
SMART: A Tool for Semantic-Driven Creation of Complex
XML Mappings

Atsuyuki Morishima Toshiaki Okawara Jun’ichi Tanaka Ken’ichi Ishikawa
University of Tsukuba

{mori, okwr, m188, m112}@slis.tsukuba.ac.jp

1. INTRODUCTION AND THE KEY IDEA
We focus on the problem of data transformations, i.e., how to

transform data to another structure to adapt it to new application
requirements or given environments. Here, we define data trans-
formation as the process of taking as input two schemas A and B
and an instance of A, and producing an instance of B. Today, data
transformations are required in many situations: to integrate mul-
tiple information sources, to construct and receive data for Web
services, and to migrate data from legacy systems to new systems,
from local databases to data warehouses. This demonstration fo-
cuses on XML transformations, since XML is the de facto standard
for data exchange.

Data transformation requires data transformation programs,
which are often implemented by declarative queries. We call such
queries mapping queries. The queries are presently being devel-
oped manually and the development requires tremendous costs,
since the development is a non-trivial task that requires a deep un-
derstanding of the data. And the mapping query can be very com-
plex. Creating mappings between independently created schemas
is inherently different from the problem of mappings required in
classical schema integration [5].

The SMART system aims at reducing the development cost of
mapping queries by providing a tool for semi-automatic genera-
tion of mapping queries. Although many tools have been pro-
posed related to the mapping creation [3][5][6][7][8], they share
the common key idea that the mapping creation process consists of
the following two phases1: (1) Receiving from the user (or semi-
automatically finding) correspondences between (values or com-
ponents of) the schemas to be mapped, and (2) Generating map-
ping queries consistent with the given correspondences. In general,
finding correspondences between complex schemas is not easy, be-
cause this requires deep understanding of the schemas. We argue
and demonstrate with our SMART system that introducing reverse
engineering techniques to the query creation can dramatically fa-
cilitate the creation process. Reverse engineering in our context is
a process to recover conceptual schemas from given database/XML

1Some of such tools allow the phases to be interleaved for the in-
cremental creation of mapping queries.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2005 June 14-16, 2005, Baltimore, Maryland, USA.
Copyright 2005 ACM 1-59593-060-4/05/06 $5.00.

Figure 1: Mapping specification for Clio

Figure 2: Mapping specification for SMART

schemas [1]. This approach makes the SMART system unique and
we believe that the system has a practical impact.

This idea is best understood by comparing Figure 1 with Fig-
ure 2. Figure 1 is taken from [5] to explain the well-known
Clio system, which is a semi-automatic tool to generate mapping
queries. The figure shows example schemas to be mapped (The
example uses relational schemas, but the same discussion applies
to XML data.). The target schema defines a unary relation to
contain salaries of both professors and students. To create map-
pings, the user gives value correspondences (denoted by f1 and
f2 here) to Clio as clues to find queries implementing intended
mappings. A value correspondence consists of (1) a function defin-
ing how a value (or combination of values) from a source database
can be used to form a value in the target, and (2) a filter, indicat-
ing which source values should be used (i.e., the selection condi-
tion). In Figure 1, f1 and f2 are value correspondences: f1 :
PayRate(HrRate) × WorksOn(Hrs) → Personnel(Sal)
and f2 : Professor(Sal) → Personnel(Sal) where we as-
sume their filters are “true” (meaning, all values should be used).
Clio enumerates possible queries consistent with the given value
correspondences, and ranks the queries to find likely queries.

We can make the following observations from the example:
Observation 1. Finding appropriate value correspondences is
not easy, because the user must understand the source schema.
Professor salaries may be easy to find, but it is difficult to
know PayRate(HrRate) × WorksOn(Hrs) computes those

909



of students until foreign key constraints on attributes of relations
Student, PayRate, and WorksOn are found. If the source
schema is large, it has a huge number of attributes. So the job
becomes more difficult.
Observation 2. It is possible that some supporting tools suggest
possible or plausible value correspondences by using techniques
for schema matching [9], but the search space for finding matching
attributes from the source (with n attributes) and the target (with
m attributes) is 2n × m. In addition, it is unlikely that automatic
schema matching techniques find value correspondences like f1.
Observation 3. Verifying whether the value correspondences and
the (semi-automatically generated) query are correct is not easy, be-
cause verification also requires a deep understanding of the source
schema (and the application domain). Clio has a mechanism to give
example values so that the user can check if the created query is
correct. Although this may allow the user to evaluate queries with-
out examining query details, the same problem of being required to
understand the source data remains.
Observation 4. In value correspondences, there is a tight connec-
tion between the inter-schema relationships and the computation
expressions (functions and filters). This close connection makes it
difficult to write and understand value correspondences. For ex-
ample, the value correspondence f1 says the following two things
at once: (1) Relationship: a salary of a student in the source
is used as a value for Personnel(Sal) in the target, and (2)
Computation: each salary is computed by PayRate(HrRate)×
WorksOn(Hrs). Also, the connection forces the user to write the
same computation many times (as shown later).

Figure 2 shows how the user specifies the same mapping with
our SMART system. First, SMART takes as inputs the schemas
to be mapped, reverse-engineers the schemas, and shows the
user the resulting conceptual schemas (outside the dotted boxes
in Figure 2). The user can modify the conceptual schemas or,
otherwise, give relationships (in Figure 2, h1 and h2) between
classes from two schemas, annotated with inclusion labels (e.g.,
⊆). Next, SMART uses the inputs to automatically generate and
add new information (inside the two dotted boxes) to conceptual
schemas. In the example, SMART first finds that there should
be a super class of Student and Professor that is equiva-
lent to the target’s Personnel class (which is represented by
the relationship h3), according to the given relationships h1 and
h2. It also finds that Student class should have a Sal at-
tribute, after trying to match attributes of the source’s Student
class with those of the target’s Personnel class. Note that re-
verse engineering makes the search space for matching attributes
small, since only attributes of the related classes can be candi-
dates. SMART then requests the user to specify how to com-
pute the student’s salary, and the user specifies that it is com-
puted by expr : Student.Sal = sum(this.WorksOn.[Hrs ×
Project.PayRate.HrRate]). Note that the specification is easy
to understand because it only specifies computation of the student’s
salary, ignoring any relationship with the target schema. If neces-
sary, the user can always modify the class diagrams during the pro-
cess. Finally, the SMART system outputs a query that is consistent
with the user’s specification.

Comparing the two figures, the advantages of introducting re-
verse engineering frameworks to the mapping creation are clear.
We enumerate and contrast them with the above observations: First,
the introduction of the explicit reverse engineering into the creation
of mappings helps the user to understand schemas and to specify
relationships between the schemas to be mapped. In Clio, the user
should understand schemas implicitly. In SMART, the relation-
ships can be given as those between classes, not attributes, which

Figure 3: Architecture

Figure 4: Prototype System

we believe are easier to find. The relationships can be used as hints
for SMART to find matching attributes. Second, the reverse en-
gineering process makes the search space for matching attributes
smaller, and gives chances to use domain ontologies to match at-
tributes since the conceptual schemas are closer to such ontologies
compared to database (or XML) schemas. More important, oppor-
tunities arise for SMART to find missing attributes of classes (like
Sal of Student), which is otherwise impossible. Third, verify-
ing correspondences by the user is much easier since conceptual
schemas are semantically richer. And finally, separation of compu-
tations from relationships between schema components, along with
the reverse engineering process, has the following advantages: (1)
The user can use the is-a hierarchy to reduce the number of re-
quired computation expressions. Let’s assume that the user wants
salaries whose values are more than 2000. In Clio, the computation
(filter) must be distributed to every value correspondence; the user
must add the filter > 2000 to each of correspondences f1 and f2.
In SMART, the user can specify that a subclass of Personnel of
the source schema having restriction Sal > 2000 is equivalent to
the Personnel of the target. (2) The user can specify each com-
putation only in the source schema world, without worrying about
the relationship with the target schema (Please remember the com-
putation specification of Sal of Student for SMART).

2. ARCHITECTURE
Figure 3 shows the architecture of the SMART system (Figure

4 is a screen shot of the prototype system.). The SMART system
first takes as input the source and target schemas and activates the
reverse engineering engine to produce conceptual schemas for the
two given schemas. Next, the system interacts with the user to get
instructions. After relationships between two schema components
are given, the relationship processors and the attribute matcher are
activated. These modules interact with each other by exchang-
ing useful information, including equivalent classes, newly-found

910



Figure 5: Mapping through Semantic Domain

Figure 6: Three Stages

classes and attributes, and suggestions on likely relationships and
matching attributes. Finally, SMART outputs XQuery query to
transform instances of the source schema into those of the target
schema. The system components are based on, and/or commu-
nicate with each other through, a formal model we have defined.
Also, SMART utilizes a repository that stores rules and ontologies
to be used by these components.

3. FORMAL MODEL FOR THE CREATION
OF XML MAPPING QUERIES

An important contribution of our project is that we defined a for-
mal model as a language to describe and discuss the development
process of XML mapping queries. We model a mapping query as
a mathematical mapping F : S → T , which maps instances of an
XML schema S to instances of T . And we define manipulations of
such mappings for incremental construction of the final mapping
queries. The presence of a formal framework not only gives us
the formal basis, but works as an interface among various software
components of our system. In our model, we manipulate mappings,
not data. Mappings are dealt with as first class citizens.
Semantic Mappings. To incorporate the concept of reverse engi-
neering into the problem of mapping creation, our model introduces
semantic mappings as key components and realizes data transfor-
mations through semantic domains. A semantic domain is a set of
instances of a conceptual schema (e.g., Figure 2(Source)) of data.
Let S and T be two XML schemas. In our model, a mapping
F : S → T is expressed as a composition of two semantic map-
pings g−1 ◦ f (Figure 5), where f : S → DS and g : T → DT , if
semantic domains DS and DT are compatible with each other, i.e.,
if DS has classes and attributes equivalent to all of those in DT .
If they are not compatible, the conflict must be resolved before the
composition.

4. DEMONSTRATION
Our method has the following three stages to generate mapping

queries: the reverse engineering stage, the schema matching stage,
and the query generation stage (Figure 6). The inputs of the sys-
tem are two schemas S and T , and an instance of S. Relationships
between the target and source conceptual schemas are given in the
schema matching stage. As suggested in Section 1, the schema
matching stage and the reverse engineering stage can be interleaved
and affect each other, and the two stages are repeated until the
SMART system obtains classes and attributes (in the source con-
ceptual schema) equivalent to all of those in the target schema.

In our demonstration, the following issues are explained and
demonstrated.

(1) Two Different Schemas. We show two different XML schemas
having implicit constraints and structures, whose correspondence is
not straightforward.
(2) Reverse Engineering Stage. Given the two XML schemas,
the system tries to recover their conceptual schemas. Note that
it is impossible to recover one right conceptual schema for each
XML schema, because (a) there is more than one interpretation
of schemas, and (b) schema definitions do not necesarily have all
the constraints and semantic information. Therefore, the user is
allowed to modify the recovered conceptual schemas if needed,
by applying operators of the data transformation model or using
higher-level functions provided by the system.
(3) Schema Matching Stage. This is an interesting stage. Points
include: (1) By specifying relationships between classes first, the
number of possible combinations of attributes becomes smaller,
which helps both the user and the tool itself to find appropriate
matching between schema attributes. (2) A description logic en-
gine [2][4] is embedded and used to help the user to specify class
relationships. This makes it possible for the SMART system to in-
fer equivalence relationships from the incomplete information on
the relationships (i.e., inclusion relationships) given by the user.
(4) Query Generation Stage. We show how the SMART system
generates mapping queries based on the inputs. In general, the re-
lationships given by the user, on their own, are insufficient to iden-
tify the intended query. We let the system ask the user to supply
missing expressions, instead of enumerating possible queries based
on the incomplete information. We believe our approach is more
desirable than the enumeration approach in practice, since it is dif-
ficult for the latter approach to guarantee that the intended query is
included in the set of enumerated queries.
(5) Other issues. We explain the model and the architecture in
more detail, and would like to discuss related issues, including au-
tomatic verification of mappings and applications of domain on-
tologies.

5. ACKNOWLEDGEMENTS
We would like to thank Natsuko Furukawa and Tadatoshi

Sekiguchi for their contributions to the early stages of this project.
We would also like to thank Prof. Shigeo Sugimoto for his kind
support. This research was partially supported by the Ministry of
Education, Culture, Sports, Science, and Technology, Grant-in-Aid
for Young Scientists (B) (15700108).

6. REFERENCES
[1] P. Aiken. Data Reverse Engineering Staying the Legacy

Dragon, McGraw-Hill, Inc., New York, 1996.
[2] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P.

Patel-Schneider (Eds.): The Description Logic Handbook:
Theory, Implementation, and Applications. Cambridge
University Press 2003.

[3] A. Doan, P. Domingos, A. Halevy: Reconciling Schemas of
Disparate Data Sources: A Machine-Learning Approach.
SIGMOD Conference 2001

[4] Volker Haarslev, Ralf Möller: Description of the RACER
System and its Applications. International Workshop on
Description Logics (DL-2001).

[5] R. J. Miller, L. M. Haas, M. A. Hernandez: Schema Mapping
as Query Discovery. VLDB 2000: 77-88

[6] A. Morishima, H. Kitagawa, A. Matsumoto: A Machine
Learning Approach to Rapid Development of XML Mapping
Queries. ICDE 2004: 276-287

[7] T. Milo, S. Zohar: Using Schema Matching to Simplify
Heterogeneous Data Translation. VLDB 1998: 122-133

[8] L. Popa, Y. Velegrakis, R. Miller, M. Hernandez, R. Fagin:
Translating Web Data. VLDB 2002: 598-609

[9] E. Rahm, P. A. Bernstein: A survey of approaches to
automatic schema matching. VLDB J. 10(4): 334-350,2001.

911


