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ABSTRACT 
Ontology matching is a key interoperability enabler for the 

Semantic Web, as well as a useful tactic in some classical data 

integration tasks. It takes the ontologies as input and 

determines as output an alignment, that is, a set of 

correspondences between the semantically related entities of 

those ontologies.  These correspondences can be used for 

various tasks, such as ontology merging and data translation. 

Thus, matching ontologies enables the knowledge and data 

expressed in the matched ontologies to inter-operate. In this 

paper we present an overview of recently proposed matching 

techniques which is participated in OAEI and Ontology 

matching tools which achieve high match efficiency with 

respect to conference track of OAEI 2010.In particular we 

discuss lessons learned on strong points and remaining 

weaknesses of various matching techniques is summarized. 

General Terms 
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1. INTRODUCTION 

1.1 GENERAL 
The World Wide Web (WWW) is widely used as a universal 

medium for information exchange. However, semantic 

interoperability in the WWW is still limited due to the 

heterogeneity of information [1]. Ontology, a formal, explicit 

specification of a shared conceptualization [2], has been 

suggested as a way to solve the problem. With the popularity of 

ontologies, ontology mapping, aiming to find semantic 

correspondences between similar elements of different 

ontologies, has attracted many research attentions from various 

domains. 

1.2 ONTOLOGY MATCHING 
Ontology matching is the process of automatically finding the 

relationship between the elements or concepts of two or more 

formal ontologies. Computed correspondences typically need 

to be validated and corrected by users to achieve the correct 

match mappings. Match mappings are needed in many areas, in 

particular for data integration, data exchange, or to support 

schema and ontology evolution. 

1.3 TECHNIQUES 
Different techniques have been examined in ontology mapping 

[3] [4] [5], e.g.,  

1. Terminological (String based(name similarity), 

Language based (lemmatisation), Linguistic 

resources(lexicons)) 

2. Structural (Constrained based(lexicons),Taxonomy 

based (subsumption) 

3. Extensional (Data analysis) 

4. Semantic (Upper level ontologies,Model based (DL 

reasoner)) 

5. Instance based approach. 

6. Use of auxiliary. 

7. combination strategies  

8. Filtering Techniques 

1.4 ALIGNMENTS [6] 
Using ontologies is the rich way to attain interoperability 

among heterogeneous systems within the Semantic web. 

However, as the ontologies underlying two systems are not 

necessarily compatible, they may in turn need to be consistent. 

Ontology equalization requires most of the time to find the 

correspondences between entities (e.g., classes, objects, 

properties) occurring in the ontologies. We call a set of such 

correspondences an alignment .We have designed a format for 

expressing alignments in a uniform way. The goal of this 

format is to be able to share on the web the available 

alignments. The format is expressed in RDF, so it is freely 

extensible. 

1.5 REFERENCE ALIGNMENTS  
Reference alignment is a correspondence which is correct made 

by domain experts. All the reference alignments are available 

for the conference track in OAEI. The complex and laborious 

task of generating the reference alignment has been conducted 

by a combination of computational methods and an extensive 

manual evaluation with the help of domain experts. 

1.6 MEASURES [3] 
Instance matching algorithms are evaluated according to the 

following parameters. 

 Precision: the number of correct retrieved mappings / 

the number of retrieved mappings. 

 Recall: the number of correct retrieved mappings / 

the number of expected mappings. 

 F-measure: 2 · (precision · recall) / (precision + 

recall). 

1.7 SOME OF THE PARTICIPANTS OF 

OAEI [7] 
 AgreementMaker (AgrMaker)  

 FALCON 

 ASMOV  

 CODI   

 AROMA 

2. AGREEMENTMAKER [8]  
The AgreementMaker method is specific in that it attributes a 

powerful user program, a bendable and extensile architecture, 

and merged evaluation engine that relies on inbuilt quality 

measures, and semi-automatic and automatic methods. 
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2.1 Matching Algorithms  
2.1.1 Syntactic 

Base Similarity Matcher (BSM)  
BSM is a basic string matcher that computes the similarity 

between concepts by examination all the strings connected with 

them. 

Parametric String Matcher (PSM)  
PSM is a more in-depth string matcher, which for the 

contention is set to use a substring measure and an edit distance 

measure. 

Vector-based Multi-word Matcher (VMM)  
VMM compiles a virtual document for every concept of an 

ontology, change the resulting strings into TF-IDF vectors and 

then computes their similarity using the cosine similarity 

measure 

Advance similarity matcher 
ASM is a string-based matcher that computes mappings 

between source and target concepts (including their properties) 

by comparing their local names, and providing better similarity 

evaluation in particular when compound terms are used. ASM 

outper-forms generic string-based similarity matchers because 

it is based on a deeper linguistic analysis. 

2.1.2 Structural 

Descendants Similarity Inheritance Matcher 

(DSI)  
This matcher is based on the idea that if two nodes are similar, 

then their descendants should be similar. 

Siblings Similarity Contribution Matcher (SSC)  
The Group Finder Matcher (GFM) is another structural 

matcher that separate out the mappings provided by another 

matcher (the input matcher).It determine groups of idea and 

properties in the ontologies and expect that two concepts (or 

properties) that exist to two groups that were not mapped by 

the input matcher will likely have different meanings and 

should not be mapped. 

2.2 STRONG FACTOR OF 

AGRMAKER  
Offers a user interface built on an extensible architecture. This 

architecture allows to configure the matching process to a high 

degree. For that purpose AGREEMENTMAKER uses 

internally different methods and similarity measures that can be 

combined in different ways. Because of using three layers in 

the Agreementmaker approach, we are getting the best results. 

Otherwise if we are using only string matcher methods then we 

will get the best results for some entities. Finally, third layer 

matcher combines the results of two or more matchers so as to 

obtain a unique final matching in two layers. 

2.3 WEAK FACTOR OF AGRMAKER  
A component dedicated to the detection and avoidance of 

incoherence is not mentioned. 

2.4 RESULT 
In order to get the result for the AGREEMENTMAKER.I have 

used the alcomo software[9] and netbeans IDE 7.0[10] for the 

results of conference track and the results are mentioned in 

terms of F-Measure. And the results are represents in the tables 

1. And sample interface is listed in fig 1.I have used the 

ontology, alignment, and reference alignment from OAEI web 

site [11]. 

Table 1.  Results for the conference track for AGRMAKER 

using alcomo 

ONTO-

LOGY 

Con-

ference 

ConOf Edas Ekaw Iasted sigkdd 

cmt 48.78 55.17 64.51 46.15 57.14 82.75 

3. FALCON [12] 
Falcon is an infrastructure for Semantic Web applications, 

which aims at providing fundamental technologies for finding, 

aligning and learning ontologies, and, ultimately for capturing 

knowledge from the Web via an ontology-driven approach. 

3.1 Matching Algorithms (Matchers)  

Linguistic matching 
V-Doc takes a linguistic approach to ontology matching. Its 

originality is the idea of build virtual documents. 

Fundamentally, as an accumulation of heavy words, the virtual 

document of a domain entity (e.g., a class or a property) in an 

ontology contains not only the local descriptions, but also the 

adjacent information to indicate the knowing meaning of the 

entity. Document similarity can be calculated via traditional 

vector space techniques, and further be used in certain 

similarity-based approaches to ontology matching. Specifically, 

the RDF graph structure is used to obtain the description 

information from adjacent domain entities. 

Structural matching 
GMO is an repetitive structural matcher. It uses RDF bipartite 

graphs to represent ontologies and computes structural 

similarities between domain entities and between statements 

(triples) in ontologies by longhand propagating similarities in 

the bipartite graphs. GMO takes a set of external alignments as 

input, which are typically found previously by other matchers 

(in current implementation, the external alignments are the 

ones with full similarities that are from V-Doc and I-Sub), and 

incrementally return extra alignments as output. The 

performance of GMO improves as the precision of external 

alignments increases. 

Partition-based block matching of large-scale 

ontologies 
Large-scale ontologies hike a big challenge to present ontology 

matching systems because of their property and their large 

nature. PBM uses a divide-and-conquer approach to finding 

block mappings between large-scale ontologies , which has two 

major advantages: (1) it avoids our matching system suffering 

from lack of memory; and (2) it decreases the execution time 

without loss of quality, because it is likely that large portions of 

one or both input ontologies have no matching counterparts. 

In special, PBM firstly divider domain entities of each 

ontology into a number of little clusters based on their 

structural proximity (e.g., the distance between classes in the 

class hierarchy, and the overlapping between the domains of 

properties), and then builds blocks by assigning RDF sentences 

to the clusters.RDF sentences can provide more integrated 

syntactic and semantic structures than RDF statements, because 

they can encapsulate blank nodes into them. Finally, blocks are 

matched via anchors (i.e., pre-found alignments by I-Sub) and 

only block pairs with high similarities are further matched by 

V-Doc and GMO. 

Coordination rules 
Due to the mixed ways in explicit semantics and the various 

reasoning capabilities of ontology languages, ontologies are 

often represented differently. So, it is necessary to align 

ontologies before executing elementary matchers. Falcon-AO 

implements 21 coordination rules to eliminate worthless 
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axioms and reduce structural heterogeneity between the 

ontologies to be matched. Generally, three categories of 

coordination rules can be assigned to elementary matchers : (1) 

removing excess statements; (2) inferring omitted statements, 

e.g., the ones involving owl:inverseOf; and (3) build List 

structures, e.g., using  the rdfs:member property to describe the 

relationship between a list and each of its members, instead of 

RDF collection vocabularies(rdf:first, rdf:rest and rdf:nil). 

 

 

Fig 1: sample interface of alcomo software in Netbeans IDE 7.0 

 

Similarity combination strategy 
Similarity combination is an crucial and hard issue in structure 

ontology matching systems. Falcon-AO develops an approach 

to step by step tune up the thresholds (cutoffs) based on the 

measures of both the linguistic comparability and the structural 

compare, which makes Falcon-AO robust in a variety of 

matching scenarios. 

The linguistic compare is calculated by examining the 

dimension of the candidate alignments against the minimum 

number of domain entities in the ontologies. The notion is that 

if the number of alignments is close to the number of domain 

entities in the smallest ontology, then we are almost done with 

matching, and it is not necessary to run GMO anymore. The 

structural equivalence is measured by comparing which built-in 

properties are used in the ontologies, and how often. 

Furthermore, it estimates the number of correct alignments 

from GMO in proportion to the ones from V-Doc and I-Sub. 

Falcon-AO considers these two kinds of comparison to 

mechanically determine the similarity combination strategy. 

For example, if the linguistic comparability is high, Falcon-AO 

would lower the thresholds of V-Doc and I-Sub, so that more 

alignments from V-Doc and I-Sub can be combined to the final 

alignments. 

3.2 Strong Factor of Falcon 
As analyze to other systems, Falcon-AO has three strengths: 

(1) it can fulfill various matching tasks, especially matching 

large-scale ontologies; (2) it can stably achieve very good 

precision and recall on both systematic and blind tests.  (3) It is 

economic; all the tasks can be carried out in a sensible time 

only on an ordinary personal computer. For small ontologies, 

Falcon-AO can complete the matching process within several 

seconds, even for large-scale ontologies, Falcon-AO can 

accomplish them within a few hours. 

3.3 Weak Factor of Falcon 
A component for generating coherent alignments is to our 

knowledge not implemented in the FALCON system. 
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3.4 Results 
In order to get the result for the FALCON_AO.I have used the 

alcomo software and netbeans IDE 7.0 for the results of 

conference track and the results are mentioned in terms of F-

Measure. And the results are represents in the tables 2.I have 

used the ontology, alignment, and reference alignment from 

OAEI web site. 

Table 2. Results for the conference track for FALCON AO 

using alcomo 

 

ONTO- 

LOGY 

Con-

ference 

ConOf Edas Ekaw Iasted sigkdd 

cmt 52.94 44.44 69.23 54.54 66.66 83.33 

4.  ASMOV [13] 
Automated Semantic Matching of Ontologies with Verification 

(ASMOV) is a good rule that uses lexical and structural 

characteristics of two ontologies to repetitive calculate a 

similarity measure between them, derives an alignment, and 

then verifies it to ensure that it does not contain semantic 

inconsistencies. 

4.1 Matching Algorithms (Matchers) 

4.1.1 Similarity calculation 
A lexical (or terminological) similarity 
The lexical property attribute consists of the entire human-

readable message provided in ontology. Three such lexical 

features are considered in OWL ontologies: the id, the label, 

and the comment. 

Entity-set similarity 
Entity-set similarity uses greddy selection algorithm in order to 

obtain a set of correspondences between the first and second 

ontology. This algorithm iteratively chooses the largest 

correspondence in S and eliminates every other similarity for 

first and second from S, until all dissimilar are eliminated. 

Relational similarity 
The relational similarity is computed by union the similarities 

between the parents and children of the entities being analyze. 

As classes or properties may include multiple parents and 

children, the similarity calculation is calculated as the average 

of the similarities of all parents or children, in order to restrict 

the results between 0 and 1. 

Internal similarity 
The internal similarity is calculated differently for classes and 

properties in the ontology. 

Extensional similarity 
The extensional similarity measure for two classes is calculated 

in the same way as the children hierarchical similarity. 

           To determine extensional similarity between properties, 

all individuals that contain a value for a given property are 

analyzed to determine a list of possible matches. Only 

properties which are both object and both datatype can have an 

extensional similarity; otherwise, the similarity is undefined. 

4.1.2 Semantic verification process 
Pre-alignment extraction 
In order to perform semantic verification, a pre-alignment is 

first extracted from the similarity matrix that results from the 

similarity calculations. This pre-alignment is obtained using a 

greedy algorithm. 

Semantic verification 
The pre-alignment is then passed through a process of semantic 

verification, designed to verify that certain axioms inferred 

from an alignment are actually asserted in an ontology, 

removing correspondences that lead to inferences that cannot 

be verified. 

4.2 Strong Factor in Asmov 
In ASMOV algorithms they have using the concepts called 

semantic verification, the advantages of semantic verification is 

if we have small amount of information in the ontology then 

we can calculate the measures. 

4.3 Weak Factor in Asmov 
ASMOV still needs to improve its ability to work with very 

large ontologies and resources. While some disk-based storage 

of partial results has been implemented, the entire contents of 

the ontologies still needs to loaded in memory prior to 

performing the matching process. This needs to be further 

improved to use permanent storage in order to enable the 

alignment of very large ontologies. We also need to continue 

the implementation of the ability to infer assertions in order to 

utilize them for similarity measurement and semantic 

verification. In addition, we are also working in the 

improvement of the general scalability of the ASMOV 

algorithm for the processing of ontologies with a large number 

of entities. Finally, we need to reexamine the use of an 

appropriate threshold value to optimize accuracy. 

4.4 Results 
In order to get the result for the ASMOV.I have used the 

alcomo software and netbeans IDE 7.0 for the results of 

conference track and the results are mentioned in terms of F-

Measure. And the results are represents in the tables 3.I have 

used the ontology, alignment, and reference alignment from 

OAEI web site. 

Table 3. Results for the conference track for ASMOV using 

alcomo 

 

ONTOL-

OGY 

Con-

ference 

ConOf Edas Ekaw Iasted sigkdd 

cmt 47.61 37.83 55.55 43.74 36.36 54.05 

5. CODI [14] 
The question of linking entities in heterogeneous and localized 

data repositories is the impulsive power behind the data and 

knowledge integration effort. We describe our probabilistic-

logical alignment system CODI (Combinatorial Optimization 

for Data Integration). The system supply an indicative structure 

for the alignment of individuals, concepts, and properties of 

two heterogeneous ontologies. CODI vantage both logical 

schema information and lexical similarity measures with a 

well-defined semantics for A-Box and T-Box matching. The 

alignments are computed by solving corresponding 

combinatorial optimization problems. 

5.1 Matching Algorithms (Matcher) 

Cardinality Constraints  
A performing often practical in real-world setting is the 

mixture of a functional one-to-one alignment.. Within the 

Markov Logic framework, we can include a set of difficult 

cardinality constraints, confining the alignment to be functional 

and one-to-one. 

Coherence Constraints  
Incoherence occurs when axioms in ontologies advantage to 

logical contradictions. Distinctly, it is desired to avoid 

incoherence during the alignment process. All present 

approaches that put a focus on alignment coherence remove 

correspondences after computing the alignment. Within the 
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Markov Logic framework we can incorporate incoherence 

reducing constraints during the alignment process. 

Stability Constraint 
Various formulations to ontology matching transfer alignment 

grounds derived from structural relationships between concepts 

and properties. These methods leverage the concept that 

present evidence for the equivalence of concepts C and D also 

makes it more likely that, for example, child concepts of C and 

D are equivalent. One such approach to grounds propagation is 

similarity flooding. As a reciprocal idea, the general notion of 

stability was introduced, expressing that an alignment should 

not introduce new structural knowledge. 

Combination of Different Similarity Measures  
Here lexical string similarity measures significantly increase. 

In a first step we collect and standardize all string information 

like ids, labels and annotations from the entities. During the 

normalisation process we split tokens into separate words if 

necessary (e.g.hasAuthor is transformed to has Author), replace 

special characters with spaces, and remove few words like a or 

the according to a stop-words list 

5.2 Strong Factor of Codi 
CODI performs concept, property, and instance alignments. It 

combines logical and structural information with a-priori 

similarity measures in a well-defined way by using the syntax 

and semantics of Markov logic. The system therefore not only 

aligns the entities with the highest lexical similarity but also 

enforces the coherence and consistency of the resulting 

alignment. 

The overall results of the young system are very promising. 

Especially when considering the fact that there are many 

optimization possibilities with respect to the lexical similarity 

measures that have not yet been investigated. The strength of 

the CODI system is the combination of lexical and structural 

information and the declarative nature that allows easy 

experimentation. We will continue the development of the 

CODI system and hope that our approach inspires other 

researchers to leverage terminological structure for ontology 

matching. 

5.3 Weak Factor of Codi 
Because Coherence and consistency are taken into account by a 

set of hard constraints inspired by the patterns the system takes 

much time to produce the results. Hence time complexity is 

little bit high compare to other matching system. 

5.4 Results 
In order to get the result for the CODI.I have used the alcomo 

software and netbeans IDE 7.0 for the results of conference 

track and the results are mentioned in terms of F-Measure. And 

the results are represents in the tables 4. I have used the 

ontology, alignment, and reference alignment from OAEI web 

site. 

 

Table 4. Results for the conference track for CODI using 

alcomo 

 

ONTO- 

LOGY 

Con-

ference 

ConOf Edas Ekaw Iasted sigkdd 

cmt 36.36 38.09 76.19 62.5 88.88 72.72 

6. AROMA [15] 
AROMA is a hybrid, extensional and asymmetric matching 

approach designed to find out relations of equivalence and 

subsumption between entities, i.e. classes and properties, 

issued from two textual taxonomies (web directories or OWL 

ontologies). Our approach makes use of the association rule 

paradigm [Agrawal et al., 1993], and a statistical 

interestingness measure. AROMA relies on the following 

assumption: An entity A will be more specific than or 

equivalent to an entity B if the vocabulary (i.e. terms and also 

data) used to describe A, its descendants, and its instances tend 

to be included in that of B. 

6.1 Matching Algorithms (Matchers) 

The pre processing stage represents each entity 
The first stage constructs a set of relevant terms and/or 

datavalues for each class and property. To do this, we extract 

the vocabulary of class and property from their annotations and 

individual values with the help of single and binary term 

extractor applied to stemmed text. In order to keep a morphism 

between the partial orders of class and property subsumption 

hierarchies in one hand and the inclusion of sets of term in the 

other hand, the terms associated with a class or a property are 

also associated with its ancestors. 

Association rules between entities 
The second stage of AROMA discovers the subsumption 

relations by using the association rule model and the 

implication intensity measure. In the context of AROMA, an 

association rule a → b represents a quasi-implication (i.e. an 

implication allowing some counter-examples) from the 

vocabulary of entity a into the vocabulary of the entity b. Such 

a rule could be interpreted as a subsumption relation from the 

antecedent entity toward the consequent one. For example, the 

binary rule car → vehicle means:”The concept car is more 

specific than the concept vehicle”. The rule extraction 

algorithm takes advantage of the partial order structure 

provided by the subsumption relation, and a property of the 

implication intensity for pruning the search space. 

Cleaning and enhancing the resulting 

alignment 
The last stage concerns the post processing of the association 

rules set. It performs the following tasks: deduction of 

equivalence relations, suppression of cycles in the alignment 

graph, suppression of redundant correspondences, selection of 

the best correspondence for each entity (the alignment is an 

injective function), the enhancement of the alignment by using 

equality and a string similarity -based. 

6.2 Strong Factor of Aroma 
AROMA is a time efficient matcher compare to other matching 

alignments. AROMA takes very less memory space in order to 

find alignments. 

6.3 Weak Factor of Aroma 
On anatomy track the precision is also degradated due to the 

subomption correspondences it returns. One way for doing that 

is to tune the parameters and also to had some structural 

matcher 

6.4 Results  
In order to get the result for the AROMA.I have used the 

alcomo software and netbeans IDE 7.0 for the results of 

conference track and the results are mentioned in terms of F-

Measure. And the results are represents in the tables 5. I have 

used the ontology, alignment, and reference alignment from 

OAEI web site. 
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Table 5. Results for the conference track for CODI using 

alcomo 

 

ONTO-

LOGY 

Con-

ference 

ConOf Edas Ekaw Iasted sigkdd 

cmt 36.84 21.42 46.15 26.08 33.33 46.15 

7. RESEARCH DIRECTION 
Agreementmaker 
Agreementmaker using of linguistic matching and structural 

matching, finally joining the results of both the matcher and 

getting the measures. In this matcher, it is not describe about 

any new specific concepts. All the concepts used in the 

AGREEMENTMAKER are common strategies which are there 

in ontology matching. In this algorithm it is not mentioned 

what is the size of the ontology. What happened if the size of 

the ontology is very big? If semantic verification implies in this 

algorithm, then we would have got the good result. 

Falcon 
In falcon they have used many new concepts like partition-

based-block matching of large scale ontologies, similarity 

combination strategies and coordination rule .In coordination 

rule, saying that redundant statement removing. In many cases 

we can see that many names are same and other information is 

same. If we remove redundant statement there is lot of chances 

are there going out of statement which is necessary for our 

ontology matching. Falcon used that reconstructing the list 

structure; if we do this there is chances are there that many 

classes are losing its property. 

 

8. COMPARISION OF DIFFERENT ONTOLOGY MATCHING SYSTEM 

Table 6 showing five different ontology matching systems which is participated in OAEI 

Matcher Linguistic Structural contribution 

 

AGREEMENTM-

AKER 

 

Label,comments,annotation & 

instance matching 

 

DSI & SSC 

User interface,control,combin-

ation & LWC 

FALCON V-Doc GMO V-Doc,Coordination rule 

ASMOV 
Lexical elements (id, label, and 

comments) 

relational structure (ancestor-

descendant hierarchy),internal 

structure 

semantic verification 

CODI 
lexical similarity lexSim 

 
Internal structural matching. 

Markov Logic Framework 

 

AROMA 

classes and properties, by a set of 

terms 

 

----- 

association rules between 

entities 

 

 
Asmov 
In asmov we have similarity verification and semantic 

verification. In semantic verification they remove correspondence 

that is less likely to be satisfiable based on the information present 

in the ontologies. In some cases that removed correspondence is 

useful in order to get the good measures 

 

Codi 
CODI uses both soft and hard constraints that guide the matching 

process. It defines a matching problem as an optimization 

problem that takes care of both types of constraints. If we ignore 

the soft constraints the correspondences filtered out by CODI 

nearly coincide with a global optimal diagnosis. CODI has 

generated the best alignments in terms of f-measure for the 

CONFERENCE track of OAEI 2010. Further improvements have 

to aim at generating good alignments with higher recall. 

Alignments generated by CODI have a very low degree of 

incoherence; however, CODI cannot guarantee coherence of the 

generated alignments in general 

 

Aroma 
Divides the matching process in three successive steps. The final 

step aims at cleaning and enhancing the resulting alignment. This 

is done, for example, by removing redundant correspondences. 

While cycles in the alignment graph are suppressed in this step, 

the suppression of incoherence is not mentioned.  

 

9. CONCLUSION 
In this study paper we have discussed about many ontology 

matching system and discussed about the advantages and 

disadvantages. we have provided the results of the different 

ontology matching system with conference track and we have the  

f-measures by using alcomo software and we have given the 

research direction for all ontology matching system in which we 

have said about how to increasing the  efficiency and 

effectiveness of the ontology matching system 
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