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ABSTRACT 

In a distributed and open system, such as the semantic web and 

many other applications like information integration, peer- peer 

communication, etc., the heterogeneity among the data increases 

enormously. To solve the heterogeneity issue various matching 

techniques are proposed and large-scale matching needs 

especially to be supported for different kinds of ontologies and 

XML schemas due to their increasing use and size, e.g., in life 

science applications, e-business and web. In this paper the 

techniques which are scalable like early pruning, partitioning, 

parallelization and some renowned scalable matching techniques 

are discussed. In addition to it, a brief comparison of the 

discussed matching techniques is also presented.     

General Terms 

Artificial Intelligence, Semantic Web, Knowledge sharing, 

Knowledge Representation.  

Keywords 

Similarity Measure, Schema Matching, Ontology Matching, 

Ontology Alignment.  

1. INTRODUCTION 
Matching technique finds semantic correspondences between 

cartesian product of entity pair of the given two ontologies or 

schema. In general relational and XML database is called as 

Schema and the database represented by semantic language like 

Web Ontology Language (OWL) or Resource Description 

Language (RDF) is called as Ontology. The correspondences of 

the matching technique may stand for equivalent, subsumption, 

or disjoint relation between the ontology entities. The result of 

matching technique is the set of semantic correspondences 

called alignments. Fig.1 depicts the general framework for the 

schema matching techniques which is also applicable for 

ontology matching techniques. As shown in figure the input of 

the matching technique is two schemas which are first imported 

into a format suitable for processing. For a faster computation 

the schema may be preprocessed, e.g., preparing neighbour list 

for each entity to fasten the structural similarity calculation, 

removing redundant information from schema, etc. The 

similarity value is calculated for all cartesian product entity pairs 

one from each of two preprocessed schemas using a match 

workflow consisting of set of matcher (e.g., lexical, structural 

and semantic matcher). The output of the matcher workflow is 

the semantic similarity value matrix. The semantic value ranges 

from 0 to 1, i.e., value 1 indicates equivalent and value 0 means 

disjoint relation. The matcher workflow can be sequential, 

parallel, iterative or in some mixed fashion as shown in Fig.2. 

The similarity value obtained from the match workflow can be 

aggregated to obtain the final alignment. For large scale schema 

matching the workflow will slightly vary to incorporate 

techniques like early pruning and partitioning of schema to 

reduce the search space, parallelization, etc.  

According to Shvaiko P and Euzenat J [1] one of the toughest 

challenge for matching system is handling large scale schemas 

or ontology and on the basis of Rahm. E [2] work domain where 

large scale matching is necessary include e-business [3], web 

data [4], life science ontologies [5], medicine [6] and web 

directories [7]. Even though the advancements are made in the 

current matching systems, they are still unable to achieve good 

effectiveness (correctness and completeness of the alignment) 

and good efficiency (time and space efficiency)  and the 

effectiveness is measured by precision and recall while the 

efficiency is measured by execution time and memory used. 

The remainder of this paper is organized as follows: Section 2 

defines the terminologies and notations used in this paper. 

Section 3 discusses various large scale matching technique. 

Section 4 gives a brief comparison of the large scale matching 

technique. Finally, Section 5 concludes the paper. 

2. PREMILINARIES 
Definition 1. (Ontology) An ontology O is a set of RDF triples 

T. Any RDF triple t (t   T) denotes a statement of the form 

<subject,predicate,object> Any node in an RDF triple may be a 

URI with an optional local name (URIref), a literal, or a blank 

node (having no separate form of identification). A predicate is 

always an URIref, and a literal cannot be a subject. The node 

can be a class or a property and for simplicity, classes and 

properties are uniformly called entities. There exist hierarchical 

relationships between each entity and its sub-entity. The 

ontology also consists of set of axioms A. I is a set of instances 

of concepts and properties. 

Definition 2. (Ontology matching) [8] Let O, O’ be two 

ontologies. Matching O with O’ finds a set of alignments A= 

{a1, a2,..,an}. Each ai (i=1, 2,..., n) is a 5-tuple: <id,e1,e2,u,v> 

where id is an unique identifier, e1 is an entity in O, e2 is an 

entity in O’, u is an equivalence , subsumption or disjointness 

relationship holding between e1 and e2 and v is a similarity 

between e1 and e2 in the [0,1] range. 
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Fig 1: General workflow of matching techniques 

      

 

 

 

Fig 2: General sub-workflow of matchers

3. APPROACHES USED FOR LARGE 

SCALE MATCHING TECHNIQUE 
In this section, we discuss about various large scale matching 

technique. The matching techniques are  

1) Early pruning strategy based matching technique 

a. Eric peukert et al. schema and ontology matching 

algorithm 

b. Quick Ontology Matching algorithm (QOM)  

2) Partition based matching technique 

a. Anchor flood ontology matching algorithm 

b. Coma++ schema and ontology matching 

algorithm 

c. Falcon-AO ontology matching algorithm 

d. Taxomap ontology matching algorithm 

3) Parallel matching  technique 

a. Gross et al. ontology matching algorithm 

4) Other matching tool 

a. AgreementMaker schema and ontology matching 

tool 

b. ASMOV (Automated Semantic Matching of 

Ontologies with Verification) ontology matching 

tool 

c. RiMOM ontology matching tool  

Fig. 3 depicts the classification of the large scale matching 

techniques based on techniques adapted for the scalability. 

3.1 Early Pruning Matching Technique  

The early pruning technique reduces the search space for 
matching by eliminating certain entities from matching process 
e.g., one matcher can prune entity pairs whose semantic 
correspondence value is very low, thus reducing search space for 
the subsequent matcher. This idea can be accomplished by both 
sequential and iterative matcher workflow. Eric Peukert et al. [9] 
System implemented both matcher workflows and QOM [10] 
implemented iterative workflow.  

3.1.1 Eric Peukert et al. Matching Technique  

Eric Peukert et al. proposed a rewrite match workflow based  

schema and ontology matching algorithm which is a rule-based 

optimization technique. The rewrite of workflow is done  to 

improve performance. The match workflow consist of the filter 

operators to eliminate dissimilar entity pairs (whose similarity 

value is less than some threshold) from intermediate match 

results and thus reducing search space for further matchers. The 

threshold is either statically predetermined or dynamically 

derived from the similarity threshold used in the previous match 

workflow to select alignment. 

XML schemas, meta models or ontologies format data can be 

the input. These input formats are converted into a standard 

internal format. The designer must choose and design the 

matching steps which is represented as a graph where the 

vertices represent matcher from the library and edges represent 

data flow and execution order. The matcher workflow graph 

designed by the designer can be parallel or serial or iterative or a 

combined strategy. The designer use the matcher workflow 

rewrite recommendation system to increase efficiency of the 

matching process. These matcher workflow rewrite 

recommendation system is similar to cost-based rewrites in 

database query optimization e.g, the use of rewrite rules are 

similar to the use of predicate push-down rules for database 

query optimization which reduce the number of input tuples for  

joins and other expensive operators. A simple cost model is used 

to choose which parts of a matching workflow to rewrite. These 

rewrites can be accepted or rejected by the user. Once the 

matching process graph is finalized the graph can be executed to 

obtain the alignment. 

The drawbacks of this method are as follows. The matcher 

library consists of only few numbers of matchers. Rewrite rules, 
only focus on efficiency improvements but not on effectiveness 

improvement. 
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    Fig. 3 Classification of large scale Ontology/schema matching techniques 

3.1.2 QOM  Matching Technique 

QOM is the iterative ontology matching algorithm which is a 
variation of the Naive Ontology Matching (NOM) algorithm 
dedicated to improve the efficiency of the system. The basic 
difference is QOM reduces the search space by eliminating less 
promising matching entity pairs using heuristic and dynamic 
programming approach with marginally compromising on 
effectiveness. QOM matcher consisting of the following steps to 
match the ontologies.  

The input to QOM must be in RDF format. The process of 
determining whether two entities are same or not is based on the 
entity features. This step constructs the search space of ontology 
entities by computing the cartesian product of entity pairs using      
entity features of both ontologies. The entity pairs obtained will  
be pruned using heuristics strategies to reduce the search space. 
The selected matching pairs will be processed for similarity 
computation and their interpretation. The heuristics strategies 
are based on hierarchy of entities, entity neighbour to the 
alignments obtained from the previous iteration, labels of 
entities, random pick or combination of the above strategies. 
The similarity between the above selected entity pairs can be 
measured by wide range of similarity functions like Dice 
coefficient, Levenshtein’s edit distance and cosine similarity 
value. Based on the feature of the entity any of the above 
similarity function can be chosen. To aggregate the similarity 
value QOM uses weighted average of similarity values for a 
given entity pair. The weight of the similarity values is 
calculated by sigmoid function which emphasizes high 
individual similarities and deemphasizes low individual 
similarities. For the next iteration the matching pairs with 

similarity value less than a threshold and which violates 
bijectivity (one-to-one and onto constraint) of the matching are 
discarded. Initial iteration uses lexical knowledge while later 
iterations use structure knowledge for matching. The number of 
iteration required irrespective of ontology size based on their 
experiment is ten. Based on the evaluation QOM is nearly 
twenty times faster than NOM.  

The drawback of QOM is that, effectiveness is marginally lower 
than NOM since not all cartesian entity pair is evaluated. 

3.2 Partition Based Matching Technique 
The partition based matching technique divides the ontology to 
form partitions and execute a partition wise matching between 
the two ontologies. The partitioning is performed in such a way 
that each partition of first ontology is matched with only small 
subset of the partitions (ideally, only with one partition) of the 
second ontology. The entities of the dissimilar partition pairs can 
be eliminated from further matching process thus reducing the 
search space to achieve better efficiency. Space complexity of 
the matching process is also reduced. Four partition based 
methods anchor flood [11], COMA++ [12], Falcon-AO 
[13],Taxomap [14], will be discussed below. 

3.2.1 AnchorFlood Matching Technique 
AnchorFlood is an ontology matching algorithm with a dynamic 
partition based matching which avoids the priori partitioning of 
the ontologies. The internal structure, external structure and 
Jaro-Wingler string distance is used in measuring semantic 
similarity value between the entity pairs. The initial input to the 
algorithm is the set of anchors, where an anchor is defined as an 
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exact string match of concepts, properties or instances pair. 
Preprocessing of ontologies is carried out to normalize the 
textual contents of entities.  The algorithm starts with an anchor 
and collects neighboring entity of the chosen anchor across 
ontologies. The segment pair constructed from the above 
collected neighbors is processed to produce alignment pairs. The 
process repeats until “either all the collected entity is explored, 
or no new aligned pair is found”. The anchor will be discarded 
as misalignment if the constructed segment of the anchor does 
not produce sufficient alignments. 

The drawbacks of this method are as follows. Ignores certain 
distantly placed aligned pairs since segments are constructed 
from neighbor of anchors. Semantic similarity between entities 
is not explored. Only exact string match of concepts, properties 
and instances are considered as anchors which lead to inefficient 
alignments. 

3.2.2 COMA++ (COmbination of MAtching 

algorithms) 

COMA++ is a schema matching tool based on parallel 

composition of matchers. COMA++ is a framework which is 

equipped with a suite of matcher libraries. The matching result 

of a matcher could be combined with other matcher results. 

Further the effectiveness of the different matchers could be 

evaluated.This method can process XML schema, relational 

database and OWL ontology. First the schema is processed to 

identify the relevant components (node, path or fragment) for 

matching. Then depending on the component chosen a matcher 

workflow is used to compute component similarities. Finally 

similarity combination methods are used to find the 

correspondence between components.  

A Fragment is defined as a rooted sub-graph down to the leaf 
level in the schema graph. The fragment component based 
matching process is capable of handling large scale schema. The 
three available fragment type are schema, subschema and 
shared. User can also select their own fragment through GUI. 
Based on the fragment type, the schema is fragmented and 
fragment pairs one from each of the two ontology is matched to 
find the most similar fragment pair. The search for similar 
fragments is some kind of light-weight matching, e.g., based on 
the similarity of the fragment roots. Next similar fragment pair 
is matched element wise using matcher in the matcher library to 
find the alignments.  

The drawbacks of this method are as follows. COMA++ is 
developed for XML schemas and hence it is not suitable for 
complex ontology graph. It use relatively simple heuristic rules 
to partition the input schemas resulting often in too few or too 
many partitions and to find similar fragment pair only the root 
node features are used which will lead to less matching quality. 

3.2.3 Falcon-AO Matching Technique 

Falcon-AO is an ontology matching tool which aims at finding 
alignments of the given two OWL/RDF ontologies. The matcher 
library of Falcon-AO consist of V-Doc [15] and I-Sub [16] 
which are light-weight linguistic matchers, GMO [17] an 
iterative structural matcher and  Partition Based Matcher finds 
the mappings among blocks of large scale ontologies by using 
divide and conquer technique. The ontology is preprocessed to 
make it into a RDF graph. The main steps of PBM are 
partitioning the two input ontology independently, and executing 

a pair wise partition matching taken one from each of the two 
ontologies. The similar partition pairs will be further processed 
for element level matching using VDOC and GMO. The phase 
of Falcon-AO are as follows. 

Partitioning ontologies: For both the input ontology the 
structural proximities between entities are calculated based on 
how closely they are related in the hierarchies. The ontology 
clusters are formed based on structural proximities using 
modified ROCK [18] clustering algorithm. RDF Blocks are 
constructed from the clusters by assigning each RDF triple to a 
cluster in which at least two entities are contained.  

Matching blocks: The alignment with high similarities is 
referred as anchors. A light-weight string comparison technique, 
I-SUB, is firstly employed to exploit anchors between two full 
ontologies and then the blocks from the two ontologies are 
matched based on the distribution of the anchors. 

Discovering alignments: V-DOC adopts a linguistic approach 

to ontology matching. It associates with each ontology entity a 

bag of words which is built from the entity label, the entity 

annotations as well as the labels of connected entities. The 

similarity between entities is based on TFIDF [19]. GMO is an 

iterative and bipartite structural graph matcher. It starts by 

considering the RDF representation of the ontologies as a 

bipartite graph which is represented by its adjacency matrix (A 

and  A’). The distance between the ontologies is represented by 

a distance matrix (X) and the distance (or update) equations 

between two entities are simply a linear combination of all 

entities they are adjacent to, i.e., Xt+1 = AXtA’T + ATXtA’. This 

process can be bootstrapped with an initial distance matrix. 

However, the real process is more complex than described here 

because it distinguishes between external and internal entities as 

well as between classes, relations and instances. Similarity 

combination is a heuristic strategy to tune the thresholds of the 

above two matchers. 

The drawbacks of this method are as follows. The entire 
ontology needs to be processed to find anchors and thus 
efficiency of Falcon-AO is reduced. Maximum number of entity 
in a cluster is determined by the GMO matcher and the 
clustering algorithm terminates abruptly if it reaches maximum 
number which will lead to poor clustering.  

3.2.4 Taxomap Matching Technique 
Taxomap is an ontology matching algorithm consisting of two 

partitioning algorithm namely Anchor Partition Partition (APP) 

and Partition Anchor Partition (PAP) which have been designed 

to take the alignment objective into account in the partitioning 

process. The most structured ontology is referred as target 

ontology and the less structured is referred as source ontology. 

PAP is suitable for structured vs unstructured ontology matching 

and APP is suitable for structured vs structured ontology 

matching. The entity pair one from each of two ontology which 

has identical labels is called as anchors which will be used in 

both PAP and APP. The alignment is based on lexical and 

structure (subclass) similarity measure. 

Anchor Partition Partition (PAP): 

1. Identify the set of anchors across ontologies. 
2. Partition both the target ontology and source ontology by 
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modifying PBM matcher in order to take into       account 
shared anchors.  

3. Align blocks that share maximal number of anchors. 

Partition Anchor Partition (PAP): 

1. Use PBM matcher to partition the target ontology into set of 
blocks. 

2. Identify the set of anchors between two ontologies. This set 
will be the center of the future block which will be generated 
from the source ontology. 

3. Use PBM matcher to partition the source ontology around 
the identified centers. 

4. Align each block with the corresponding block. 

The drawbacks of this method are as follows. The effectiveness 
of this method depends on the availability of identical labels 
across ontologies. Only labels and hierarchy structure is used for 
matching and hence comparatively less recall. 

3.3 Parallel Matching Technique 

Parallelization is a straight-forward method to increase the 
efficiency of large-scale matching by executing matcher in 
parallel on several processors. The two kinds of parallel 
matching are inter-matcher and intra-matcher parallelization. 
Inter-matcher parallelization deals with parallel execution of 
independently executable matchers while intra-matcher 
parallelization deals with internal decomposition of individual 
matchers or matcher parts into several match tasks that can be 
executed in parallel. Gross et al. [20] matching system 
implements both inter-matcher and intra-matcher parallelization 
which will be discussed below 

3.3.1 Gross et al. Matching Technique 
Gross et al. proposed a parallel ontology matching system with a 

distributed infrastructure to incorporate intra-matcher and inter-

matcher parallelism. The element- level and structure-level 

matching are also parallelized. For intra-matcher parallelism a 

size-based partitioning algorithm has been proposed by this 

system leading to better load balancing, limited memory 

consumption and scalability without reducing the effectiveness 

of match results.  

The context attributes for each entity is first generated. Then the 
ontology is partitioned into set of partition based on the size-
based partitioning algorithm achieving intra-matcher 
parallelism. Now the partition pairs are constructed one from 
each of the two ontologies. Each partition pair is assigned a 
processor. Within each processor the partition pair is parallel 
processed by the element level, structure-level, instance-based 
matchers achieving inter- matcher parallelism. The alignments 
from all the matcher can be aggregated to output the final 
alignment. 

The drawbacks of this method are as follows. The matcher 
library consists of only few numbers of matchers. The partition 
algorithm uses only simple strategies for partitioning which can 
be improved. 

3.4 Other Matching Technique 

3.4.1 AgreeementMaker Matching Technique 

AgreementMaker [21] is a schema and ontology matching 
algorithm consisting of wide range of matcher for lexical and 

structural feature of the ontology. Both serial and parallel 
matcher workflow is provided. The strength of the system lies in 
GUI which enable user to choose, control and execute the  
iterative matchers and their results. Through GUI the user can 
choose matcher from the matcher library based on the matching 
granularity (element wise, structural wise and instance wise), 
dominant features of input schema, etc. 

The input ontology can be in XML, RDFS, OWL, or N3 format. 
The system consists of three layers. First matcher layer use the 
entity features (e.g., label, comments, annotations, and 
instances) and compute the similarity value using the syntactic 
and lexical matchers. The resulting similarity values are 
combined based on weighted average method. Second matcher 
layer use structural properties of the ontologies to compute the 
similarity value. Finally, third matcher layer combine the 
similarity value of first and second matcher layer.  

The drawback of this system is that, the end user should be a 
sophisticated domain expert because to choose, control and 
execute the matcher the user must have domain knowledge. 

3.4.2 ASMOV Matching Technique 

ASMOV [22] (Automated Semantic Matching of Ontologies 
with Verification) is an iterative ontology matching algorithm. 
The ASMOV achieves high effectiveness by post processing the 
alignment to remove the alignments which are semantically 
inconsistent. It also uses WordNet and the Unified Medical 
Language System (UMLS) to increase the effectiveness. But 
postprocessing of the alignments and use of external dictionary 
lead to more execution time and thus reduced efficiency.  The 
input ontology should be in OWL-DL format. The input of 
ASMOV is two ontologies and an optional pre-determined 
alignment set. The similarity between entities belonging to two 
ontologies is computed by matching the string, structure and 
instances of the entities.  It then uses the optional input 
alignment to adjust any calculated measures. A similarity among 
the entity pairs belonging to two ontologies computed as 
explained  above is stored in a similarity matrix.  For each entity 
choose the maximum similarity value as pre-alignment from the 
similarity matrix.  

This pre-alignment must undergo a process of semantic 

verification, which is an extensive postprocessing to eliminate 

potential inconsistencies among the set pre-alignment. Five 

different kinds of inconsistencies are checked. One such 

inconsistency rule is Multiple-entity correspondences, e.g., if 

two alignments (a, b) and (b, c) exist then there must also be 

alignment like (a, c), if not the above two alignment cannot be 

verified and hence removed. The output of the above step is the 

semantically verified similarity matrix, which is then test against 

a termination condition. . If this condition is true, no more 

iteration is needed and the process stops. The resulting 

alignment is final alignment set. 

The drawbacks of this system are as follows. When the given 

two ontologies are dissimilar effectiveness is decreased. 

Sometime semantic verification system eliminates too many 

alignments leading to less recall. For  each iteration the ASMOV 

needs polynomial time, thus leading to inefficiency. 

3.4.3 RiMOM Matching Technique 

RiMOM [23] is the automatic ontology matching algorithm 
developed with dynamic selection of matchers for ontology 
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* optional 

Table 1. A Comparison of Ontology/Schema Matching Techniques 

alignment tasks. The input ontology should be in OWL format. 
It considers lexical, structural and instance similarities. Based on 
the features of the input ontology and the predefined rules, 
appropriate matchers are chosen to apply for the matching task. 
RiMOM consist of six steps as follows 

Ontology Preprocessing and Feature Factors Estimation. For 
each entity of both ontologies, generate the features of the entity 
like its name, label, children, etc. Then the label and structure 
similarity of the entity pairs are calculated which will be used in 
the following step. 

Strategy (Matcher) Selection. The basic idea of strategy 
selection is that if two ontologies have some feature in common, 
then matcher based on these feature information are employed 
with high weight; and if some feature factors are two low, then 
these matcher may be not employed. The entities are first 
linguistically matched; structural matching is only applied if the 
schemas exhibit sufficient structural similarity.  

Single strategy execution. The selected strategies from the 

above step is use to find the alignment independently. Each 
strategy outputs an alignment result. 

Alignment combination. In this phase RiMOM combines the 
alignment results obtained by the selected strategies. The 
combination is conducted by a linear interpolation method. 

Similarity propagation (optional). If the two ontologies have 
high structure similarity factor, RiMOM employs to find new 
alignment according to the structural information. 

Alignment refinement. It refines the alignment results from the 
previous steps. It defined several heuristic rules to remove the 
unreliable alignments. 

The drawback of RiMOM is its inefficiency for dealing with 
large scale ontologies. Eventhough it shows a very good 
effectiveness for large scale ontologies it consume long time and 
large amount of memory since it does not incorporate search 
space reduction techniques like early pruning, partition of 
ontology or parallel technique. 
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4. AN ANALYSIS OF DIFFERENT 

LARGE SCALE MATCHING 

TECHNIQUES                                                
In this section we present an analysis of different large scale 
ontology/schema matching technique. Table 1 provides a brief 

comparison among ten match techniques which were discussed 

in the above section. The parameters used for comparison are               

  

1) Input Format  

a. Ontology 

b. XML  

2) GUI  

3) Type of matcher 

a. Linguistic based matcher 

b. Structural based matcher 

c. Instance based matcher 

4) Scalability techniques 

a. Early pruning techniques 

b. Partitioning techniques 

c. Parallelization techniques 

5) Dynamic matcher selection 

6) Mapping reuse 

7) OAEI participation 

8) Use of external dictionary 

The analysis depicts that all matching techniques accepts 

ontology as input and only few matching techniques like Peukert   

et al., COMA++ and AgreementMaker  accepts XML as input. 

GUI is provided only by Eric Peukert  et al., COMA++, Falcon-

AO and AgreementMaker. Eric Peukert  et al., matching 

technique uses the matcher library and the types of matcher in 

the library are not mentioned. So we are unable to consider the 

Eric Peukert  et al., matching technique for matcher type 

analysis. Linguistic and structural matcher is incorporated by all 

the matching technique, whereas the instance matcher is not 

implemented by Falcon-AO, Taxomap and AnchorFlood 

matching technique. The scalability technique early pruning is 

implemented by the QOM and Eric Peukert  et al., matching 

technique, Schema/Ontology partitioning is applied in 

AnchorFlood, COMA++, Falcon-AO and Taxomap and 

parallelization is applied in Eric Peukert  et al., COMA++ and 

Gross et al. matching technique. RiMOM is the only system to 

implement dynamic matcher selection. The Alignment/mapping 

reuse is incorporated only in COMA++ and Eric Peukert  et al., 

matching technique. All the matching technique except QOM, 

Eric Peukert  et al. and Gross et al. participated in OAEI 

(Ontology Alignment Evaluation Initiative) which is a 

benchmark competition for evaluating the new proposed 

matching techniques. QOM, COMA++, ASMOV, 

AgreementMaker and RiMOM uses external dictionary like 

WordNet , UMLS to increase the efficiency of matching. 

5. CONCLUSION 
The various schema and ontology matching techniques that 

could be used for large scale matching is discussed in this paper. 

The goal of this analysis paper is to present broad overview of 

matching techniques which are used to increase the effectiveness 

of the matching process by postprocessing of alignments, 

dynamic matcher selection, and full user control of match 

workflow through GUI. And also the efficiency of the matching 

process by early pruning strategy, partitioning of 

ontology/schema and parallelization of matching process. The 

analysis depicts that there is always a tradeoff between good 

effectiveness and good efficiency in the existing matching 

systems. Hence, we are working for a better effective and 

efficient large scale ontology matching technique which will 

combine the advantages and eliminate the disadvantage of the 

matching techniques discussed in this paper. 
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