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Abstract—The efficient processing of large collections of pat-
terns expressed as Boolean expressions over event streams plays
a central role in major data intensive applications ranging from
user-centric processing and personalization to real-time data
analysis. On the one hand, emerging user-centric applications,
including computational advertising and selective information
dissemination, demand determining and presenting to an end-
user the relevant content as it is published. On the other hand,
applications in real-time data analysis, including push-based
multi-query optimization, computational finance and intrusion
detection, demand meeting stringent subsecond processing re-
quirements and providing high-frequency event processing. We
achieve these event processing requirements by exploiting the
shift towards multi-core architectures by proposing novel adap-
tive parallel compressed event matching algorithm (A-PCM) and
online event stream re-ordering technique (OSR) that unleash
an unprecedented degree of parallelism amenable for highly
parallel event processing. In our comprehensive evaluation, we
demonstrate the efficiency of our proposed techniques. We show
that the adaptive parallel compressed event matching algorithm
can sustain an event rate of up to 233,863 events/second while
state-of-the-art sequential event matching algorithms sustains
only 36 events/second when processing up to five million Boolean
expressions.

I. INTRODUCTION

Efficient event processing (i.e., event matching) is an in-

tegral part of a growing number of web and data manage-

ment technologies ranging from user-centric processing and

personalization to real-time data analysis. In user-centric pro-

cessing applications, there are computational advertising [25]

and location-based services for emerging applications in co-

spaces [1]. Common to all of them are patterns and specifica-

tions (e.g., advertising campaigns, job profiles, service descrip-

tions) modeled as Boolean expressions, XPath expressions,

or SQL queries and incoming user information (e.g., user

profiles and preferences) modeled as events using attribute-

value pairs, XML documents, or relational tuples. In the

real-time analysis domain, there are (complex) event process-

ing [2], [6], [25], [21], [22], XML filtering [4], [19], intrusion

detection [24], [8], and computational finance [23]; Similarly,

common among these applications are predefined sets of

patterns (e.g., queries and attack specifications) modeled as

subscriptions and streams of incoming data (e.g., relational

tuples, data packets) modeled as events.

Unique to user-centric processing and personalization are

strict requirements to determine only the relevant content (e.g.,

ads) with respect to user demographics and interests [25]. Fur-

thermore, user-centric processing demands scaling to millions

of patterns and specifications (e.g., advertising campaigns) and

millions of users (i.e., consumers) while meeting processing la-

tency constraints in the subsecond range, to achieve an accept-

able service-level agreement. Noteworthy, users often within

certain demographic proximity are potentially interested in

similar content and demand receiving the same contents (e.g.,

following popular local news, songs, or products).

We argue that in order to meet these scaling requirements,

it is essential to develop efficient parallel matching algorithms

that are (1) compatible with state-of-art high-dimensional

indexing structures [21], [22], [20] and (2) capable of ex-

ploiting and extracting similarity among incoming events. In

other words, matching algorithms that are able to efficiently

identify and aggregate user profiles with similar interests and

to amortize the cost of finding user-relevant content over many

users.

Unique to real-time data analysis applications are critical

requirements to meet the ever growing demands in processing

large volumes of data at predictably high-throughput and low

latencies across many application scenarios [12], [3]. The

need for increased processing bandwidth is the key ingredient

in high-throughput real-time data analysis that enables pro-

cessing, analyzing, and extracting relevant information from

streams of incoming data. We argue that in order deliver

real-time event processing in presence of continuous prolif-

eration of data and bandwidth, it is inevitable to expand the

research horizon beyond the conventional sequential matching

algorithms and adopt other key enabling technologies such

as multi-core architectures. There is a mounting evidence

that the number of cores is predicted to grow exponentially

in the coming years [14], [18], and that multi-cores are

successfully being used to accelerate many data management

applications [15]. Therefore, the next generation of real-time

event processing must exploit parallel hardware such as multi-

core architecture to sustain the expected growth of demands.

These requirements constitute challenges of paramount im-

portance for applications that rely on event processing (with

our primary focus on patterns defined as Boolean expressions).

To address these challenges, first and foremost, we develop a

parallel event matching algorithm over an exiting state-of-the-

art Boolean expression index structure [21], [22], [20]. Our

parallel matching algorithm exploits multi-threading and the

shared-memory architecture of modern multi-core processors

in order to scale to millions of expressions and to meet the

high-throughput demands. Such parallel matching algorithms

have received little attention by prior Boolean expression

matching approaches (e.g., [2], [6], [25], [21], [22]). Second,

we introduce a stream-aware adaptive parallel algorithm that

can identify and utilize the overlap (or the similarity) within

the event stream. Such an effective online event stream re-

ordering technique have also been largely ignored by the prior-

art in matching algorithms (e.g., [2], [6], [25], [21], [22]).

In short, the contributions of this paper are summarized



as follows (i) A novel Parallel Compressed event Matching

(PCM) algorithm over a bitmap-based event encoding detailed

in Section V; (ii) an efficient Online Stream Re-ordering

(OSR) technique presented in Section VI; (iii) an Adaptive

Parallel Compressed event Matching (A-PCM) algorithm that

adaptively chooses between matching over compressed or

uncompressed events depending on stream similarity discussed

in Section VI; and (iv) a comprehensive experimental evalu-

ations that establishes the effectiveness of our approach in

Section VII.

In what follows, we use the terms “event stream” and

“stream” interchangeability. Furthermore, we formulate our

“event processing” or “event matching” problem using

the well-known publish/subscribe (pub/sub) matching prob-

lem [2], [6], [25], [7], [21], [22] described in Section II.

II. EXPRESSION LANGUAGE AND DATA MODEL

In our pub/sub matching model, the input is a set of

subscriptions (a conjunction of Boolean predicates) and an

event (an assignment of a value to each attribute), and the

output is a subset of subscriptions satisfied by the event. In

fact, we also model our events as Boolean expression to enable

a more powerful event language.

In short, we define a Boolean expression as a conjunction

of Boolean predicates. A predicate is a triple, consisting

of an attribute uniquely representing a dimension in n-

dimensional space, an operator, and a set of values, denoted

by P attr,opt,val(x), or more concisely as P (x). A predicate

either accepts or rejects an input x such that P attr,opt,val(x) :
x −→ {True, False}, where x ∈ Dom(P attr) and P attr is

the predicate’s attribute. Formally, a Boolean expression be is

defined over an n-dimensional1 space as follows:

{P attr,opt,val
1 (x) ∧ · · · ∧ P

attr,opt,val

k (x)},

where k ≤ n; i, j ≤ k, P
attr
i = P

attr
j iff i = j.

We support an expressive set of operators for the most

common data types: Relational operators (<, ≤, =, 6=, ≥,

>), set operators (∈, /∈), and the SQL BETWEEN operator.

The expressiveness of our subscription and event language

enables supporting a wide range of matching semantics. In this

paper, we focus primarily on the classical pub/sub matching

problem: Given an event ǫ and a set of subscriptions Σ, find all

subscriptions σi ∈ Σ satisfied by ǫ. We refer to this problem

as stabbing subscription SQ(ǫ) given by:

SQ(ǫ) = {σi| ∀P
attr,opt,val
q (x) ∈ σi, ∃P attr,opt,val

o (x) ∈ ǫ,

P
attr
q = P

attr
o , ∃x ∈ Dom(P attr

q ), Pq(x) ∧ Po(x)}

III. BOOLEAN EXPRESSION INDEXING

We provide an overview of BE-Tree before presenting our

proposed adaptive parallel compressed matching (A-PCM) and

online stream re-ordering (OSR) algorithms.

BE-Tree is a an index structure for indexing a large col-

lection of Boolean expressions (i.e., subscriptions) and for

efficiently retrieving the most relevant matching expressions

1Without loss of generality, we assume each dimension has a domain
cardinality of size N .

Fig. 1. An overview of BE-Tree data structure.

given a stream of incoming events [21], [20]. In general, BE-

Tree is an n-ary tree structure in which a leaf node contains

the actual data (Boolean expressions) and an internal node

contains partial information about data (e.g., an attribute and a

range of values) in its descendant leaf nodes. The tree consists

of three classes of nodes: A p-node (partition node) for storing

the partitioning information, i.e., an attribute. A c-node (cluster

node) for storing the clustering information, i.e., a range of

values. And an l-node (leaf node), being at the lowest level

of the tree, for storing the actual data. Moreover, p-nodes and

c-nodes are logically organized in a special directory structure

for fast tree traversal and search space pruning. The overall

tree structure is depicted in Figure 1.

IV. BITMAP EVENT ENCODING

In this section, we focus on an execution model that exploits

opportunities to further accelerate the matching algorithm

computation that relies on a bitmap-based event encoding [20].

The main advantage of the bitmap-based technique is to ensure

exactly-once evaluation of every distinct predicate. At a high-

level, this technique exploits predicate inter-relationships (i.e.,

predicate covering) and guarantees exactly-once evaluation of

distinct predicates. At a low-level, it minimizes the memory

footprint through an efficient bitmap representation that also

speeds up the computation using low-level bitwise operations

to preserve cache locality.

One of the matching algorithm properties, in addition to

search space pruning, is minimizing the true candidate com-

putations, i.e., the evaluation (and the encounter) of com-

mon predicates exactly once. The scope of this objective is

generalized by also ensuring that each distinct predicate is

always evaluated exactly once. Conceptually, in this paradigm,

as the matching algorithm examines an incoming event, an

efficient structure is maintained (with respect to both time

and space) to store the evaluation result (True or False)

of each distinct predicate in the subscription workload. This

structure is represented as a bit-array, in which each bit

indicates whether or not a distinct predicate has been evaluated

to True (or False). Exploiting a bit-array not only provides

fast read/write access to predicate evaluation results, but also

its compact encoding could potentially be resident entirely in

the cache of a modern processor, which significantly reduces

the number of cache-misses.

Therefore, the bitmap-based event encoding, pushes the

limit of matching algorithms’ standard predicate evaluation

by also enabling exactly-once evaluation and incorporating the

predicate inter-relationships (e.g., predicate covering) through

precomputation and storing of predicate coverings, which is

achieved partly due to the exploitation of the discrete and
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Fig. 2. Bitmap-based Event Encoding Technique

finite domain properties. The bitmap structure is over the set

of all distinct predicates such that for any given attribute-

value pair, i.e., the equality predicate P attr,=,value, all distinct

predicates that are relevant for P are precomputed and stored

in the bitmap. Therefore, instead of individually evaluating

every relevant distinct predicate for a given event’s equality

predicate, the evaluation results are precomputed for every

possible distinct predicate that is affected by any given event’s

predicate. The set of affected predicates by the equality

predicate P , denoted by ΨP , is defined as follows

ΨP = {Pi| ∀P
attr,opt,val

i (x) ∈ Ψ,

P
attr = P

attr
i , ∃x ∈ Dom(P attr)},

where Ψ is the set of all distinct predicates.

Consequently, the set of all distinct predicates that are not

affected by P are given by ΨP = Ψ − ΨP . The bitmap is

constructed by determining the sets ΨP and ΨP for each P ,

i.e., P is formed by enumerating over the discrete values of

each attribute (a dimension in the space) in order to construct

an equality predicate P . Next, each predicate is evaluated in

ΨP for a given P and stored as the result in the bitmap. Also,

the set ΨP is automatically filled with zeros because none of

the predicates in the set ΨP are affected by P . The overall

structure of the bitmap and its organization of ΨP and ΨP are

illustrated in Figure 2.

The most striking feature of the bitmap structure is its highly

sparse matrix structure because the set of bits represented by

ΨP are all zero, and given the high-dimensionality of our

problem space, the bitmap is space-efficient because |ΨP | ≪
|ΨP |. In particular, if the corresponding bits are re-ordered by

clustering ΨP and ΨP (as shown in Figure 2), an effective

space-reduction can be achieved for the bitmap structure. The

bitmap space saving ratio
|ΨP |
|ΨP |

, through reordering of the

bits in the bitmap, is directly proportional to the number of

attributes l if the predicates are sorted based on their attributes

and given by

l ∝
|ΨP |

|ΨP |
.

This ratio is further influenced by the distribution of pred-

icates over each attribute. For instance, for certain domain

values value over attribute attr, there may be no predicate

such that the value falls in any predicate’s range of values;

thereby, implying that the set ΨP attr,=,x

consists of only zero

Fig. 3. Convex vs. non-convex minimum bounding area

bits. Such a distribution of predicates results in further space

reduction because neither ΨP attr,=,x

nor ΨP attr,=,x
need to be

stored explicitly in the bitmap. This reduction in space also

improves, as a byproduct, the bitwise operations during the

matching process. In addition, there are potential research op-

portunities to develop more effective bit reordering techniques

(i.e., a predicate topological sort order) to further improve

the space saving ratio. In general, the minimum number of

predicates that must be maintained for each P (a lower-bound

on size of the set ΨP ) are those distinct predicates that are

satisfied by P . This minimum set is defined as follows:

ΨP
min = {Pi| ∀P

attr,opt,val

i (x) ∈ Ψ, P
attr =

P
attr
i , ∃x ∈ Dom(P attr), P (x) ∧ Pi(x)},

During the matching process, upon arrival of a new event e,

the precomputed bitmap index is utilized to efficiently compute

all distinct predicates that are satisfied by the incoming event.

This is carried out by a bit-wise OR-operation of relevant

rows in the bitmap index in order to fully construct the

Result Bit-array: A bit-array in which each bit corresponds

to a distinct predicate, where a bit with value 1 signifies that

the corresponding predicate is True, otherwise False. The

Result Bit-array is constructed as follows:

Result Bit-array =
⋃

Pi∈e

{ΨPi ,ΨPi},

where no actual operation is required to account for ΨPi

sets.

The Result Bit-array, namely, the bitmap-based event encod-

ing, can entirely fit in the cache as long as the subscription

workload contains only on the order of a few million of

distinct predicates appears the active and hot set, for which

only a few mega bytes of cache is sufficient2. However, the

potential source of cache misses is not limited to Result Bit-

array accesses, in fact, another internal data structure that

generates cache misses (in addition, to general pointer chasing

of any tree structure) is the representation Boolean expressions

(subscriptions).

In the bitmap-based evaluation, since each subscription

requires only to keep an array of references to Result Bit-array,

it is feasible to store all subscriptions in a as cache-conscious

blocks of 2-dimensional arrays of references. Moreover, clus-

ters of subscriptions could be summarized using 2-dimensional

subscription representation and be fitted in the processor

cache; thus, substantially reducing the number of cache misses

during subscription evaluations in order to improve the overall

matching time.

The bitmap maintenance, the removal of predicates, is done

by marking predicates as pseudo deleted and a background

process periodically re-claims the space. However, adding new

2The processor used in our experiment has two shared-cache blocks of size
6144KB.



distinct predicates3 is handled by storing them in an overflow-

bitmap data structure, which is periodically merged with the

main bitmap. Notably during the merge process, the matching

can continue by combination of using the old bitmap and/or

simply re-evaluating each predicate on-the-fly as needed.

V. MATCHING ON COMPRESSED EVENTS

By exploiting the bitmap-based encoding from Section IV,

we develop a parallel matching algorithm (PCM) that carries

out subscription matching in parallel over compressed events.

The compressed events are created by coalescing multiple

bitmap-based event encodings into one. Our event compres-

sion technique, unlike convex-shaped minimum bounding area

techniques, prevalent in the database multi-dimensional index-

ing literature [10], geometrically represents many events using

a non-convex minimum bounding area that avoids including in

the bounding area any empty space, i.e., dead space, as shown

in Figure 3. Inclusion of dead space results in increased chance

of false candidates.4

A. Parallel Compressed Matching

In a sequential processing setting, as an event arrives, we

first compute a bitmap-based encoding of the event, then we

use the bitmap encoding for traversing a tree-based index

structure (e.g., traversing BE-Tree) and finding the match

results. This process is illustrated in Figure 4.

In a parallel processing setting with compression, as part of

our PCM algorithm, we leverage the bitmap-based encoding

to provide an effective compression algorithm that coalesces a

set of incoming events into a single representation, namely, a

compressed event, and subsequently traverse the index solely

using this compressed event. Not only does the compressed

event inherit all desired properties of the bitmap-based encod-

ing such as cache-consciousness and exactly-once predicate

evaluation, but it also geometrically represent a set of events

as a non-convex minimum bounding area with no dead space,

an effective way for reducing false candidates.

The efficient construction of a compressed event is achieved

by bitwise-OR operations over the bitmap-based encoding of

a set of events. The compressed event is then used to index

traversal once for all compressed events and identify all leaf

nodes with potential matching subscriptions. In the final stage

of PCM, we determine for each event the actual matched

subscriptions using the individual bitmap-based encoding for

each event. The five stages of the PCM algorithm for matching

over compressed events is depicted in Figure 5.

Notably, the PCM algorithm can essentially solve the match-

ing problem for a set of events with a single index traversal

and with a single pass over all relevant leaf nodes. Thus, our

approach amortizes memory accesses and matching cost over a

set of events exhibiting a substantial improvement in matching

throughput (and arguably in matching latency).

The PCM algorithm is also amenable to a high degree of par-

allelization. In particular, Stage 1 of our algorithm (as shown

in Figure 5) can be implemented using n threads for n events

3Note that adding new predicates covered by existing predicates is trivial.
4False candidates are subscriptions that are not identified falsely as potential

matches and must be filtered.
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Fig. 4. Overview of Matching Algorithm using Bitmap-based Encoding

such that each thread is responsible to compute the bitmap-

based encoding for each event. Similarly, Stage 2 coalesces

the bitmap encoding of n events into a single compressed

event, which again can be done in parallel if the bitwise-OR

computation is horizontally partitioned across n threads. Let

the size of the bitmap encoding be given by length(bitmap)
bits, then the bitmap-based encoding is horizontally partitioned

into chunks such that each thread is assigned one chunk, and

a chunk is lenght(bitmap)/n number of consecutive bits

(Stage 3). Furthermore, the chunk size is adjusted to be a mul-

tiple of a cache-line size in order to avoid false sharing, i.e.,

false sharing occurs when in a shared-memory multi-threaded

program, threads’ local objects fall within the same cache-line,

thereby unnecessaryly triggering a cache-coherency protocol.

False sharing is known to substantially reduce the overall

performance of multi-threaded applications [16].

The resulting compressed bitmap encoding of all events (the

compressed event) is then passed onto to the index structure

(Stage 4). During the matching process (within a single event)

all matching candidate subscriptions for the compressed event

are collected and returned. Finally, in Stage 5 of the PCM

algorithm, for each returned set of subscriptions, every sub-

scription residing is matched individually for each event (using

its pre-calculated bitmap encoding in Stage 1). Therefore, at

this point, all the matching subscriptions can be determined

exactly for each event. In addition, each event can carry out

the final check within a single thread. Most importantly, all

parallelized stages of our PCM algorithm are independent

within each stage and require no coordination, which again

improves running time considerably. In addition, only limited

overall coordination and no data consistency is required across

threads. In fact, the only coordination requirement is the in-

order processing of stages: Each thread in a stage must wait

until all running threads have completed before proceeding to

the next stage.

Lastly, it is important to note when matching with com-

pressed events using the bitmap-based encoding (Stages 4-5),

that all predicate evaluations including predicates associated

with index internal predicates (e.g., predicate for describing

an index node), are translated into direct lookup in the Result

Bit-array. As a result, eliminating the need for re-evaluating

any predicates for any of the compressed events. The predicate

evaluation of the PCM algorithm when applied to BE-Tree is

demonstrated in Figure 6.

B. Traversal Unrolling

The first PCM algorithm optimization is the dynamic loop

unrolling (i.e., loop unwinding) for index traversal. In the base

PCM algorithm, the tree is traversed recursively (resulting in

a depth-first search), which continuously switches between

leaf node scanning (and parallel matching) and traversing

the remainder of the tree. This constant switching introduces



000 010 Subscription ID

Event Stream

Bitmap-based 

Event Encoding

010 010

Event i

Event 1

Thread 1

Thread i

Thread m

000 010

010 010

Bitwise-OR of Bitmap-based Encodings 

(Compressing Event Stream)

Match Results

Thread 1

 ith Event

Event m

Match Results

Thread i

Match Results

Thread m

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Thread 1 Thread m

Index   

T
h

re
a
d

 1

T
h

re
a
d

 i

T
h

re
a
d

 m

Event Matching

(Parallel Tree Traversal)

Event Matching

(Parallel Leaf Scanning)

Fig. 5. Overview of PCM Algorithm

additional overhead every time leaf node scanning is initiated:

(1) events-to-thread assignment, (2) threads-to-processor or

threads-to-core assignment, and (3) thread creation and de-

struction depending on the thread implementation.5

As discussed previously, although in theory, every thread

is run independently of other threads, the re-assignment, that

occurs after every leaf node scanning, may reshuffle threads

and core assignments causing false sharing. For example, each

thread keeps track of a number (and actual) of matches for

each event and the thread’s local variables are brought into

non-shared L1 cache of the core that is running the thread.

Now suppose, when the first leaf node is examined, the event

ei is assigned to the thread tj running on the core ck, but upon

a subsequent assignment, suppose that the thread assignment

is re-shuffled such that tj is now assigned to ck+1 and tj
continues to be responsible for the event ei. Thus, the ei
counter is brought into the non-shared L1 cache of both ck and

ck+1. Now, as soon as the ei matching counter is incremented

by tj , an expensive cache coherency protocol is triggered,

invalidating and synchronizing ck’s local cache despite the

fact that ck will never be read and could have simply been

ignored (i.e., an instance of false sharing).

The three issues raised above can be addressed, if tree

traversal and leaf scanning steps are de-coupled, conceptually,

resulting in a dynamic tree traversal unrolling. Thus, we

introduce traversal unrolling in PCM as follows. First, traverse

the index and collect all candidate leaf nodes (stored in a form

of list-based structure), and, second, we iterate through all

leaf nodes and scan their contents. In this way, the threads-to-

processor and threads-to-core assignments occur only once,

which eliminates the problem of false sharing and cache

coherency all together. Furthermore, unrolling also avoids

unnecessary thread creation and destruction.

C. Parallel Path Traversal

The next PCM algorithm optimization is the acceleration of

the matching computation by parallelizing the index traversal.

In which conceptually index is divided into sets of regions,

and each region is assigned to one thread. Each region can be

defined as a set of paths that needs to be examined. Recall

5For instance, in certain Open Multiprocessing libraries, the programmer
has no direct access to control the underlying thread creation/destruction.
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that most high-dimensional tree indexing structure results in a

multi-path traversal. To form these regions, different schedul-

ing schemes for paths-to-thread assignment are possible.

Under the static assignment, a round-robin assignment of

paths to threads has proven to be effective in our evaluation

(and is a default option in all of our experiments). One possible

shortcoming of a round-robin assignment is underutilization of

processing power for certain workload distributions such that

for a given event certain threads remain idle because their

assigned region has no path that is relevant for the given

event(s). To the contrary, the dynamic assignment relies on

the paths-to-thread assignment at run-time after identifying

potential paths for a given (compressed) event.

Note that the parallel path traversal optimization does not

change the tree traversal and leaf scanning de-coupling of the

PCM algorithm that we introduced in the last section.

D. Matching Pipeline

A natural pipeline arises in our PCM proposed compressed

matching computation, namely, bitmap-based event encoding,

event stream compression, and event matching. This pipeline

can be mapped onto the symmetric multiprocessing (SMP)

architecture that connects a set of identical processors using

shared main memory (spread over several memory banks all

connected by a system bus.) The main challenges that arise

in exploiting an SMP is limited data bandwidth with respect

to the available processing bandwidth. In order to avoid any

processor idleness, one must ensure that processors are fed



directly by their closest memory banks, coupling memory

and processor. We achieve memory and processor coupling

by relying on non-uniform memory access (NUMA) and by

replicating the index in the processor’s local memory banks.6

E. Parallel Implementation

We use the portable Open Multiprocessing (OpenMP) li-

brary for implementing our PCM algorithm and our proposed

optimization including compression, traversal unrolling, and

parallel path traversal techniques. In addition, OpenMP pro-

vides both static and dynamic thread scheduling as a tunable

parameter, which we utilized in our evaluation.

VI. ONLINE EVENT STREAM RE-ORDERING

To realize the true power of the PCM algorithm’s com-

pressed matching, the compressed events must be similar. A

naive solution would simply rely on the raw event order, which

may fluctuate and contain random noise (i.e., non-similar

events), that deteriorates the effectiveness of the compression

technique. Therefore, it is essential to account for noise in the

event stream and proactively bring together similar events that

are close to each other but not adjacent. This goal is achieved

by our online stream re-ordering technique (OSR).

Unlike the exiting online re-ordering algorithms that rely on

variation of locality-sensitive hashing, we argue that although

these approaches are suitable for re-ordering of data over

high-dimensional space (similar to our event space), yet these

approaches are inadequate in our setting. Basically, any online

re-ordering algorithm that relies on locality-sensitive hashing

can assign a set of events into a set of clusters (i.e., bucket),

where the number of clusters is much smaller than the number

events). Ideally, each cluster will contain similar events. Such

a re-ordering algorithm conceptually resembles approximate

sorting.

However, there are four major shortcoming of any algorithm

that relies solely on locality-sensitive hashing. First, locality-

sensitive hashing requires tuning many parameters, a non-

trivial and daunting task [5]. Second, there is no efficient

technique for reasoning about the similarity among events

in each cluster. We refer to this as discovering the degree

of stream heterogeneity. Third, more importantly, there is

no way for controlling the size of these clusters, i.e., the

distribution of events across clusters maybe highly skewed.

Forth, in locality-sensitive hashing, each hashed data item over

the high-dimensional space is assumed to be fully defined over

the entire space. However, in our domain, most events, specify

values for only small sets of dimensions and provide no values

for the remaining dimensions. We refer to this irregularity as

incomplete event data.

To address these shortcomings, we propose a new online re-

ordering technique OSR that solves all the above-mentioned

shortcomings. Notably, our online re-ordering exploits BE-Tree

to re-order the event stream. As discussed before, BE-Tree

6Using NUMA memory-processor coupling, we have achieved linear scal-
ing of the PCM algorithm when scaling to eight processors of an 8-core Intel
Xeon X6550 (results are omitted due to the lack of space).
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is designed for indexing Boolean expressions over a high-

dimensional space, coping with the curse of dimensionality

is also one of the strength of locality-sensitive hashing.

In short, the PCM algorithm operates as follow. In order

to re-order the event stream, events are buffered into batches

(of size b), then the batched events are inserted into BE-Tree.

The resulting tree is a set of clusters that hold similar events

together. All events in each event cluster are then compressed

and matched in turn.

Since BE-Tree takes as inputs the minimum and maximum

cluster size, then by design, it offers control over the size of

each cluster. In particular, it is desirable that the minimum

size of each event cluster should be larger than the number

of available threads in order to achieve the maximum benefit

and avoid thread idleness.7 In addition, BE-Tree also supports

incomplete event data by design [21]. More importantly, the

heterogeneity of each cluster can efficiently be derived based

on the depth of any cluster in the tree. For example, all events

assigned to the root cluster do not have predicates on any

common attributes, or all events in a cluster at depth two of the

tree, have predicates defined on at least two common attributes,

where the range values defined by these predicates are also

overlapping.

Exploiting the most important feature of the OSR algorithm

is the ability to reason about stream heterogeneity and dynam-

ically adapt to similarity among events in the stream. There-

fore, we proposed an adaptive parallel compressed matching

algorithm (A-PCM) that utilizes both the parallel compressed

matching algorithm and the standard parallel matching algo-

rithm.8

Our A-PCM algorithm works as follows. As the stream is

batched and re-ordered on-the-fly using the OSR technique,

for each batch of events, all event clusters below a certain

similarity threshold are processed as uncompressed using

the standard parallel matching algorithm while event clusters

above a certain similarity threshold are processed using the

compressed matching technique. All events in each cluster

7The effect of the event cluster size is studied in Section VII-B.
8For the standard parallel algorithm, we process n events in parallel using

n threads, where each event is assigned one thread and all threads operate
independently in complete isolation [7].



TABLE I
SYNTHETIC AND REAL WORKLOAD PROPERTIES

Workload Size Number of Dimensions Match Prob Stream Similarity Number of Distinct Predicates Match Prob (DBLP Data)

Size 1M-5M 5M 5M 5M 5M 5M

Number of Dim 128 32-768 128 128 128 677
Cardinality 48 48 48 48 48-3072 26

Number of Sub Pred 7 7 7 7 7 8
Number of Event Pred 15 15 15 15 15 16

Pred Avg. Range Size % 12 12 12 12 12 12
% Equality Pred 0.4 0.4 0.4 0.4 0.4 0.4
Match Prob % 1 1 0.01-9 (≈ 0) or 1 (≈ 0) or 1 0.01-9

Stream Similarity % 70 70 70 10-100 70 70

that satisfy the threshold condition are compressed together.

Consequently, the number of compressed clusters of events

are proportional to the number of clusters that are above

the similarity threshold. The A-PCM algorithm is depicted in

Figure 7.

VII. EVALUATIONS

We present a comprehensive evaluation of our PCM, A-PCM,

and OSR algorithms using both synthetic and real datasets.

The experiments were conducted on a machine with two Quad-

core Intel Xeon X5450 processors running at 3.00 GHz with

two 6MB of shared L2 cache and 16GB of memory. All

algorithms are implemented in C (compiled with version gcc

4.1.2 and O3 optimization level) using OpenMP 2.2 and are

extensions of the BE-Tree 1.3 open source project.9

A. Experiment Overview

First, we demonstrate the effectiveness of the PCM opti-

mizations and the importance of the A-PCM algorithm when

applied to BE-Tree. Second, we compare our adaptive A-

PCM algorithm with BE-Tree, which is known to be one of

the fastest matching algorithm [21], under controlled experi-

mental conditions, before showing results on real-world data.

All workload are generated using the open source Boolean

expression generator, BEGen10. In particular, in our evalua-

tion, we varied workload distribution, workload size, space

dimensionality, event matching probability, number of distinct

predicates, and, most importantly, event stream similarity.

The value of each parameter in our synthetic and real-

world workloads are summarized in Table I, where Columns

1-5 are synthetic data and Column 7 is a real data. Each

column corresponds to a different workload setting while

each row corresponds to the actual value of various workload

parameters. All workloads are generated by BEGen.

In our evaluation, we generate workloads having a con-

trolled degree of event matching probability, which ensures

that each event in the event workload matches a certain

percentage of all subscriptions. For example, the matching

probability of m% means that each event matches at least

m% of all subscriptions. Similarity, BEGen enables controlling

the event stream similarity. For instance, an event workload

with stream similarity of s% means that each event has been

replicated k times using a Gaussian distribution, in which

(1 − s)% of predicates in the replicated events have been

replaced using new random predicates, e.g., if s = 100%,

then the k replicated events are all identical, and if s = 0%,

then all the k replicated events are completely different. As a

9http://msrg.org/project/BE-Tree
10http://msrg.org/datasets/BEGen

result, if the initial event workload has a matching probability

of m%, then by applying the stream similarity technique, the

final event workload may exhibit on average a lower event

matching probability.

In our micro experiments, we individually study the effec-

tiveness of each optimization in the PCM algorithm, namely,

the unoptimized parallel compressed matching algorithm (C),

the parallel compressed algorithm with traversal unrolling (C-

U), the parallel compressed algorithm with traversal unrolling

and parallel path processing (C-U-PP), the parallel compressed

algorithm with traversal unrolling, parallel path processing

combined with the OSR technique (C-U-PP-RE), and, finally,

our “flagship” algorithm, the adaptive parallel compressed

algorithm with traversal unrolling, parallel path processing and

OSR technique (A-PCM). Also, in all our experiments, the

matching time for C-U-PP-RE and A-PCM also includes the

time taken for online stream re-ordering.

In our macro experiments, we consider (1) BE-Tree [21], (2)

BE-Tree with a bitmap-based encoding (Bitmap) [20], (3) base

parallel BE-Tree, which simply process n events over n threads

in parallel (Parallel) [7], (4) the A-PCM algorithm when applied

to BE-Tree, where the stream batch size for re-ordering is set

to 1024, the event cluster size for stream re-ordering is set to

8, and the stream similarity threshold is set to 2 (A-PCM).

Finally, in all our experiments, the internal parameters of

BE-Tree, in particular, the minimum and maximum cluster

size, have been assigned based on guidelines provided in [21],

e.g., the maximum cluster size is set to 5 and 20 for workloads

with matching probability m < 1% and 1% ≤ m ≤ 9%,

respectively, while the minimum cluster size is fixed at 3.

B. Micro Experiments

We establish the importance of the PCM optimizations by

varying the degree of both stream similarity and matching

probability. We have experimented with both uniform and

Zipf distributions and real-world data workload distributions,

in which a similar overall trend has been observed in all

variations. As a result, in the interest of space, we have in-

cluded results for uniform distribution unless stated otherwise.

The micro experiments for various optimizations are shown in

Figure 8 and effects of internal parameters for the adaptive

parallel compressed algorithm are presented in Figure 9.

Effects of Traversal Unrolling. One of the main challenges

in parallelizing an algorithm is the need to reduce locking

and avoid false sharing, which together could offset any

potential gain resulting from parallelism [16]. The parallel

compressed algorithm C has already eliminated the need for

locking by assigning each event to exactly one concurrent

thread. However, without fine control over event-to-thread or
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Fig. 9. Effects of the compressed matching internal parameters

thread-to-core assignments, the rise of false sharing and cache

coherency are inevitable due to the recursive nature of BE-

Tree processing. The traversal unrolling C-U solves precisely

this problem. As shown in Figure 8(a), the throughput has

increased by 29X when applying traversal unrolling. Notably,

the C algorithm throughput is actually lower than sequential

BE-Tree, as shown in Figure 8(a), this finding confirms the

claim in [16] that unless false sharing is resolved no perfor-

mance gain is obtained even with a theoretically highly parallel

algorithm [16].

Effects of Parallel Path Processing. Our second optimiza-

tion is aimed to systemically eliminate the second obstacle, as

formulated by Amdahl’s Law, in harnessing the true benefits

of any parallel algorithm. This law states the performance

gain of any parallel algorithm is limited by and inversely

proportional to the time needed for the sequential fraction

of the algorithm. The biggest sequential component of the

C-U algorithm is traversal unrolling, which is solved by

the proposed parallel path processing algorithm C-U-PP. As

demonstrated in Figure 8(a), after parallelizing the traversal

unrolling, the throughput is increased by nearly 51X over our

base compressed algorithm C.

Effects of Stream Re-orderings. The last two experi-

ments showcase the effectiveness of the parallel compressed

algorithm, but they do now show the practicality and wide-

applicability of our approach. The compressed algorithm C-

U-PP can successfully utilize similarity in an event stream

assuming that the stream is sorted in a sense that similar events

are near each other (Figure 8(a)). But in practical setting,

although there may be overlap among events, however, the

events may be in any random order (in fact, all generated

workloads except those in Figure 8(a), follow a random order).

Therefore, it is essential to efficiently re-order the event

stream on-the-fly as achieved by our online stream re-ordering

technique (OSR) included in C-U-PP-RE. In Figure 8(b), we

vary stream similarity for an unsorted event stream. For C-U-

PP-RE, events are buffered in batches of size one thousand

Datasets Stream Bitmap Encoding Tree Leaf
Re-ordering & Compression Traversal Scanning

Unif 2.57% 0.91% 32.08% 63.62%

Zipf 0.36% 0.18% 28.61% 70.64%

Author 2.18% 0.76% 29.53% 66.97%

Title 1.04% 0.22% 23.20% 75.41%

TABLE II
A-PCM MATCHING TIME BREAKDOWN (%)

(a tunable parameter), and re-ordered before passing into

the parallel compressed algorithm. The re-ordering is most

effective, as expected, when the stream similarity is high, in

which the throughput is increased substantially by a factor

of up to 38X. Naturally, as stream similarity is reduced, the

benefit is also reduced. Thus, when similarity is only 10%,

C-U-PP-RE remain dominant and outperforms C-U-PP by 8X.

Effects of Stream Adaptive Processing. To further exploit

the efficient online stream re-ordering included in C-U-PP-RE,

the proposed adaptive algorithm A-PCM also recognizes when

the parallel compressed algorithm C-U-PP-RE is most effective

and when the parallel BE-Tree algorithm, Parallel, is most

suitable. This process interweaves with our stream re-ordering

algorithm, which clusters events based on their similarities.

Thus, all clusters below a certain tunable similarity threshold

(2 in our case) is processed using Parallel and others are

processed by C-U-PP. This adaptive processing of the event

stream amounts to the substantial gain of up to 8X, as shown

in Figure 8(c). As expected, the A-PCM algorithm is most

effective when the variance in the event stream is high, which

is observed when stream similarity reaches 0%. However,

when the event stream is at 100% similarity (arguably an

unlikely practical scenario), then, as expected, the C-U-PP-

RE algorithm has slightly higher throughput than the A-PCM

algorithm.

Effects of Adaptive Processing Parameters. The three

A-PCM parameters that were assumed in the previous ex-

periments are: The event stream batch size (in stream re-

ordering), event cluster size (in stream re-ordering), and the

similarity threshold. We observe that as the stream batch size

increases, our re-ordering algorithm is able to find a better
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(d) Effects of matching probabilities (DBLP)
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(e) Effects of stream similarity (m = 1%)
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Fig. 10. Comparison of sequential, parallel, and adaptive parallel compressed techniques

clustering, thus, resulting in an improved throughput, as shown

in Figure 9(a). In all of our experiments, we fixed our batch

size to 1024.

Unlike the effect of the batch size that was rather sub-

tle, we observed that the event cluster size for stream re-

ordering is critical in tuning the A-PCM algorithm. As shown

in Figure 9(b), as we vary the stream similarity, different

values of the event cluster size substantially affect the overall

throughput. For example, for the lowest stream similarity,

as the event cluster size is decreased from 128 to 8, the

throughput is increased by a factor of 9X. This increase in

throughput is justified because forcing a large event cluster size

over a stream with low similarity threshold results in clusters

with many unrelated events; thus, increasing the number of

search paths and increasing the false candidate rate. To the

contrary, we observed in all our experiments that when the

cluster event size is set to the number of available threads (8

in our setting), regardless of the stream similarity threshold,

the A-PCM algorithm always achieves the highest throughput.

Therefore, simplifying the parameter tuning of the re-ordering

technique and demonstrating that our re-ordering technique is

robust with respect to the degree of the stream similarity.

The re-ordering technique is robust because when using BE-

Tree for clustering events, BE-Tree automatically adapts the

cluster size given the workload, and the value of the event

cluster size is simply taken as an initial value. This parameter

is tuned adaptively based on the size of the discovered clusters.

This fact is also evident in Figure 9(b), which shows that the

throughput of lower and higher cluster values converges.

The results for varying the similarity threshold parameter are

shown in Figure 9(c), which is the reminiscence of the pattern

observed in Figure 8(c). The higher the similarity threshold

(and the A-PCM algorithm itself) is, the better suited it is for

streams with a lower overlap among events. By using higher a

similarity threshold, we ensure that only events with predicates

on many common attributes are compressed together. Overall,

we observe that setting similarity threshold at around 2 is most

robust to workloads with different degrees of stream similarity.

Thus, in all of our experiments, we choose similarity threshold

of 2.

Matching Time Breakdown. We conclude our micro exper-

iments by analyzing the A-PCM matching time for our default

datasets with a 1% matching probability and a 70% stream

similarity, as shown in Table II. The overall time is broken

down into three main components:11 Stream re-ordering, paral-

lel bitmap encoding and compression (Stages 2-3 in Figure 5),

parallel tree traversal (Stage 4 in Figure 5), and parallel leaf

scanning (Stage 5 in Figure 5). The key finding is that the

time for stream re-ordering, parallel bitmap encoding, and

compression is negligible, and on average the leaf scanning

takes twice as long as the tree traversal. It is noteworth that

the ratio between tree traversal and leaf scanning may vary

depending on the workload matching probability.

C. Macro Experiments

After incrementally showing the effect of each of the

proposed optimizations over the (adaptive) parallel compressed

algorithm, we conclude that the A-PCM algorithm is most

effective. Next, we compare A-PCM with the best known

sequential matching algorithm, BE-Tree [21], and its straight

forward parallel counterpart, Parallel; these simple matching

algorithms parallelization were also suggested in [7].

Effects of Workload Size. As we increase the number

of subscriptions from 0.5M to 5M, the gap between the A-

PCM algorithm and BE-Tree substantially increases, 153X and

217X increase in throughput when having only eight parallel

threads. The bitmap-based encoding of BE-Tree also results in

an improvement over BE-Tree (e.g., up to 12X). Most striking

is the improvement of our A-PCM over Parallel, an increase of

up to 10X. The gap further widens when scaling the workload

size. Finally, we observe that the A-PCM algorithm can sustain

a rate of up to 17,947 events/second when there are as many

as half a million subscriptions, as shown in Figure 10(a).

Effects of Workload Dimensionality. Another key work-

load characteristic is dimensionality (Figure 10(b)). In fact,

11We have discarded the execution time for statistics collection and other
minor components. Therefore, the sum of these three components are slightly
less than 100%.
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Fig. 11. Comparison of sequential, parallel, and adaptive parallel compressed techniques
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Fig. 12. Latency comparison of sequential (Bitmap) and adaptive parallel compressed techniques (A-PCM) with different batch sizes from 128 to 1024 events
(for brevity, we omit the name A-PCM in the legend, and we distinguish among different A-PCM run based on the batch sizes)

the curse of dimensionality is the most challenging aspect

of our problem. Similar to BE-Tree, the A-PCM algorithm

copes with a space dimensionality in the hundreds, which is

partly due to the effective online stream re-ordering that is

robust with respect to both stream incompleteness and high-

dimensionality. The A-PCM algorithm continues to outperform

both BE-Tree and Parallelalgorithms by up to 162X and 7.7X,

respectively.

Effects of Matching Probability. Another key distinguish-

ing workload property is the matching probability, which as-

sess the applicability of matching algorithms for a wide-range

of applications faring anywhere from only a few matches to

hundreds of thousands of matches per event. In all experiments

for both synthetic and real workloads, The A-PCM algorithm

remain dominant regardless of matching probability and out-

performes the Parallel algorithm by up to 27X and 3.9X,

when the matching probability is 0.01% and 9%, respectively,

as shown in Figures 10(c)-10(d). Furthermore, the A-PCM

algorithm substantially improves over sequential BE-Tree by a

factor of 503X.

Effects of Stream Similarity. This is one of our most

important experiment, which establishes that the A-PCM algo-

rithm can take full advantage of stream similarity even when

the stream is unsorted. Thus, the A-PCM algorithm re-orders

and identifies similar events, compresses similar events, and

process the compressed stream in parallel. In Figure 10(e), as

we vary stream similarity (starting with the initial matching

probability of 1%), our A-PCM algorithm outperformes BE-

Tree and the Parallel algorithm by 330X and 19X, respectively.

From an experimentation point of view, as discussed pre-

viously, a side-effect of varying stream similarity is the

loss of control over the event matching probability, which

explains why for a lower stream similarity, the throughput

of all algorithms are higher. In order to keep the matching

probability constant, we repeat the same experiments but

without controlling the matching probability, cf. Figure 10(f).

As expected, we observe that varying the stream similarity

has no effect on the BE-Tree, Bitmap, and Parallel algorithms,

but A-PCM is substantially improved by up to 5.9X for an

increasing degree of stream similarity. As a result, A-PCM can

sustain an event rate of up to 233,863 events/second while the

Parallel algorithm is saturated with only 1,429 events/second,

over two orders of magnitude slower.

Effects of Number of Distinct Predicates. In all the above

experiments, we kept the average number of distinct predicates

below a million. Next, we present the result of increasing the

number of distinct predicates to tens of millions, such that even

a single bitmap-based encoding will not fit in the processor

caches entirely. In Figure 11, we capture the effects of scaling

the number of distinct predicates from tens of thousands

to tens of millions. As expected, our A-PCM algorithm is

most effective when the bitmap-based event encoding of all

compressed events fits into the processor cache, to be more

precise, as long as the frequently accessed parts of bitmap-

based encoding are cache-residents.

Effects of Event Batching on Latency. Our second most

important experiments is focused on average matching latency.

Hitherto, we demonstrated that A-PCM could substantially

improve the matching throughput when batching events, but

we have ignored the effects of batching events on the latency.

We now consider a scenario in which we decrease the

average delay latency between events (i.e., increasing the

event rate) from 100ms to 0ms, as shown in Figure 12.

For this experiment, we focus our study only to the fastest

sequential (Bitmap) and parallel (A-PCM) algorithms observed

in our evaluation. Furthermore, we construct the best possible

scenario for the latency computation of our Bitmap technique,

in which the experiment is repeated for every batch of 128

events implying that after every 128 events, we reset all

counters and starts afresh.12 This method is specially advan-

tageous (substantially underestimating the true latency) for a

12Following the same methodology, we reset counters for A-PCM after
processing a batch of X events, where X is chosen from 128, 256, 512, or
1024 events.
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(c) Cache-misses Counts
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Fig. 13. Low-level CPU performance counter analysis

high-throughput event stream when using Bitmap because we

ignore the fact that over time, the backlog of unprocessed

events (pending queued events) continues to grow, which in

practice will further increases the average matching latency.

But even in such a biased experiment setting towards our

Bitmap technique, we establish the superiority of the A-PCM

algorithm.

We draw two key observations. First, as long as the average

matching latency is smaller than event delays, then clearly

any sequential algorithm will outperform, with respect to the

average latency, any parallel algorithm that relies on batching

because in the time that requires to batch a set of events,

the entire matching computation could have been completed.

This breakaway point in our experiments is when the average

delay between events are smaller than 1-10ms (i.e., when the

event stream rate is below 1000 events per second). Second,

most importantly, when the average delay between event is

about a factor of 10-100 smaller than matching time, then

we observe that A-PCM not only substantially improve the

throughput, but in fact, it reduces the overall matching latency

compared to our fastest sequential sequential algorithm. As

shown in Figure 12, when the stream rate is higher than

10,000 events/second, then A-PCM exhibits a lower matching

latency compared to Bitmap sequential algorithm. Thereby,

making A-PCM a robust matching algorithm with respect to

both throughput and latency dimensions for high-throughput

event stream.

In this work, we focused on uniform average delays between

events and rely on a count-based batched size. However, if the

event delay follows a skewed distribution, then a simple count-

based semantics may not suffice, but our proposed adaptive

matching scheme can easily be enriched by detecting event

delay anomalies that are longer than the expected delay,

and the batching can either follow a count-based or a time-

based (or even a priority-based) semantics based on the

observed/expected event delay.

Effects of CPU Performance Counter. To substantiate

our analytical claims that our proposed A-PCM is both cache-

friendly (reducing cache-misses) and algorithmically efficient

(reducing the number of instructions), we extract performance

counter by capturing CPU low-level hardware events using the

Linux profiler tool called perf.13 In Figure 13, for the same

experiment, in which we vary the stream similarity, we present

the average matching throughput (in Figure 13(a)), the raw

number of instructions for an average run of our experiment (in

Figure 13(b)), the raw number of cache-misses for an average

run of our experiment (in Figure 13(c)), and the percentage

of cache-misses for an average run of our experiment (in

Figure 13(d)). To distinguish the benefits of parallelization and

algorithmic efficiency of our A-PCM, we devise two versions

of A-PCM: the parallel version (A-PCM) and the sequential

version (A-PCMSeq).
We observe that our compressed matching algorithm indeed

algorithmically more efficient, i.e., partly owing to reduction

of raw number of executed instructions by a factor of 0.5

in Figure 13(b), because A-PCMSeq throughput outperforms

both sequential Bitmap and Parallel algorithms, as shown in

Figure 13(a). In addition to algorithmic superiority of A-PCM

and A-PCMSeq, our compression matching algorithm exhibits a

better cache-locality, which is reflected in the reduced number

of caches-misses in Figure 13(c). In both A-PCM and A-

PCMSeq (as expected, they exhibit almost an identical number

of cache-misses), the number of cache-misses compared to

Bitmap and Parallel are reduced by a factor of 2 and 8,

respectively.14 Similarly, the percentage of cache-misses and

inferred total number of cache-reference requests in A-PCM

and A-PCMSeq are smaller, as shown in Figure 13(d). Thus, the

benefits of our compressed matching algorithm to reduce the

matching computation are two-fold: an effective parallelization

algorithm and a cache-friendly design.

VIII. RELATED WORK

The problem related to indexing Boolean expressions has

been studied in the database (e.g., [10]) and the pub-

lish/subscribe (e.g., [2], [6], [4], [25], [21], [7], [22], [20])

13For gathering the performance counter we used a newer machine with
one Quad-core Intel Xeon W3565 processor running at 3.20GHz with shared
8MB L3 cache size.

14For Parallel algorithm, many cache-misses and the subsequent memory-
requests may be issued by CPU in parallel; thus, the overall delay of cache-
misses could be smaller.



communities are different in two important ways. First, the

database indexing solves the reverse problem: in the database

context, querying means finding the relevant tuples (events)

for a given query (subscription), but in event processing

context, matching (through indexing) means finding the rele-

vant subscriptions (queries) for a given event (tuple). Second,

publish/subscribe matching algorithms overlook both parallel

event matching and event stream re-ordering, which is central

in exploiting the exponential growth trend in the number of

cores of modern hardware [14], [18].

A closer look manifests that counting-based methods pri-

marily aim to minimize the number of predicate evaluations

by constructing an inverted index over all unique predicates

resulting in a clustering. The two most efficient counting-based

algorithms are Propagation [6], a key-based method, and the

k-index [25], a non-key-based method. Likewise, tree-based

methods are primarily designed to reduce predicate evaluations

and to recursively divide search space by eliminating expres-

sions on encountering unsatisfiable predicates. The first major

tree-based approach, Gryphon, is a static, a non-key based

method [2], which is shown to be effective only for equality

predicates [2]. The latest tree-based structure is BE-Tree, a

key-based approach, that introduces a two-phase space-cutting

abstraction for supporting workload changes and overcoming

the curse of dimensionality [21], [20]. BE-Tree leverages an

effective clustering that is inherently designed for finite and

discrete domains. Furthermore, BE-Tree is a dynamic structure

and is proven to outperform all existing techniques [21], [20].

Despite BE-Tree’s effectiveness, it provides no guarantee

for exactly-once predicate evaluation. More importantly, there

are no attempts to parallelize BE-Tree, which is a non-regular,

tree-based structure that suffers from the well-known pointer-

chasing and tree traversal issues that inevitably incur cache-

misses. This problem is further amplified as the number of par-

allel tree traversal are increased, resulting in a higher number

of cache-misses. In addition, BE-Tree fails to algorithmically

exploit the large number of cores and large shared caches

prevailing in multi-core architectures [18]. In this work, we

present novel adaptive parallel compressed event matching (A-

PCM) and online stream re-ordering (OSR) algorithms that

exploit all these new hardware properties.

Finally, online sorting and stream re-ordering in database

indexing and in the storage context has relied heavily on

locality-sensitive hashing [13] in order to cope with the

curse of dimensionality (e.g., [11], [17], [9]). In general, the

main shortcoming of locality-sensitive hashing, which limits

its applicability in practical settings, is the complexity and

uncertainty of tuning locality-sensitive hashing parameters [5].

These parameters are highly data dependent, which compli-

cates the performance tuning approaches [5]. In contrast, in

this work, we present our OSR algorithm for high-dimensional

data by leveraging BE-Tree [21] that not only eliminates the

parameter tuning challenge, but also copes with incomplete

event data in the stream and aids to identify stream hetero-

geneity.

IX. CONCLUSIONS

In this paper, we studied the problem of parallel event

processing. Particularly, we enhanced and parallelized an exist-

ing state-of-the-art matching algorithm by introducing a novel

event stream compression algorithm enabled through a bitmap-

based event encoding. Furthermore, we developed an efficient

online event stream re-ordering (OSR) approach to exploit the

full potential of our adaptive parallel compressed matching

algorithm (A-PCM). Our extensive evaluation demonstrates the

effectiveness of the proposed A-PCM algorithm that outper-

formed both sequential and naive parallel algorithms by a

factor of up to 503X.

REFERENCES

[1] R. Agrawal, A. Ailamaki, P. A. Bernstein, et al. The claremont report
on database research. SIGMOD Rec.’08.

[2] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D.
Chandra. Matching events in a content-based subscription system. In
PODC’99.

[3] J. Daily. There’s millions in those microseconds. The Globe & Mail,
29/1/10.

[4] Y. Diao, P. Fischer, M. Franklin, and R. To. Yfilter: Efficient and scalable
filtering of XML documents. In ICDE’02.

[5] W. Dong, Z. Wang, W. Josephson, M. Charikar, and K. Li. Modeling
lsh for performance tuning. CIKM’08.

[6] F. Fabret, H.-A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and
D. Shasha. Filtering algorithms and implementation for fast pub/sub
systems. SIGMOD’01.

[7] A. Farroukh, E. Ferzli, N. Tajuddin, and H.-A. Jacobsen. Parallel event
processing for content-based publish/subscribe systems. DEBS’09.

[8] A. Farroukh, M. Sadoghi, and H.-A. Jacobsen. Towards vulnerability-
based intrusion detection with event processing. In DEBS’11.

[9] F. Fusco, M. P. Stoecklin, and M. Vlachos. Net-fli: On-the-fly compres-
sion, archiving and indexing of streaming network traffic. PVLDB’10.

[10] V. Gaede and O. Günther. Multidimensional access methods. ACM
Comput. Surv.’98.

[11] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high
dimensions via hashing. VLDB’99.

[12] K. Heires. Budgeting for latency: If I shave a microsecond, will I see
a 10x profit? Securities Industry’10.

[13] P. Indyk and R. Motwani. Approximate nearest neighbors: towards
removing the curse of dimensionality. STOC’98.

[14] C. Johnson and J. Welser. Future processors: flexible and modular.
CODES+ISSS’05.

[15] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and B. Falsafi.
Shore-MT: a scalable storage manager for the multicore era. EDBT’09.

[16] T. Liu and E. D. Berger. Sheriff: precise detection and automatic
mitigation of false sharing. OOPSLA’11.

[17] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Multi-probe lsh:
efficient indexing for high-dimensional similarity search. VLDB’07.

[18] J. Parkhurst, J. Darringer, and B. Grundmann. From single core to
multi-core: preparing for a new exponential. ICCAD’06.

[19] M. Sadoghi, I. Burcea, and H.-A. Jacobsen. GPX-Matcher: a generic
Boolean predicate-based XPath expression matcher. In EDBT’11.

[20] M. Sadoghi and H.-A. Jacobsen. Analysis of Boolean expressions
indexing techniques. In TODS’13.

[21] M. Sadoghi and H.-A. Jacobsen. BE-Tree: An index structure to
efficiently match Boolean expressions over high-dimensional discrete
space. In SIGMOD’11.

[22] M. Sadoghi and H.-A. Jacobsen. Relevance matters: Capitalize on less
(top-k matching in publish/subscribe). In ICDE’12.

[23] M. Sadoghi, M. Labrecque, H. Singh, W. Shum, and H.-A. Jacobsen. Ef-
ficient event processing through reconfigurable hardware for algorithmic
trading. In VLDB’10.

[24] D. Srivastava, L. Golab, R. Greer, T. Johnson, J. Seidel, V. Shkapenyuk,
O. Spatscheck, and J. Yates. Enabling real time data analysis.
PVLDB’10.

[25] S. Whang, C. Brower, J. Shanmugasundaram, S. Vassilvitskii, E. Vee,
R. Yerneni, and H. Garcia-Molina. Indexing Boolean expressions. In
VLDB’09.


