
Estimating Data Integration and Cleaning Effort

Sebastian Kruse
Hasso Plattner Institute (HPI),

Germany
sebastian.kruse@hpi.de

Paolo Papotti
Qatar Computing Research

Institute (QCRI), Qatar
ppapotti@qf.org.qa

Felix Naumann
Hasso Plattner Institute (HPI),

Germany
felix.naumann@hpi.de

ABSTRACT
Data cleaning and data integration have been the topic of intensive
research for at least the past thirty years, resulting in a multitude of
specialized methods and integrated tool suites. All of them require
at least some and in most cases significant human input in their
configuration, during processing, and for evaluation. For managers
(and for developers and scientists) it would be therefore of great
value to be able to estimate the effort of cleaning and integrating
some given data sets and to know the pitfalls of such an integration
project in advance. This helps deciding about an integration project
using cost/benefit analysis, budgeting a team with funds and man-
power, and monitoring its progress. Further, knowledge of how
well a data source fits into a given data ecosystem improves source
selection.

We present an extensible framework for the automatic effort es-
timation for mapping and cleaning activities in data integration
projects with multiple sources. It comprises a set of measures and
methods for estimating integration complexity and ultimately ef-
fort, taking into account heterogeneities of both schemas and in-
stances and regarding both integration and cleaning operations. Ex-
periments on two real-world scenarios show that our proposal is
two to four times more accurate than a current approach in esti-
mating the time duration of an integration process, and provides a
meaningful breakdown of the integration problems as well as the
required integration activities.

1. COMPLEXITY OF INTEGRATION AND
CLEANING

Data integration and data cleaning remain among the most
human-work-intensive tasks in data management. Both require a
clear understanding of the semantics of schema and data – a no-
toriously difficult task for machines. Despite much research and
development of supporting tools and algorithms, state-of-the-art in-
tegration projects involve significant human resource cost. In fact,
Gartner reports that 10% of all IT cost goes into enterprise software

c�2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0.

for data integration and data quality1,2, and it is well recognized that
most of those expenses are for human labor. Thus, when embarking
on a data integration and cleaning project, it is useful and impor-
tant to estimate in advance the effort and cost of the project and to
find out which particular difficulties cause these. Such estimations
help deciding whether to pursue the project in the first place, plan-
ning and scheduling the project using estimates about the duration
of integration steps, budgeting in terms of cost or manpower, and
finally monitoring the progress of the project. Cost estimates can
also help integration service providers, IT consultants, and IT tool
vendors to generate better price quotes for integration customers.
Further, automatically generated knowledge of how well and how
easy a data source fits into a given data ecosystem improves source
selection.

However, “project estimation for [. . .] data integration projects
is especially difficult, given the number of stakeholders involved
across the organization as well as the unknowns of data complexity
and quality.” [14]. Any integration project has several steps and
tasks, including requirements analysis, selection of data sources,
determining the appropriate target database, data transformation
specifications, testing, deployment, and maintenance. In this pa-
per, we focus on exploring the database-related steps of integration
and cleaning and automatically estimate their effort.

1.1 Challenges
There are simple approaches to estimate in isolation the com-

plexity of individual mapping and cleaning tasks. For the mapping,
evaluating its complexity can be done by counting the matchings,
i.e., correspondences, among elements. For the cleaning problem, a
natural solution is to measure its complexity by counting the num-
ber of constraints on the target schema. However, as several inte-
gration approaches have shown, the interactive nature of these two
problems is particularly complex [5, 11, 13]. For example, a data
exchange problem takes as input two relational schemas, a trans-
formation between them (a mapping), a set of target constraints,
and answers two questions: whether it is possible to compute a
valid solution for a given setting and how. Interestingly, to have a
solution, certain conditions must hold on the target constraints, and
extending the setting to more complex languages or data models
bring tighter restrictions on the class of tractable cases [6, 12].

In our work, the main challenge is to estimate complexity and
effort in a setting that goes beyond these ad-hoc studies while sat-
isfying four main requirements:

Generality: We require independence from the language used to
express the data transformation. Furthermore, real cases often fail
the existence of solution tests considered in formal frameworks,

1http://www.gartner.com/ technology/research/ it-spending-forecast/
2http://www.gartner.com/newsroom/ id/2292815

61 10.5441/002/edbt.2015.07

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2015.07

e.g., weak acyclicity condition [11], but an automatic estimation is
still desirable for them in practice.

Completeness: Only a subset of the constraints that hold on the
data are specified over the schema. In fact, business rules are com-
monly enforced at the application level and are not reflected in the
metadata of the schemas, but should nevertheless be considered.

Granularity: Details about the integration issues are crucial for
consumption of the estimation. For a real understanding and proper
planning, it is important to know which source and/or target at-
tributes are cause of problems and how, e.g., phone attributes in
source and target schema have different formats. Existing estima-
tors do not reason over actual data structures and thus make no
statements about the causes of integration effort.

Configurability and extensibility: The actual effort depends on
subjective factors, such as the capabilities of available tools and
the desired quality of the output. Therefore, intuitive, yet rich con-
figuration settings for the estimation process are crucial for its ap-
plicability. Moreover, users must be able to extend the range of
problems covered by the framework.

These challenges cannot be tackled with existing syntactical
methods to test the existence of solutions, as they work only in
specific settings (Generality), are restricted to declarative specifica-
tions over the schemas (Completeness), and do not provide details
about the actual problems (Granularity). On the other hand, as sys-
tems that compute solutions require human interaction to finalize
the process [8, 13], they cannot be used for estimation purpose and
their availability is orthogonal to our problem (Configurability).

1.2 Approaching Effort Estimation
Figure 1 presents our view on the problem of estimating the ef-

fort of data integration. The starting point is an integration sce-
nario with a target database and one or more source databases. The
right-hand side of the figure shows the actual integration process
performed by an integration specialist, where the goal is to move
all instances of the source databases into the target database. Typ-
ically, a set of integration tools are used by the specialist. These
tools have access to the source and target and support her in the
tasks. The process takes a certain effort, which can be measured,
for instance as amount of work in hours or days or in a monetary
unit.

Our goal is to find that effort without actually performing the in-
tegration. Moreover, we want to find and present the problems that
cause this effort. To this end, we developed a two-phase process as
shown on the left-hand side of Figure 1.

The first phase, the complexity assessment, reveals concrete
integration challenges for the scenario. To address generality,
these problems are exclusively determined by the source and tar-
get schemas and instances; if and how an integration practitioner
deals with them is not addressed at this point. Thus, this first phase
is independent of external parameters, such as the level of expertise
of the specialist or the available integration tools. However, it is
aided by the results of schema matching and data profiling tools,
which analyze the participating databases and produce metadata
about them (to achieve completeness). The output of the complex-
ity assessment is a set of clearly defined problems, such as number
of violations for a constraint or number of different value represen-
tations. This detailed breakdown of the problems achieves granu-
larity and is useful for several tasks, even if not interpreted as an
input to calculate actual effort. Examples of application are source
selection [9], i.e., given a set of integration candidates, find the
source with the best ‘fit’; and support for data visualization [7],
i.e., highlight parts of the schemas that are hard to integrate.

 Data
Integration

Scenario

Complexity
Assessment

Integration
Practitioner

Estimated
Complexity

Integration
Result

Measured
Effort

Estimated
Effort

Estimation Side Production Side

Integration
Tools

influence

estimates

Effort
Estimation

Schema
Matching

Data
Profiling

Figure 1: Overview of effort estimation and execution of data inte-
gration scenarios.

The second phase, effort estimation, builds upon the complexity
assessment to estimate the actual effort for overcoming the previ-
ously revealed integration challenges in some useful unit, such as
workdays or monetary cost. Thereby, this phase addresses config-
urability by taking external parameters into account, such as the
experience of the integration practitioner and the features of the
integration tools to be used.

1.3 Contributions and structure
Section 2 presents related work and shows that we are the first to

systematically address a dimension of data integration and cleaning
that has been passed over by the database community but is relevant
to practitioners. In particular, we make the following contributions:

• Section 3 introduces the extensible Effort Estimation frame-
work (EFES), which defines a two-dimensional modulariza-
tion of the estimation problem.

• Section 4 describes an estimation module for structural con-
flicts between source and target data. This module incorpo-
rates a new formalism to compare schemas in terms of map-
pings and constraints.

• Section 5 reports an estimation module for value hetero-
geneities that captures formatting problems and anomalies
in data that may be missed by structural conflicts.

These building blocks have been evaluated together in an exper-
imental study on two real-world datasets and Section 6 reports on
the results. Finally, we conclude our insights in Section 7.

2. RELATED WORK
When surveying computer science literature, a pattern becomes

apparent: much technology claims (and experimentally shows) to
reduce human effort. The veracity of this claim is evident – af-
ter all, any kind of automation of tedious tasks is usually helpful.
While for scientific papers this reduction is enough of a claim, the
absolute measures of effort and its reduction are rarely explained
and measured.

General effort estimation. There are several approaches for ef-
fort estimation in different fields, however, none of them considers
information coming from the datasets.

62

In the software domain, an established model to estimate the cost
of developing applications is COCOMO [3, 4], which is based on
parameters provided by the users such as the number of lines of
existing code. Another approach decomposes an overall work task
into a smaller set of tasks in a “work breakdown structure” [16].
The authors manually label business requirements with an effort
class of simple, medium, or complex, and multiply each of them
by the number of times the task must be executed.

In the ETL context, Harden [14] breaks down a project into var-
ious subtasks, including requirements, design, testing, data stew-
ardship, production deployment, but also the actual development
of the data transformations. For the latter he uses the number of
source attributes and assigns for each attribute a weighted set of
tasks (Table 1). In sum, he calculates slightly more than 8 hours of
work for each source attribute.

Task Hours per attribute
Requirements and Mapping 2.0
High Level Design 0.1
Technical Design 0.5
Data Modeling 1.0
Development and Unit Testing 1.0
System Test 0.5
User Acceptance Testing 0.25
Production Support 0.2
Tech Lead Support 0.5
Project Management Support 0.5
Product Owner Support 0.5
Subject Matter Expert 0.5
Data Steward Support 0.5

Table 1: Tasks and effort per attribute from [14].

One can find other lists of criteria to be taken into account when
estimating the effort of an integration project3. These include fac-
tors we include in our complexity model, such as number of dif-
ferent sources and types, duplicates, schema constraints, and oth-
ers we exclude for sake of space from our discussion, such as
project management, deployment needs, and auditing. There are
also mentions of factors that influence our effort model, such as
familiarity with the source database, skill levels, and tool avail-
ability. However, merely providing a list of factors is only a first
step, whereas we provide novel measures for the database-specific
causes for complexity and effort. In fact, existing methods: (i) lack
a direct numerical analysis of the schemas and datasets involved in
the transformation and cleaning; (ii) do not regard the properties of
the datasets at a fine grain and cannot capture the nature of the pos-
sible problems in the scenario, (iii) do not consider the interaction
of the mapping and the cleaning problems.

Schema-matching for effort estimation. In our work, we ex-
ploit schema matching to bootstrap the process. This is along
the lines of what authors of matchers suggested. For example,
in [24] the authors have pointed out the multiple usages of schema
matching tools beyond the concrete generation of correspondences
for schema mappings. In particular, they mention “project plan-
ning” and “determining the level of effort (and corresponding cost)
needed for an integration project”. In a similar fashion, in the eval-
uation of the similarity flooding algorithm, Melnik et al. propose
a novel measure “to estimate how much effort it costs the user to

3Such as http://www.datamigrationpro.com/data-migration-articles/
2012/2/9/data-migration-effort-estimation-practical-techniques-from-r.
html and http://www.information-management.com/news/1093630-1.html

modify the proposed match result into the intended result” in terms
of additions and deletions of matching attribute pairs [19].

Data-oriented effort estimation. In [25], the authors offer a
“back of the envelope” calculation on the number of comparisons
needed to be performed by human workers to detect duplicates in
a dataset. According to them, the estimate depends on the way the
potential duplicates are presented, in particular their order and their
grouping. Their ideas fit well into our effort model and show that
specific tooling indeed changes the needed effort, independently
of the complexity of the problem itself. Complementary work on
source selection has focused on the benefit of integrating a new
source based on its marginal gain [9, 23].

Data-cleaning and data-transformation. Many systems
(e.g., [8, 13]) address the problem of detecting violations over the
data given a set of constraints, as we also do in one of our mod-
ules for complexity estimation. The challenge for these systems
is mostly the automatic repair step, i.e., how to update the data to
make it consistent wrt. the given constraints with a minimal num-
ber of changes. None of these systems provide tools to estimate the
complexity of the repair nor the user effort before actually execut-
ing the methods to solve the integration problem. In fact, the chal-
lenge is that solving the problem involves the users, and estimating
this effort (even in presence of these tools) is our main goal. Similar
problems apply to data exchange and data transformation [1, 15].

In the field of model management, the use of metamodels has
been investigated to represent in a more general language several
alternative data models [2,21]. Our cardinality-constrained schema
graphs (Section 4) can be seen as a proposal for a metamodel with
a novel static analysis of cardinalities to identify problems in the
underlying schemas and the mapping between them.

3. THE EFFORT ESTIMATION FRAME-
WORK

Real-world data integration scenarios host a large number of dif-
ferent challenges that must be overcome. Problems arise in com-
mon activities, such as the definition of a mapping between differ-
ent schemas, the restructuring of the data, and the reconciliation
of their value format. We first describe these problems and then
introduce our solution.

3.1 Data Integration Scenario
A data integration scenario comprises: (i) a set of source

databases; (ii) a target database, into which the source databases
shall be integrated; and (iii) correspondences to describe how these
sources relate to the target. Each source database consists of a rela-
tional schema, an instance of this schema, and a set of constraints,
which must be satisfied by that instance. Likewise, the target data-
base can carry constraints and possibly already contains data as
well that satisfies these constraints. Furthermore, each correspon-
dence connects a source schema element with the target schema
element, into which its contents should be integrated.

Oftentimes constraints are not enforced at the schema level but
rather at the application level or simply in the mind of the inte-
gration expert. Even worse, for some sources (e.g., data dumps),
a schema definition may be completely missing. To achieve com-
pleteness, techniques for schema reverse engineering and data pro-
filing [20] can reconstruct missing schema descriptions and con-
straints from the data.

Example 3.1. Figure 2 shows an integration scenario with mu-
sic records data. Both source and target relational schemas (Fig-
ure 2a) define a set of constraints, such as primary keys (e.g., id in

63

Target

tracks

record
title
duration

FK,NN
NN

records

id
title
artist
genre

PK
NN
NN

albums

id
name
artist_list

PK
NN
FK,NN

songs

album
name
artist_list
length

FK
NN
FK

artist_lists

idPK

artist_credits

artist_list
position
artist

PK,FK
PK
NN

Source

(a) Schemas, constraints, and correspondences.

record title duration
1 “Sweet Home Alabama" “4:43"
1 “I Need You" “6:55"
1 “Don’t Ask Me No Questions" “3:26"

...

(b) Example instances from the target table tracks.

album name artist_list length
s3 “Hands Up" a1 215900
s3 “Labor Day" a1 238100
s3 “Anxiety" a2 218200

...

(c) Example instances from the source table songs.

Figure 2: An example data integration scenario.

records), foreign keys (record in tracks, represented with dashed
arrows), and not nullable values (title in tracks).

Solid arrows between attributes and relations represent corre-
spondences, i.e., two attributes that store the same atomic infor-
mation or two relations that store the same kind of instances. The
source relation albums corresponds to the target relation records

and its source attribute name corresponds to the title attribute in
the target. That means, that the albums from the source shall be
integrated as records into the target, while the source album names
serve as titles for the integrated records. ⇧

We assume correspondences between the source and target
schemas to be given, as they can be automatically discovered with
schema matching tools [10]. Notice that correspondences are not
an executable representation of a transformation, thus they do not
induce a precise mapping between sources and the target. However,
they contain enough information to reason over the complexity of
data integration scenarios and detect their integration challenges, as
in the following example.

Example 3.2. The target schema requires exactly one artist
value per record, whereas the source schema can associate an arbi-
trary number of artist credits to each album. This situation implies
that integrating any source album with zero artist credits violates
the not-null constraint on the target attribute records.artist. More-
over, two or more artist credits for a single source album cannot
be naturally stored by the single target attribute. Integration prac-
titioners have to solve these conflicts. Hence, this schema hetero-
geneity increases the necessary effort to achieve the integration. ⇧

Not all kinds of integration issues can be detected by analyzing
the schemas, though. The data itself is equally important. While
we assume that every instance is valid wrt. its schema, when data is
integrated new problems can arise. For example, all sources might
be free of duplicates, but there still might be target duplicates when
they are combined [22]. These conflicts can also arise between
source data and pre-existing target data.

Example 3.3. Tables 2b and 2c report sample instances of the
tracks table and the songs table, respectively. The duration of
tracks in the target database is encoded as a string with the for-
mat m:ss, while the length of songs is measured in milliseconds in
the source. The two formats are locally consistent, but the source
values need a proper transformation when integrated into the target
column, thereby demanding a certain amount of effort. ⇧

3.2 A General Framework
Facing different kinds of data integration and cleaning actions,

there is the need of different specialized models to decode their
complexity and estimate their effort properly. We tackle this prob-
lem with our general effort estimation framework EFES. It handles
different kinds of integration challenges by accepting a dedicated
estimation module to cope with each of them independently. Such
modularity makes it easier to revise and refine individual modules
and establishes the desired extensibility by plugging new ones. In
this work, we present modules for the three general and, in our ex-
perience, most common classes of integration activities: writing an
executable mapping, resolving structural conflicts, and eliminating
value heterogeneities. While the latter two are explained in subse-
quent sections, we present the mapping module in this section to
explain our framework design. For generality, the modules do not
depend on a fixed language to express the transformations.

Figure 3 depicts the general architecture of EFES. The architec-
ture implements our goal of delivering a set of integration problems
and an effort estimate by explicitly dividing the estimation process
into an objective complexity assessment, which is based on proper-
ties of schemas and data, followed by the context-dependent effort
estimation. We now describe these two phases in more detail.

Data Integration Scenario

Effort Estimate

Data Complexity Reports

Data
Complexity

Detectors

Task
Planners

Effort
Calculation

Functions

C
om

pl
ex

ity
 A

ss
em

en
t

Ef
fo

rt
 E

st
im

at
io

n

Estimation Module

Expected
Quality

Execution
Settings

Tasks

Figure 3: Architecture of EFES.

3.3 Complexity assessment
The goal of this first phase is to compute data complexity reports

for the integration scenario. These reports serve as the basis for the

64

subsequent effort estimation but also are used to inform the user
about integration problems within the scenario. This is particularly
useful for source selection [9] and data visualization [7].

Each estimation module provides a data complexity detector that
extracts complexity indicators from the given scenario and writes
them into its report. There is no formal definition for such a report;
rather, it can be tailored to the specific, needed complexity indi-
cators. For example, the mapping module builds on the following
idea: For each table in the target schema and each source database
that provides data for that table, some connection has to be estab-
lished to fetch the source data and write it into the target table. The
overall complexity of the mapping creation is composed of the in-
dividual complexities for establishing each of these connections.
Furthermore, every connection can be described in terms of cer-
tain metrics, such as the number of source tables to be queried, the
number of attributes that must be copied, and whether new IDs for
a primary key need to be generated.

Example 3.4. The data complexity report for the scenario in
Figure 2 can be found in Table 2. To fetch the data for the
records table, the three source tables albums, artist_lists, and
artist_credits have to be combined, two attributes must be copied,
and unique id values for the integrated tuples must be generated. ⇧

Target table Source tables Attributes Primary key
records 3 2 yes
tracks 3 2 no

Table 2: Mapping complexity report of the scenario in Figure 2.

3.4 Effort estimation
Based on the data complexity, the effort estimation shall produce

a single estimate of the human work to address the different com-
plexities. However, going from an objective complexity measure to
a subjective estimate of human work requires external information
about the context. We distinguish one aspect that is specific to the
data integration problem, (i) the expected quality of the integration
result, and, as a more common aspect, (ii) the execution settings for
the scenario.

(i) Expected quality: Data cleaning is the operation of updat-
ing an instance such that it becomes consistent wrt. any constraint
defined on its schema [8, 13]. However, such results can be ob-
tained by automatically removing problematic tuples, or by man-
ually solving inconsistencies involving a domain expert. Each
choice implies different effort.

Example 3.5. Consider again Example 3.3 with the duration
format mismatch. As duration is nullable, one simple way to solve
the problem is to drop the values coming from the new source. A
better, higher quality solution is to transform the values to a com-
mon format, but this operation requires a script and a validation by
the user, i.e., more effort [15]. ⇧

(ii) Execution settings: The execution settings represent the cir-
cumstances under which the data integration shall be conducted.
Examples of common context information are the expertise of the
integration practitioners and their familarity with the data [4]. In
our setting, we also model the level of automation of the available
integration tools, and how critical the errors are, e.g., integrating
medical prescriptions requires more attention (and therefore effort)
than integrating music tracks.

Example 3.6. Consider again the problem with the cardinality
of record artists. There are schema mappings tools [18] that are
able to automatically create a synthetic value in the target, if a
source album has zero artist credits, and to automatically create
multiple occurrences of the same album with different artists, if
multiple artists are credited for a single source album. Such tools
would reduce the mapping effort. ⇧

For the effort estimation, each estimation module has to provide
a task planner that consumes its data complexity report and outputs
tasks to overcome the reported issues. Each of these tasks is of a
certain type, is expected to deliver a certain result quality, and com-
prises an arbitrary set of parameters, such as on how many tuples it
has to be executed. We defined two instances of expected quality,
namely low effort (removal of tuples) and high quality (updates).
This criterion is extensible to other repair actions, but it already
allows to choose between alternative cleaning tasks as shown in
Example 3.5.

Example 3.7. A complexity report for the scenario from Fig-
ure 2 states that there are albums without any artist in the source
data that lead to a violation of a not-null constraint in the target.
The corresponding task model proposes the alternative actions Re-
ject violating tuple (low effort) or Add missing value (high quality)
to solve the problem. ⇧

Once the list of tasks has been determined, the effort for their
execution is computed. For this purpose, the user specifies in ad-
vance for each task type an effort-calculation function that can in-
corporate task parameters. As an example, we report the effort-
calculation functions for the execution settings of our experiments
in Table 9. The framework uses these functions to estimate the ef-
fort for each of the tasks. Finally, the total of all these task estimates
forms the overall effort estimate.

Example 3.8. We exemplify the effort-calculation functions for
the tasks derived from the report in Table 2. The Create mapping
task might be done manually with SQL queries. Then an adequate
function would be

effort = 3mins · tables + 1min · attributes + 3mins · PKs

leading to an overall effort of 25 (18 + 4 + 3) minutes. How-
ever, if a tool can generate this mapping automatically based on
the correspondences (e.g., [18]), then a constant value, such as
effort = 2mins , can reflect this circumstance, leading to an over-
all effort of four minutes. ⇧

The above described task-based approach offers several advan-
tages over an immediate complexity-effort mapping [14], where a
formula directly converts statistics over the schemas into an effort
estimation value. Our model enables configurability, as it treats ex-
ecution settings as a first-class component in the effort-calculation
functions and these can be arbitrarily complex as needed. Further-
more, instead of just delivering a final effort value, our effort esti-
mate is broken down according to its underlying tasks. This gran-
ularity helps users understand the required work and explains how
the estimate has been created, thus giving the users the opportunity
to properly plan the integration process.

4. STRUCTURAL CONFLICTS
Structural heterogeneities between source and target data struc-

tures are a common problem in integration scenarios. This section
describes a module to detect these problems and estimate the effort

65

arising out of them. It can be plugged into the framework archi-
tecture in Figure 3 with the following workflow: Its data complex-
ity detector (structure conflict detector) analyzes how source and
target data relate to each other, and counts the number of emerg-
ing structural conflicts. Based on those conflicts, the task planner
(structure repair planner) then (i) derives a set of cleaning tasks
to make the conflicting source data fit into the target schema, and
(ii) estimates how often each such task has to be performed. These
tasks can finally be fed into the effort calculation functions.

4.1 Structure Conflict Detector
In the first step of structural conflict handling, all source and

target schemas of the given scenario are converted into cardinality-
constrained schema graphs (short CSG), a novel modeling formal-
ism that we specifically devised for our task. It offers a single,
yet expressive constraint formalism with a set of inference oper-
ators that allow elegant comparisons of schemas. Additionally, it
is more general than the relational model and can describe (in-
tegrated) database instances that do not conform to the relational
model. For instance, an integrated tuple might provide multiple
values for a single attribute, like in Example 3.2. The higher ex-
pressiveness of CSGs allows to reason about necessary cleaning
tasks to make the integrated databases conform to the relational
model. In the following, we formally define CSGs and explain how
to convert relational databases into CSGs.

DEFINITION 1. A CSG is a tuple � = (N,P,), where N is a
set of nodes and P ⇢ N2 is a set of relationships. Furthermore,
 : P ! 2

N expresses schema constraints by prescribing cardinal-
ities for relationships.

DEFINITION 2. A CSG instance is a tuple I(�) = (IN , IP),
where IN assigns a set of elements to each node in N and IP

assigns to each relationship links between those elements.

To convert a relational schema, for each of its relations, a cor-
responding table node (rectangle) is created to represent the exis-
tence of tuples in that relation. Furthermore, for each attribute, an
attribute node (round shape) is created and connected to its respec-
tive table node via a relationship. While these attribute nodes hold
the set of distinct values of the original relational attribute, the re-
lationships link tuples and their respective attribute values. With
this proceeding, any relational database can be turned into a CSG
without loss of information.

Example 4.1. Figure 4 depicts two CSGs for the example sce-
nario schemas in Figure 2a, one for the source and one for the
target schema4. For instance, the example tracks tuple t = (1,
“Sweet Home Alabama”, “4:43”) from Figure 2b is represented in
the CSG instance as follows: The table node tracks 2 N holds an
abstract element idt, i.e., idt 2 IN (tracks), representing the tu-
ple’s identity. Likewise, record 2 N holds exactly once the value 1,
i.e., 1 2 IN (record), and the relationship ⇢

tracks!record

contains
a link for these elements, i.e., (idt, 1) 2 IP (⇢tracks!record

), thus
stating that t[record] = 1. The other values for the title and
duration attributes are represented accordingly. Furthermore, for-
eign key relationships are represented by special equality relation-
ships (dashed line) that link all equal elements of two nodes, e.g.,
all common values of the id and record nodes in the target CSG of
Figure 4. ⇧

4Some correspondences between the schemas are omitted for
clarity, but are not generally discarded.

Source

records

artist title genre id
1 1

1..*
tracks

record title' duration

albums

idnameartist_list

songs

album name' artist_list' length

artist_lists

id'

artist_credits

artist position artist_list''

Target

1..*

0..1

1..*

1

1

0..1
1

1 1

1..* 1..* 1..*

0..1

1

1

1

1..*

1

1..*

0..1
1

1

1..*

1

1..*

1

1..*

0..1

1..*

1

0..1

1

1
0..1

0..1

1..*

1

1..*

1

1..*

1

1

1

Figure 4: The integration scenario translated into cardinality-
constrained schema graphs.

To express schema constraints in CSGs, all relationships are an-
notated with prescribed cardinalities, that restrict the number of
elements and/or values of connected nodes that must relate to each
other via the annotated relationship. For example, tracks.record
is not nullable, which means, that each tracks tuple must provide
exactly one record value. Translated to CSGs, this means that for
each tuple ti, the relationship ⇢

tracks!record

must contain exactly
one link:

8ti : |{v 2 IN (record) | (idti , v) 2 IP (⇢tracks!record

)}| = 1 .

Formally, this is expressed by (⇢
tracks!record

) = {1}, which is
also graphically annotated in Figure 4. However, tracks.record
is not subject to a unique-constraint. In consequence, every
record value can be found in one or more tuples. Therefore,
(⇢

record!tracks

) = 1..⇤ = {1, 2, 3, . . .}. By means of prescribed
cardinalities, unique, not-null, and foreign key constraints can be
expressed, as well as two conformity rules for relational schemas:
each tuple can have at most one value per attribute, and each at-
tribute value must be contained in a tuple.

As stated above, another important feature of CSGs is the ability
to combine relationships into complex relationships and to analyze
their properties. As one effect, prescribing cardinalities not only to
atomic but also to complex relationships further allows to express
n-ary versions of the above constraints and functional dependen-
cies. We devised the following relationship construction operators:

‘�’: The composition concatenates two adjacent relationships.
Formally, IP (⇢1 � ⇢2)

def
= IP (⇢1) � IP (⇢2).

‘[’: The union of two relationships ⇢1[⇢2 contains all links of the
two relationships, i.e., IP (⇢1 [⇢2)

def
= IP (⇢1) [IP (⇢2).

This is particularly useful, when multiple source relation-
ships need to be combined.

‘1’: The join operator connects links from relation-
ships ⇢A!C , ⇢B!C with equal codomain values,
thereby inducing a relationship between A ⇥ B

and C. Formally, IP (⇢A!C 1 ⇢B!C)
def
=

{((a, b), c) : (a, c) 2 IP (⇢A!C) ^ (b, c) 2 IP (⇢A!B)}.
The join can be combined with other operators to express
n-ary uniqueness constraints.

66

‘k’: The collateral of two relationships ⇢A!Bk⇢C!D

induces a relationship between A ⇥ C and
B ⇥ D: IP (⇢A!Bk⇢C!D)

def
= {((a, c), (b, d)) :

(a, b) 2 IP (⇢A!B) ^ (c, d) 2 IP (⇢C!D)}. The collateral
can be applied to express n-ary foreign keys.

Based on these definitions, efficient algorithms can be devised to
infer the constraints of complex relationships.

LEMMA 1. Let ⇢1, ⇢2 2 P be two relationships in a graph �

and ⇢1’s end node is ⇢2’s start node. Then the cardinality of
⇢1 � ⇢2 can be inferred as

(⇢1 � ⇢2)
def
= (⇢1) � (⇢2)

= a1..b1 � a2..b2
def
= (sgn a1 · a2)..(b1 · b2)

where sgn(0) = 0 and sgn(n) = 1 for n > 0.

LEMMA 2. Let ⇢1, ⇢2 2 P be two relationships in a graph �.
Then the cardinality of ⇢1 [⇢2 can be inferred as

(⇢1[⇢2)
def
=

8
>>>>>>><

>>>>>>>:

(⇢1) [(⇢2) if IP (⇢1) and IP (⇢2) have
disjoint domains

(⇢1) + (⇢2) if IP (⇢1) and IP (⇢2) have equal
domains but disjoint codomains

(⇢1) ˆ+(⇢2) if IP (⇢1) and IP (⇢2) have equal
domains and overlapping
codomains

where 1 +2
def
= {a+ b : a 2 1 ^ b 2 2} and 1 ˆ+2

def
= {c :

a 2 1 ^ b 2 2 ^max{a, b} c (a+ b)}.

Note, that Lemma 2 can also be applied to relationships with par-
tially overlapping domains by splitting those into the overlapping
and the disjoint parts.

LEMMA 3. Let ⇢1, ⇢2 2 P be two relationships in
a graph � with a common end node and let m =

min{max(⇢1),max(⇢2)}. Then the cardinality of ⇢1 1 ⇢2
can be inferred as

(⇢1 1 ⇢2)
def
=

⇢
; if m = 0 _m = ?
1..m otherwise

and its inverse cardinality as

((⇢1 1 ⇢2)
�1

)

def
= (min(⇢1) ·min(⇢2))..(max(⇢1) ·max(⇢2))

LEMMA 4. Let ⇢1, ⇢2 2 P be two relationships in a graph �.
Then the cardinality of ⇢1k⇢2 can be inferred as

(⇢1k⇢2)
def
= 0..(max(⇢1) ·max(⇢2))

Given the means to combine relationships and infer their cardi-
nality, it is now possible to compare the structure of source and
target schemas. As data integration seeks to populate the target
relationships with data from the sources, the structure conflict de-
tector must determine how the atomic target relationships are rep-
resented in the source schemas. In general, target relationships can
correspond to arbitrarily complex source relationships, in particu-
lar to compositions. The composition operator particularly allows
to treat the matching of target relationships to source relationships
as a graph search problem, as is exemplified with the atomic target
relationship records ! artist from Figure 4.

First, the relationship’s start and end node are matched to nodes
in the source schema via the correspondences, in this case to
albums and artist. Then, a path is sought between those nodes.
In the example, there are two possible paths, namely albums !
artist_list ! id

0 ! artist_list00 ! artist_credits ! artist, and
albums ! id ! album ! songs ! artist_list0 ! id

0 !
artist_list00 ! artist_credits ! artist. To resolve this ambigu-
ity, it is assumed that the most concise detected source relationship
is the best match for the atomic target relationship. A relationship
is more concise than another relationship, if its (inferred) cardinal-
ity 1 is more specific than the other relationship’s cardinality 2,
i.e., 1 ⇢ 2. In the case of equal cardinalities, the shorter rela-
tionship is preferred, according to Occam’s razor principle5. Here,
both detected relationships have the same inferred cardinality 0..⇤
according to Lemma 1, but the former is shorter and therefore se-
lected as match.

Having matched a target relationship to a source relationship,
comparing these two can finally reveal structural conflicts. The
example target relationship records ! artist has the annotated
cardinality 1, but its corresponding source relationship is less con-
cise, having an inferred cardinality of 0..⇤. This lower conciseness
causes a structural conflict: The target schema accepts only one
artist value per record, while the source potentially offers an arbi-
trary amount of artists per album. To refine the statement about this
violation, we can count the number of albums in the source data,
that are associated to no or more than one artist, hence, determin-
ing the number of actually conflicting data elements. This violation
count is applicable to any database constraint that can be expressed
in CSG as listed above. Supporting more advanced constraints in
CSGs, such as conditional functional dependencies [8], is left for
future work.

The above described matching and checking process is per-
formed for each target relationship. In the example scenario, there
is only one more structural violation: artist ! records has 0..⇤
as inferred cardinality, so there may be artists with no albums. Af-
terwards, all collected structure violations, depicted in Table 3, are
forwarded to the structure repair planner.

Constraint in target schema Violation count in source data
(⇢

records!artist

) = 1 503
(⇢

artist!records

) = 1..⇤ 102

Table 3: Complexity report of the structure conflict detector.

4.2 Structure Repair Planner
The structure repair planner proposes necessary cleaning tasks to

cope with the structural violations in an integration scenario, that
form the base for the following effort calculation. It ships with
ten such cleaning tasks listed in Table 4; one per type of violation,
e.g., of a not-null constraint, and expected result quality (low or
high). The structure conflict detector can automatically select ex-
actly those tasks that the integration practitioner has to perform in
the data integration scenario to fix structural violations.

However, simply designating a task for each given violation is
not sufficient, as data cleaning operations usually have side effects
that can cause new violations. For instance, the structure conflict
detector reveals that there are 102 artists in the source data that have
no albums and can thus not be represented in the target schema.

5Among competing hypotheses, the one with the fewest as-
sumptions should be selected.

67

Result quality
Constraint Low effort High quality

Not null violated Reject tuple Add missing value
Unique violated Set values to null Aggregate tuples
Multiple attribute Keep any value Merge values

values
Value w/o Drop value Create enclosing

enclosing tuple tuple
FK violated Delete dangling Add referenced value

value

Table 4: Structural conflicts and their corresponding cleaning tasks.

The high-quality solution is to apply the task Create tuples for de-
tached values, that creates record tuples to store these artists, so
that they do not have to be discarded. These new tuples would
violate the not-null constraint on the title attribute, though, so sub-
sequent cleaning tasks are necessary. To account for such impacts,
we simulate applied cleaning tasks on virtual CSG instances as ex-
emplified in Figure 5. In addition to the prescribed cardinalities, the
target CSG is annotated with actual cardinalities. In contrast to the
prescribed cardinalities, those do not prescribe schema constraints
but describe the state of the (conceptually) integrated source data –
in terms of its relationships’ cardinalities. Hence, the actual cardi-
nalities are initialized with the inferred cardinalities from the source
database. Figure 5a depicts this initial state. As long as there are
actual cardinalities (on the left-hand side) that are not subsets of
the prescribed ones, the CSG instance is invalid wrt. its constraints.
Now, if the structure repair planner has chosen a cleaning task, e.g.,
adding new records tuples for artists without albums, its (side) ef-
fects are simulated by modifying the actual cardinalities, as shown
in Figure 5b with bold print. So, amongst others the actual cardi-
nality of artist ! records is changed from 0..⇤ to 1..⇤, reflecting
that all artists appear in a record after the task, and the cardinality of
records ! title is altered from 1 to 0..1, stating that some records
would then have no title. The latter forms a new constraint viola-
tion. Now, a successive repair task can be applied on this altered
CSG instance, e.g., the task Add missing values, which leads to the
state of Figure 5c.

records

artist title gen
1..*⊈1 1⊆1

0..*⊈1..* 1..*⊆1..*

(a) Initial state.

!

records

artist title gen
1..*⊈1 0..1⊈1

1..*⊆1..* 1..*⊆1..*

(b) State after Add new
tuples for records.

!

records

artist title gen
1..*⊈1 1⊆1

1..*⊆1..* 1..*⊆1..*

(c) State after Add miss-
ing values for title.

Figure 5: Extract of a virtual CSG instance as cleaning tasks are
performed on it.

This procedure of picking a task and simulating its effects is re-
peated until the virtual CSG instance contains no more violations.
Furthermore, the structure repair planner orders the repair tasks, so
that tasks that cause new structural violations (or might break an al-
ready fixed violation) precede the task that fixes this violation. This
is not computationally expensive, because we need to order only
tasks that affect a common relationship, but doing so allows for the
detection of “infinite cleaning loops”, where the execution order
of cleaning tasks forms a cycle. In most cases, these cycles are
a consequence of contradicting repair tasks. EFES proposes only

consistent repair strategies. Additionally, the knowledge of the nec-
essary cleaning tasks in a data integration scenario, including their
order, are a valuable aid that can positively impact the integration
effort spent on coping with structural conflicts. Therefore, the or-
dered task list is provided to the user. Finally, the determined clean-
ing tasks are fed into the user-defined effort calculation functions,
which automatically determine the effort for dealing with structural
violations in the given scenario. Table 5 presents this effort for the
example scenario.

Task Repetitions Effort
Add tuples (records) 102 5 mins
Add missing values (title) 102 204 mins
Merge values (title) 503 15 mins

Total 224 mins

Table 5: High-quality structure repair tasks and their estimated ef-
fort using the effort calculation functions from Table 9.

5. VALUE HETEROGENEITIES
Value heterogeneities are a frequent class of data integration

problems with a common factor: corresponding attributes in the
source and target schema use different representations for their val-
ues. For instance, in Example 3.3 the target table tracks stores song
durations as strings, whereas the source table songs stores these
durations in milliseconds as integers. An integration practitioner
might therefore want to convert or discard the source values to
avoid having different value representations in the tracks.duration
attribute. Thus, value heterogeneities can increase the integration
effort.

This section presents a module in EFES to estimate the effort
caused by value heterogeneities. The data complexity is computed
by the value fit detector, which analyzes the source and target data
to detect different types of value heterogeneities between them.
These heterogeneities are then reported to the value transforma-
tion planner, the task model that proposes data cleaning tasks in
response to the heterogeneity issues. Finally, the effort for the pro-
posed tasks can be calculated.

5.1 Value Fit Detector
The basic approach of the value fit detector is to aggregate source

and target data into statistics and compare these statistics to detect
heterogeneities. Statistics are eligible for this evaluation, because
they allow efficient comparison for large amounts of data, while
enabling extensibility (as new functions can be added) and com-
pleteness (as issues that are not captured by available metadata can
be discovered). Furthermore, statistics help to detect the especially
meaningful, general data properties that characterize the data as a
whole. In particular, if the source data does not match the observed
or specified characteristics of the target dataset, plainly integrating
this source data would impair the overall quality of the integration
result: integration practitioners might want to spend effort to make
source data consistent with the target data characteristics.

The value fit detector implements this idea as follows: Given
an integration scenario, it processes all pairs of source and target
attributes that are connected by a correspondence. For each such
pair, statistic values of both attributes are calculated, with the target
attribute’s datatype designating which exact statistic types to use.
In particular, we consider the following statistics:

• The fill status counts the null values in an attribute and the

68

values that cannot be cast to the target attribute’s datatype.

• The constancy is the inverse of Shannon’s information en-
tropy and is useful to classify whether the values of an at-
tribute come from a discrete domain [17].

• The text pattern statistic collects frequent patterns in a string
attribute.

• Character histogram captures the relative occurrences of
characters in a string attribute.

• The string length statistic determines the average string
length and its standard deviation for a string attribute.

• Similarly, the mean statistic collects the mean value and stan-
dard deviation of a numeric attribute.

• The histogram statistic describes numeric attributes as his-
tograms.

• Value ranges are used to determine the minimum and maxi-
mum value of a numeric attribute.

• For attributes with values from a discrete domain, the top-k
values statistic identifies the most frequent values.

For Example 3.3, the string-typed duration target attribute des-
ignates the fill status, the text pattern statistic, the character his-
togram, the string length statistic, and the top-k values as interest-
ing statistics to be collected.

In the next step, a decision model identifies, based on the gath-
ered statistics values, the different types of value heterogeneities
within the inspected attribute pair. Algorithm 1 outlines this de-
cision model, which consists of a sequence of rules. The evalua-
tion of each rule has its own, mostly simple, logic. The first rule
(substantiallyFewerSourceValues), for instance, is evaluated by
comparing the fill status statistics of the source and target attribute.

Algorithm 1: Detect value heterogeneities.
Data: source attribute statistics Ss, target attribute statistics St

Result: value heterogeneities V
1 if substantiallyFewerSourceValues(Ss,St) then
2 add Too few source elements to V ;

3 if hasIncompatibleValues(Ss) then
4 add Different value representations (critical) to V ;

5 if domainRestricted(Ss) ^ ¬domainRestricted(St) then
6 add Too coarse-grained source values to V ;
7 else if ¬domainRestricted(Ss) ^ domainRestricted(St) then
8 add Too fine-grained source values to V ;
9 else if domainSpecificDifferences(Ss,St) then

10 add Different value representations to V ;

For the above example attribute pair, the fill-statuses are for both
attributes near 100 %, there are no incompatible source values (in-
tegers can always be cast to strings), and neither of the attributes
is domain-restricted. Still, possible domain-specific differences be-
tween them might be present. The evaluation of this last rule is
more complex. For this purpose, a set of statistics, that are spe-
cific to the target attribute’s datatype, are computed, e.g., the string
format and string length statistic for the string-typed, not domain-
restricted duration attribute. To compare these statistics among at-
tributes, for each of them of type ⌧ , an importance score i

�
St(⌧)

�

and a fit value f
�
Ss(⌧),St(⌧)

�
are calculated. These calculations

are specific to the actual statistics. Intentionally, the importance
score describes how important the statistic type at hand is for the
target attribute. For example, in the duration attribute, all values
have the same text pattern [number ":" number], so the string for-
mat statistic is presumably an important characteristic and should
therefore have a high importance score. If it had many different text
patterns in contrast, its importance would be close to 0. In addition,
the fit value measures to what extent the source attribute statistics fit
into the target attribute statistics. For instance, the length attribute
provides only values with the differing pattern [number] leading to
a low fit value. Eventually, the fit values for all applied statistic
types are averaged using the importance scores as weights:

f
def
=

X

⌧

⇣
i
�
St(⌧)

�
· f

�
Ss(⌧),St(⌧)

�⌘

This overall fit value tells to what extent the source attribute fulfills
the most important characteristics of the target attribute. If it falls
below a certain threshold, we assume domain-specific differences
in between the compared attributes and Algorithm 1 issues an ac-
cording value heterogeneity, e.g., Different value representations
between the attributes length and duration. In experiments with
importance scores and fit values between 0 and 1, we found 0.9
to be a good threshold to separate seamlessly integrating attribute
pairs from those that had notably different characteristics.

The set of all value heterogeneities for all attribute pairs forms
the complexity report of the value fit detector that can in the fol-
lowing be processed by the value transformation planner. Table 6
shows the complexity report for the example scenario. Note that
the value heterogeneities can carry additional information that are
derived from the attribute statistics as well and that can be useful
to produce accurate estimates. These parameters are not further
described in this paper.

Value heterogeneity Additional parameters
Different value representation 274.523 source values,

(length ! duration) 260.923 distinct source values

Table 6: Complexity report of the value fit detector.

5.2 Value Transformation Planner
The value transformation planner proposes tasks to solve value

heterogeneities as specified in Table 7. In contrast to the struc-
ture repair tasks from Section 4.2, those tasks do not have interde-
pendencies. Therefore, the value transformation planner can sim-
ply propose an appropriate task for each given value heterogeneity
based on the expected result quality of the data integration. For the
four different types of value heterogeneities, there are only five dif-
ferent tasks, because for a low-effort integration result, value het-
erogeneities can in most cases be simply ignored. So, the Different
value representations between the duration and length attributes
might either be neglected (leading to no additional effort) or, for a
high-quality integration result, the value fit detector issues the task
Convert values. This task is then again fed into the effort calcula-
tion functions that compute the effort that is necessary for the task
completion. Table 8 illustrates the resulting effort estimate.

6. EXPERIMENTS
To show the viability of the general effort estimation architec-

ture and its different models, we conducted experiments with real-
world data from two different domains. In the following, we first
introduce the system and its configuration. We then describe the

69

Result quality
Value heterogeneity low effort high quality

Too few elements - Add values
Different representations

critical Drop values Convert values
uncritical - Convert values

Too specific - Generalize values
Too general - Refine values

Table 7: Value heterogeneities and corresponding cleaning tasks.

Task Parameters Effort
Convert values 274.523 values, 15 mins

(length ! duration) 260.923 distinct values

Total 15 mins

Table 8: Value transformation tasks and their estimated effort.

integration scenarios and how we created the ground truth effort by
manually integrating them. Finally, we compare our system to a
baseline approach from the literature and to the measured effort in
creating the ground truth.

6.1 Setup
The EFES prototype is a Java-based implementation of the effort

estimation architecture presented in the paper, along with the three
modules discussed. It offers multiple configuration options via an
XML file and a command-line interface. As input, the prototype
takes correspondences between a source and a target dataset, all
stored in PostgreSQL databases. The prototype and the datasets
are available for download.6

Configuration and External Factors. In our experiments, the
only available software for conducting the integration are (i) manu-
ally written SQL queries, and (ii) a basic admin tool like pgAdmin.
We also assume the user has not seen the datasets before and that
she is familiar with SQL. Based on these external factors, corre-
sponding effort conversion functions are reported in Table 9. For
example, the intuition behind the formula for adding values is that
it takes a practitioner two minutes to investigate and provide a sin-
gle missing value. In contrast, deleting tuples with missing values
requires five minutes, because independently from the number of
violating tuples, one can write an appropriate SQL query to per-
form this task. Furthermore, we fine-tuned these settings for our
experiments as we explain in Section 6.2.

Integration Scenarios. We considered two real-world case stud-
ies. The first is the well-known Amalgam dataset from the biblio-
graphic domain, which comprises four schemas with between 5 and
27 relations, each with 3 to 16 attributes. The second is a new case
study we created with a set of three datasets with discographic data.
In those datasets, there are three schemas with between 2 and 56 re-
lations and between 2 and 19 attributes each. Links to the original
datasets can be found on the web page mentioned above.

For each case study, we created four integration scenarios, each
consisting of a source and target database and manually created
correspondences, because we do not want the evaluation results to
depend on the quality of a schema matcher at this point. Within
each domain, we included a data integration scenario with iden-
tical source and target schema and three other, randomly selected

6http://hpi.de/naumann/projects/ repeatability/

Task Effort function (mins)
Aggregate values 3 · #repetitions
Convert values (if #dist-vals < 120) 30,

(else) 0.25 · #dist-vals
Generalize values 0.5 · #dist-vals
Refine values 0.5 · #values
Drop values 10

Add values 2 · #values
Create enclosing tuples 10

Delete detached values 0

Reject tuples 5

Keep any value 5

Add tuples 5

Aggregate tuples 5

Delete dangling values 5
Add referenced values 5
Delete dangling tuples 5
Unlink all but one tuple 5
Write mapping 3 · #FKs + 3 · #PKs + #atts +

3 · #tables

Table 9: Effort calculation functions used for the experiments.

scenarios with different schemas.
Effort Estimates. In order to obtain effort estimations, we ap-

plied the following procedure to each data scenario twice, once
striving for a low-effort integration result, once for a high-quality
result. At first, we executed EFES on the scenario to obtain the
data complexity reports and a set of initially proposed mapping
and cleaning tasks. If a data complexity aspect was properly recog-
nized but we preferred a different integration task, we have adapted
the proposed tasks. For instance, in one scenario, our prototype
proposed to provide missing FreeDB IDs for music CDs to obtain
a high-quality result; this ID is calculated from the CD structure
with a special algorithm. Since there was no way for us to obtain
this value, we exchanged this proposal with Reject tuples to delete
source CDs without such a disc ID instead.

Ground Truth Effort. Finally, we gathered the ground truth
of necessary integration tasks manually and conducted them with
SQL scripts and pgAdmin, thereby measuring the execution time of
each task. We believe these two manually integrated scenarios with
time annotations are a contribution per se, as they can be used also
for benchmarking of mapping and cleaning systems for other data
integration projects.

6.2 Experimental Results
The correspondences that were created for the case study

datasets have been fed into EFES to compare its effort estimates
to the actual effort. As a baseline, we used the standard approach
based on attribute counting [14], as discussed in Section 2. To ob-
tain fair calibrations of EFES and this baseline model, we employed
cross validation: We used the effort measurements from the bibli-
ographic domain to calibrate the parameters of EFES and the at-
tribute counting approach for the estimation of the music domain
scenarios, and vice versa. Thus, we have for both scenarios dif-
ferent training and test data and both models can be regarded as
equally well-trained. To compare the two models against the mea-
sured effort, we applied the root-mean-square error (rmse):

rmse =

vuut
P

s2S

⇣
measured(s)�estimated(s)

measured(s)

⌘2

#scenarios

70

0

50

100

150

200

250

300

350

Ef
es

M
ea

su
re

d

C
o

u
n

ti
n

g

Ef
es

M
ea

su
re

d

C
o

u
n

ti
n

g

Ef
es

M
ea

su
re

d

C
o

u
n

ti
n

g

Ef
es

M
ea

su
re

d

C
o

u
n

ti
n

g

Ef
es

M
ea

su
re

d

C
o

u
n

ti
n

g

Ef
es

M
ea

su
re

d

C
o

u
n

ti
n

g

Ef
es

M
ea

su
re

d

C
o

u
n

ti
n

g

Ef
es

M
ea

su
re

d

C
o

u
n

ti
n

g

s1-s2 (low eff.) s1-s2 (high qual.) s1-s3 (low eff.) s1-s3 (high qual.) s3-s4 (low eff.) s3-s4 (high qual.) s4-s4 (low eff.) s4-s4 (high
qual.)

Ef
fo

rt
 [

m
in

]

Mapping Cleaning Cleaning (Values) Cleaning (Structure)

Figure 6: Effort estimates (EFES), actual effort (Measured), and baseline estimates (Counting) of the Bibliographic scenario.

where S is a set of integration scenarios.
We start our analysis with the Amalgam dataset with the results

reported in Figure 6. EFES consistently outperforms the counting
approach in all scenarios. This is explained by the fact that the base-
line has no concept of heterogeneity between values in the datasets,
but it is one of the main complexity drivers in these integration sce-
narios. In terms of the root-mean-square error, EFES achieves 0.47,
while the baseline obtains 1.90 (lower values indicates better esti-
mations), thus there is an improvement in the effort estimation by a
factor of four. Moreover, EFES not only provides the total number
of minutes, but also a detailed break down of where the effort is to
be expected. This turned out to be particular useful to revise the
effort estimate as described above, thus enriching the estimation
process with further input. In fact, it makes a significant difference
if an integration practitioner has to add hundreds of missing values
or if tuples with missing values are dropped. The baseline approach
also distinguishes between mapping and cleaning efforts, but it re-
lates them neither to integration problems nor actual tasks. The
s4-s4 scenario demonstrates this: source and target database have
the same schema and similar data, so there are no heterogeneities
to deal with. While we can detect this, the counting approach esti-
mates considerable cleaning effort.

When we move to the music datasets, the results in Figure 7
show a smaller difference between the two estimation approaches.
In fact, EFES outperforms the baseline four times, in three cases
baseline does a better job, and in one case the estimate is basically
the same. The explanation is that in this domain, there are fewer
problems at the data level and the effort is dominated by the map-
ping, which strongly depends on the schema. However, when we
look at the root-mean-square error, EFES achieves 1.05, while the
baseline obtains 1.64. Therefore, even in cases where EFES cannot
exploit all of its modules, and when counting should perform at its
best, our systematic estimation is better.

It is important to consider the generality of the presented com-
parison. The two case studies are based on real-world data sets with
different complexity and quality. When putting the results over the
eight scenarios together, EFES achieves a root-mean-square error of
0.84, while the baseline obtains 1.70. In terms of execution time,
EFES relies on simple SQL queries only for the analysis of the data
and completes within seconds for databases with thousands of tu-
ples. This overhead can be neglected in the context of the dominat-

ing integration cost.

7. CONCLUSIONS
We have tackled the problem of estimating the complexity and

the effort for data integration scenarios. As data integration is
composed of many different activities, we proposed a novel sys-
tem, EFES, that integrates different ad-hoc estimation modules in
a unified fashion. We have introduced three modules that take
care of estimating the complexity and effort of (i) mapping activi-
ties, (ii) cleaning of structural conflicts arising because of different
structures and integrity constraints, and (iii) resolving heterogene-
ity in integrated data, such as different formats. Experimental re-
sults show that our system outperforms the standard baseline up to
a factor of four in terms of precision of the estimated effort time in
minutes. When compared to the effective time required by a human
to achieve integration, EFES provides a close estimate for most of
the cases.

We believe that our work is only a first step in this challenging
problem. One possible general direction is to integrate EFES with
approaches that measure the benefit of the integration, such as the
marginal gain [9]. This integration would allow to plot cost-benefit
graphs for the integration: the more effort, the better the quality of
the result.

A rather technical challenge in our system is to drop the as-
sumption that correspondences among schemas are given. In prac-
tice, the effort for creating quality correspondences cannot be com-
pletely neglected – although, in our experience it takes considerably
less time than other integration activities – and automatically gener-
ated correspondences introduce uncertainty wrt. the produced esti-
mates. The accuracy measure as proposed Melnik et al. [19] seems
to be a good starting point to tackle this issue.
Acknowledgments. We would like to thank ElKindi Rezig for
valuable discussions in the initial phase of this project.

8. REFERENCES
[1] B. Alexe, W.-C. Tan, and Y. Velegrakis. STBenchmark:

towards a benchmark for mapping systems. Proceedings of
the VLDB Endowment, 1(1):230–244, Aug. 2008.

[2] P. Atzeni, G. Gianforme, and P. Cappellari. A universal
metamodel and its dictionary. In Transactions on

71

0

40

80

120

160

200

Ef
es

M
ea

su
re

d

C
o

u
n

ti
n

g

Ef
es

M
ea

su
re

d

C
o

u
n

ti
n

g

Ef
es

M
ea

su
re

d

C
o

u
n

ti
n

g

Ef
es

M
ea

su
re

d

C
o

u
n

ti
n

g

Ef
es

M
ea

su
re

d

C
o

u
n

ti
n

g

Ef
es

M
ea

su
re

d

C
o

u
n

ti
n

g

Ef
es

M
ea

su
re

d

C
o

u
n

ti
n

g

Ef
es

M
ea

su
re

d

C
o

u
n

ti
n

g

f1-m2 (low eff.) f1-m2 (high qual.) m1-d2 (low eff.) m1-d2 (high qual.) m1-f2 (low eff.) m1-f2 (high qual.) d1-d2 (low eff.) d1-d2 (high
qual.)

Ef
fo

rt
 [

m
in

]

Cleaning (Structure) Cleaning (Values) Cleaning Mapping

Figure 7: Effort estimates (Efes), actual effort (Measured), and baseline estimates (Counting) of the Music scenario.

Large-Scale Data-and Knowledge-Centered Systems I, pages
38–62. Springer, 2009.

[3] B. Boehm. Software Engineering Economics. Prentice-Hall,
Englewood Cliffs, NJ, 1981.

[4] B. Boehm, C. Abts, A. W. Brown, S. Chulani, B. K. Clark,
E. Horowitz, R. Madachy, D. J. Reifer, and B. Steece.
Software Cost Estimation with COCOMO II. Prentice-Hall,
Englewood Cliffs, NJ, 2000.

[5] A. Calì, D. Calvanese, G. De Giacomo, and M. Lenzerini.
Data integration under integrity constraints. Information
Systems, 29(2):147–163, 2004.

[6] A. Calì, G. Gottlob, and T. Lukasiewicz. A general
datalog-based framework for tractable query answering over
ontologies. In Proceedings of the Symposium on Principles
of Database Systems (PODS), pages 77–86, 2009.

[7] M. P. Consens, I. F. Cruz, and A. O. Mendelzon. Visualizing
queries and querying visualizations. SIGMOD Record,
21(1):39–46, 1992.

[8] M. Dallachiesa, A. Ebaid, A. Eldawy, A. Elmagarmid,
I. Ilyas, M. Ouzzani, and N. Tang. Towards a commodity
data cleaning system. In Proceedings of the International
Conference on Management of Data (SIGMOD), pages
541–552, 2013.

[9] X. L. Dong, B. Saha, and D. Srivastava. Less is more:
Selecting sources wisely for integration. Proceedings of the
VLDB Endowment, 6(2):37–48, 2012.

[10] J. Euzenat and P. Shvaiko. Ontology matching.
Springer-Verlag, Heidelberg (DE), 2nd edition, 2013.

[11] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data
exchange: Semantics and query answering. In Proceedings
of the International Conference on Database Theory (ICDT),
pages 207–224, Siena, Italy, 2003.

[12] R. Fagin, P. G. Kolaitis, L. Popa, and W. C. Tan:. Composing
schema mappings: Second-order dependencies to the rescue.
In Proceedings of the Symposium on Principles of Database
Systems (PODS), pages 83–94, Paris, France, 2004.

[13] F. Geerts, G. Mecca, P. Papotti, and D. Santoro. Mapping and
Cleaning. In Proceedings of the International Conference on
Data Engineering (ICDE), pages 232–243, 2014.

[14] B. Harden. Estimating extract, transform, and load (ETL)
projects. Technical report, Project Management Institute,
2010.

[15] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer. Wrangler:
interactive visual specification of data transformation scripts.
In CHI, pages 3363–3372, 2011.

[16] A. Kumar P, S. Narayanan, and V. M. Siddaiah. COTS
integrations: Effort estimation best practices. In Computer
Software and Applications Conference Workshops, 2010.

[17] D. MacKay. Information Theory, Inference, and Learning
Algorithms. Cambridge University Press, 2003.

[18] B. Marnette, G. Mecca, P. Papotti, S. Raunich, and
D. Santoro. ++Spicy: an opensource tool for
second-generation schema mapping and data exchange.
Proceedings of the VLDB Endowment, 4(12):1438–1441,
2011.

[19] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity
flooding: A versatile graph matching algorithm. In
Proceedings of the International Conference on Data
Engineering (ICDE), pages 117–128, 2002.

[20] F. Naumann. Data profiling revisited. SIGMOD Record,
42(4):40–49, 2013.

[21] P. Papotti and R. Torlone. Schema exchange: Generic
mappings for transforming data and metadata. Data &
Knowledge Engineering (DKE), 68(7):665–682, 2009.

[22] E. Rahm and H. H. Do. Data cleaning: Problems and current
approaches. IEEE Data Engineering Bulletin, 23(4):3–13,
2000.

[23] T. Rekatsinas, X. L. Dong, L. Getoor, and D. Srivastava.
Finding quality in quantity: The challenge of discovering
valuable sources for integration. In Proceedings of the
Conference on Innovative Data Systems Research (CIDR),
2015.

[24] K. P. Smith, M. Morse, P. Mork, M. H. Li, A. Rosenthal,
M. D. Allen, and L. Seligman. The role of schema matching
in large enterprises. In Proceedings of the Conference on
Innovative Data Systems Research (CIDR), 2009.

[25] J. Wang, T. Kraska, M. J. Franklin, and J. Feng. CrowdER:
Crowdsourcing entity resolution. Proceedings of the VLDB
Endowment, 5(11):1483–1494, 2012.

72

