
International Journal of Computer Applications (0975 – 8887)

Volume 34– No.8, November 2011

14

 A Comparative Analysis of Ontology and Schema

Matching Systems

K. Saruladha
Computer Science

Department, Pondicherry
Engineering College,

Puducherry, India

Dr. G. Aghila
Computer Science

Department, Pondicherry
University, Puducherry, India

B. Sathiya
Computer Science

Department, Pondicherry
Engineering College,

Puducherry, India

ABSTRACT

In a distributed and open system, such as the semantic web and

many other applications like information integration, peer- peer

communication, etc., the heterogeneity among the data increases

enormously. To solve the heterogeneity issue various matching

techniques are proposed and large-scale matching needs

especially to be supported for different kinds of ontologies and

XML schemas due to their increasing use and size, e.g., in life

science applications, e-business and web. In this paper the

techniques which are scalable like early pruning, partitioning,

parallelization and some renowned scalable matching techniques

are discussed. In addition to it, a brief comparison of the

discussed matching techniques is also presented.

General Terms

Artificial Intelligence, Semantic Web, Knowledge sharing,

Knowledge Representation.

Keywords

Similarity Measure, Schema Matching, Ontology Matching,

Ontology Alignment.

1. INTRODUCTION
Matching technique finds semantic correspondences between

cartesian product of entity pair of the given two ontologies or

schema. In general relational and XML database is called as

Schema and the database represented by semantic language like

Web Ontology Language (OWL) or Resource Description

Language (RDF) is called as Ontology. The correspondences of

the matching technique may stand for equivalent, subsumption,

or disjoint relation between the ontology entities. The result of

matching technique is the set of semantic correspondences

called alignments. Fig.1 depicts the general framework for the

schema matching techniques which is also applicable for

ontology matching techniques. As shown in figure the input of

the matching technique is two schemas which are first imported

into a format suitable for processing. For a faster computation

the schema may be preprocessed, e.g., preparing neighbour list

for each entity to fasten the structural similarity calculation,

removing redundant information from schema, etc. The

similarity value is calculated for all cartesian product entity pairs

one from each of two preprocessed schemas using a match

workflow consisting of set of matcher (e.g., lexical, structural

and semantic matcher). The output of the matcher workflow is

the semantic similarity value matrix. The semantic value ranges

from 0 to 1, i.e., value 1 indicates equivalent and value 0 means

disjoint relation. The matcher workflow can be sequential,

parallel, iterative or in some mixed fashion as shown in Fig.2.

The similarity value obtained from the match workflow can be

aggregated to obtain the final alignment. For large scale schema

matching the workflow will slightly vary to incorporate

techniques like early pruning and partitioning of schema to

reduce the search space, parallelization, etc.

According to Shvaiko P and Euzenat J [1] one of the toughest

challenge for matching system is handling large scale schemas

or ontology and on the basis of Rahm. E [2] work domain where

large scale matching is necessary include e-business [3], web

data [4], life science ontologies [5], medicine [6] and web

directories [7]. Even though the advancements are made in the

current matching systems, they are still unable to achieve good

effectiveness (correctness and completeness of the alignment)

and good efficiency (time and space efficiency) and the

effectiveness is measured by precision and recall while the

efficiency is measured by execution time and memory used.

The remainder of this paper is organized as follows: Section 2

defines the terminologies and notations used in this paper.

Section 3 discusses various large scale matching technique.

Section 4 gives a brief comparison of the large scale matching

technique. Finally, Section 5 concludes the paper.

2. PREMILINARIES
Definition 1. (Ontology) An ontology O is a set of RDF triples

T. Any RDF triple t (t T) denotes a statement of the form

<subject,predicate,object> Any node in an RDF triple may be a

URI with an optional local name (URIref), a literal, or a blank

node (having no separate form of identification). A predicate is

always an URIref, and a literal cannot be a subject. The node

can be a class or a property and for simplicity, classes and

properties are uniformly called entities. There exist hierarchical

relationships between each entity and its sub-entity. The

ontology also consists of set of axioms A. I is a set of instances

of concepts and properties.

Definition 2. (Ontology matching) [8] Let O, O’ be two

ontologies. Matching O with O’ finds a set of alignments A=

{a1, a2,..,an}. Each ai (i=1, 2,..., n) is a 5-tuple: <id,e1,e2,u,v>

where id is an unique identifier, e1 is an entity in O, e2 is an

entity in O’, u is an equivalence , subsumption or disjointness

relationship holding between e1 and e2 and v is a similarity

between e1 and e2 in the [0,1] range.

International Journal of Computer Applications (0975 – 8887)

Volume 34– No.8, November 2011

15

Fig 1: General workflow of matching techniques

Fig 2: General sub-workflow of matchers

3. APPROACHES USED FOR LARGE

SCALE MATCHING TECHNIQUE
In this section, we discuss about various large scale matching

technique. The matching techniques are

1) Early pruning strategy based matching technique

a. Eric peukert et al. schema and ontology matching

algorithm

b. Quick Ontology Matching algorithm (QOM)

2) Partition based matching technique

a. Anchor flood ontology matching algorithm

b. Coma++ schema and ontology matching

algorithm

c. Falcon-AO ontology matching algorithm

d. Taxomap ontology matching algorithm

3) Parallel matching technique

a. Gross et al. ontology matching algorithm

4) Other matching tool

a. AgreementMaker schema and ontology matching

tool

b. ASMOV (Automated Semantic Matching of

Ontologies with Verification) ontology matching

tool

c. RiMOM ontology matching tool

Fig. 3 depicts the classification of the large scale matching

techniques based on techniques adapted for the scalability.

3.1 Early Pruning Matching Technique

The early pruning technique reduces the search space for
matching by eliminating certain entities from matching process
e.g., one matcher can prune entity pairs whose semantic
correspondence value is very low, thus reducing search space for
the subsequent matcher. This idea can be accomplished by both
sequential and iterative matcher workflow. Eric Peukert et al. [9]
System implemented both matcher workflows and QOM [10]
implemented iterative workflow.

3.1.1 Eric Peukert et al. Matching Technique

Eric Peukert et al. proposed a rewrite match workflow based

schema and ontology matching algorithm which is a rule-based

optimization technique. The rewrite of workflow is done to

improve performance. The match workflow consist of the filter

operators to eliminate dissimilar entity pairs (whose similarity

value is less than some threshold) from intermediate match

results and thus reducing search space for further matchers. The

threshold is either statically predetermined or dynamically

derived from the similarity threshold used in the previous match

workflow to select alignment.

XML schemas, meta models or ontologies format data can be

the input. These input formats are converted into a standard

internal format. The designer must choose and design the

matching steps which is represented as a graph where the

vertices represent matcher from the library and edges represent

data flow and execution order. The matcher workflow graph

designed by the designer can be parallel or serial or iterative or a

combined strategy. The designer use the matcher workflow

rewrite recommendation system to increase efficiency of the

matching process. These matcher workflow rewrite

recommendation system is similar to cost-based rewrites in

database query optimization e.g, the use of rewrite rules are

similar to the use of predicate push-down rules for database

query optimization which reduce the number of input tuples for

joins and other expensive operators. A simple cost model is used

to choose which parts of a matching workflow to rewrite. These

rewrites can be accepted or rejected by the user. Once the

matching process graph is finalized the graph can be executed to

obtain the alignment.

The drawbacks of this method are as follows. The matcher

library consists of only few numbers of matchers. Rewrite rules,
only focus on efficiency improvements but not on effectiveness

improvement.

Sequential Workflow Parallel Workflow Combined Workflow

Matcher 1 Matcher 2

222

...

Matcher 1

Matcher 2

Matcher 2

Matcher 3
Matcher 1

<id, O1(entity e1), O2 (entity e1),

Relationship, Similarity Measure>

<id, O1(entity e2), O2 (entity e2),

Relationship, Similarity Measure >

.....

<id, O1(entity en), O2 (entity em),

Relationship,Similarity Measure >

Input Schemas
Computation

 Preprocessor

Preprocessor

Matcher

sub-

workflow

 Similarity Matrix

Similarity

aggregation

of matcher

result

Preprocessed

Schemas

 Alignment Set

International Journal of Computer Applications (0975 – 8887)

Volume 34– No.8, November 2011

16

 Fig. 3 Classification of large scale Ontology/schema matching techniques

3.1.2 QOM Matching Technique

QOM is the iterative ontology matching algorithm which is a
variation of the Naive Ontology Matching (NOM) algorithm
dedicated to improve the efficiency of the system. The basic
difference is QOM reduces the search space by eliminating less
promising matching entity pairs using heuristic and dynamic
programming approach with marginally compromising on
effectiveness. QOM matcher consisting of the following steps to
match the ontologies.

The input to QOM must be in RDF format. The process of
determining whether two entities are same or not is based on the
entity features. This step constructs the search space of ontology
entities by computing the cartesian product of entity pairs using
entity features of both ontologies. The entity pairs obtained will
be pruned using heuristics strategies to reduce the search space.
The selected matching pairs will be processed for similarity
computation and their interpretation. The heuristics strategies
are based on hierarchy of entities, entity neighbour to the
alignments obtained from the previous iteration, labels of
entities, random pick or combination of the above strategies.
The similarity between the above selected entity pairs can be
measured by wide range of similarity functions like Dice
coefficient, Levenshtein’s edit distance and cosine similarity
value. Based on the feature of the entity any of the above
similarity function can be chosen. To aggregate the similarity
value QOM uses weighted average of similarity values for a
given entity pair. The weight of the similarity values is
calculated by sigmoid function which emphasizes high
individual similarities and deemphasizes low individual
similarities. For the next iteration the matching pairs with

similarity value less than a threshold and which violates
bijectivity (one-to-one and onto constraint) of the matching are
discarded. Initial iteration uses lexical knowledge while later
iterations use structure knowledge for matching. The number of
iteration required irrespective of ontology size based on their
experiment is ten. Based on the evaluation QOM is nearly
twenty times faster than NOM.

The drawback of QOM is that, effectiveness is marginally lower
than NOM since not all cartesian entity pair is evaluated.

3.2 Partition Based Matching Technique
The partition based matching technique divides the ontology to
form partitions and execute a partition wise matching between
the two ontologies. The partitioning is performed in such a way
that each partition of first ontology is matched with only small
subset of the partitions (ideally, only with one partition) of the
second ontology. The entities of the dissimilar partition pairs can
be eliminated from further matching process thus reducing the
search space to achieve better efficiency. Space complexity of
the matching process is also reduced. Four partition based
methods anchor flood [11], COMA++ [12], Falcon-AO
[13],Taxomap [14], will be discussed below.

3.2.1 AnchorFlood Matching Technique
AnchorFlood is an ontology matching algorithm with a dynamic
partition based matching which avoids the priori partitioning of
the ontologies. The internal structure, external structure and
Jaro-Wingler string distance is used in measuring semantic
similarity value between the entity pairs. The initial input to the
algorithm is the set of anchors, where an anchor is defined as an

Large scale ontology/schema matching techniques

Early pruning

matching

techniques

Eric peukert et

al. schema and

ontology

matching

algorithm

QOM

ontology

matching

algorithm

Gross et al.

ontology matching

algorithm

Anchor flood

ontology matching

algorithm

Partitioning

matching

techniques

Parallelization

matching

techniques

Other renowned

matching

techniques

Coma++ schema

and ontology

matching algorithm

Falcon-AO ontology

matching algorithm

Taxomap ontology

matching algorithm

RiMOM ontology

matching algorithm

Agreementmaker

schema and ontology

matching algorithm

ASMOV schema

and ontology

matching algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 34– No.8, November 2011

17

exact string match of concepts, properties or instances pair.
Preprocessing of ontologies is carried out to normalize the
textual contents of entities. The algorithm starts with an anchor
and collects neighboring entity of the chosen anchor across
ontologies. The segment pair constructed from the above
collected neighbors is processed to produce alignment pairs. The
process repeats until “either all the collected entity is explored,
or no new aligned pair is found”. The anchor will be discarded
as misalignment if the constructed segment of the anchor does
not produce sufficient alignments.

The drawbacks of this method are as follows. Ignores certain
distantly placed aligned pairs since segments are constructed
from neighbor of anchors. Semantic similarity between entities
is not explored. Only exact string match of concepts, properties
and instances are considered as anchors which lead to inefficient
alignments.

3.2.2 COMA++ (COmbination of MAtching

algorithms)

COMA++ is a schema matching tool based on parallel

composition of matchers. COMA++ is a framework which is

equipped with a suite of matcher libraries. The matching result

of a matcher could be combined with other matcher results.

Further the effectiveness of the different matchers could be

evaluated.This method can process XML schema, relational

database and OWL ontology. First the schema is processed to

identify the relevant components (node, path or fragment) for

matching. Then depending on the component chosen a matcher

workflow is used to compute component similarities. Finally

similarity combination methods are used to find the

correspondence between components.

A Fragment is defined as a rooted sub-graph down to the leaf
level in the schema graph. The fragment component based
matching process is capable of handling large scale schema. The
three available fragment type are schema, subschema and
shared. User can also select their own fragment through GUI.
Based on the fragment type, the schema is fragmented and
fragment pairs one from each of the two ontology is matched to
find the most similar fragment pair. The search for similar
fragments is some kind of light-weight matching, e.g., based on
the similarity of the fragment roots. Next similar fragment pair
is matched element wise using matcher in the matcher library to
find the alignments.

The drawbacks of this method are as follows. COMA++ is
developed for XML schemas and hence it is not suitable for
complex ontology graph. It use relatively simple heuristic rules
to partition the input schemas resulting often in too few or too
many partitions and to find similar fragment pair only the root
node features are used which will lead to less matching quality.

3.2.3 Falcon-AO Matching Technique

Falcon-AO is an ontology matching tool which aims at finding
alignments of the given two OWL/RDF ontologies. The matcher
library of Falcon-AO consist of V-Doc [15] and I-Sub [16]
which are light-weight linguistic matchers, GMO [17] an
iterative structural matcher and Partition Based Matcher finds
the mappings among blocks of large scale ontologies by using
divide and conquer technique. The ontology is preprocessed to
make it into a RDF graph. The main steps of PBM are
partitioning the two input ontology independently, and executing

a pair wise partition matching taken one from each of the two
ontologies. The similar partition pairs will be further processed
for element level matching using VDOC and GMO. The phase
of Falcon-AO are as follows.

Partitioning ontologies: For both the input ontology the
structural proximities between entities are calculated based on
how closely they are related in the hierarchies. The ontology
clusters are formed based on structural proximities using
modified ROCK [18] clustering algorithm. RDF Blocks are
constructed from the clusters by assigning each RDF triple to a
cluster in which at least two entities are contained.

Matching blocks: The alignment with high similarities is
referred as anchors. A light-weight string comparison technique,
I-SUB, is firstly employed to exploit anchors between two full
ontologies and then the blocks from the two ontologies are
matched based on the distribution of the anchors.

Discovering alignments: V-DOC adopts a linguistic approach

to ontology matching. It associates with each ontology entity a

bag of words which is built from the entity label, the entity

annotations as well as the labels of connected entities. The

similarity between entities is based on TFIDF [19]. GMO is an

iterative and bipartite structural graph matcher. It starts by

considering the RDF representation of the ontologies as a

bipartite graph which is represented by its adjacency matrix (A

and A’). The distance between the ontologies is represented by

a distance matrix (X) and the distance (or update) equations

between two entities are simply a linear combination of all

entities they are adjacent to, i.e., Xt+1 = AXtA’T + ATXtA’. This

process can be bootstrapped with an initial distance matrix.

However, the real process is more complex than described here

because it distinguishes between external and internal entities as

well as between classes, relations and instances. Similarity

combination is a heuristic strategy to tune the thresholds of the

above two matchers.

The drawbacks of this method are as follows. The entire
ontology needs to be processed to find anchors and thus
efficiency of Falcon-AO is reduced. Maximum number of entity
in a cluster is determined by the GMO matcher and the
clustering algorithm terminates abruptly if it reaches maximum
number which will lead to poor clustering.

3.2.4 Taxomap Matching Technique
Taxomap is an ontology matching algorithm consisting of two

partitioning algorithm namely Anchor Partition Partition (APP)

and Partition Anchor Partition (PAP) which have been designed

to take the alignment objective into account in the partitioning

process. The most structured ontology is referred as target

ontology and the less structured is referred as source ontology.

PAP is suitable for structured vs unstructured ontology matching

and APP is suitable for structured vs structured ontology

matching. The entity pair one from each of two ontology which

has identical labels is called as anchors which will be used in

both PAP and APP. The alignment is based on lexical and

structure (subclass) similarity measure.

Anchor Partition Partition (PAP):

1. Identify the set of anchors across ontologies.
2. Partition both the target ontology and source ontology by

International Journal of Computer Applications (0975 – 8887)

Volume 34– No.8, November 2011

18

modifying PBM matcher in order to take into account
shared anchors.

3. Align blocks that share maximal number of anchors.

Partition Anchor Partition (PAP):

1. Use PBM matcher to partition the target ontology into set of
blocks.

2. Identify the set of anchors between two ontologies. This set
will be the center of the future block which will be generated
from the source ontology.

3. Use PBM matcher to partition the source ontology around
the identified centers.

4. Align each block with the corresponding block.

The drawbacks of this method are as follows. The effectiveness
of this method depends on the availability of identical labels
across ontologies. Only labels and hierarchy structure is used for
matching and hence comparatively less recall.

3.3 Parallel Matching Technique

Parallelization is a straight-forward method to increase the
efficiency of large-scale matching by executing matcher in
parallel on several processors. The two kinds of parallel
matching are inter-matcher and intra-matcher parallelization.
Inter-matcher parallelization deals with parallel execution of
independently executable matchers while intra-matcher
parallelization deals with internal decomposition of individual
matchers or matcher parts into several match tasks that can be
executed in parallel. Gross et al. [20] matching system
implements both inter-matcher and intra-matcher parallelization
which will be discussed below

3.3.1 Gross et al. Matching Technique
Gross et al. proposed a parallel ontology matching system with a

distributed infrastructure to incorporate intra-matcher and inter-

matcher parallelism. The element- level and structure-level

matching are also parallelized. For intra-matcher parallelism a

size-based partitioning algorithm has been proposed by this

system leading to better load balancing, limited memory

consumption and scalability without reducing the effectiveness

of match results.

The context attributes for each entity is first generated. Then the
ontology is partitioned into set of partition based on the size-
based partitioning algorithm achieving intra-matcher
parallelism. Now the partition pairs are constructed one from
each of the two ontologies. Each partition pair is assigned a
processor. Within each processor the partition pair is parallel
processed by the element level, structure-level, instance-based
matchers achieving inter- matcher parallelism. The alignments
from all the matcher can be aggregated to output the final
alignment.

The drawbacks of this method are as follows. The matcher
library consists of only few numbers of matchers. The partition
algorithm uses only simple strategies for partitioning which can
be improved.

3.4 Other Matching Technique

3.4.1 AgreeementMaker Matching Technique

AgreementMaker [21] is a schema and ontology matching
algorithm consisting of wide range of matcher for lexical and

structural feature of the ontology. Both serial and parallel
matcher workflow is provided. The strength of the system lies in
GUI which enable user to choose, control and execute the
iterative matchers and their results. Through GUI the user can
choose matcher from the matcher library based on the matching
granularity (element wise, structural wise and instance wise),
dominant features of input schema, etc.

The input ontology can be in XML, RDFS, OWL, or N3 format.
The system consists of three layers. First matcher layer use the
entity features (e.g., label, comments, annotations, and
instances) and compute the similarity value using the syntactic
and lexical matchers. The resulting similarity values are
combined based on weighted average method. Second matcher
layer use structural properties of the ontologies to compute the
similarity value. Finally, third matcher layer combine the
similarity value of first and second matcher layer.

The drawback of this system is that, the end user should be a
sophisticated domain expert because to choose, control and
execute the matcher the user must have domain knowledge.

3.4.2 ASMOV Matching Technique

ASMOV [22] (Automated Semantic Matching of Ontologies
with Verification) is an iterative ontology matching algorithm.
The ASMOV achieves high effectiveness by post processing the
alignment to remove the alignments which are semantically
inconsistent. It also uses WordNet and the Unified Medical
Language System (UMLS) to increase the effectiveness. But
postprocessing of the alignments and use of external dictionary
lead to more execution time and thus reduced efficiency. The
input ontology should be in OWL-DL format. The input of
ASMOV is two ontologies and an optional pre-determined
alignment set. The similarity between entities belonging to two
ontologies is computed by matching the string, structure and
instances of the entities. It then uses the optional input
alignment to adjust any calculated measures. A similarity among
the entity pairs belonging to two ontologies computed as
explained above is stored in a similarity matrix. For each entity
choose the maximum similarity value as pre-alignment from the
similarity matrix.

This pre-alignment must undergo a process of semantic

verification, which is an extensive postprocessing to eliminate

potential inconsistencies among the set pre-alignment. Five

different kinds of inconsistencies are checked. One such

inconsistency rule is Multiple-entity correspondences, e.g., if

two alignments (a, b) and (b, c) exist then there must also be

alignment like (a, c), if not the above two alignment cannot be

verified and hence removed. The output of the above step is the

semantically verified similarity matrix, which is then test against

a termination condition. . If this condition is true, no more

iteration is needed and the process stops. The resulting

alignment is final alignment set.

The drawbacks of this system are as follows. When the given

two ontologies are dissimilar effectiveness is decreased.

Sometime semantic verification system eliminates too many

alignments leading to less recall. For each iteration the ASMOV

needs polynomial time, thus leading to inefficiency.

3.4.3 RiMOM Matching Technique

RiMOM [23] is the automatic ontology matching algorithm
developed with dynamic selection of matchers for ontology

International Journal of Computer Applications (0975 – 8887)

Volume 34– No.8, November 2011

19

* optional

Table 1. A Comparison of Ontology/Schema Matching Techniques

alignment tasks. The input ontology should be in OWL format.
It considers lexical, structural and instance similarities. Based on
the features of the input ontology and the predefined rules,
appropriate matchers are chosen to apply for the matching task.
RiMOM consist of six steps as follows

Ontology Preprocessing and Feature Factors Estimation. For
each entity of both ontologies, generate the features of the entity
like its name, label, children, etc. Then the label and structure
similarity of the entity pairs are calculated which will be used in
the following step.

Strategy (Matcher) Selection. The basic idea of strategy
selection is that if two ontologies have some feature in common,
then matcher based on these feature information are employed
with high weight; and if some feature factors are two low, then
these matcher may be not employed. The entities are first
linguistically matched; structural matching is only applied if the
schemas exhibit sufficient structural similarity.

Single strategy execution. The selected strategies from the

above step is use to find the alignment independently. Each
strategy outputs an alignment result.

Alignment combination. In this phase RiMOM combines the
alignment results obtained by the selected strategies. The
combination is conducted by a linear interpolation method.

Similarity propagation (optional). If the two ontologies have
high structure similarity factor, RiMOM employs to find new
alignment according to the structural information.

Alignment refinement. It refines the alignment results from the
previous steps. It defined several heuristic rules to remove the
unreliable alignments.

The drawback of RiMOM is its inefficiency for dealing with
large scale ontologies. Eventhough it shows a very good
effectiveness for large scale ontologies it consume long time and
large amount of memory since it does not incorporate search
space reduction techniques like early pruning, partition of
ontology or parallel technique.

QOM

Eric

Peukert

et al.

COMA++
Falcon-

AO

Taxo-

map

Anchor

Flood

Gross

et al.
RiMOM ASMOV

Agreement

Maker

XML

Schemas as

Input

No Yes Yes No No No No No No (Yes)

Ontologies

as Input
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

GUI No Yes Yes (Yes)* No No No No No Yes

Linguistic

Matcher
Yes N/K Yes Yes Yes Yes Yes (Yes) Yes Yes

Structural

Matcher
Yes N/K Yes Yes Yes Yes Yes (Yes) Yes Yes

Instance

Matcher
Yes N/K Yes No No No Yes (Yes) Yes Yes

Early

pruning
Yes Yes No No No No No No No No

Schema/

Ontology

partition

No No Yes Yes Yes Yes Yes No No No

Parallel

matching
No (Yes) (Yes) No No No Yes No No No

Dynamic

matcher

selection

No No No No No No No Yes No No

Mapping

Reuse
No Yes Yes No No No No No No No

OAEI

participation
No No Yes Yes Yes Yes No Yes Yes Yes

Use of

external

dictionary

Yes No Yes No No No No Yes Yes Yes

International Journal of Computer Applications (0975 – 8887)

Volume 34– No.8, November 2011

20

4. AN ANALYSIS OF DIFFERENT

LARGE SCALE MATCHING

TECHNIQUES
In this section we present an analysis of different large scale
ontology/schema matching technique. Table 1 provides a brief

comparison among ten match techniques which were discussed

in the above section. The parameters used for comparison are

1) Input Format

a. Ontology

b. XML

2) GUI

3) Type of matcher

a. Linguistic based matcher

b. Structural based matcher

c. Instance based matcher

4) Scalability techniques

a. Early pruning techniques

b. Partitioning techniques

c. Parallelization techniques

5) Dynamic matcher selection

6) Mapping reuse

7) OAEI participation

8) Use of external dictionary

The analysis depicts that all matching techniques accepts

ontology as input and only few matching techniques like Peukert

et al., COMA++ and AgreementMaker accepts XML as input.

GUI is provided only by Eric Peukert et al., COMA++, Falcon-

AO and AgreementMaker. Eric Peukert et al., matching

technique uses the matcher library and the types of matcher in

the library are not mentioned. So we are unable to consider the

Eric Peukert et al., matching technique for matcher type

analysis. Linguistic and structural matcher is incorporated by all

the matching technique, whereas the instance matcher is not

implemented by Falcon-AO, Taxomap and AnchorFlood

matching technique. The scalability technique early pruning is

implemented by the QOM and Eric Peukert et al., matching

technique, Schema/Ontology partitioning is applied in

AnchorFlood, COMA++, Falcon-AO and Taxomap and

parallelization is applied in Eric Peukert et al., COMA++ and

Gross et al. matching technique. RiMOM is the only system to

implement dynamic matcher selection. The Alignment/mapping

reuse is incorporated only in COMA++ and Eric Peukert et al.,

matching technique. All the matching technique except QOM,

Eric Peukert et al. and Gross et al. participated in OAEI

(Ontology Alignment Evaluation Initiative) which is a

benchmark competition for evaluating the new proposed

matching techniques. QOM, COMA++, ASMOV,

AgreementMaker and RiMOM uses external dictionary like

WordNet , UMLS to increase the efficiency of matching.

5. CONCLUSION
The various schema and ontology matching techniques that

could be used for large scale matching is discussed in this paper.

The goal of this analysis paper is to present broad overview of

matching techniques which are used to increase the effectiveness

of the matching process by postprocessing of alignments,

dynamic matcher selection, and full user control of match

workflow through GUI. And also the efficiency of the matching

process by early pruning strategy, partitioning of

ontology/schema and parallelization of matching process. The

analysis depicts that there is always a tradeoff between good

effectiveness and good efficiency in the existing matching

systems. Hence, we are working for a better effective and

efficient large scale ontology matching technique which will

combine the advantages and eliminate the disadvantage of the

matching techniques discussed in this paper.

6. REFERENCES
[1] Shvaiko P, Euzenat J, “Ten challenges for ontology

matching,” Confederated International Conference on the

Move to Meaningful Internet Systems, pp. 1164–1182,2008.

[2] Rahm E, “Towards Large-Scale Schema and Ontology

Matching,” Schema matching and mapping, Bellahsene Z,

Bonifati A Rahm E, eds. New York: Springer Heidelberg,

pp. 3–27, 2011.

[3] Smith K, Morse M, Mork P et al., “The role of schema

matching in large enterprises,” Proceedings of CIDR, 2009.

[4] Su W, Wang J, Lochovsky FH, “Holistic schema matching

for web query interfaces,” Proceedings of international

conference on extending database technology (EDBT).

Springer, Heidelberg, pp 77–94, 2006.

[5] Kirsten T, Thor A, Rahm E, “Instance-based matching of

large life science ontologies,” Proceedings of data

integration in the life sciences (DILS). LNCS, Springer,

Heidelberg, vol. 4544, pp 172–187, 2007.

[6] Zhang S, Mork P, Bodenreider O, Bernstein PA, “Comparing

two approaches for aligning representations of anatomy,”

Artif Intell Med vol. 39, no. 3, pp 227–236, 2007.

[7] Avesani P, Giunchiglia F, Yatskevich M, “A large scale

taxonomy mapping evaluation,” Proceedings of

international conference on semantic web (ICSW). LNCS,

vol. 3729. Springer, Heidelberg, pp 67–81, 2005.

[8] P. Shvaiko, J. Euzenat, “ A survey of schema-based

matching approaches,” Journal on Data Semantics IV,

LNCS, Springer, vol. 3730, pp. 146-171, 2005.

[9] Peukert E, Berthold H, Rahm E, “Rewrite techniques for

performance optimization of schema matching processes,”

Proceedings of 13th international conference on extending

database technology (EDBT). ACM, NY, pp 453–464,

2010.

[10] Ehrig M, Staab S, “Quick ontology matching,” Proceedings

of international conference semantic web (ICSW). LNCS,

vol 3298. Springer, Heidelberg, pp 683–697, 2004.

[11] Hanif MS, Aono M, “An efficient and scalable algorithm

for segmented alignment of ontologies of arbitrary size,”

Journal of Web Semantics, vol. 7, no. 4, pp. 344–356, 2009.

[12] Do HH, Rahm E, “Matching large schemas: Approaches

and evaluation,” Journal of Information System, vol. 3, no.

6, pp. 857–885, 2007.

[13] Hu W, Qu Y, Cheng G, “Matching large ontologies: A

divide-and-conquer-approach,” Journal of Data Knowledge

Engineering, vol. 67, no. 1, pp. 140–160, 2008.

[14] Hamdi F, Safar B, Reynaud C, Zargayouna H, “Alignment-

International Journal of Computer Applications (0975 – 8887)

Volume 34– No.8, November 2011

21

based partitioning of large-scale ontologies,” Advances in

knowledge discovery and management, 1st ed. New York:

Springer Heidelberg, pp. 251–269, 2009.

[15] Y. Qu, W. Hu, G. Cheng, “Constructing virtual documents

for ontology matching,” Proceedings of the 15th

International World Wide Web Conference, ACM Press,

pp. 23–31, 2006.

[16] Stoilos G, Stamou G, Kollias S, “A string metric for

ontology alignment,” Proceedings of the 4th International

Semantic Web Conference, LNCS, Springer, vol. 3729, pp.

624–637, 2005.

[17] W. Hu, N. Jian, Y. Qu, Y. Wang, “GMO: a graph matching

for ontologies,” Proceedings of the K-CAP Workshop on

Integrating Ontologies, pp. 41–48, 2005.

[18] Guha S, Rastogi R, Shim K, “ROCK: a robust clustering

algorithm for categorical attributes,” Proceedings of the

15th International Conference on Data Engineering, pp.

512–521, 1999.

[19] Yuzhong Qu, Wei Hu, and Gong Chen, “Constructing

virtual documents for ontology matching,” Proc. 15th

International World Wide Web Conference (WWW),

Edinburgh (UK), pp 23–31, 2006.

[20] Gross A, Hartung M, Kirsten T, Rahm E, “On matching

large life science ontologies in parallel,” Proceedings of 7th

international conference on data integration in the life

sciences (DILS). LNCS, vol 6254. Springer, Heidelberg,

2010.

[21] Cruz IF, Antonelli FP, Stroe C, “AgreementMaker:

Efficient matching for large real-world schemas and

ontologies,” PVLDB, VLDB Endowment, vol. 2, no. 2, pp

1586–1589, 2009.

[22] Jean-Mary YR, Shironoshita EP, Kabuka MR, “Ontology

matching with semantic verification,” J Web Sem vol. 7,

no. 3, pp. 235–251, 2009.

[23] Li J, Tang J, Li Y, Luo Q, “RiMOM:A dynamic

multistrategy ontology alignment framework,” IEEE Trans

Knowl Data Eng vol. 21 , no. 8, pp. 1218–1232, 2009.

