – inquire – can be taken);
Partial match: some requests in Demand are in conflict with Sup-
ply (and further action – retract – can be taken). Though our log-
ical setting is basically independent from the application adopted,
our infrastructure is strongly related to CLASSIC [6, 7]. CLASSIC

is a knowledge representation system that, although not endowed
of a language as expressive as more recent reasoners, e.g., FaCT
and Racer, has polynomial-time inferences and, most important, is
a real system, with a rich API and concrete datatypes that can be
wrapped into a host system. The infrastructure currently embeds
a modified version of NeoClassic, a CLASSIC implementation, to
carry out the matchmaking process.

The rest of the paper is organized as follows. In the next section
we report on relevant work. Then, to make the paper self contained,
we present basic notions on on DLs. In Section 4 we present a
formal framework for semantic-based matchmaking, and highlight
properties that a matchmaker should have. In Section 5 we pro-
pose the architecture of an infrastructure we built, implementing
the devised framework. Conclusion and future work are outlined in
Section 6.

Throughout the paper, we refer to an apartments rental electronic
marketplace, which was chosen as case study. A subset of the on-
tology used as reference in the examples is reported in Figure 1.

2. RELATED WORK
Though having recently become a widely investigated area, re-

search on matchmaking can be dated back to works on vague query
answering [29], where the need to overcome limitations of rela-
tional databases was addressed, with the aid of weights attributed
to several search variables.

Earliest matchmakers, based on the KQML, were proposed in
[16] and [27]. In these works matchmaking was introduced as
an approach whereby potential producers / consumers could pro-
vide descriptions of their products/needs, either directly or through
agents mediation, to be later unified by a matchmaker engine to
identify potential matches. Nevertheless the proposed solutions
to this challenging issue reverted to either a rule based approach
using KIF (the SHADE prototype) or a free text comparison (the
COINS prototype), which basically deals with descriptions as free-
text retrieval tools do. Standard Information retrieval techniques
have been also used in the recently proposed GRAPPA matchmak-
ing framework [40]

Approaches similar to the cited ones were deployed in SIMS
[2], which used KQML and LOOM as description language and

(createRole LOCATION)

(createRole HASPETS)
(createRole HASSERVICES)
(createRole OCCUPANTS)
(createRole HASROOMS)
(createRole HASPLACES)
(createRole COST true)[*]
(createConcept ROOM TOP true)
(createConcept PERSON TOP true)
(createConcept NEWYORK TOP true)
(createConcept SERVICES ROOM true)
(createConcept KITCHEN SERVICES true)
(createConcept WORKER PERSON true)
(createConcept STUDENT PERSON true)
(createConcept BATHROOM SERVICES true)
(createConcept SMOKER PERSON smoke)
(createConcept NON-SMOKER PERSON smoke)
(createConcept BED (and (at-least 1 OCCUPANTS) (at-most 1
OCCUPANTS) (all OCCUPANTS PERSON)) true)
(createConcept BEDROOM (and ROOM (all HASPLACES BED) (at-least 1
HASPLACES)) true)
(createConcept SINGLE-ROOM (and BEDROOM (at-least 1 HASPLACES)
(at-most 1 HASPLACES)) false)
(createConcept DOUBLE-ROOM (and BEDROOM (at-least 2 HASPLACES)
(at-most 2 HASPLACES)) false)
(createConcept MULTIPLE-ROOM (and BEDROOM (at-least 3 HASPLACES))
false)
(createConcept APARTMENT (and (at-least 1 OCCUPANTS) (all
OCCUPANTS PERSON) (at-least 1 HASROOMS) (all HASROOMS ROOM)
(at-least 2 HASSERVICES) (all HASSERVICES SERVICES)) true)

Figure 1: The example ontology in CLASSIC ([*]COST is a
functional role, i.e., an attribute)

InfoSleuth [21], which adopted KIF and the deductive database
language LDL++. LOOM is also at the basis of the subsumption
matching addressed in [17].

More recently there has been a growing interest towards match-
making engines and techniques, with emphasis placed either on
e-marketplaces or generic Web services, in view of the promised
transformation of the Web from human understandable to the Se-
mantic, machine understandable, Web. Significant examples in-
clude [38] and [31] where a language, LARKS, is proposed specif-
ically designed for agent advertisement. The matching process is
carried out through five progressive stages, going from classical IR
analysis of text to semantic match via Θ-subsumption. The notion,
inspired by Software Engineering, of plug-in match is introduced
to overcome in some way the limitations of a matching approach
based on exact match. No ranking is presented but for what is
called relaxed match, which basically reverts again to a IR free-
text similarity measure. So a basic service of a semantic approach,
such as inconsistency check, seems unavailable with this type of
match.

In [39] and [18] a matchmaking framework is proposed, which
operates on service descriptions in DAML+OIL and is based on the
FaCT reasoner. Unfortunately as the authors admit, though very
expressive, FaCT lacks of concrete datatypes, which are obviously
extremely useful for, e.g., e-commerce applications, and their pro-
totype is incomplete.

Semantic service discovery via matchmaking in the Bluetooth
[4] framework is investigated in [34]. Also here the issue of ap-
proximate matches, to be somehow ranked and proposed in the ab-
sence of exact matches, is discussed, but as in the previous papers
no formal framework is given. Instead a logical formulation should
allow to devise correct algorithms to classify and rank matches.

Also various current commercial electronic marketplaces try to
provide some matchmaking capabilities between demand and sup-
ply. Jango [22] provides a system that basically only allows com-
parison, in terms of price, of goods available in on-line stores on the
Internet. Obviously the description of the product to be matched
has to be complete and consistent and no reasoning on set contain-
ment or inconsistency check can be carried out. PersonaLogic [32]
allows customers to impose constraints for alternatives seeking. It



must be pointed out that constraints cannot be dynamically placed
but have to be taken from a pre-determined category set. Kasbah
[25] is a more effective system, which allows to dynamically set
constraints, yet it does not allow handling of inconsistency and
partial or potential matches. A similar approach is also deployed
in Tete-a-Tete [28].

A more advanced constraint based approach is proposed in [24],
able to to handle conflicting preferences in demands / supplies.
Consistency check of preferences is accomplished visiting an of-
fer synthesis graph with path consistency algorithm each time a
new offer is entered. A further example is Smartclient [33], a sys-
tem that allows users basic criteria adjustment, by presenting an
interface that shows the initial search space, which can be reduced
by further user interaction with the results. The underlying sys-
tem basically relies on partial constraint satisfaction techniques. A
recent proposal along the same lines is in [41] where negotiation
agents are formally modelled using an object-oriented constraint
language.

IBM’s Websphere matchmaking environment is, to our knowl-
edge, the first example of commercial solution that places an ex-
plicit emphasis on the matchmaking between a demand and a sup-
ply in a peer-to-peer way, which is referred to in [19] as symmet-
ric matchmaking. As we will point out, the notion of symmet-
ric matchmaking is questionable. The environment is based on a
matchmaking engine that describes supplies / demands as proper-
ties and rules. Properties are name-value pairs constructed using
an extension of Corba Trading service language. Rules are basi-
cally constructed using a generic script language. Matching is then
accomplished by simply comparing properties and verifying rules.
No notion of distinction between full, partial potential and incon-
sistent matches are present.

A similar approach, with descriptions defined in XML and again
a rule based decision system is in [9]. Here descriptions of supply /
demand can be stored in the e-service platform when a match is not
available for further processing should a counterpart become avail-
able. In [37] an extension to the original Websphere matchmaker is
proposed, which introduces users’ specification of negotiable con-
straints when no total match is available. So the approach aims at
some of the issues also addressed in this paper, but with a different,
constraint based, perspective.

In [12] an initial setting for logical matchmaking was presented
in a person-to-person framework.

It is noteworthy that matching in DLs has been widely treated
in [3] although with no relation to matchmaking. In fact, in that
work expressions denoting concepts are considered, with variables
in expressions. Then a match is a substitution of variables with
expressions that makes a concept expression equivalent to another.
Also the more general setting of concept rewriting in DLs has no
direct relation with matchmaking.

3. DESCRIPTION LOGICS AND CLASSIC
SYSTEM

Description Logics are a family of logic formalisms for Knowl-
edge Representation [5, 14]. Basic syntax elements are concept
names, e.g., book, person, product, apartment, role names,
like author, supplier, hasRooms and individuals, such as
NewYorkCity, BackYardGarden, TVset#123. Intuitively,
concepts stand for sets of objects, and roles link objects in differ-
ent concepts, as the role author that links books to persons (their
writers). Individuals are used for special named elements belong-
ing to concepts.

More formally, a semantic interpretation is a pair I = (∆, ·I),

which consists of the domain ∆ and the interpretation function ·I ,
which maps every concept to a subset of ∆, every role to a subset of
∆ × ∆, and every individual to an element of ∆. We assume that
different individuals are mapped to different elements of ∆, i.e.,
aI �= bI for individuals a �= b. This restriction is usually called
Unique Name Assumption (UNA).

Basic elements can be combined using constructors to form con-
cept and role expressions, and each DL has its distinguished set of
constructors. Every DL allows one to form a conjunction of con-
cepts, usually denoted as �; some DL include also disjunction �
and complement ¬ to close concept expressions under boolean op-
erations.

Roles can be combined with concepts using existential role quan-
tification, e.g., book � ∃author.italian which describes the
set of books whose authors include an Italian, and universal role
quantification, e.g., product � ∀supplier.japanese, which
describes products sold only by Japanese suppliers. Other con-
structs may involve counting, as number restrictions: apartment�
(≤ 1 hasRooms) expresses apartments with just one room, and
book � (≥ 3 author) describes books written by at least three
people. Many other constructs can be defined, increasing the ex-
pressive power of the DL, up to n-ary relations [8].

Expressions are given a semantics by defining the interpretation
function over each construct. For example, concept conjunction is
interpreted as set intersection: (C � D)I = CI ∩ DI , and also
the other boolean connectives � and ¬, when present, are given
the usual set-theoretic interpretation of ∪ and complement. The
interpretation of constructs involving quantification on roles needs
to make domain elements explicit: for example, (∀R.C)I = {d1 ∈
∆ | ∀d2 ∈ ∆ : (d1, d2) ∈ RI → d2 ∈ CI}

Concept expressions can be used in inclusion assertions, and
definitions, which impose restrictions on possible interpretations
according to the knowledge elicited for a given domain. For ex-
ample, we could impose that books can be divided into paperbacks
and hardcover using the two inclusions book � paperbacks �
hardcover and paperbacks � ¬hardcover. Or, that books
have only one title as book � (≤ 1 title). Definitions are
useful to give a meaningful name to particular combinations, as in
doubleRoom ≡ room � (= 2 hasPlaces). Historically, sets
of such inclusions are called TBox (Terminological Box). In sim-
ple DLs, only a concept name can appear on the left-hand side of
an inclusion.

The semantics of inclusions and definitions is based on set con-
tainment: an interpretation I satisfies an inclusion C � D if
CI ⊆ DI , and it satisfies a definition C = D when CI = DI . A
model of a TBox T is an interpretation satisfying all inclusions and
definitions of T .

In every DL-based system, at least two basic reasoning services
are provided:

1. Concept Satisfiability: given a TBox T and a concept C, does
there exist at least one model of T assigning a non-empty
extension to C?

2. Subsumption: given a TBox T and two concepts C and D, is
C more general than D in any model of T ?

The CLASSIC system [6, 7] has been developed at AT&T Bell
Laboratories, where it has been applied in several projects for con-
figuration [42] and program repositories [11]. Its language has been
designed with the goal to be as expressive as possible while still ad-
mitting polynomial-time inferences. So it provides intersection of
concepts but no union, universal but not existential quantification
over roles, and number restrictions over roles but no intersection of



Example Demand: (and APARTMENT (all HASROOMS BEDROOM) (at-most 0 HASPETS))

POST /soap/servlet/rpcrouter HTTP/1.0 Host: localhost:8070
Content-Type: text/xml Content-Length: 597 SOAPAction: ""

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<SOAP-ENV:Body> <ns1:translate xmlns:ns1="urn:demo1:Translator"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<text xsi:type="xsd:string">(and APARTMENT (all HASROOMS BEDROOM)
(at-most 0 HASPETS))</text> <uri
xsi:type="xsd:string">http://www.example.org/rent-toy-ontology#</uri>
<requestType xsi:type="xsd:string">demand</requestType>
</ns1:translate> </SOAP-ENV:Body> </SOAP-ENV:Envelope>

Figure 2: An example KRSS SOAP packet

roles, since each of these combinations is known to make reasoning
NP-hard [13]. Classic obviously provides subsumption and satisfi-
ability reasoning services. Being a complete knowledge represen-
tation system (and not just a reasoner), Classic provides also data
types as numbers and strings, and other services which are useful
in a deployed prototype. Every Classic concept has an equivalent
normal form, hence using such a normal form ensures syntax inde-
pendence. In our current setting we use just a subset of CLASSIC

constructors, i.e., those needed in a ALN logic.

4. KNOWLEDGE REPRESENTATION AP-
PROACH TO MATCHMAKING

Let us start with an example. Consider the following demand
D = {apartment, soho, twoRooms} and a generic supply S =
{apartment, soho, boiler, twoRooms, quiet, noPets}. Although
S and D are not identical, the fact that D is included in S tells
the demander that every constraint imposed by D is fulfilled by S,
hence — from the point of view of the demander — S completely
satisfies D. However, note that explicitly stated constraints in D
do not completely satisfy S, although they do not exclude S either:
it could be the case that asking the demander to refine D, an exact
match is achieved. This example already highlights the following
properties that we would like to hold for a matchmaking facilitator.

PROPERTY 1 (OPEN-WORLD DESCRIPTIONS). The absence
of a characteristic in the description of a supply or demand should
not be interpreted as a constraint of absence. Instead, it should be
considered as a characteristic that could be either refined later, or
left open if it is irrelevant for a user.

This property states that on one side, the interface for describing
requests to the matchmaking facilitator should be liberal enough
about details, and on the other side, that the algorithm employed
for matchmaking should take this issue into account.

PROPERTY 2 (NON-SYMMETRIC EVALUATION). A matchmak-
ing system may give different evaluations depending on whether it
is trying to match a supply S with a demand D, or D with S — i.e.,
depending on who is going to use this evaluation.

This property was evident in the above example, where all con-
straints of D were fulfilled by S but not vice versa. Hence, S
should be among the top ranked supplies in the list of potential
partners of the demander, while D should not appear at the top in
the list of potential partners of the supplier.

Of course, the sets-of-words approach would be too sensitive to
the choice of words employed, to be successfully used — it misses
meanings that relate words. In the apartments rental scenario, a
matching facilitator should take into account that “boiler” is a form
of heating system, or that a constraint “no-pets” applies also to a

dog. Obviously such fixed-terminology problems are overcome if
terms have a logical meaning through an ontology [15].

Hence, from now on we suppose that supplies and demands are
expressed in a description logic DL, equipped with a model-theoretic
semantics. We note that this approach includes the sets-of-keywords
one, since a set of keywords can be considered also as a conjunction
of concept names, e.g., the set {apartment, soho, twoRooms}
can be equivalently considered as apartment�soho�twoRooms
— without modelling the structure of concepts. Obviously, en-
tering into the structure of concepts may yield to apartment �
∀location.soho�(= 2 hasRooms), while a keyword “noPets”
can be given a logical meaning as ∀occupants.(≤ 0 hasPets).

We suppose also that a common ontology for supplies and de-
mands is established, as a TBox in DL. Now a match between a
supply S and a demand D could be evaluated according to T . Let
T |= . . . denote logical implication (truth in all models of T ), and
let � (subsumption) denote also implication between constraints
of S and D. There are three relations between concepts expressing
supplies and demands, that we consider meaningful in matchmak-
ing:

Implication. If T |= (D � S), then every constraint imposed
by D is fulfilled (implied) by S, and vice versa if T |= (S � D).
This relation extends the previous set-based inclusion to general
concepts. If both T |= (D � S) and T |= (S � D), then D and S
should be considered equivalent in T . This relation extends exact
matching by ruling out irrelevant syntactic differences.

Consistency. If D � S is satisfiable in T , then there is a po-
tential match, in the sense that the constraints of neither proposal
exclude the other. This relation has been highlighted also by other
researchers [39]. However, that proposal lacks a ranking between
different potential matches, which we believe is fundamental in or-
der to support a user in the choice of the most promising partners,
among all potential ones.

Inconsistency. Otherwise, if D � S is unsatisfiable in T , some
constraints of one proposal are in conflict with the properties of
the other one. However, when (say) a demand D has no potential
matches, also supplies S which are inconsistent with D may be
reconsidered, if the demander accepts to revise some of D’s con-
straints. The point of course is in revising not too much. Hence,
also in this case a ranking — different from the one of potential
matches — is fundamental, in order to highlight the least unsatis-
factory proposals, that we call near miss or partial match.

We now highlight some properties that — we believe — every
ranking function should have in logical matchmaking. We state
these properties in form of definitions, since we distinguish be-
tween rankings having the property from rankings that do not.

First of all, if a logic is used to give some meaning to descrip-
tions of supplies and demands, then proposals with the same mean-
ing should have the same ranking, independently of their syntactic
descriptions.

DEFINITION 1. (SYNTAX INDEPENDENCE IN RANKING PO-
TENTIAL MATCHES) A ranking of potential matches is syntax in-
dependent if for every pair of supplies S1 and S2, demand D, and
ontology T , when S1 is logically equivalent to S2 then S1 and S2

have the same ranking for D, and the same holds also for every
pair of logically equivalent demands D1, D2 with respect to every
supply S.

For example, an apartment S1, described as available for the
summer quarter, should have the same rank — with respect to a re-
quest — as another S2, identical but for the fact that it is described
to be available for June-July-August.

A similar property should hold also for ranking incoherent pairs



of supplies and demands. The rationale of this property is that, in
looking for least unsatisfactory proposals — when recovering from
an initial “no potential match” — a partial match should be as “not-
so-bad” as any equivalent one.

DEFINITION 2. (SYNTAX INDEPENDENCE IN RANKING PAR-
TIAL MATCHES) A ranking of partial matches is syntax indepen-
dent if for every pair of supplies S1 and S2, demand D, and ontol-
ogy T , when S1 is logically equivalent to S2 then S1 and S2 have
the same ranking for D, and the same holds also for every pair of
logically equivalent demands D1, D2 with respect to every supply
S.

Clearly, when the logic admits a normal form of expressions —
as CNF or DNF for propositional logic, or the normal form of con-
cepts for the DL of CLASSIC mentioned earlier — using such a
normal form ensures by itself syntax independence.

We now consider the relation between ranking and implications.
We go back to the descriptions with sets of words, since they are
easy to read through. Let D be a demand and S1, S2 be two sup-
plies defined as follows:

D = {apartment, soho, twoRooms, petsAllowed}
S1 = {apartment, soho, boiler, quiet}
S2 = {apartment, soho, boiler, quiet, lastF loor}

In this case, the characteristics that S2 adds to S1 are irrelevant for
D. Hence, whatever the rank for S1, the one for S2 should be the
same. If instead we let

S3 = {apartment, soho, boiler, quiet, petsAllowed}

then S3 should be ranked better than S1 since it adds a character-
istic required by D. We can generalize to concepts this example
from sets, and state the following definition.

DEFINITION 3. (MONOTONICITY OF RANKING POTENTIAL

MATCHES OVER SUBSUMPTION) A ranking of potential matches
is monotonic over subsumption whenever for every demand D, for
every pair of supplies S1 and S2, and ontology T , if S1 and S2 are
both potential matches for D, and T |= (S2 � S1), then S2 should
be ranked either the same, or better than S1, and the same should
hold for every pair of demands D1, D2 with respect to a supply S.

Intuitively, the above definition could be read of as

A ranking of potential matches is monotonic over sub-
sumption if the more specific the better.

Observe that we use the word “better” instead of using any symbol
≤,≥. This is because some rankings may assume that “‘better”
means “increasing” (towards infinity, or 1) while others may as-
sume “decreasing” (towards 0).

When turning to partial matches, in which some properties are al-
ready in conflict between supply and demand, the picture reverses.
Now, adding another characteristic to an unsatisfactory proposal
may only worsen this ranking (when another characteristic is vi-
olated) or keep it the same (when the new characteristic is not in
conflict). Note that this ranking should be kept different from the
ranking for potential matches. After all, accepting to discard one or
more characteristics that we required is much worse than deciding
among a ranked list of potential matches.

DEFINITION 4. (ANTIMONOTONICITY OF RANKING PARTIAL

MATCHES OVER IMPLICATION) A ranking of partial matches is
antimonotonic over implication whenever for every demand D, for

Figure 3: System Architecture of the facilitator infrastructure

every pair of supplies S1 and S2, and ontology T , if S1 and S2 are
both partial matches for D, and T |= (S2 � S1), then S2 should
be ranked either the same, or worse than S1, and the same should
hold for every pair of demands D1, D2 with respect to a supply S.

Intuitively, the above property could read as: A ranking of partial
matches is antimonotonic over subsumption if the more specific, the
worse.

We remark that the properties and definitions we stated in this
section are independent of the particular DL employed, or even the
particular logic chosen. For instance, the same properties could
be stated if propositional logic was used to describe supplies, de-
mands and the ontology. In this respect, we believe that this section
keeps its significance also if one chooses more expressive DLs like
SHOQ(D) [20] or even logics for which representation and rea-
soning system are not yet fully available, like DAML [31].

5. MATCHMAKING INFRASTRUCTURE
Using the highlighted properties as a formal specification we de-

signed and implemented a prototype facilitator. The system embeds
a modified NeoClassic reasoner. NeoClassic is a C++ implemen-
tation of the original Classic. The changes affected the structural
subsumption algorithm, which was modified to compute matches
classification and ranking, as will be shown later on.

The general architecture of the facilitator is pictured in Figure 3;
its main components are the MatchMaker service (MMS) and the
Communication Service (CS). The system can accept requests by a
heavy weight client a light weight client and a generic user agent.

The heavy weight client is a Java applet that allows advertise-
ment description in natural language. The client is anyway strongly
dependent on the reference ontology, because of the inherent con-
textualization. Currently the only supported ontology is the apart-
ments rental one, used in our case study. The input for the Natural
Language Interpreter (NLI) module is a free text description of an
advertisement for apartment rental. The output is a string formatted
in KRSS (Knowledge Representation System Specification) [26] of
the input sentence. To perform a better natural language semantic



analysis using context information, the grammar rules contain the
SEM feature, whose values refer to a set of fundamental categories
identified within the reference ontology, e.g., AP for apartment,
ROOM for rooms ACC for accessories. In this way, the grammar
simultaneously represents both syntactic and semantic behavior of
the analyzed context. The computational approach is a chart-based
one. The algorithm can recognize unknown terms and ask for syn-
onyms. If the new terms introduce new information in the system,
i.e. information not described in the ontology, this last is updated.
The unique constraint is that new information has to be related to
accessories, in our current settings. Once the ontology has been
updated, the system lets advertisers know that they can update their
advertisements using the new available information.

The light weight client is still a Java applet, but an extremely
light one, in view of application on devices such as PDAs that
sends, via SOAP [36], an advertisement i.e., a description of the
request to be matched, as a string in KRSS syntax. Figure 2 shows
an example advertisement in KRSS.

The SOAP packet contains the string and the URI of the ref-
erence ontology. The CS module is a web service (registered with
XMethods) whose main purpose is the translation of KRSS descrip-
tions in portable DAML+OIL ones. The module, upon receipt of
the packet, transforms the string in a DAML+OIL formatted de-
scription, using Jena APIs [23]. Figure 4 shows the corresponding
packet.

Advertisements can be received by the system also through a
generic agent. In this case they are accepted only if expressed
in DAML+OIL. The CS translates the demands and supplies from
KRSS to DAML+OIL.

The description is forwarded to the Matchmaking service, which
is the principal module of the architecture. It receives the SOAP
packet, extracts the code and the URI that references the requested
ontology. The matchmaking engine preliminarily checks for sat-
isfiability w.r.t. the referenced ontology. If the check succeeds it
carries out the matchmaking process with all descriptions in the
repository corresponding to the given ontology, as will be described
in detail in the next subsection.

The system accepts two types of requests, advertisement and
query. For the first one, the system will store the request. In this
way satisfiable queries/demands that remain unmatched will be au-
tomatically reexamined when new supplies are provided, and noti-
fication will be provided for successful match. The same service is
available for unmatched supplies. The query service, instead, does
not permanently store demand/supply descriptions. The match-
maker output is forwarded according to specifications included in
the SOAP packet and can be formatted as an e-mail, a GSM SMS
(Small Message System) or a JSP, if the request has been submit-
ted by a client. If the request has been submitted by an agent the
response will be sent to the communication service for translation
from KRSS to DAML+OIL. Potential and partial matches can also
trigger further communication services 1. For partial matches, on
the basis of the matchmaker response, a demand can be revised,
e.g., relaxing (retracting) some constraint. For potential matches
the system can ask the supplier of the advertisement whether some
features although not advertised are anyway available. It should be
noticed that the architecture can simply be modified to host other
reasoners, such as FaCT or Racer. The rationale of the choice of
the Classic system, apart from the obviously useful availability of
concrete datatypes and the possibility to extend its functionalities
through test functions, is that its polynomial time inference allows
practically synchronous operations, even with large ontologies.

1These services are currently implemented only for the dedicated
clients.

POST /soap/servlet/rpcrouter HTTP/1.0 Host: localhost:8070
Content-Type: text/xml Content-Length: 1979 SOAPAction: ""

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<SOAP-ENV:Body> <ns1:matchMake xmlns:ns1="urn:demo1:Matchmaker"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<text xsi:type="xsd:string"> <rdf:RDF
xmlns:rdf=’http://www.w3.org/1999/02/22-rdf-syntax-ns#’

xmlns:daml=’http://www.daml.org/2001/03/daml+oil#’
xmlns:rdfs=’http://www.w3.org/2000/01/rdf-schema#’>

<daml:Datatype rdf:about=’http://www.example.org/rent-toy-ontology#HASROOMS’/>
<daml:Datatype rdf:about=’http://www.example.org/rent-toy-ontology#BEDROOM’/>
<daml:Datatype rdf:about=’http://www.example.org/rent-toy-ontology#HASPETS’/>
<rdfs:Class rdf:about=’http://www.example.org/rent-toy-ontology#APARTMENT’/>
<daml:Property rdf:about=’http://www.daml.org/2001/03/daml+oil#maxCardinality’/>
<daml:Property rdf:about=’http://www.daml.org/2001/03/daml+oil#onProperty’/>
<daml:Property rdf:about=’http://www.daml.org/2001/03/daml+oil#toClass’/>
<daml:Restriction>
<daml:onProperty rdf:resource=’http://www.example.org/rent-toy-ontology#HASROOMS’/>
<daml:toClass rdf:resource=’http://www.example.org/rent-toy-ontology#BEDROOM’/>
</daml:Restriction>
<daml:Restriction daml:maxCardinality=’0’>

<daml:onProperty rdf:resource=’http://www.example.org/rent-toy-ontology#HASPETS’/>
</daml:Restriction>

</rdf:RDF> </text> <uri
xsi:type="xsd:string">http://www.example.org/rent-toy-ontology#</uri>
<requestType xsi:type="xsd:string">demand</requestType>
</ns1:matchMake> </SOAP-ENV:Body> </SOAP-ENV:Envelope>

Figure 4: The DAML translation of the previous KRSS descrip-
tion

5.1 The matching engine
Our matching engine is based on Java servlets; it embeds the

NeoClassic reasoner and communicates with the reasoner running
as a background daemon. At this stage of the work, the system
is not fully transactional, so requests have to be serialized by the
engine.

The system receives the KRSS string describing the demand /
supply and the URI referencing the proper ontology. The Reasoner
checks the description for consistency; if it fails, based on the rea-
soner output, the system returns an error message that is forwarded
to the client/agent originating the request. Otherwise the proper
matchmaking process takes place. To this aim we devised two al-
gorithms, based on a modification of the original CLASSIC struc-
tural [7] subsumption algorithm, to classify and rank matches. The
rationale and the structure of the algorithms are described hereafter.

A CLASSIC concept C can be put in normal form as Cnames �
C� � Call. Without ambiguity, we use the three components also
as sets of the conjoined concepts. Moreover, recall that the TBox
in CLASSIC can be embedded into the concepts, hence we do not
consider explicitly the TBox, although it is present.

The algorithm easily follows a structural subsumption algorithm,
except for the treatment of universal role quantification, that we ex-
plain now with the help of an example. Suppose a demand D =
apartment�∀hasRooms.(singleRoom�nonSmokerRoom)
and two supplies C1, C2, defined as follows:

C1 = apartment � ∀hasRooms.roomWithTV

C2 = apartment

Now, comparing D with C1, a recursive call through the universal
role quantification highlights that rooms in C1 miss both character-
istics required by D, hence the ranking should be 2 (where ranking
0 would mean subsumption). In the case of C2, instead, since the
universal role quantification is absent, no recursive comparison is
possible.

However, observe that from the semantics, ∀hasRooms.� ≡
� (no restriction on the fillers of role hasRooms is equivalent to
no restrictions at all). Hence, apartment ≡ (apartment �
∀hasRooms.�). Since we want to enforce syntax independence,
both concepts should yield the same ranking. Hence, we compare
the last concept, which allows us to make a recursive comparison



Figure 5: The architecture of the matchmaking engine

of characteristics of universal role quantifications.

Algorithm rankPotential(C, D);
input CLASSIC concepts C, D, in normal form,
such that C � D is satisfiable
output rank n ≥ 0 of C w.r.t. D, where 0 means
that C � D (best ranking)
begin algorithm

let n := 0 in
/* add to n the number of concept names in D */
/* which are not among the concept names of C */
1. n := n + |Dnames+ − Cnames+|;
/* add to n number restrictions of D */
/* which are not implied by those of C */
2. for each concept (≥ x R) ∈ D�

such that there is no concept (≥ y R) ∈ C� with y ≥ x
n := n + 1;

3. for each concept (≤ x R) ∈ D�

such that there is no concept (≤ y R) ∈ C� with y ≤ x
n := n + 1;

/* for each universal role quantification in D */
/* add the result of a recursive call */
4. for each concept ∀R.E ∈ Dall

ifthere does not exist ∀R.F ∈ Call

then n := n + rankPotential(�, E);
else n := n + rankPotential(F, E);

return n;
end algorithm

It is easy to modify the algorithm if weights on subconcepts of
D are taken into account: instead of adding 1 to n for each D’s
concept missing in C, one just adds the corresponding weight.
In this way, when the proposal concerns apartments, the concept
apartment gets the highest weight, and minor characteristics get
lower weights. Then, a far rank would mean that either many mi-
nor characteristic, or a very important one, are left unspecified in C.
We implemented also a version of the algorithm in which weights
are learned by the system, upon repeated analysis of proposals. In
this case, of course, the learned weights are absolute ones, and not
relative to a particular actor.

The algorithm for ranking partial matches follows the partition of
CLASSIC concepts into names, number restrictions, and universal
role quantifications. However, this time we are looking for incon-
sistencies. Hence, when a universal role quantification is missing
in either concept, the recursive call is unnecessary. In fact, suppose
that ∀R.E ∈ Dall while no quantification on R is present in Call.

No quantification is equivalent to the concept ∀R.�, and a recur-
sive call yields a comparison between � and E, which can only
yield a 0-rank since � is consistent with every concept. Recall also
that an inconsistency arising from (≥ x R) with x ≥ 1 in one
concept, and ∀R.⊥ in the other concept, is already evidenced in
the comparison of number restrictions, because (≤ 0 R) has been
added to the normal form of the latter concept.

Algorithm rankPartial(C, D);
input CLASSIC concepts C, D, both in normal form
output rank n ≥ 0 of C w.r.t. D,
where 0 means that C � D is satisfiable
begin algorithm

let n := 0 in
/* add to n the number of concept names in C */
/* which are disjoint from the concept names of D */
for each concept name A ∈ Cnames+

if there exists a concept ¬A ∈ Dnames¬
then n := n + 1;

/* add to n number restrictions of C */
/* which are in conflict with those of D */
for each concept (≥ x R) ∈ C�

such that there is a concept (≤ y R) ∈ D� with y < x
n := n + 1;

for each concept (≤ x R) ∈ C�

such that there is a concept (≥ y R) ∈ D� with y > x
n := n + 1;

/* for universal role quantifications in C and D */
/* which are triggered by an at-least number restriction on
either concept */
/* add the result of a recursive call */
for each concept ∀R.F ∈ Call

if either (there exist both
and ∀R.E ∈ Dall with E �= ⊥)

or (F �= ⊥ and there exist both (≥ x R) ∈ D� with x ≥ 1
and ∀R.E ∈ Dall)

then n := n + rankPartial(F, E);
return n;

end algorithm

Obviously also in this case weights could be added to subcon-
cepts of D, where the greater the weight, the more that characteris-
tic is important, making the rank of C far off when in conflict.

It should be noted that for both algorithms, weights can be de-
termined according to their relevance/probability with various ap-
proaches, including, e.g., utility theory based approaches [10]. In
this perspective our framework can benefit of, rather than being al-
ternative to, other methods for knowledge elicitation.

For both algorithms it can be proved they respect the properties
highlighted in the previous section. With reference to complexity,
it is well known [30] that the expansion of the TBox in the con-
struction of the normal form can lead to an exponential blow-up.
Nevertheless the expansion is exponential in the depth of the hi-
erarchy of the TBox T ; if the depth of T is O(log |T |), then the
expansion is polynomial, and so also the algorithm.

Each match can return a 0, which means exact match or a value
> 0. Recall that returned values for partial matches and potential
matches have logically different meaning and matching descrip-
tions are sorted in different sets. The matching engine may return
then up to three disjoint result sets, with results ranked in the po-
tential and partial sets.

The matchmaker can also use weights to increase the relevance
of concepts. The weight is a positive integer that keeps into account
the occurrence of a role or a concept w.r.t. all Demands and Sup-



match rank
demand,supply1 0
demand,supply2 0
demand,supply3 1
demand,supply4 2
demand,supply5 0

Table 1: Ranking results obtained from the rankPartial algo-
rithm

match rank
demand,supply1 1
demand,supply2 0
demand,supply5 7

Table 2: Ranking results obtained from the rankPotential algo-
rithm

plies available for a reference ontology. For each concept or role
present in an advertisement, in normal form, that is A ∈ Dnames+

or a concept (≥ x R) ∈ D� or (≤ x R) ∈ D� the correspond-
ing weight is increased after each matching process. Obviously the
matchmaking algorithm is modified in that increments are no more
unitary but correspond to the assigned weights. To simplify the
reading no weights are used in the following.

5.1.1 Matchmaker behavior
In order to show the behavior of the matchmaker consider, with

reference to the toy ontology used throughout the paper, the exam-
ple demand apartment with bedroom wanted, no pets. Also sup-
pose the following advertisements have been previously submitted
as supplies: supply1: single room in an apartment of smoking per-
sons; supply2: two double rooms in an apartment, no pets allowed;
supply3: apartment to let, with a pet; supply4:lodging with bath-
room, two pets2; supply5: apartment. The translation of these ad-
vertisements in Classic, in accordance with our ontology is pictured
in Figure 6. The NeoClassic modified engine processes descrip-
tions according to their explicit normal form, which are shown for
the previous advertisements in Figure 7. From the application of
the rankPartial algorithm the rankings in Table 1 ensue.

This result points out that demand cannot be satisfied by supplies
3 and 4. The system provides a rank that indicates how far the de-
mand is w.r.t. the supplies, i.e., how much should be revised in the
demand. The system can also explicit unsatisfied concepts of the
demand. In this way the user can decide to revise his/her demand
advertisement.

Remaining supplies are all potential matches, i.e., there is noth-
ing in conflict with demand in them. Yet it is obvious that a user
needs to know those supplies that may best match the demand. The
execution of rankPotential algorithm provides the answer. Results
in Table 2 show that supply2 is an exact match w.r.t. the given de-
mand. Supplies 1 and 5 are potential matches, i.e., there is no char-
acteristic in conflict but some of the requests in demand are not
explicitly available. The user may then, e.g., when no exact match
is available, carry out further investigations on potential matches.
In this process he/she is again helped by the system ranking, which
represents the distance between the demand and supply.

It is noteworthy that the ranking also prevents advertisements

2A lodging is considered as neither an apartment nor a room; ad-
vertisements were drawn from actual newspapers announcements.

demand : (and APARTMENT (all HASROOMS BEDROOM) (at-most 0 HASPETS))
supply1: (and APARTMENT (all HASROOMS SINGLE-ROOM) (all OCCUPANTS SMOKER))
supply2: (and APARTMENT (at-least 2 HASROOMS) (at-most 2 HASROOMS) (all HASROOMS DOUBLE-ROOM)
(at-most 0 HASPETS))
supply3: (and APARTMENT (at-least 1 HASPETS))
supply4: (and (at-most 1 HASSERVICES) (all HASSERVICES BATHROOM) (at-least 2 HASPETS))

supply5: (and APARTMENT)

Figure 6: Demand and supplies to be matched

from being submitted in an extremely generic way. Simple sub-
sumption matching [39] without ranking, in fact, favors unfair generic
advertisements, which will be present in practically any retrieved
set. Instead in our system, though logically potentially matching,
the generic supply5 is given an high rank, which penalizes it.

The non-symmetric behavior of the matchmaking process can
also be highlighted here by simply exchanging the arguments of
the matchmaking algorithms. By taking, e.g., the description of
supply1 and matching it against the example demand, the rankPo-
tential algorithm returns a rank 4.

5.1.2 Experiments
We believe that degree of conformance of an automated match-

making facilitator to users’ perception is of extreme importance,
especially in a setting as our own, which ranks and categorizes
matches.

To evaluate the ability of the system to meet users’ expectations
we set up a little experiment.

We selected all apartments-rental advertisements from the de-
dicated section of a local newspaper on Oct. 6th, 2002. We subdi-
vided them in two sets, demands (23 advertisements) and supplies
(39 advertisements). We submitted to twenty volunteers of vari-
ous sex and age, a questionnaire that included 12 items. Each item
was one demand and a set of up to eight supplies, or one supply
and a set of up to eight demands. Volunteers were asked to rank,
according to their judgement, elements of each set with respect to
the given advertisement, with the following question: Order the
following Demands(Supply) with respect to the given Supply (De-
mands) as you would contact them had you issued the given Supply
(Demand). Volunteers were given unlimited time and in average it
took approximately half hour to complete the questionnaire.

Groups of advertisements where chosen by the authors so that
items included only potential matches, only partial matches, and
both potential and partial matches. It is noteworthy that, at least
for the single-day pick we made, we were not able to detect any
exact match. After that the same sets of items were submitted to
the matchmaking engine.

As a general consideration, the system response was quite close
to the users’ ones, and considering average volunteers orderings
the systems rankings was in agreement with the human judgement
almost always. Standard deviation w.r.t. averaged users ranking
was:

σpotentialmatches = 8.3%, σpartialmatches = 9.7%, σmixed =
9.1%.

Figure 8 shows a single result, in a graphical form, for mixed po-
tential and partial demands w.r.t. to a supply. Notice that, while
volunteers gave strictly ranked orderings, the system could also
provide equal ranking for various matches. It should be noticed
that the main gap the system had with respect to users was its use
of at-least at-most restrictions, especially on price. In other words
the users evaluated proportionally the violation of the price con-
straint, while the system did not. We are hence introducing in the
weighted version of the matchmaker a corrective to this issue, by
proportionally weighting numerical roles w.r.t. the mean value of
at-least at-most restrictions.



demand NORMAL FORM

(APARTMENT , (at-least 1 OCCUPANTS) , (all OCCUPANTS PERSON) ,
(at-least 1 HASROOMS) , (at-least 2 HASSERVICES) , (all
HASSERVICES (SERVICES ,

ROOM)
) , (all HASROOMS (BEDROOM ,

ROOM ,
(all HASPLACES (BED ,

(at-least 1 OCCUPANTS) ,
(at-most 1 OCCUPANTS) ,
(all OCCUPANTS PERSON)) ,
)

(at-least 1 HASPLACES))
) , (at-most 0 HASPETS))
________________________________________________________________
supply1 NORMAL FORM

(APARTMENT , (at-least 1 OCCUPANTS) , (all OCCUPANTS PERSON) ,
(at-least 1 HASROOMS) , (at-least 2 HASSERVICES) , (all
HASSERVICES (SERVICES ,

ROOM)
) , (all HASROOMS (BEDROOM ,

ROOM ,
(all HASPLACES (BED ,

(at-least 1 OCCUPANTS) ,
(at-most 1 OCCUPANTS) ,
(all OCCUPANTS PERSON)) ,
)

(at-least 1 HASPLACES)
(at-least 1 HASPLACES)
(at-most 1 HASPLACES))

) (all OCCUPANTS SMOKER ,
NONSMOKER))

________________________________________________________________
supply2 NORMAL FORM

(APARTMENT , (at-least 1 OCCUPANTS) , (all OCCUPANTS PERSON) ,
(at-least 1 HASROOMS) , (at-least 2 HASSERVICES) , (all
HASSERVICES (SERVICES ,

ROOM)
) , (at-least 2 HASROOMS) , (at-most 2 HASROOMS) , (all HASROOMS
(BEDROOM ,

ROOM ,
(all HASPLACES (BED ,

(at-least 1 OCCUPANTS) ,
(at-most 1 OCCUPANTS) ,
(all OCCUPANTS PERSON)) ,
)

(at-least 1 HASPLACES)
(at-least 2 HASPLACES)
(at-most 2 HASPLACES))

) (at-most 0 HASPETS))
________________________________________________________________
supply3 NORMAL FORM

(APARTMENT , (at-least 1 OCCUPANTS) , (all OCCUPANTS PERSON) ,
(at-least 1 HASROOMS) , (all HASROOMS ROOM) , (at-least 2
HASSERVICES) , (all HASSERVICES (SERVICES ,

ROOM)
) , (at-least 1 HASPETS))
________________________________________________________________
supply4 NORMAL FORM

((at-most 1 HASSERVICES) , (all HASSERVICES BATHROOM SERVICES) ,
(at-least 2 HASPETS))
________________________________________________________________
supply5 NORMAL FORM

(APARTMENT , (at-least 1 OCCUPANTS) , (all OCCUPANTS PERSON) ,
(at-least 1 HASROOMS) , (all HASROOMS ROOM) , (at-least 2
HASSERVICES) , (all HASSERVICES (SERVICES ,

ROOM)
)
________________________________________________________________

Figure 7: Normal form for demand and supplies

Figure 8: System and averaged users ranking

6. CONCLUSION
In this paper we have proposed a semantic based matchmaking

facilitator for peer-to-peer electronic marketplaces.
The core engine has been implemented modifying the NeoClas-

sic subsumption algorithm in a way that allows categorization of
match type and the ranking of matches. While large scale experi-
ments are in progress, a simple experiment with a case study ontol-
ogy has shown a good correspondence with human perception of
the system provided rankings.

We are currently working on an extension of the system to DAML-
S and UDDI, which will also feature a negotiation module. An ap-
plication of the current approach to Bluetooth, with a stack modi-
fied to incorporate semantic descriptions along the lines highlighted
in [34], has also been implemented and is being tested.

The kind of hypothetical reasoning used in evaluating potential
matches gave us also the basic motivation to study abduction in
DLs and relative computational complexity. A suitable theoretical
framework has been devised and first results are forthcoming.
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