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Abstract. Seamless exchange of models among different modeling tools
increasingly becomes a crucial prerequisite for the success of model-
driven engineering. Current best practices use model transformation lan-
guages to realize necessary mappings between concepts of the metamod-
els defining the modeling languages supported by different tools. Existing
model transformation languages, however, lack appropriate abstraction
mechanisms for resolving recurring kinds of structural heterogeneities
one has to primarily cope with when creating such mappings.

We propose a framework for building reusable mapping operators which
allow the automatic transformation of models. For each mapping opera-
tor, the operational semantics is specified on basis of Colored Petri Nets,
providing a uniform formalism not only for representing the transforma-
tion logic together with the metamodels and the models themselves, but
also for executing the transformations, thus facilitating understanding
and debugging. To demonstrate the applicability of our approach, we
apply the proposed framework for defining a set of mapping operators
which are intended to resolve typical structural heterogeneities occurring
between the core concepts usually used to define metamodels.

1 Introduction

Interoperability between modeling tools. With the rise of Model-Driven
Engineering (MDE) [20] models become the main artifacts of the software de-
velopment process. Hence, a multitude of modeling tools is available supporting
different tasks, such as model creation, model simulation, model checking, model
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transformation, and code generation. Seamless exchange of models among differ-
ent modeling tools increasingly becomes a crucial prerequisite for effective model-
driven engineering. Due to lack of interoperability, however, it is often difficult
to use tools in combination, thus the potential of MDE cannot be fully utilized.
For achieving interoperability in terms of transparent model exchange, current
best practices (cf., e.g. [21]) comprise creating model transformations based on
mappings between concepts of different tool metamodels, i.e., the metamodels
describing the modeling languages supported by the tools.

Problem Statement. We have followed the aforementioned approach in
various projects such as the ModelCVS project [12] focusing on the interoper-
ability between legacy case tools (in particular CA’s AllFusion Gen) with UML
tools and the MDWEnet project [1] trying to achieve interoperability between
different tools and languages for web application modeling. The prevalent form
of heterogeneity one has to cope with when creating such mappings between
different metamodels is structural heterogeneity, a form of heterogeneity well-
known in the area of database systems [3, 14]. In the realm of metamodeling
structural heterogeneity means that semantically similar modeling concepts are
defined with different metamodeling concepts leading to differently structured
metamodels. Current model transformation languages, e.g., the OMG standard
QVT [17], provide no appropriate abstraction mechanisms or libraries for re-
solving recurring kinds of structural heterogeneities. Thus, resolving structural
heterogeneities requires to manually specify partly tricky model transformations
again and again which simply will not scale up having also negative influence on
understanding the transformation’s execution and on debugging.

Contribution. The contribution of this paper is twofold. First, a framework
is proposed for building reusable mapping operators which are used to define so-
called metamodel bridges. Such a metamodel bridge allows the automatic trans-
formation of models since for each mapping operator the operational semantics
is specified on basis of Colored Petri Nets. Colored Petri Nets provide a uniform
formalism not only for representing the transformation logic together with the
metamodels and the models themselves, but also for executing the transforma-
tions, thus facilitating understanding and debugging. Second, to demonstrate the
applicability of our approach we apply the proposed framework for defining a
set of mapping operators subsumed in our mapping language called CAR. This
mapping language is intended to resolve typical structural heterogeneities oc-
curring between the core concepts usually used to define metamodels, i.e., class,
attribute, and reference, as provided by the OMG standard MOF [16].

Structure. The rest of the paper is structured as follows. In Section 2 we
introduce our framework for defining mapping operators in order to establish
metamodel bridges. In Section 3 the mapping language CAR is presented. Section
4 discusses related work, and finally, in Section 5 a conclusion and a discussion
of future work is given.



2 Metamodel Bridging at a glance

In this section, we describe the conceptual architecture of the proposed Meta-
model Bridging Framework in a by-example manner. The proposed framework
provides two views on the metamodel bridge, namely a mapping view and a
transformation view as illustrated in Figure 1.

At the mapping view level, the user defines mappings between elements of
two metamodels (M2). Thereby a mapping expresses also a relationship between
model elements, i.e., the instances of the metamodels [4]. In our approach, we
define these mappings between metamodel elements with mapping operators
standing for a processing entity encapsulating a certain kind of transformation
logic. A mapping operator takes as input elements of the source model and pro-
duces as output semantically equivalent elements of the target model. Thus,
it declaratively describes the semantic correspondences on a high-level of ab-
straction. A set of applied mapping operators defines the mapping from a left
hand side (LHS) metamodel to a right hand side (RHS) metamodel further on
subsumed as mapping model.

For actually exchanging models between different tools, the mapping models
have to be executed. Therefore, we propose, in addition to the mapping view,
a transformation view which is capable of transforming models (M1) from the
LHS to the RHS on basis of Colored Petri Nets [6].

2.1 The Mapping View

For defining mapping operators and consequently also for building mapping mod-
els, we are using a subset of the UML 2 component diagram concepts. With this
formalism, each mapping operator can be defined as a dedicated component, rep-
resenting a modular part of the mapping model which encapsulates an arbitrary
complex structure and behavior, providing well-defined interfaces to the envi-
ronment. The resulting components are collected in a mapping operator library
which can be seen as a domain-specific language for bridging metamodels. The
user can apply the mapping operators expressed as components in a plug&play
manner, i.e., only the connections to the provided and required interfaces have
to be established manually.

Our motivation for using UML 2 component diagrams for the mapping view
is the following. First, many software engineers are likely to be familiar with the
UML component diagram notation. Second, the provided and required interfaces
which can be typed, enable the composition of mapping operators to resolve more
complex structural heterogeneities. Third, the clear separation between black-
box view and white-box view of components allows switching between a high-
level mapping view and a detailed transformation view, covering the operational
semantics, i.e., the transformation logic, of an operator.

Anatomy of a mapping operator. Each mapping operator (as for example
shown in the mapping model of Figure 1) has input ports with required interfaces
(left side of the component) as well as output ports with provided interfaces (right
side of the component). Because each mapping operator has its own trace model,



RHSBridgingLHS

Target MMMapping ModelSource MM 1

Class C2C

w

M
2 name : String

EntityType

name : String

Attribute

attributes

C2C

R2R

name : String

name : String

Property
ownedAttributes

A2A

M
ap

pi
ng

 V
ie
w

Transform

Class EntityTypeC2C

Source Places Target PlacesTransformation Logic

A2A

M

Transform Transform 22 4

M
2

Class_name
EntityType_name

A2A

2 2

2 2

history

history

on
 V
ie
w

Class_ownedAttributes
EntityType attributesR2R

M
1 
+ 
M

Tr
an

sf
or
m
at
io

Property Attribute

EntityType_attributes

C2C

2
history

2

Execution Export 75

T

Property_name Attribute_name
A2A

2

2 2
history

history
2

6

M
1 sf
or
m

o1:Class o2:Class

UML  Model ER ModelToken Model Token Model

Execution

3

Export
Import 75

name=“Professor” name=“Student”

o1 o2

“Professor“

“Student“

fo
rm

8
o1:EntityType o2:EntityType

name=“Professor” name=“Student”

o1 o2

“Student“

“Professor“

M

Tr
an

o3:Property o4:Property

name=“ssn” name=“studentnr”

“ssn“

“studentnr“

Tr
an

sf

o3:Attribute o4:Attribute

name=“ssn” name=“studentnr”

o3 o4o3 o4

“ssn“

“studentnr“

Fig. 1. Metamodel Bridging Framework by-example



i.e., providing a log about which output elements have been produced from
which input elements, an additional providedContext port with a corresponding
interface is available on the bottom of each mapping operator. This port can be
used by other operators to access the trace information for a specific element via
requiredContext ports with corresponding interfaces on top of the operator.

In the mapping view of Figure 1 (cf. step 1), an example is illustrated where
a small part of the metamodel of the UML class diagram (cf. source metamodel)
is mapped to a part of the metamodel of the Entity Relationship diagram (cf.
target metamodel). In the mapping view, source metamodel elements have pro-
vided interfaces and target metamodel elements have required interfaces. This
is due to the fact that in our scenario, models of the LHS are already avail-
able whereas models of the RHS must be created by the transformation, i.e., the
elements of the LHS must be streamed to the RHS according to the mapping op-
erators. Consequently, Class and Property of the source metamodel are mapped
to EntityType and Attribute of the target metamodel with Class2Class (C2C )
operators, respectively. In addition, the C2C operator owns a providedContext
port on the bottom of the component which shall be used by the requiredCon-
text ports of the appropriate Attribute2Attribute (A2A) and Reference2Reference
(R2R) operators to preserve validity of target models. In particular, with this
mechanism it can be ensured that values of attributes are not transformed before
their owning objects has been transformed and links as instances of references
are not transformed before the corresponding source and target objects have
been transformed.

2.2 The Transformation View

The transformation view is capable of executing the defined mapping models.
For this, so called transformation nets [18] are used which are a special kind of
Colored Petri Nets consisting of source places at the LHS and target places at
the RHS. Transitions between the source and target places describe the trans-
formation logic located in the bridging part of the transformation net as shown
in Figure 1.

Transformation nets provide a suitable formalism to represent the opera-
tional semantics of the mapping operators, i.e., the transformation logic defined
in the white-box view of the component due to several reasons. First, they enable
the execution of the transformation thereby generating the target model out of
the source model, which favors also debugging of a mapping model. Second, it
allows a homogeneous representation of all artefacts involved in a model trans-
formation (i.e., models, metamodels, and transformation logic) by means of a
simple formalism, thus being especially suited for gaining an understanding of
the intricacies of a specific metamodel bridge.

In the next paragraphs, we discuss rules for assembling metamodels, models,
and mapping models into a single transformation net and how the transformation
can actually be executed.

Places represent Metamodels. First of all, places of a transformation net
are used to represent the elements of the source and target metamodels (cf. step 2



in Figure 1). In this respect, we currently focus on the three major building blocks
of metamodels (provided, e.g. by meta-metamodels such as MOF), namely class,
attribute, and reference. In particular, classes are mapped onto one-colored places
whereby the name of the class becomes the name of the place. The notation used
to visually represent one-colored places is a circle or oval as traditionally used
in Petri Nets. Attributes and references are represented by two-colored places,
whereby the name of the containing class plus the name of the reference or
of the attribute separated by an underline becomes the name of the place (cf.
e.g. Class name and Class ownedAttributes in Figure 1). To indicate that these
places contain two-colored tokens, the border of two-colored places is double-
lined.

Tokens represent Models. The tokens of the transformation net are used
to represent the source model which should be transformed according to the
mapping model. Each element of the source model is expressed by a certain token,
using its color as a means to represent the model element’s identity in terms of a
String (cf. step 3 in Figure 1). In particular, for every object, a one-colored token
is produced, whereby for every link as an instance of a reference, as well as for
every value of an attribute, a two-colored token is produced. The fromColor for
both tokens refers to the color of the token that corresponds with the containing
object. The toColor is given by the color of the token that corresponds with
the referenced target object or the primitive value, respectively. Notationally,
a two-colored token consist of a ring (carrying the fromColor) surrounding an
inner circle (depicting the toColor).

Considering our example shown in Figure 1, the objects o1 to o4 of the
UML model shown in the M1-layer are transformed into one-colored tokens.
Each one-colored token represents an object identity, pointed out by the object
name beneath the token. E.g., the tokens with the inner-color ”Student” and
”Professor” have the same outer-color as their containing objects and the token
which represents the link between object o1 and o3 has the same outer-color
as the token representing object o1 and the inner-color corresponds to the one-
colored token representing object o3.

Transitions represent Mapping Models. The mapping model is ex-
pressed by the transformation logic of the transformation net connecting the
source and the target places (cf. Step 4 in Figure 1). In particular, the op-
erational semantics of the mapping operators are described with transitions,
whereby the behavior of a transition is described with the help of preconditions
called query-tokens (LHS of a transition) and postconditions called generator-
tokens (RHS of a transition). Query-tokens and generator-tokens can be seen as
templates, simply visualized as color patterns, describing a certain configuration
of tokens. The pre-condition is fulfilled and the transitions fires, if the specified
color pattern described by the query-tokens matches a configuration of available
input tokens. In this case, the postcondition in terms of the generator-tokens
produces the required output tokens representing in fact the necessary target
model concepts.



In the following, the most simple mapping operators used in our example are
described, namely C2C, A2A, and R2R.

C2C. The white-box view of the C2C operators as shown in the transfor-
mation view of Figure 1 ensures that each object instantiated from the class
connected to the input port is streamed into the mapping operator, the transi-
tion matches a single token from the input port, and streams the exact token
to the output port. This is expressed in the transition by using the most ba-
sic query-token and generator-token combination, both having the same color
pattern. In addition, every input and output token combination is saved in a
history place representing the trace model which is connected to the provided-
Context port and can be used as trace information by other operators.

A2A. The white-box view of the A2A operator is also illustrated in the bridg-
ing part of the transformation view in Figure 1. Two-colored tokens representing
attribute values are streamed via the input port into the mapping operator. How-
ever, a two-colored token is only streamed to the output port if the owning object
of the value has been already transformed by a C2C operator. This is ensured in
that the transition uses the same color pattern for the one-colored query-token
representing the owning object streamed from the requiredContext port and for
the outer color of the two-valued query-token representing the containing object
of the attribute value. Only, if a token configuration matches this pre-condition,
the two-colored token is streamed via the generator-token to the output port.
Again, the input tokens and the corresponding output tokens are stored in a
history place which is connected to the providedContext port.

R2R. The white-box view of the R2R operator shown in the transformation
view of Figure 1 consists of three query-tokens, one two-colored query-token
representing the link and two one-colored query-tokens for accessing trace infor-
mation from C2C operators. The two-colored query-token must have the same
inner and outer colors as provided by the C2C trace information, i.e., the source
and target objects must be already transformed. When this precondition is sat-
isfied by a token configuration, the two-colored token representing the link is
streamed via the generator-token to the output port.

Execution of the transformation logic. As soon as the metamodels are
represented as places, which are furthermore marked with the respective colored
tokens depicting the concepts of the source model (cf. step 5 in Figure 1), the
transformation net can be started. Now, tokens are streamed from the source
places over the transitions into the target places (cf. step 6 in Figure 1).

Considering our running example, in a first step only the transitions of the
C2C operators are able to fire due to the dependencies of the A2A and R2R
operators. Hence, tokens from the places Class and Property are streamed to
the appropriate places of the RHS and all combinations of the queried input
and generated output tokens are stored in the trace model of the C2C operator.
As soon as all necessary tokens are available in the trace model, depending
operators, i.e., the A2A and R2R operators, are also able to fire.



Generation of the target model. After finishing the transformation, the
tokens from the target places can be exported (cf. step 7 in Figure 1) and trans-
formed back into instances of the RHS metamodel (cf. step 8 in Figure 1).

In our example, the one-colored tokens o1 to o4 contained in the target places
are transformed back into objects of type EntityType and Attribute. The two-
colored tokens which represent attribute values, e.g., ”Professor” and ”Student”,
are assigned to their containing objects, e.g., o1 and o2 whereas ”ssn” and
”studentnr” are assigned to o3 and o4. Finally, the two-colored tokens which
represent links between objects are transformed back into links between o1 and
o3, as well as between o2 and o4.

3 Mapping Operators of the CAR Mapping Language

3.1 Motivating Example

Based on experiences gained in various interoperability projects [9, 10, 23, 24] it
has been shown that although most meta-metamodels such as MOF offer only
a core set of language concepts for defining metamodels, numerous structural
heterogeneities occur when defining modeling languages.
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As an example for structural metamodel heterogeneity consider the example
shown in Figure 2. Two MOF-based metamodels represent semantically equiv-
alent core concepts of the UML class diagram in different ways. Whereas the
LHS metamodel uses only a small set of classes, the RHS metamodel employs
a much larger set of classes thereby representing most of the UML concepts
which are in the LHS metamodel implicitly defined as attributes or references
explicitly as first class citizens. More specifically, four structural metamodel het-
erogeneities can be found which require mapping operators going beyond the
simple one-to-one mappings provided by the mapping operators in Section 2.



3.2 CAR Mapping Language at a glance

At this time, we provide nine different core mapping operators for resolving
structural metamodel heterogeneities as depicted in Figure 2. These nine map-
ping operators result from the possible combinations between the core concepts
of meta-metamodels, namely class, attribute, and reference, which also led to the
name of the CAR mapping language. These mapping operators are designed to
be declarative and bi-directional and it is possible to derive executable transfor-
mations based on transformation nets. One important requirement for the CAR
mapping language is that it should be possible to reconstruct the source models
from the generated target models, i.e., any loss of information during transfor-
mation should be prevented. In Figure 3, the mapping operators are divided
according to their functionality into the categories Copier, Peeler, and Linker
which are explained in the following.

1© 2007 IFS University of Linz, BIG Vienna University of Technology

Class Attribute Relationship

Class C2C C2A C2R

Attribute A2C A2A A2R

Relationship R2C R2A R2R

… Copier
… Peeler
… Linker

Legend

Fig. 3. CAR Mapping Operators

Copier. The diagonal of the matrix in Figure 3 depicts the symmetric map-
ping operators of the CAR mapping language which have been already discussed
in Section 2. The term symmetric means that the input and outport ports of the
left side and the right side of the mapping operators are of the same type. This
category is called Copier, because these mapping operators copy one element of
the LHS model into the RHS model without any further manipulations.

Peeler. This category consists of mapping operators which create new ob-
jects by ”peeling”1 them out of values or links. The A2C operator bridges het-
erogeneities which are resulting from the fact that a concept is expressed as an
attribute in one metamodel and as a class in another metamodel. Analogously,
a concept can be expressed on the LHS as a reference and on the RHS as a class
which can be bridged by a R2C operator.

Linker. The last category consists of mapping operators which either link
two objects to each other out of value-based relationships (cf. A2R and R2A
operator) or assign values or links to objects for providing the inverse variants
of the A2C and R2C operators (cf. C2A and C2R operator).

To resolve the structural heterogeneities depicted in Figure 2, in the following
subsections the necessary mapping operators are discussed in detail, comprising

1 Note that the term ”peeling” is used since when looking at the white-box view the
transformation of an attribute value into an object requires in fact to generate a
one-colored token out of a two-colored token.



besides a variation of the C2C operator mainly mapping operators falling into
the above mentioned peeler and linker category.

3.3 Conditional C2C Mapping Operator

Problem. In MOF-based metamodels, a property of a modeling concept can
be expressed via a discriminator of an inheritance branch or with an additional
attribute. An example for this kind of heterogeneity can be found in Figure
2(a), namely between Attribute.isID on the LHS and the subclasses of the class
Attribute on the RHS. This heterogeneity is not resolvable with a primitive C2C
operator per se, because one class on the LHS corresponds to several classes
on the RHS whereby each mapping is only valid under a certain condition. On
the model level, this means that a set of objects has to be splitted into several
subsets based on the object’s attribute values.

Solution. To cope with this kind of heterogeneity, the C2C operator has to be
extended with the capability of splitting a set of objects into several subsets. For
this we are annotating the C2C operator with OCL-based preconditions assigned
to ports as depicted in Figure 4(a). These preconditions supplement the query-
tokens of the transitions by additionally allowing to specify constraints on the
source model elements. The reason for introducing this additional mechanism is
that the user should be able to configure the C2C operator without having to
looking into the white-box view of the operator, realizing its basic functionality.

Example Application. In the example shown in Figure 5, we can apply
two C2C mapping operators with OCL conditions, one for mapping Attribute
to DesAtt with the precondition Attribute.isID = false, and one for mapping
Attribute to IdAtt with the precondition Attribute.isID = true. In addition, this
example shows a way how mappings can be reused within a mapping model by
allowing inheritance between mappings. This mechanism allows to define certain
mappings directly between superClasses and not for each subClass combination
again and again (cf., e.g., the A2A mapping between the Attribute.name at-
tributes). For more details about the inheritance mechanism see Subsection 3.7.

3.4 A2C Mapping Operator

Problem. In Figure 5(b), the attributes minCard and maxCard, which are part
of the class Attribute at the LHS, are at the RHS part of a dedicated class
Multiplicity. Therefore, on the instance level, a mechanism is needed to ”peel”
objects out of attribute values and to additionally take into account the struc-
ture of the LHS model in terms of the attribute’s owning class when building
the RHS model, i.e., instances of the class Multiplicity must be connected the
corresponding instances of class Attribute.

Solution. The black-box view of the A2C mapping operator as illustrated
in Figure 4(b) consists of one or more required interfaces for attributes on the
LHS depending on how many attributes are contained by the additional class,
and has in minimum three provided interfaces on the RHS. The first of these
interfaces is used to mark the reference which is responsible to link the two target
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classes, the second is used to mark the class that should be instantiated, and
the rest is used to link the attributes of the LHS to the RHS. Additionally, an
A2C operator has a required interface to a C2C, because the source object is
splitted into two target objects, thereby only one object is created by the A2C,
the other has to be generated by an C2C operator which maps the LHS class to
its corresponding target RHS class.

The white-box view of the A2C operator shown in Figure 4(b) comprises a
transition consisting of at least two query-tokens. The first query-token guar-
antees that the owningObject has been already transformed by a C2C opera-
tor. The other query-tokens are two-colored tokens representing the attribute
values which have as fromColor the same color as the first query-token. The
post-condition of the transition consists of at least three generator-tokens. The
second generator-token introduces a new color, i.e., this color is not used in the
pre-condition part of the transition, and therefore, the generator-token produces
a new object with an unique identity. The first generator-token is used for linking
the newly created object appropriately into the target model and the other two-
colored generator tokens are used to stream the values into the newly generated
object by changing the fromColor of the input values.

Example Application. In Figure 5, the attributes minCard and maxCard
are mapped to attributes of the class Multiplicity. Furthermore, the reference
between the classes Attribute and Multiplicity is marked by the A2C mapping
as well as the class Multiplicity. To assure that the generated Multiplicity objects
can be properly linked to Attribute objects, the A2C mapping is in the context
of the C2C mapping between the Attribute classes.

3.5 R2C Mapping Operator

Problem. In Figure 5(c), the reference superClasses of the LHS metamodel
corresponds to the class Generalization of the RHS metamodel. This kind of
heterogeneity requires an operator which is capable of ”peeling” an object out
of a link and to additionally preserve the structure of the LHS in terms of the
classes connected by the relationships at the RHS.

Solution. The black-box view of the R2C mapping operator, as depicted in
Figure 4(c), has one required interface on the left side for pointing to a reference.
On the right side it has three provided interfaces, one for the class which stands
for the concept expressed as reference on the LHS and two for selecting the
references which are responsible to connect the object which has been peeled out
of the link of the LHS into the RHS model. To determine the objects to which
the peeled object should be linked, two additional required interfaces on the top
of the R2C operator are needed for determining the corresponding objects of the
source and target objects of the LHS.

The white-box view of the R2C mapping operator, as illustrated in Figure
4(c), consists of a pre-condition comprising three query-tokens. The input link
is connected to a two-colored query-token, the fromColor corresponds to the
query-token standing for the source object and the toColor corresponds to a
query-token standing for the target object. The post-condition of the transition



introduces a new color and is therefore responsible to generate a new object.
Furthermore, two links are produced by the other generator-tokens for linking
the newly generated object with the corresponding source and target the objects
of the LHS.

Example Application. In Figure 5, the reference superClasses in the LHS
metamodel is mapped to the class Generalization by an R2C operator. In ad-
dition, the references subClasses and superClasses are selected for establishing
an equivalent structure on the RHS as existing on the LHS. For actually deter-
mining the Class objects which should be connected via Generalization objects,
the R2C operator has two dependencies to C2C mappings. This example can be
seen as a special case, because the reference superClasses is a reflexive reference,
therefore both requiredContext ports of the R2C operator point to the same
C2C operator.
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Fig. 5. Example resolved with CAR (Mapping View)

3.6 A2R Mapping Operator

Problem. The attribute vs. reference heterogeneity shown in Figure 2(d) resem-
bles the well-known difference between value-based and reference-based relation-



ships, i.e, corresponding attribute values in two objects can be used to ”simulate”
links between two objects. Hence, if the attribute values in two objects are equal,
a link ought to be established between them.

Solution. For bridging the value-based vs. reference-based relationship het-
erogeneity, the A2R mapping operator as shown in Figure 4(d) provides on the
LHS two interfaces, one for marking the keyValue attribute and another for
marking the keyRefValue attribute. On the RHS, the operator provides only one
interface for marking the reference which corresponds to the keyValue/keyRef-
Value attribute combination.

The white-box view of the operator comprises a transition which has four
query-tokens. The first two ensure that the objects which are referencing each
other on the LHS have been already transformed. The last two are the key-
Value and keyRefValue query-tokens whereby the inner-color (representing the
attribute values) is the same for both tokens. The generator-token of the transi-
tion produces one two-colored token by using the outer-color of the keyRefValue
query-token as the outer-color and the outer-color of the keyValue query-token
as the inner-color.

Example Application. In Figure 5, the A2R operator is used to map the
Package.name attribute as the key attribute and the Class.package attribute as
the keyRef attribute of the LHS metamodel to the reference between Package
and Class on the RHS metamodel.

3.7 Inheritance for C2C Mappings

For reusing existing mappings, we introduce the possibility to define general-
ization relationships between C2C mappings. This means, the user can define
general mappings between superclasses called supermappings and more specific
mappings between subclasses called submappings which can be used to refine
(i.e., the source and target types of the supermappings) and extend (i.e., new
feature mappings can be introduced) the supermappings. As concrete syntax
for generalization relationships between C2C mappings, we reuse the notation
of UML generalization relationships between classes, i.e., a line with a hollow
triangle as an arrowhead.

Note that we allow generalization relationships only for C2C mappings for
inheriting feature-mappings which are dependent on C2C mappings such as sym-
metric mappings (A2A, R2R), or asymmetric mappings (A2C, R2C, A2R, and
their inverse operators). This is due to the fact that C2C operators are responsi-
ble for providing the context information for all other CAR mapping operators.

One important constraint for generalization relationships between C2C op-
erators is that if a generalization between two C2C operators is defined, the
participating LHS classes of the supermappings and the submappings must be
either in a generalization relationship or it must be actually the same class.
Of course, the same constraint must hold on the RHS. These two constraints
must be ensured, because the submappings inherit the feature mappings of the
supermappings and therefore, the features of the superclasses must be also avail-
able on instances which are transformed according to the submappings.



Representing Inheritance within Transformation Nets. In the follow-
ing, we discuss how C2C generalization relationships influence the generation
of transformation nets and consequently the execution of the transformation
logic. On overall design goal is naturally to express new language concepts at
the black-box view – such as mapping generalizations in this case – as far as
possible by means of existing transformation net mechanisms.

When we take a closer look on supermappings, we see that these mappings
must provide the context, i.e., the trace model information, for all dependent
mappings. This means, the supermappings must also provide context informa-
tion about the transformation of indirect instances, e.g., for assigning attribute
values of indirect instances when the attribute is contained by the superclass.
Consequently, a supermapping is derived into a transformation component which
contains the union of its own trace model for logging the transformation of di-
rect instances of the superclass and the trace models of its submappings for
logging the transformation of indirect instances. Therefore, the corresponding
transformation components of the submappings are nested into the transfor-
mation component of the supermapping. For constructing the union of trace
models of nested transformation components, each nested component gets an
arc from its own trace model to the union trace model of the outer component.
Mappings which depend on the supermapping are connected to the union trace
model available on the outer component and mappings which are dependent on
submappings are directly connected to the individual trace models of the nested
components.
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C2C2.1 C2C2.2

C2C3.1 C2C3.2

C2C1

…

C2C2.1

C2C2.2

C2C3.1
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union(1, 2.1,2.2)

union(2.1, 3.1, 3.2, …)

Mapping Model Transformation Net

Fig. 6. Representing Inheritance Structures with Nested Transformation Components

Figure 6 illustrates the derivation of generalization relationships into trans-
formation net components. The mapping C2C1 of the Mapping Model shown on
the LHS of Figure 6 is transformed into the outer component C2C1, which con-
sists of a transition for transforming direct instances and of two subcomponents



C2C2.1 and C2C2.2. In addition, the outer component provides a union trace
model of the transformation components C2C1, C2C2.1, and C2C2.2. Because
the mapping C2C2.1 has two submappings, the corresponding transformation
component has also two sub-components C2C3.1 and C2C3.2. In addition, the
component C2C2.1 provides a union trace model of itself and the subcomponents
C2C3.1 and C2C3.2.

The resulting transformation net for the CAR mapping model shown in Fig-
ure 5, which uses two generalization relationships, may be found in the Ap-
pendix A.

4 Related Work

With respect to our approach we can distinguish between two kinds of related
work: first, related work in the field of model-driven engineering concerning the
design of reusable model transformations, and second, related work in the field
of ontology engineering concerning the usage of dedicated mapping languages
for bridging structural heterogeneities.

4.1 Reusable Model Transformations

Generic Model Transformations. Typically model transformation languages,
e.g., ATL [7] and QVT [17], allow to define transformation rules based on types
defined as classes in the corresponding metamodels. Consequently, model trans-
formations are not reusable and must be defined from scratch again and again
with each transformation specification. One exception thereof is the approach of
Varró et al. [22] who define a notion of defining generic transformations within
their VIATRA2 framework, which in fact resembles the concept of templates in
C++ or generics in Java. VIATRA2 also provides a way to implement reusable
model transformations, although it does not foster an easy to debug execution
model as is the case with our proposed transformation nets. In addition, there
exists no explicit mapping model between source and target metamodel which
makes it cumbersome to reconstruct the correspondences between the metamodel
elements based on the graph transformation rules, only.

Transformation Patterns. Very similar to the idea of generic transforma-
tions is the definition of reusable idioms and design patterns for transformation
rules described by Karsai et al. [2]. Instead of claiming to have generic model
transformations, the authors propose the documentation and description of re-
curring problems in a general way. Thus, this approach solely targets the docu-
mentation of transformation patterns. Implementation issues how these patterns
could be implemented in a generic way remain open.

Mappings for bridging metamodels. Another way of reuse can be achieved
by the abstraction from model transformations to mappings as is done in our ap-
proach or by the ATLAS Model Weaver (AMW) [5]. AMW lets the user extend
a generic so-called weaving metamodel, which allows the definition of simple



correspondences between two metamodels. Through the extension of the weav-
ing metamodel, one can define the abstract syntax of new weaving operators
which roughly correspond to our mapping operators. The semantics of weaving
operators are determined by a higher-order transformation that take a weaving
model as input and generates model transformation code. Compared to our ap-
proach, the weaving models are compiled into low-level transformation code in
terms of ATL which is in fact a mixture of declarative and imperative language
constructs. Thus, it is difficult to debug a weaving model in terms of weaving
operators, because they do not explicitly remain in the model transformation
code. Furthermore, the abstraction of mapping operators from model transfor-
mations expressed in ATL seems more challenging compared to the abstraction
from our proposed transformation net components.

4.2 Ontology Mapping for Bridging Structural Heterogeneities

In field of ontology engineering, several approaches exist which make use of high-
level languages for defining mappings between ontologies (cf. [8] for an overview).
For example, in Maedche et al. [15], a framework called MAFRA for mapping
two heterogeneous ontologies is proposed. Within this framework, the mapping
ontology called Semantic Bridge Ontology usually provides different ways of
linking concepts from the source ontology to the target ontology. In addition
to the Semantic Bridge Ontology, MAFRA provides an execution platform for
the defined mappings based on services whereby for each semantic bridge type
a specific service is available for executing the applied bridges. In [19], Scharffe
et al. describe a library of so called Ontology Mediation Patterns which can be
seen as a library of mapping patterns for integrating ontologies. Furthermore, the
authors provide a mapping language which incorporates the established mapping
patterns and they discuss useful tool support around the pattern library, e.g.,
for transforming ontology instances between different ontology schemas.

The main difference to our approach is that ontology mapping approaches are
based on Semantic Web standards, such as OWL and RDFS, and therefore con-
tain mapping operators for typical description logic related mapping problems,
e.g., union or intersection of classes. We are bridging metamodels expressed
in MOF, a language which has only a partially overlap with OWL or RDFS,
leading to different mapping problems. Furthermore, in contrast to the ontology
mapping frameworks, we provide a framework allowing to build new mapping
operators by using well-known modeling techniques not only for defining the
syntax but also for the operational semantics of the operators.

5 Conclusion and Future Work

In this paper we have introduced a framework allowing the definition of map-
ping operators and their application for building metamodel bridges. Metamodel
bridges are defined by the user on a high-level mapping view which represents the



semantic correspondences between metamodel elements and are tested and exe-
cuted on a more detailed transformation view which also comprises the transfor-
mation logic of the mapping operators. The close integration of these two views
and the usage of models during the whole bridging process further enhances
understandability and the debugging of the defined mappings in terms of the
mapping operators. The applicability of the framework has been demonstrated
by implementing mapping operators for resolving common structural metamodel
heterogeneities.

Future work will focus on making current matching engines for automati-
cally finding correspondences between metamodels aware of the CAR mapping
operators in combination with a supervised machine learning approach [13].
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Appendix A - Transformation View for Integration
Example
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