
Towards a Theory of Schema-Mapping Optimization

Ronald Fagin
IBM Almaden

fagin@almaden.ibm.com

Phokion G. Kolaitis∗

IBM Almaden
kolaitis@almaden.ibm.com

Alan Nash†

IBM Almaden
anash3@gmail.com

Lucian Popa‡

IBM Almaden
lucian@almaden.ibm.com

ABSTRACT
A schema mapping is a high-level specification that describes the
relationship between two database schemas. As schema mappings
constitute the essential building blocks of data exchange and data
integration, an extensive investigation of the foundations of schema
mappings has been carried out in recent years. Even though sev-
eral different aspects of schema mappings have been explored in
considerable depth, the study of schema-mapping optimization re-
mains largely uncharted territory to date.

In this paper, we lay the foundation for the development of a
theory of schema-mapping optimization. Since schema mappings
are constructs that live at the logical level of information integra-
tion systems, the first step is to introduce concepts and to develop
techniques for transforming schema mappings to “equivalent” ones
that are more manageable from the standpoint of data exchange or
of some other data interoperability task. In turn, this has to start by
introducing and studying suitable notions of “equivalence” between
schema mappings. To this effect, we introduce the concept of data-
exchange equivalence and the concept of conjunctive-query equiv-
alence. These two concepts of equivalence are natural relaxations
of the classical notion of logical equivalence; the first captures
indistinguishability for data-exchange purposes, while the second
captures indistinguishability for conjunctive-query-answering pur-
poses. Moreover, they coincide with logical equivalence on schema
mappings specified by source-to-target tuple-generating dependen-
cies (s-t tgds), but differ on richer classes of dependencies, such as
second-order tuple-generating dependencies (SO tgds) and sets of
s-t tgds and target tuple-generating dependencies (target tgds).

After exploring the basic properties of these three notions of
equivalence between schema mappings, we focus on the following
question: under what conditions is a schema mapping conjunctive-
query equivalent to a schema mapping specified by a finite set of s-t
tgds? We answer this question by obtaining complete characteriza-

∗On leave from UC Santa Cruz
†Current affiliation: Tradeworx, 54 Broad Street Suite 200, Red
Bank, NJ 07701
‡Partially funded by U.S. Air Force Office for Scientific Research
under contract FA9550-07-1-0223

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’08, June 9–12, 2008, Vancouver, BC, Canada.
Copyright 2008 ACM 978-1-60558-108-8/08/06 ...$5.00.

tions for schema mappings that are specified by an SO tgd and for
schema mappings that are specified by a finite set of s-t tgds and
target tgds, and have terminating chase. These characterizations
involve boundedness properties of the cores of universal solutions.

Categories and Subject Descriptors:
H.2.5 [Heterogeneous Databases]: Data translation
H.2.4 [Systems]: Relational databases
General Terms: Algorithms, Theory
Keywords: Schema mapping, data exchange, data integration, data-
exchange equivalence, conjunctive-query equivalence

1. Introduction
A schema mapping is a high-level specification that describes

the relationship between two database schemas. A schema map-
ping between two schemas is typically formalized as a triple M =
(S,T, Σ) consisting of a source schema S, a target schema T, and
a set Σ of database dependencies that specify the relationship be-
tween the source schema and the target schema. Schema mappings
constitute the essential building blocks of such crucial data inter-
operability tasks as data integration and data exchange (see the
surveys [17, 18]). For this reason, an extensive investigation of
the foundations of schema mappings has been carried out in recent
years. One main line in this investigation has focused on the prop-
erties of individual schema mappings and on their applications to
data exchange and to query answering (see, for instance, [2, 5, 9,
10, 14, 15, 21, 24]). Another main line has focused on the study
of basic operators on schema mappings, described in [3, 20], that
produce new schema mappings from existing ones. Among these
operators, the composition operator [11, 19, 22] and the inverse
operator [8, 12]) are regarded as the most fundamental ones.

To motivate the work reported in this paper, let us for a mo-
ment reflect on the relational data model. Undoubtedly, one of the
main reasons for its success is the early development of query opti-
mization techniques that make it possible to evaluate a given query
more efficiently. Query optimization is performed at both the phys-
ical level and the logical level of database systems. In particular,
query optimization at the logical level amounts to transforming a
given query to an equivalent one that can be executed more effi-
ciently. Even though several different aspects of schema mappings
have been explored in considerable depth, the study of schema-
mapping optimization remains largely uncharted territory to date.
Given that prototype industrial tools for managing schema map-
pings and performing data exchange have now been built [4, 16], it
becomes quite imperative to make progress on the schema-mapping
optimization front.

Our main aim in this paper is to lay the foundation for devel-
oping the theory of schema-mapping optimization. Since schema

33

mappings are constructs that live at the logical level of information
integration systems, the first step is to introduce concepts and to
develop techniques for transforming schema mappings to “equiva-
lent” ones that are more manageable from the standpoint of data ex-
change or of some other data interoperability task. This, however,
raises the following questions: How do we compare schema map-
pings? In particular, what are natural and useful notions of equiva-
lence between schema mappings? Under what conditions can one
schema mapping be replaced by another simpler, but “equivalent”,
schema mapping?

Clearly, the classical notion of logical equivalence should be the
starting point of any investigation of equivalence between schema
mappings. It does not take long to realize, however, that logical
equivalence may be too strong (and, consequently, too restrictive) a
notion when applied to data exchange or query answering. We in-
troduce and study two different and more relaxed notions of equiv-
alence between schema mappings: data-exchange equivalence and
conjunctive-query equivalence. Two schema mappings M and M′

are data-exchange equivalent if, for every source instance I , the
universal solutions for I under M coincide with those for I under
M′. Intuitively, this means that the schema mappings M and M′

are indistinguishable from each other for data-exchange purposes.
Two schema mappings M and M′ are conjunctive-query equiva-
lent if, for every target conjunctive query Q and every source in-
stance I , the certain answers of Q under M coincide with those of
Q under M′. Thus, in this case, M and M′ are indistinguish-
able from each other for conjunctive-query answering purposes.
Logical equivalence always implies data-exchange equivalence; in
turn, data-exchange equivalence always implies conjunctive-query
equivalence. Moreover, we show that for schema mappings spec-
ified by source-to-target tuple-generating dependencies (s-t tgds),
the three notions of logical equivalence, data-exchange equivalence,
and conjunctive-query equivalence coincide. We show, however,
that these notions are distinct for schema mappings specified by
second-order tuple generating dependencies (SO tgds) and also for
schema mappings specified by s-t tgds and target tuple-generating
dependencies (target tgds).

After exploring the basic properties of these three notions of
equivalence, we focus on the following question: under what condi-
tions is a schema mapping conjunctive-query equivalent to a schema
mapping specified by a finite set of s-t tgds? Schema mappings
specified by s-t tgds are the syntactically simplest and most well-
behaved schema mappings between relational schemas studied to
date. Moreover, s-t tgds are the constraints of choice in the Clio
schema mapping and data exchange tool [16]. Thus, the above
question amounts to asking: when is a (more complex) schema
mapping conjunctive-query equivalent to one of the simplest pos-
sible schema mappings? We investigate this question and obtain
complete characterizations for three important classes of schema
mappings between relational schemas: (i) schema mappings that
are specified by a finite set of full s-t tgds and full target tgds; (ii)
schema mappings that are specified by an SO tgd; and (iii) schema
mappings that are specified by a finite set of s-t tgds and target tgds,
and have terminating chase. The last class includes as members all
schema mappings specified by a finite set of set of s-t tgds and a
finite weakly acyclic set of target tgds (weakly acyclic sets are also
known as “sets of constraints with stratified witness”) [7, 9].

Assume that M is a schema mapping specified by a finite set of
full s-t tgds and full target tgds. Using properties of Datalog, we
show that M is conjunctive-query equivalent to a schema mapping
specified by a finite set of s-t tgds if and only if M has a bounded
parallel chase, which means that, for every source instance I , chas-
ing I in parallel with the s-t tgds of M terminates within a number

of steps that depends only on M (and not on I); moreover, in this
case, M is actually conjunctive-query equivalent to a finite set of
full s-t tgds. Recall that full tgds are also known as global-as-view
(GAV) constraints, and have been extensively studied in the context
of data integration (see [18]).

The characterizations for the other two classes of schema map-
pings considered here are technically more involved; in addition,
they require that we bring into the picture boundedness properties
of the cores of universal solutions.

We show that a schema mapping M specified by an SO tgd is
conjunctive-query equivalent to a schema mapping specified by a
finite set of s-t tgds if and only if M has bounded fact block size.
A fact block (or simply an f-block) in a target instance K is a con-
nected component of the Gaifman graph of facts of K; the nodes
of that graph are the facts of K, and there is an edge between two
facts if they have a null in common. A schema mapping M has
bounded f-block size if, for every source instance I , the number of
facts in every f-block of the core of the universal solutions for I is
bounded by a number that depends only on M (and not in I).

Finally, let M be a schema mapping that is specified by a finite
set of s-t tgds and target tgds, and has terminating chase. We show
that M is conjunctive-query equivalent to a schema mapping spec-
ified by a finite set of s-t tgds if and only if M has both bounded
core chase and bounded f-block size. The core chase, introduced
in [6, 23], is the following variant of the chase procedure: at every
step, all dependencies are applied and then the core of the resulting
instance is computed. A schema mapping M has bounded core
chase if, for every instance I , the core chase terminates within a
number of steps that depends only on M (and not on I).

Even though much more remains to be done, the conceptual and
technical contributions contained in this paper open a new line of
investigation in the study of schema mappings and pave the way for
the development of static-analysis techniques for schema-mapping
processing and optimization.

2. Preliminaries
A schema or signature R is a finite sequence (R1, . . . , Rk) of

relation symbols, each of a fixed arity. An instance I over R is a
sequence (RI

1, . . . , R
I
k), where eachRI

i is a relation of the same ar-
ity as Ri. We shall often use Ri to denote both the relation symbol
and the relationRI

i that interprets it. An atom (over R) is a formula
P (x1, . . . , xm), where P is a relation symbol in R and x1, . . . , xm

are variables, not necessarily distinct. A fact of an instance I (over
R) is an expression P I(v1, . . . , vm), where P is a relation symbol
in R and v1, . . . , vm are values such that (v1, . . . , vm) ∈ P I . We
assume that all instances I considered are finite, which means that
every relation RI

i is finite, for 1 ≤ i ≤ k.
Schema mappings and data exchange notions. We review sev-
eral notions from [9] that will be needed in this paper. A schema
mapping is a triple M = (S,T, Σ) consisting of a source schema
S, a target schema T, and a set Σ of constraints. We say that M
is specified by Σ. When S and T are clear from context, we will
sometimes write Σ in place of M, and talk about constraints, in-
stead of talking about a mapping.

We assume that we have a fixed infinite set Const of constants
and a fixed infinite set Null of nulls that is disjoint from Const. We
write dom(I) for the domain of an instance I , i.e., the set of all
values occurring in I . All values occurring in a source instance I
are assumed to be constants, i.e., dom(I) ⊆ Const. In contrast,
target instances have values in Const ∪ Null.

Let M = (S,T,Σ) be a schema mapping. If I is a source
instance, then a solution for I under M is a target instance J such

34

that (I, J) |= Σ. The set of all solutions for I under M is denoted
by SolM(I).

LetK,K′ be two instances over the target schema T. A function
h from Const ∪ Null to Const ∪ Null is a homomorphism from K
to K′ if for every c ∈ Const, we have that h(c) = c, and for
every relation symbol R in T and every tuple (a1, . . . , an) ∈ RK ,
we have that (h(a1), . . . , h(an)) ∈ RK′

. We write K → K′ to
denote that there is a homomorphism from K to K′. The instances
K and K′ are said to be homomorphically equivalent if K → K′

and K′ → K. We write K ↔ K′ to denote that K and K′ are
homomorphically equivalent. Furthermore, we write K ∼= K′ to
denote that K and K′ are isomorphic.

Given a schema mapping M = (S,T,Σ) and a source instance
I , a universal solution for I under M is a solution J for I under
M such that for every solution J ′ for I under M, we have that
J → J ′. Intuitively, universal solutions are the “most general”
solutions among all solutions for I . Clearly, if both J1 and J2 are
universal solutions for I , then J1 ↔ J2.
Cores. LetK be a target instance. A subinstanceK∗ ofK is called
a core of K if K → K∗, but there is no proper subinstance K′ of
K∗ such that K → K′. The following facts are well known:

• Every instance K has a core (this uses the finiteness of K).

• If K1 and K2 are cores of K, then K1
∼= K2; hence, we talk

about the core of K, and we write core(K) to denote it.

• If K∗ is the core of K, then there is a retraction h : K → K∗,
i.e., a homomorphism fromK toK∗ that is the identity on K∗.

• If K ↔ K′, then core(K) ∼= core(K′); in particular, if M is
a schema mapping and I is a source instance, then all universal
solutions for I have isomorphic cores. Thus, we talk (up to
isomorphism) about the core of the universal solutions for I .

Constraints. We consider constraints of several forms.
A tuple-generating dependency (tgd) is a constraint ϕ of the form

∀x∀y(α(x,y) → ∃zβ(x, z)),

where α and β are conjunctions of atoms and every variable in x
occurs in both α and β. We will generally omit writing the ∀x∀y
part. If z is empty, we say that ϕ is a full tgd.

A source-to-target tgd (s-t tgd) is a tgd ϕ such that α consists of
atoms from the source schema S and β consists of atoms from the
target schema T. These dependencies are also known as global-
and-local as view (GLAV) constraints (see [18]).

A target tgd is a tgd ϕ such that both α and β consist of atoms
from the target schema T.

A second-order tgd (SO tgd) is a constraint ϕ of the form:

∃f((∀x1(φ1 → ψ1)) ∧ ... ∧ (∀xn(φn → ψn))), where

• Each member of f is a function symbol.
• Each φi is a conjunction of
(i) atomic formulas of the form S(y1, ..., yk), where S is a k-ary

relation symbol of the source schema S and y1, . . . , yk are vari-
ables in xi, not necessarily distinct, and

(ii) equalities of the form t = t′ where t and t′ are terms built
from xi and f .

• Eachψi is a conjunction of atomic formulas T (t1, ..., tl), where
T is an l-ary relation symbol of the target schema T and t1, . . . , tl
are terms built from xi and f .

• Each variable in xi appears in some atomic formula of φi.
We will refer to each subformula ∀xi(φi → ψi) as an SO tgd

part of the SO tgd ϕ.
SO tgds were introduced in [11], where it was shown that they

are the “right” language for specifying the composition of two finite

sets of s-t tgds. It was also shown in [11] that every finite set of SO
tgds is logically equivalent to a single SO tgd. For this reason, when
it comes to SO tgds, we will consider (without loss of generality)
schema mappings specified by a single SO tgd.

Let M = (S,T,Σ) be a schema mapping specified by a finite
set Σ of s-t tgds and target tgds. It is well known (see [10]) that if
I is a source instance and J is a solution for I , then core(J) is also
a solution for I (this uses the fact that there is a retraction from J
to core(J)). In particular, if J is a universal solution for I , then
core(J) is also a universal solution for I . In contrast, this is not
true for schema mappings specified by an SO tgd; as a matter of
fact, in Example 3.10, we will exhibit an SO tgd such that the core
of a universal solution is not a solution.
Chase. The chase procedure is an algorithm that was originally
designed to reason about database dependencies (see [1]), but it
turned out to have numerous applications to data exchange and
other data interoperability tasks.

Let M = (S,T,Σ) be a schema mapping such that Σ is one of
the following: (i) a finite set of s-t tgds; (ii) a finite set of s-t tgds
and target tgds; or, (iii) an SO tgd. Given a source instance I , the
chase procedure chases I with the dependencies in Σ and produces
a universal solution for I , provided the procedure terminates on
I . We put IΣ

0 = ∅ and we write IΣ
s to denote the target instance

obtained in s steps of the chase, for s ≥ 0. If the chase terminates
on I , then we write IΣ for the result of the chase (clearly, IΣ = IΣ

t ,
where t is the last step of the chase); otherwise, the result of the
chase is undefined.

We explain what chasing I with the dependencies in Σ means by
considering a target tgd ϕ of the form ∀x(α(x,y) → ∃xβ(x,z)).
Let a and b be two tuples of elements in IΣ

s . We say that ϕ applies
on IΣ

s and (a,b) if IΣ
s |= α(a,b), but there is no tuple c in IΣ

s

such that IΣ
s |= β(a, c). If ϕ applies on IΣ

s and (a,b), then we
fire ϕ on IΣ

s and (a,b) by adding to IΣ
s+1 facts with new nulls u

interpreting the variables z so that IΣ
s+1 |= β(a,u). Chasing I with

s-t tgds is defined in an analogous way, except that now ϕ applies
on IΣ

s and (a,b) means that I |= α(a,b), but there is no tuple c
in IΣ

s such that IΣ
s |= β(a, c). Chasing I with an SO tgd is defined

in a similar way (see [11] for details).
In this paper, we will make use of several variants of the chase

procedure that we describe next.

• The standard chase, where at each step we use an arbitrary or-
der among the constraints to fire one constraint among the ones
that apply. This chase was used in the study of data exchange
for schema mappings specified by s-t tgds and target tgds [9].

• The parallel chase, where at each step we fire all constraints
that apply (and this parallel firing counts as just one step of the
parallel chase).

• The core chase, which was introduced in [6, 23]. Each step in
the core chase consists of two sub-steps: (a) do one step of the
parallel chase; and, (b) compute the core of the result.

Fix, for a moment, one of the above variants of the chase. We say
that a set Σ of constraints has terminating chase if, for every source
instance I , the chase of I with Σ terminates in a finite number
of steps (i.e., we reach a stage at which no dependency applies).
As mentioned earlier, in this case the result IΣ of the chase is a
universal solution for I . If Σ is a finite set of s-t tgds or an SO
tgd, then the three variants of the chase procedure described above
have terminating chase. The same holds true if Σ is a finite set of
s-t tgds and full target tgds. If, however, Σ is an arbitrary finite set
of s-t tgds and target tgds, then none of these chase variants may
have terminating chase. It was shown in [6, 23] that the core chase
terminates whenever any other variant of the chase terminates.

35

Since the chase does not always terminate, it is natural to ask for
broad, sufficient conditions for its termination. Such a useful and
extensively studied condition is that Σ is the union of a finite set
of s-t tgds with a finite weakly acyclic set of target tgds (the latter
is also known as a set of constraints with stratified witness) [7, 9].
Sets of full target tgds and acyclic sets of inclusion dependencies
are special cases of weakly acyclic sets.
Certain answers. Let M = (S,T, Σ) be a schema mapping and
Q a query over the target schema T. If I is a source instance, then
the certain answers certMQ (I) of Q on I under M are defined as

certMQ (I) =
�

J∈SolM (I)

Q(J),

whenever SolM (I) �= ∅, and undefined otherwise. Note that ifQ is
a Boolean query, then the intersection corresponds to the conjunc-
tion of Boolean values; hence, in this case, certM

Q (I) = true if and
only if, for every solution J for I , we have that Q(J) = true.

On the face of it, the definition of the certain answers is not ef-
fective, as it involves computing an intersection over a potentially
infinite set. Nonetheless, the certain answers of conjunctive queries
can be obtained by evaluating the query on a universal solution
whenever a universal solution exists (see [9]). More precisely, the
following hold:

• If Q is a Boolean conjunctive query and J is a universal solu-
tion for I , then certMQ (I) = Q(J).

• IfQ is a k-ary conjunctive query, for k ≥ 1, and J is a universal
solution for I , then certMQ (I) = Q(J) ∩ dom(I)k.

3. Equivalences of Schema Mappings
A theory of schema-mapping optimization must be based on suit-

able concepts of equivalence between schema mappings. In this
section, we introduce two such notions that are relaxations of the
classical notion of logical equivalence, study their basic properties,
and compare them to logical equivalence. These notions make it
possible to explore schema mappings that are not necessarily logi-
cally equivalent to a given schema mapping, but are “good enough”
for specific purposes, such as data exchange or query answering.
We begin by recalling the notion of logical equivalence.

DEFINITION 3.1. Two schema mappings M = (S,T, Σ) and
M′ = (S,T, Σ′) are logically equivalent, denoted by M ≡ M′,
if for every source instance I and target instance J , we have that

(I, J) |= Σ if and only if (I, J) |= Σ′.

In other words, M ≡ M′ if, for every source instance I , we have
that SolM(I) = SolM

′
(I).

The first relaxation of the notion of logical equivalence does not
distinguish between two schema mappings with the same data ex-
change behavior.

DEFINITION 3.2. Two schema mappings M and M′ are data-

exchange equivalent, denoted by M DE≡ M′ if, for every source
instance I , the set of universal solutions for I under M coincides
with the set of universal solutions for I under M′.

The second relaxation of the notion of logical equivalence does
not distinguish between two schema mappings with the same query-
answering behavior.

DEFINITION 3.3. Let L be a collection of queries. Two schema
mappings M and M′ are L-query equivalent (or, L-equivalent),

denoted by M ≡L M′, if, for every target query Q ∈ L and every
source instance I , we have that

• SolM(I) = ∅ if and only if SolM
′
(I) = ∅, and

• certMQ (I) = certM
′

Q (I), if SolM(I) �= ∅ and SolM
′
(I) �= ∅.

As an important special case, which we will explore in depth, M
and M′ are conjunctive-query equivalent (or CQ-equivalent) if
M ≡CQ M′, where CQ is the collection of all conjunctive queries.

Clearly, query equivalence is a notion that is dependent on a par-
ticular class of queries. Next, we show that CQ-equivalence can be
characterized using data-exchange concepts.

DEFINITION 3.4. If M = (S,T, Σ) is a schema mapping,
then FM

core is the following partial function from source instances
to target instances:

FM
core(I) =

�
core(J) if there is a universal solution J for I ;
undefined otherwise.

Note that, whenever FM
core is defined, it is well-defined, since the

core of universal solutions is unique (up to isomorphism).

PROPOSITION 3.5. Let M and M′ be schema mappings such
that both have the following property: for every instance I , if there
is a solution for I , then there is a universal solution for I . Then the
following statements are equivalent:

1. M and M′ are CQ-equivalent.

2. For every source instance I , we have that:

(a) there is a universal solution for I under M if and only if
there is a universal solution for I under M′; and

(b) if J is a universal solution for I under M, and J ′ is a uni-
versal solution for I under M′, then J ↔ J ′ (or, equiva-
lently, core(J) ∼= core(J ′)).

3. For every source instance I , we have that FM
core(I) = FM′

core(I),
which means that either both FM

core(I) and FM′
core(I) are unde-

fined or both are defined and equal to each other (up to isomor-
phism).

From now on, when studying CQ-equivalence, we will make re-
peated use of the characterizations of it given by Proposition 3.5.
The above proposition also suggests that CQ-equivalence can be
considered a weaker notion of data-exchange equivalence, since
data exchange with two CQ-equivalent schema mappings always
gives homomorphically equivalent universal solutions. In fact, as
stated in Part 3 of the above proposition, two CQ-equivalent schema
mappings give rise to the same partial function Fcore.

It should be pointed out that the hypothesis in Proposition 3.5
that a universal solution exists whenever a solution exists is satis-
fied by several important and extensively studied classes of schema
mappings. Specifically, it is satisfied by every schema mapping
M = (S,T, Σ) such that (a) Σ is a set of s-t tgds, or (b) Σ is an
SO tgd, or (c) Σ is the union of a set of s-t tgds with a set of target
tgds and egds, and has terminating chase. In particular, this hypoth-
esis is satisfied by every schema mapping specified by Σst ∪ Σt,
where Σst is a set of s-t tgds and Σt is the union of a weakly acyclic
set of target tgds with a set of target egds [9].

3.1 A hierarchy of schema-mapping equivalences

It is easy to see that data-exchange equivalence and CQ-equivalence
are progressive relaxations of logical equivalence.

PROPOSITION 3.6. Let M and M′ be two schema mappings.

36

1. If M ≡ M′, then M DE≡ M′.

2. If M DE≡ M′, then M ≡CQ M′.

We now give examples showing the converses to the two parts of
Proposition 3.6 are not true: hence the three notions of equivalence
are distinct. The first two examples show the distinction between
data-exchange equivalence and logical equivalence.

EXAMPLE 3.7. Let T be a target schema consisting of a binary
relation symbol T , and let M = (S,T, Σ) and M′ = (S,T, Σ′)
be two schema mappings such that Σ = ∅ and Σ′ consists of the
full target tgd T (x, y) → T (y,x). Then M and M′ are data
exchange equivalent, but not logically equivalent. They are data
exchange equivalent, since, for every source instance I , they have
the same set of universal solutions for I (namely, the singleton set
containing the empty instance). They are not logically equivalent;
for example, the target instance J = {T (1, 2)} is a solution for
every I under M, but is not a solution for any I under M′.

EXAMPLE 3.8. Consider the schema mappings M = (S,T, Σ)
and M′ = (S,T, Σ′), where Σ is the SO tgd

∃f∃g∀x(S(x) → T (x, f(x), g(f(x))))

and Σ′ is the SO tgd

∃f∃g∀x(S(x) → T (x, f(x), g(x))).

We claim that M and M′ are data-exchange equivalent, but not
logically equivalent.

Let I be a source instance, and letU = {T (s, αs, βs) : s ∈ SI},
where αs and βs are distinct nulls for every s ∈ SI . Then it can
be seen that U is a universal solution for I under M; moreover,
it is its own core. Thus, the universal solutions for I under M
are precisely those instances that contain U (up to a renaming of
nulls) and have a homomorphism into U . The same holds for M′.
Consequently, M and M′ have the same universal solutions and
so they are data exchange equivalent.

We now show that M and M′ are not logically equivalent. Let I
be the source instance {S(1), S(2)} and let J be the target instance
{T (1, 3, 4), T (2, 3, 5)}. Then (I, J) |= Σ′, but (I, J) �|= Σ; in-
deed, if (I, J) |= Σ, then we would have f(1) = f(2) = 3 and,
therefore, g(f(1)) = g(f(2)); this is a contradiction, since it must
also be the case that g(f(1)) = 4 and g(f(2)) = 5.

The next two examples show the distinction between data-exchange
equivalence and CQ-equivalence.

EXAMPLE 3.9. Consider the schema mappings M = (S,T, Σ)
and M′ = (S,T, Σ′), where:

• Σ consists of the full s-t tgd S(x) → T (x, x) and the full target
tgd T (x, u) ∧ T (u, x) → T (x, x);

• Σ′ consists of the full s-t tgd S(x) → T (x, x) and the full
target tgd T (x, u) ∧ T (u, v) ∧ T (v, x) → T (x, x).

Then M and M′ are CQ-equivalent because they have the same
chase result (and hence the same core) for every source instance
I . However, M and M′ are not data exchange equivalent; for
example, the instance U = {T (1, 1), T (α, β), T (β, γ), T (γ, α)},
where α, β, γ are distinct nulls is a universal solution for the in-
stance I = {S(1)} under M, but not a solution for I under M′.

EXAMPLE 3.10. Consider the schema mappings M = (S,T, Σ)
and M′ = (S,T, Σ′), where Σ is the full s-t tgd S(x, y) →
T (x, y), and where Σ′ is the SO tgd with parts

S(x, y) → T (x, y)
S(x, x) → T (x, f(x))

S(x, x) ∧ (x = f(x)) → W (x)

We now show that M and M′ are CQ-equivalent, but not data-
exchange equivalent. They are not data-exchange equivalent, be-
cause the instance U = {T (1, 1)} is a universal solution for the
instance I = {S(1, 1)} under M, but U is not a solution for I
under M′, since we must have f(1) = 1 and then the implication
in the third SO tgd part is not satisfied. Now, M and M′ are CQ-
equivalent, because for every source instance I , the target instances

U = {T (c, d) : (c, d) ∈ SI}
U ′ = U ∪ {T (c, uc) : (c, c)} ∈ SI}

(where uc is a distinct null for every c) are universal solutions for
I under M and M′ respectively, and U ↔ U ′.

There is another important piece of information that we can ex-
tract from this example. Specifically, note that M′ is a schema
mapping specified by an SO tgd such that the core of a universal so-
lution is not a solution. Indeed, consider again the source instance
I = {S(1, 1)}. The target instance {T (1, 1), T (1, u)}, where u is
a null, is a universal solution for I under M′. Moreover, its core is
{T (1, 1)}, which, as seen above, is not a solution for I under M′.

In particular, it follows from this argument that M′ is not log-
ically equivalent to any schema mapping specified by a finite set
of s-t tgds, since such schema mappings have the property that the
core of a universal solution is a solution. On the other hand, M′

is CQ-equivalent to a schema mapping specified by a single full s-t
tgd (M in this case). Thus, this example shows the potential benefit
of using CQ-equivalence: we can replace a schema mapping (M′)
by a schema mapping (M) that is in a simpler language but still
CQ-equivalent, whereas such simplification is not possible under
logical equivalence.

The key reason that CQ-equivalence fails to imply data-exchange
equivalence is the following: ifU is a universal solution for I under
M, and U ↔ U ′, then U ′ is also universal for I under M (i.e.,
for every solution J for I , we have that U ′ → J), but U ′ may not
necessarily be a solution for I . This behavior is exhibited in both
Example 3.9 and Example 3.10: the schema mappings M and M′

have homomorphically equivalent universal solutions (which im-
plies CQ-equivalence), but there is one universal solution under
one schema mapping that is not a solution under the other schema
mapping. This motivates the following definition.

DEFINITION 3.11. Let M = (S,T, Σ) be a schema mapping.
We say that M has all the universal solutions if whenever U is a
universal solution for I under M, and U ′ is a target instance such
that U ↔ U ′, then U ′ is also a solution for I under M (hence, a
universal solution).

PROPOSITION 3.12. If M and M′ have all the universal solu-

tions, then M ≡CQ M′ implies M DE≡ M′.

It is clear that the following property is a sufficient condition for
a schema mapping to have all the universal solutions.

DEFINITION 3.13. Let M = (S,T, Σ) be a schema mapping.
We say that M is preserved under target homomorphisms if, for
every source instance I and all target instances J and J ′ such that
(I, J) |= Σ and J → J ′, we have that (I, J ′) |= Σ.

It is easy to see that schema mappings specified by s-t tgds are
preserved under target homomorphisms. This condition, however,
may not hold once we add target tgds, or if the schema mapping is
specified by an SO tgd. The following result follows fairly easily
from Proposition 3.5.

37

PROPOSITION 3.14. Let M and M′ be schema mappings such
that both are preserved under target homomorphisms and both have
the following property: for every instance I , if there is a solution
for I , then there is a universal solution for I . Then, M ≡CQ M′

implies that M ≡ M′. Thus, in this case, all three notions of
equivalence coincide.

PROOF. Assume first that I has a solution under M. Then by
assumption, I has a universal solution U under M. By Proposi-
tion 3.5, it follows that I has a universal solution U ′ under M′,
and U ↔ U ′. By preservation under target homomorphisms, the
solutions of I under M are exactly the homomorphic images of U .
Similarly, the solutions of I under M′ are exactly the homomor-
phic images of U ′. Since U ↔ U ′, it follows that I has the same
solutions under M and M′. We have shown that if I has a solution
under M, then I has the same solutions under M and M′. By
symmetry, the same holds when we reverse the role of M and M′.
It follows easily that I has the same solutions under M and M′,
so M ≡ M′.

From now on, our main focus will be on CQ-equivalence and on
schema mappings that are not preserved under homomorphisms,
in which case CQ-equivalence is a genuine relaxation of logical
equivalence.

3.2 Other properties of CQ-equivalence

Our next result reveals an algorithmic difference between logical
equivalence and CQ-equivalence.

THEOREM 3.15. The following statements hold.

• The following problem is decidable: given two schema map-
pings specified by finite sets of s-t tgds and finite weakly acyclic
set of target tgds, are they logically equivalent?

• The following problem is undecidable: given two schema map-
pings specified by finite sets of s-t tgds and finite weakly acyclic
sets of target tgds, are they CQ-equivalent? In fact, this prob-
lem is undecidable even for schema mappings specified by copy
s-t tgds and full target tgds, where a copy s-t tgd is a full s-t tgd
of the form P (x) → R(x).

PROOF. (Sketch) The decidability result follows from well-known
properties of the chase. Specifically, let M = (S,T, Σ) and
M′ = (S,T, Σ′) be two schema mappings, where Σ and Σ′ are
each a finite set of s-t tgds and a weakly acyclic set of target tgds.
To check that Σ |= φ for some φ ∈ Σ′, it is enough to check
whether the conclusion of φ appears in the result of chasing the
premise of φ with Σ. (We are making use here of the fact that the
chase is terminating.) This allows us to check whether Σ |= Σ′;
the converse can be tested in a similar way.

The undecidability result is obtained via a reduction from the
problem of Datalog equivalence: given two Datalog programs over
the same schema, do they compute the same recursive query on
every input database? This problem was shown to be undecidable
in [26]. Given two Datalog programs over the same schema T, we
construct two schema mappings consisting of copy s-t tgds and full
target tgds as follows. We first create a schema S that is a replica of
T; we then add copy s-t tgds from S to T for each relation symbol
in S; finally, we view each given Datalog program as a finite set of
full target tgds. The two given Datalog programs are equivalent if
and only if the two schema mappings are CQ-equivalent. This is so
because the result of each Datalog program on each input database
I coincides with the core of the universal solutions for I under the
corresponding schema mapping.

The last result in this section asserts that CQ-equivalence is pre-
served under composition of schema mappings specified by s-t tgds.
This result shows a similarity between CQ-equivalence and logical
equivalence (the latter is always preserved under composition, by
definition of composition).

We recall the concept of the composition of two schema map-
pings, introduced in [11, 20]. Let M12 = (S1,S2,Σ12) and
M23 = (S2,S3,Σ23) be schema mappings. The composition
M12 ◦ M23 is a schema mapping (S1, S3, Σ13) such that for
every instance I over S1 and every instance K over S3, we have
that (I,K) |= Σ13 if and only if there is an instance J over S2

such that (I, J) |= Σ12 and (J,K) |= Σ23.

PROPOSITION 3.16. Let M12 and M′
12 be schema mappings

from S1 to S2 that are specified by s-t tgds. Let M23 and M′
23 be

schema mappings from S2 to S3 that are also specified by s-t tgds.
If M12 is CQ-equivalent to M′

12, and M23 is CQ-equivalent to
M′

23, then the composition M12 ◦ M23 is CQ-equivalent to the
composition M′

12 ◦M′
23.

PROOF. We shall use Proposition 3.5 to show the CQ-equivalence
of M12 ◦M23 and M′

12 ◦M′
23. First, we show that condition 2(a)

in Proposition 3.5 is true. In particular, we shall show that for every
source instance I , there is always a universal solution for I under
M12 ◦M23, and, similarly, there is always a universal solution for
I under M′

12 ◦ M′
23. Indeed, let I be an arbitrary instance over

S1. Let U1 be the result of chasing I with Σ12 and let V1 be the re-
sult of chasing U1 with Σ23. By Proposition 7.2 in the full version
of [8], we have that V1 is a universal solution for M12 ◦ M23. A
similar V2 can be constructed for M′

12 ◦ M′
23 by chasing I with

Σ′
12 to obtain U2 and then by chasing U2 with Σ′

23 to obtain V2.
To show condition 2(b), it is sufficient to show that the previously

constructed V1 and V2 are homomorphically equivalent. First, we
know that U1 and U2 are homomorphically equivalent, by Propo-
sition 3.5, since M12 and M′

12 are CQ-equivalent. Let V ′
2 be the

result of chasing U1 with Σ′
23. It follows that V1 and V ′

2 are homo-
morphically equivalent, by Proposition 3.5, since M23 and M′

23

are CQ-equivalent. It remains to show that V ′
2 and V2 are homo-

morphically equivalent.
We know that U1 has a homomorphism intoU2 (and vice-versa).

It follows that U1 has a homomorphism into (U2, V2). By applying
Lemma 3.4 in [9], since (U2, V2) satisfies Σ′

23, we can infer the
existence of a homomorphism from the result of chasing U1 with
Σ′

23, which is (U1, V
′
2), into (U2, V2). In particular, we obtain a

homomorphism from V ′
2 to V2. A symmetrical argument exploits

the fact that U2 has a homomorphism into U1 to obtain that V2 has
a homomorphism into V ′

2 .

The preceding proposition has immediate consequences for the
optimization of flows (or, sequences) of schema mappings that are
specified by s-t tgds. Indeed, we can replace any schema mapping
M in the sequence by another schema mapping M′ that is speci-
fied by s-t tgds and that is CQ-equivalent to M, and obtain a new
sequence of mappings whose composition is CQ-equivalent to the
composition of the original sequence.

It should be pointed out that Madhavan and Halevy [19] used
a different notion of composition of schema mappings. Their no-
tion asserts that a schema mapping M13 is a composition (relative
to the class of conjunctive queries) of two schema mappings M12

and M23 if M13 has the same conjunctive-query answering be-
havior as the succesive application of M12 and M23. Thus, to be
a composition in their terms, it is enough for a schema mapping
M13 to be CQ-equivalent to the “true” composition M12 ◦M23.
So, Madhavan and Halevy’s notion of composition was implicitly

38

based on CQ-equivalence, even though they did not single out the
concept of CQ-equivalence explicitly.

4. CQ-Equivalence to Source-to-Target Tgds
As mentioned earlier, for schema mappings that are not necessar-

ily preserved under homomorphisms (e.g., schema mappings spec-
ified by an SO tgd or schema mappings specified by s-t tgds and
target tgds), the notion of CQ-equivalence is a true relaxation of
the notion of logical equivalence. This distinction can be benefi-
cial, as it may be possible to replace a given schema mapping M
with a “simpler” schema mapping M′ that is CQ-equivalent to M,
even though M is not logically equivalent to any such “simpler”
schema mapping.

In this section, we study the question: when is a schema map-
ping CQ-equivalent to a schema mapping specified by s-t tgds?
We obtain complete characterizations for three important classes
of schema mappings specified by constraints that are more complex
than s-t tgds: (i) schema mappings specified by full s-t tgds and full
target tgds; (ii) schema mappings specified by an SO tgd; and (iii)
schema mappings specified by s-t tgds and target tgds, and having
terminating chase. Although the characterization for the first class
can be derived from that for the third class, we include it explicitly
here for several reasons: (a) it has a very simple statement of the
characterization (the CQ-equivalence holds if and only if there is a
bounded parallel chase); (b) it can be proved using known concepts
and results about Datalog, and (c) it paves the way for proving the
other two characterizations that are technically more involved and
require the introduction of new concepts and techniques.

4.1 Full s-t tgds and full target tgds

In this section, we characterize when a schema mapping speci-
fied by full s-t tgds and full target tgds is CQ-equivalent to a schema
mapping specified by s-t tgds.

DEFINITION 4.1. Let M = (S,T, Σ) be a schema mapping.
We say that has M has bounded parallel chase if there is a positive
integer b such that, for every source instance I , the parallel chase
of I with Σ terminates in at most b steps.

It is clear that if M is specified by a finite set of s-t tgds, then M
has bounded parallel chase. The next theorem tells us that bounded
parallel chase is just what is needed for a schema mapping specified
by a finite set of full s-t tgds and full target tgds to be CQ-equivalent
to a schema mapping specified by s-t tgds.

THEOREM 4.2. Let M = (S,T, Σ) be a schema mapping
specified by a finite set of full s-t tgds and full target tgds. Then
the following statements are equivalent:

1. M has bounded parallel chase.

2. There exists a schema mapping M′ = (S,T, Σ′) specified by
a finite set of full s-t tgds such that M ≡CQ M′.

3. There exists a schema mapping M′ = (S,T, Σ′) specified by
a finite set of s-t tgds such that M ≡CQ M′.

4. There exists a schema mapping M′ = (S,T, Σ′) specified by
an SO tgd such that M ≡CQ M′.

PROOF. (Sketch) We will use the following connection between
full tgds and Datalog. Suppose that M = (S,T, Σ) is a schema
mapping specified by a finite set of full s-t tgds and full target tgds.
Then the following facts can be established easily:

• There is a Datalog program πM over the source schema S such
that, for every source instance I , the recursive (IDB) predicates
of πM compute the canonical universal solution for I under
M. Moreover, this canonical universal solution for I is equal
to its own core, since it consists entirely of constants.

• M has bounded parallel chase if and only if the associated Dat-
alog program πM is bounded, which means that there is a pos-
itive integer b such that, for every input database I , the bottom-
up evaluation of πM on I converges to the least fixed-point of
πM within at most b iterations.

We now show that the first two statements are equivalent. If M has
bounded parallel chase, then the Datalog program πM is bounded.
This implies that the IDB predicates of πM are definable by a fi-
nite union of conjunctive queries over the source. Each member of
this union gives rise to a full s-t tgd, and we can take M′ to be the
set of these s-t tgds. Conversely, assume that M is CQ-equivalent
to a schema mapping M′ specified by a finite set of full s-t tgds.
It follows that every relation in the canonical universal solution is
defined by both an infinite union of conjunctive queries over the
source (obtained by “unfolding” the Datalog program πM) and by
a finite union of conjunctive queries over the source (obtained by
the s-t tgds in M′). We now recall one of the main results in [25] to
the effect that a union of conjunctive queries is contained in another
union of conjunctive queries if and only if every conjunctive query
in the first union is contained in some conjunctive query in the sec-
ond union. By applying this result twice, we can conclude that the
Datalog program πM is bounded, because there is a finite subset of
conjunctive queries in the infinite union such that every conjunc-
tive query in the infinite union is contained in some member of this
finite subset. Consequently, M has bounded parallel chase.

It is obvious that the second statement implies the third, and that
the third implies the fourth. We complete the proof by showing
that the fourth statement implies the second. Suppose that M is
CQ-equivalent to a schema mapping M′ specified by an SO tgd
Σ′. We will show that we can “drop” from Σ′ all function terms,
and transform it to a schema mapping M∗ specified by a finite set
of full s-t tgds while preserving CQ-equivalence. First, for every
source instance I , we have that IΣ = core(IΣ′

), where IΣ and IΣ′

denote the result of the parallel chase of I with Σ and with Σ′, re-
spectively. This is so because M ≡CQ M′ and all values in IΣ are
constants. Moreover, because we care only about CQ-equivalence,
we can assume that Σ′ has no SO tgd parts with equalities in the
premises (this follows from the definition of the chase with SO tgds
in [11]). Hence we can assume that the only function terms are in
the conclusions of the SO tgd parts of Σ′. Let ψ be one of the SO
tgd parts in Σ′ that has some function terms in its conclusion. Then,
for every source instance I , if we chase I with Σ′, all tuples gener-
ated by the SO tgd part ψ will contain nulls. So, they cannot be in
core(IΣ

′
). Let Σ′′ be the SO tgd obtained from Σ′ by removing the

SO tgd part ψ. Then the result IΣ′′
of the chase of I with Σ′′ still

contains core(IΣ′
), but also is a subset of IΣ′

. Hence IΣ′ ↔ IΣ′′
,

and so Σ′ ≡CQ Σ′′. We can continue this process until all SO tgd
parts with function terms have been removed from Σ′. The result
is a finite set of full s-t tgds that is CQ-equivalent to M.

In [13], it was shown that testing a Datalog program for bound-
edness is an undecidable problem. By combining this result with
the reduction in the second part of Theorem 3.15, we obtain the
following result.

PROPOSITION 4.3. The following problem is undecidable: given
a schema mapping M specified by a finite set of full s-t tgds and

39

full target tgds, is there a schema mapping M′ specified by s-t tgds
such that M ≡CQ M′?

4.2 SO tgds

In this section, we characterize when a schema mapping spec-
ified by an SO tgd is CQ-equivalent to a schema mapping speci-
fied by s-t tgds. We introduce next a boundedness property, called
bounded f-block size, which will turn out to be precisely the neces-
sary and sufficient condition for such equivalence.

DEFINITION 4.4. (1) IfK is a target instance, then the Gaifman
graph of facts of K is a graph whose nodes are the facts of K, and
with an edge between two facts if they have a null in common. A
fact block (or simply an f-block) of K is a connected component of
the Gaifman graph of facts of K.

(2) Let M = (S,T, Σ) be a schema mapping. We say that M
has bounded f-block size if there is a positive integer b such that for
every source instance I , the core of the universal solutions for I
under Σ (if one exists) has f-block size at most b.

The following simple proposition gives a sufficient condition for
bounded f-block size.

PROPOSITION 4.5. If M is a mapping specified by a finite set
of s-t tgds, then M has bounded f-block size.

PROOF. Take the bound to be the maximum number of atoms in
a conclusion of the s-t tgds.

Note that the notion of bounded f-block size is different from the
notion of bounded block size in [10]. If K is an instance, then the
Gaifman graph of the nulls of K is an undirected graph in which:
(1) the nodes are all the nulls of K, and (2) there exists an edge
between two nulls whenever the nulls are adjacent in K. A block
of nulls is the set of nulls in a connected component of the Gaif-
man graph of the nulls. For s-t tgds where the conclusions have at
most e existential quantifiers, the maximal block size of a core of
a universal solution is bounded by e. The next example shows a
difference between bounded block size and bounded f-block size.

EXAMPLE 4.6. The SO tgd ∃f∀x∀y(S(x, y) → T (x, f(y)))
has bounded block size (of size 1), but unbounded f-block size.

In contrast, it can be easily seen that bounded f-block size always
implies bounded block size.

We now give another notion of boundedness, called bounded
support, which we shall use in proving the characterization theo-
rem in this section. Later, we shall make explicit use of bounded
support and bounded f-block size in a characterization involving
schema mappings specified by s-t tgds and target tgds.

In the following, we shall write ‖I‖ to denote the number of facts
in an instance I .

DEFINITION 4.7. We say that a schema mapping M has bounded
support if there exists a positive integer r such that for every in-
stance I and instance J , if J → FM

core(I), then there is I ′ ⊆ I such
that ‖I ′‖ ≤ r‖J‖ and J → FM

core(I
′).

Intuitively, a schema mapping has bounded support (with bound r)
if whenever an instance J “appears” in the core of the universal so-
lutions for I , then it “appears” due to a “small” subinstance I ′ of I
(where “small” means that I ′ is at most r times bigger than J). The
following proposition, which we shall use in proving our next char-
acterization theorem, gives two important cases where a schema
mapping has bounded support.

PROPOSITION 4.8. If M is a schema mapping specified by a
finite set of s-t tgds or an SO tgd, then M has bounded support.

PROOF. Since every finite set of s-t tgds is equivalent to an SO
tgd, we need only prove the proposition for SO tgds. Assume that
M = (S,T, Σ), where Σ is an SO tgd. Set r to be the maxi-
mum number of atoms in the premise of a constraint (or an SO tgd
part) in Σ. We show that r is the bound that witnesses that Σ has
bounded support. Pick instances I and J . Consider the instance
U obtained by doing the parallel chase of I with Σ. Such U is
homomorphically equivalent to FM

core(I) and therefore, if there is a
homomorphism J → FM

core(I), then there is also a homomorphism
h : J → U . Now consider I ′ consisting of the facts in I on which
constraints in Σ fired to obtain the facts in h(J). By construction,
it is clear that ‖I ′‖ ≤ r‖J‖ and J → U ′ where U ′ is the result
of the parallel chase of I ′ with Σ. Since U ′ is homomorphically
equivalent to FM

core(I
′) we have J → FM

core(I
′) as desired.

We shall also use the following proposition, asserting that the
two boundedness notions introduced in this section are preserved
under CQ-equivalence; its proof is immediate from the definitions.

PROPOSITION 4.9. Bounded f-block size and bounded support
are preserved under CQ-equivalence.

We are now ready to give our characterization of when a schema
mapping specified by an SO tgd is CQ-equivalent to a schema map-
ping specified by s-t tgds.

THEOREM 4.10. A schema mapping M specified by an SO tgd
is CQ-equivalent to a schema mapping specified by a finite set of
s-t tgds if and only if M has bounded f-block size.

PROOF. Let M = (S,T, Σ). Assume first that M is CQ-
equivalent to a schema mapping M′ specified by a finite set of
s-t tgds. By Proposition 4.5, M′ has bounded f-block size. So by
Proposition 4.9, it follows that M also has bounded f-block size.

Assume now that M has bounded f-block size. Thus, there is a
positive integer b such that every f-block in the core of a universal
solution under M has at most b facts. Assume there are at most r
atoms in the premise of an SO tgd part of Σ. Say that an instance I
is small if it has at most br facts.

We define an s-t tgd τI,B whenever I is a source instance and B
is a target instance. Fix a one-to-one function that maps every value
(constant or null) onto a variable, and denote by vc the variable cor-
responding to the value c. Let α be the conjunction of the source
atoms P (vc1 , . . . , vck) such that P (c1, . . . , ck) is a fact in I . Sim-
ilarly, let β be the conjunction of the target atoms Q(vc1 , . . . , vcm)
such that Q(c1, . . . , cm) is a fact in B. Let τI,B be the s-t tgd
α→ ∃ȳβ, where ȳ consists of the variables in β but not α.

Let S be a finite set that contains an isomorphic copy of all small
source instances. Let Σ′ be the set of all s-t tgds τI,B where I ∈ S,
and B is an f-block in the core of the universal solution for I under
M. It is clear that Σ′ is finite. Let M′ = (S,T, Σ′).

Let I be a source instance. Let IΣ be the result of chasing I with
the SO tgd Σ (this chase is described in [11]). Let IΣ′

be the result
of parallel-chasing I with Σ′. We need only show that IΣ ↔ IΣ′

.
We begin by showing that IΣ → IΣ′

. It is enough to show that
core(IΣ) → IΣ′

, since IΣ ↔ core(IΣ). Let B be an arbitrary
f-block of core(IΣ). Since Σ has bounded f-block with bound b, it
follows that ‖B‖ ≤ b. By Proposition 4.8 (and the fact, shown in
the proof of Proposition 4.8, that the bound r in Definition 4.7 is our
value of r, namely, the maximal number of atoms in the premise of
an SO tgd part of Σ), it follows that there is a small instance I ′ ⊆ I
such that B → core((I ′)Σ).

40

Since B is an f-block in a core, it follows that there is no ho-
momorphism from B into a proper subinstance of B. Therefore,
since B → core((I ′)Σ), the homomorphism that maps B into
core((I ′)Σ) simply renames the nulls in a one-to-one manner (and
of course, being a homomorphism, maps each constant onto itself).
Thus, (up to a renaming of nulls), B is a subinstance of an f-block
B′ of core((I ′)Σ). Therefore, τI′,B is a logical consequence of

τI′,B′ , and so of Σ′. Hence, B → (I ′)Σ
′
. But also (I ′)Σ

′ → IΣ′
,

since I ′ ⊆ I . Since B → (I ′)Σ
′

and (I ′)Σ
′ → IΣ′

, it follows that
B → IΣ′

. Let hB be a homomorphism that maps B to IΣ′
. Since

each hB maps each constant onto itself, and since no two distinct
f-blocks share a null, the function h = ∪hB is well-defined, and
is a homomorphism from core(IΣ) to IΣ′

. So core(IΣ) → IΣ′
,

which, as we noted, is sufficient to show IΣ → IΣ′
.

We now show IΣ′ → IΣ. Define Σ′′ to consist of the formulas
τI′,B′ where as before I ′ ∈ S, but where now B′ is (I ′)Σ. It is
straightforward to see that Σ′′ is logically equivalent to Σ′.

We now show that Σ logically implies Σ′′ . Let τI′,B′ be an
arbitrary member of Σ′′. Since the result of chasing I ′ with Σ is
B′, this tells us that the result of chasing the premise of τI′,B′ with
Σ gives the conclusion of τI′,B′ . So by well-known properties of
the chase, it follows that Σ logically implies τI′,B′ . Since τI′,B′ .is
an arbitrary member of Σ′′, this tells us that Σ logically implies Σ′′.
So Σ logically implies Σ′, since Σ′ and Σ′′ are logically equivalent.

Since Σ logically implies Σ′, it follows that IΣ′ → IΣ (this is
because, intuitively, in doing the chase of I with Σ we can replace
Σ by Σ ∪ Σ′ and do the chase with Σ′ first).

We do not know whether it is decidable if a schema mapping M
specified by an SO tgd has bounded f-block size. However, if M
has bounded f-block size and we know the f-block size b, then the
proof of Theorem 4.10 gives a procedure for constructing a CQ-
equivalent schema mapping specified by a finite set of s-t tgds.

4.3 s-t tgds and target tgds with terminating chase

In this section, we characterize when a schema mapping spec-
ified by s-t tgds and target tgds (and having terminating chase) is
CQ-equivalent to a schema mapping specified by s-t tgds.

We need one more notion of boundedness.

DEFINITION 4.11. Let M = (S,T, Σ) be a schema mapping.
We say that M has bounded core chase if there is a positive integer
b such that for every source instance I , the core chase of I with Σ
terminates in at most b steps.

Note that in the full case, the core chase is simply the paral-
lel chase, so bounded core chase is the same as bounded parallel
chase. Intuitively, a schema mapping has bounded core chase if
it has “no recursion”. Clearly, a sufficient condition for bounded
core chase is that the schema mapping be specified only by s-t tgds.
The next theorem gives a necessary condition for a schema map-
ping specified by s-t tgds and target tgds to have a bounded core
chase. Although we are giving this theorem as a tool in proving our
characterization theorems, it is interesting in its own right, since it
provides a sufficient condition for a schema mapping specified by
s-t tgds and target tgds to be CQ-equivalent to a schema mapping
specified by an SO tgd.

THEOREM 4.12. Let M = (S,T, Σ) be a schema mapping
where Σ is the union of a finite set of s-t tgds and a finite set of target
tgds. If M has bounded core chase then M is CQ-equivalent to a
schema mapping specified by an SO tgd.

PROOF. Let M = (S,T, Σ) be a schema mapping with Σ =
Σst∪Σt, where Σst is a finite set of s-t tgds and Σt is a finite set of
target tgds (not necessarily weakly-acyclic). Assume that M has
bounded core chase with bound b > 1 (if b = 1 then the target
constraints never fire, and M ≡CQ Mst, where Mst = (S,T,
Σst)). Then it is easy to verify that M is CQ-equivalent to the
schema mapping specified by the composition

Σst ◦ Σt1 ◦ Σt2 ◦ . . . ◦ Σtb−1

on schemas S, T1, . . . , Tb = T where Ti is a copy of T and where
Σti is the union of copy constraints between Ti and Ti+1 and the
constraints Σt modified by replacing the relation symbols in the
premises by the corresponding relation symbols in Ti and the rela-
tion symbols in the conclusions by the corresponding relation sym-
bols in Ti+1. Set Σ′ to be the SO tgd that expresses the composi-
tion above (it was shown in [11] that the composition of an arbi-
trary finite number of schema mappings, each specified by a finite
set of s-t tgds, is a schema mapping specified by an SO tgd). Let
M′ = (S,T, Σ′). Then M is CQ-equivalent to M′.

It is interesting to note that in contrast to Proposition 4.9, which
states that bounded f-block size and bounded support are preserved
under CQ-equivalence, we have the following negative proposition.

PROPOSITION 4.13. Bounded core chase is not preserved un-
der CQ-equivalence.

PROOF. Let Σ consist of the s-tD(x) → ∃u(F (x, u)∧G(u, u))
and the target tgds F (x, u)∧F (y, v) → ∃w(G(u,w)∧G(v, w)∧
G(w,w)) and F (x, u)∧G(u, w) → F (x, v). Let Σ′ consist of the
s-t tgdD(x) → ∃uF (x, u) and the target tgds F (x, u) → G(u, u)
and F (x, u)∧F (y, v) → F (x, v). In the full version of the paper,
we show that (1) Σ does not have bounded core chase, (2) Σ′ has
bounded core chase, and (3) Σ and Σ′ are CQ-equivalent

Our final characterization theorem gives several exact criteria as
to when a schema mapping specified by a finite set of s-t tgds and
target tgds (and having terminating chase) is CQ-equivalent to a
schema mapping specified by a finite set of s-t tgds only.

THEOREM 4.14. Let M = (S,T, Σ) be a schema mapping
such that Σ is the union of a finite set of s-t tgds with a finite set
of target tgds and such that the core chase with Σ is terminating.
Then the following statements are equivalent:

1. There exists M′ = (S,T, Σ′) where Σ′ is a finite set of s-t
tgds such that M ≡CQ M′.

2. There exists M′ = (S,T, Σ′) where Σ′ is an SO tgd with
bounded f-block size such that M ≡CQ M′.

3. Σ has bounded support and bounded f-block size.
4. Σ has bounded core chase and bounded f-block size.

PROOF. We first show that (1) ⇒ (2). Assume that (1) holds.
Since each finite set of s-t tgds can be expressed by an SO tgd, there
is an SO tgd logically equivalent to Σ′. It has bounded f-block
size by Proposition 4.5. We now show that (2) ⇒ (3). Assume
that (2) holds. By Proposition 4.8, Σ′ has bounded support. So
(3) follows by Propositions 4.9. Next, we show that (4) ⇒ (1).
Assume that (4) holds. Since Σ has bonded core chase, it follows
from Theorem 4.12 that Σ is CQ-equivalent to an SO tgd Σ′′. By
Proposition 4.9, Σ′′ has bounded f-block size. By Theorem 4.10,
Σ′′ is CQ-equivalent to some set Σ′ of s-t tgds.

Finally, we show that (3) ⇒ (4). Assume that (3) holds. Assume
that Σ has bounded support with bound r, and that Σ has bounded f-
block size with bound b. We write IΣ for the result of the core chase

41

of I with Σ and IΣ
m for the result of doing the core chase of I with

Σ for m steps. Notice that because Σ has terminating core chase,
IΣ is defined and IΣ ∼= FM

core(I) for every I . We will compute
m, which depends only on Σ, and we will show that IΣ → IΣ

m.
Since also IΣ

m → IΣ and both IΣ and IΣ
m are cores, it follows that

they are isomorphic. Since IΣ |= Σ, we also have IΣ
m |= Σ and

therefore the core chase of I with Σ ends in m steps, as desired.
For every f-block B, define KB to be the set of source instances
I minimal under set inclusion such that B → FM

core(I). Let K be�
B∈S KB where S is the set of f-blocks B such that there exists a

source instance I satisfying B → FM
core(I). Then I ∈ K implies

‖I‖ ≤ rb, since if I ∈ K andB → FM
core(I) for someB ∈ S, then

‖I‖ ≤ r‖B‖ ≤ rb by minimality of I and because Σ has bounded
support and bounded f-block size with bounds r and b respectively.
It follows that K has finitely many instances up to non-constant-
preserving isomorphisms. Therefore, there exists m such that the
core chase of every instance in K terminates in at most m steps.

Now pick some instance I . Set SI to be the set of f-blocks B in
IΣ. For every B ∈ SI , pick IB ∈ KB such that IB ⊆ I . There
must be such IB by definition of KB . Then there is a homomor-
phism hB : B → IΣ

m because

B → (IB)Σ = (IB)Σm → IΣ
m.

Let h be
�

B∈SI
hB . Since IΣ =

�
B∈SI

B and every B ∈ SI is

a f-block, h is a homomorphism IΣ → IΣ
m as desired.

Note that statement (1) of Theorem 4.14 is undecidable (even
when the tgds in Σ are full) by Proposition 4.3. Hence, each of the
statements (1)–(4) of Theorem 4.14 are undecidable.

5. Conclusions and Open Problems
In this paper, we have taken the first steps towards developing

a theory of schema-mapping optimization. To this effect, we de-
fined and studied the notions of data-exchange equivalence and
CQ-equivalence of schema mappings, which are more relaxed no-
tions of “equivalence” than logical equivalence. Intuitively, two
schema mappings are data-exchange equivalent if they are indistin-
guishable for data-exchange purposes, and two schema mappings
are CQ-equivalent if they are indistinguishable for the purpose of
answering conjunctive queries. Furthermore, we have shown that
CQ-equivalence can be viewed as simply a slightly relaxed version
of data-exchange equivalence.

The long-term goal is to develop techniques that enable us to op-
timize schema mappings by converting them into “simpler” schema
mappings that are equivalent in one of these senses. In this paper,
we have given characterizations for when some important, well-
studied classes of schema mappings are CQ-equivalent to a schema
mapping specified only by s-t tgds.

Much work remains to be done. One obvious open problem
is how to give similar characterizations for data-exchange equiv-
alence rather than CQ-equivalence. Further, in view of our unde-
cidability results, it is a worthy goal to find useful heuristics for
optimizing schema mappings that arise in practice by converting
them into simpler schema mappings.

6. References
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.

Addison-Wesley, 1995.
[2] M. Arenas and L. Libkin. XML Data Exchange: Consistency and

Query Answering. In ACM Symposium on Principles of Database
Systems (PODS), pages 13–24, 2005.

[3] P. A. Bernstein. Applying Model Management to Classical
Meta-Data Problems. In Conference on Innovative Data Systems
Research (CIDR), pages 209–220, 2003.

[4] P. A. Bernstein and S. Melnik. Model Management 2.0:
Manipulating Richer Mappings. In ACM SIGMOD International
Conference on Management of Data (SIGMOD), pages 1–12, 2007.

[5] A. Calı̀, D. Calvanese, G. D. Giacomo, and M. Lenzerini. Data
Integration under Integrity Constraints. Inf. Syst., 29(2):147–163,
2004.

[6] A. Deutsch, A. Nash, and J. Remmel. The chase revisited. In ACM
Symposium on Principles of Database Systems (PODS), 2008.

[7] A. Deutsch and V. Tannen. Reformulation of XML Queries and
Constraints. In International Conference on Database Theory
(ICDT), pages 225–241, 2003.

[8] R. Fagin. Inverting Schema Mappings. In ACM Symposium on
Principles of Database Systems (PODS), pages 50–59, 2006. Full
version to appear, ACM Transactions on Database Systems (TODS).

[9] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data Exchange:
Semantics and Query Answering. Theoretical Computer Science
(TCS), 336(1):89–124, 2005.

[10] R. Fagin, P. G. Kolaitis, and L. Popa. Data Exchange: Getting to the
Core. ACM Transactions on Database Systems (TODS),
30(1):174–210, 2005.

[11] R. Fagin, P. G. Kolaitis, L. Popa, and W.-C. Tan. Composing Schema
Mappings: Second-order Dependencies to the Rescue. ACM
Transactions on Database Systems (TODS), 30(4):994–1055, 2005.

[12] R. Fagin, P. G. Kolaitis, L. Popa, and W. C. Tan. Quasi-Inverses of
Schema Mappings. In ACM Symposium on Principles of Database
Systems (PODS), pages 123–132, 2007.

[13] H. Gaifman, H. G. Mairson, Y. Sagiv, and M. Y. Vardi. Undecidable
optimization problems for database logic programs. J. ACM,
40(3):683–713, 1993.

[14] G. Gottlob. Computing Cores for Data Exchange: New Algorithms
and Practical Solutions. In ACM Symposium on Principles of
Database Systems (PODS), 2005.

[15] G. Gottlob and A. Nash. Data exchange: Computing cores in
polynomial time. In ACM Symposium on Principles of Database
Systems (PODS), pages 40–49, 2006.

[16] L. M. Haas, M. A. Hernández, H. Ho, L. Popa, and M. Roth. Clio
Grows Up: From Research Prototype to Industrial Tool. In ACM
SIGMOD International Conference on Management of Data
(SIGMOD), pages 805–810, 2005.

[17] P. G. Kolaitis. Schema Mappings, Data Exchange, and Metadata
Management. In ACM Symposium on Principles of Database Systems
(PODS), pages 61–75, 2005.

[18] M. Lenzerini. Data Integration: A Theoretical Perspective. In ACM
Symposium on Principles of Database Systems (PODS), pages
233–246, 2002.

[19] J. Madhavan and A. Y. Halevy. Composing Mappings Among Data
Sources. In International Conference on Very Large Data Bases
(VLDB), pages 572–583, 2003.

[20] S. Melnik. Generic Model Management: Concepts and Algorithms,
volume 2967 of Lecture Notes in Computer Science. Springer, 2004.

[21] S. Melnik, A. Adya, and P. A. Bernstein. Compiling Mappings to
Bridge Applications and Databases. In ACM SIGMOD International
Conference on Management of Data (SIGMOD), pages 461–472,
2007.

[22] A. Nash, P. A. Bernstein, and S. Melnik. Composition of mappings
given by embedded dependencies. ACM Transactions on Database
Systems (TODS), 32(1):4, 2007.

[23] A. Nash, A. Deutsch, and J. Remmel. Data exchange, data
integration, and chase. Technical Report CS2006-0859, UC San
Diego, 2006.

[24] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernández, and R. Fagin.
Translating Web Data. In International Conference on Very Large
Data Bases (VLDB), pages 598–609, 2002.

[25] Y. Sagiv and M. Yannakakis. Equivalences among relational
expressions with the union and difference operators. J. ACM,
27(4):633–655, 1980.

[26] O. Shmueli. Equivalence of DATALOG queries is undecidable. J.
Log. Program., 15(3):231–241, 1993.

42

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

