
International Journal of Computer Applications (0975 – 8887)

Volume 37– No.12, January 2012

10

A Study of Different Ontology Matching System

Mohammed Muzaffar Hussain
Research Scholar

Sri Chandrashekhendra Saraswathi Viswa
Maha Vidyalaya University,

Enathur, Kanchipuram – 631 561, India.

Dr. S.K. Srivatsa
Senior professor,

St. Joseph’s College of Engg,
Jeppiaar Nagar, Chennai-600 064

ABSTRACT
Ontology matching is a key interoperability enabler for the

Semantic Web, as well as a useful tactic in some classical data

integration tasks. It takes the ontologies as input and

determines as output an alignment, that is, a set of

correspondences between the semantically related entities of

those ontologies. These correspondences can be used for

various tasks, such as ontology merging and data translation.

Thus, matching ontologies enables the knowledge and data

expressed in the matched ontologies to inter-operate. In this

paper we present an overview of recently proposed matching

techniques which is participated in OAEI and Ontology

matching tools which achieve high match efficiency with

respect to conference track of OAEI 2010.In particular we

discuss lessons learned on strong points and remaining

weaknesses of various matching techniques is summarized.

General Terms
Classes, Objects, Properties

Keywords
Similarity Measure, Ontology Matching, Ontology Alignment.

1. INTRODUCTION

1.1 GENERAL
The World Wide Web (WWW) is widely used as a universal

medium for information exchange. However, semantic

interoperability in the WWW is still limited due to the

heterogeneity of information [1]. Ontology, a formal, explicit

specification of a shared conceptualization [2], has been

suggested as a way to solve the problem. With the popularity of

ontologies, ontology mapping, aiming to find semantic

correspondences between similar elements of different

ontologies, has attracted many research attentions from various

domains.

1.2 ONTOLOGY MATCHING
Ontology matching is the process of automatically finding the

relationship between the elements or concepts of two or more

formal ontologies. Computed correspondences typically need

to be validated and corrected by users to achieve the correct

match mappings. Match mappings are needed in many areas, in

particular for data integration, data exchange, or to support

schema and ontology evolution.

1.3 TECHNIQUES
Different techniques have been examined in ontology mapping

[3] [4] [5], e.g.,

1. Terminological (String based(name similarity),

Language based (lemmatisation), Linguistic

resources(lexicons))

2. Structural (Constrained based(lexicons),Taxonomy

based (subsumption)

3. Extensional (Data analysis)

4. Semantic (Upper level ontologies,Model based (DL

reasoner))

5. Instance based approach.

6. Use of auxiliary.

7. combination strategies

8. Filtering Techniques

1.4 ALIGNMENTS [6]
Using ontologies is the rich way to attain interoperability

among heterogeneous systems within the Semantic web.

However, as the ontologies underlying two systems are not

necessarily compatible, they may in turn need to be consistent.

Ontology equalization requires most of the time to find the

correspondences between entities (e.g., classes, objects,

properties) occurring in the ontologies. We call a set of such

correspondences an alignment .We have designed a format for

expressing alignments in a uniform way. The goal of this

format is to be able to share on the web the available

alignments. The format is expressed in RDF, so it is freely

extensible.

1.5 REFERENCE ALIGNMENTS
Reference alignment is a correspondence which is correct made

by domain experts. All the reference alignments are available

for the conference track in OAEI. The complex and laborious

task of generating the reference alignment has been conducted

by a combination of computational methods and an extensive

manual evaluation with the help of domain experts.

1.6 MEASURES [3]
Instance matching algorithms are evaluated according to the

following parameters.

 Precision: the number of correct retrieved mappings /

the number of retrieved mappings.

 Recall: the number of correct retrieved mappings /

the number of expected mappings.

 F-measure: 2 · (precision · recall) / (precision +

recall).

1.7 SOME OF THE PARTICIPANTS OF

OAEI [7]
 AgreementMaker (AgrMaker)

 FALCON

 ASMOV

 CODI

 AROMA

2. AGREEMENTMAKER [8]
The AgreementMaker method is specific in that it attributes a

powerful user program, a bendable and extensile architecture,

and merged evaluation engine that relies on inbuilt quality

measures, and semi-automatic and automatic methods.

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.12, January 2012

11

2.1 Matching Algorithms
2.1.1 Syntactic

Base Similarity Matcher (BSM)
BSM is a basic string matcher that computes the similarity

between concepts by examination all the strings connected with

them.

Parametric String Matcher (PSM)
PSM is a more in-depth string matcher, which for the

contention is set to use a substring measure and an edit distance

measure.

Vector-based Multi-word Matcher (VMM)
VMM compiles a virtual document for every concept of an

ontology, change the resulting strings into TF-IDF vectors and

then computes their similarity using the cosine similarity

measure

Advance similarity matcher
ASM is a string-based matcher that computes mappings

between source and target concepts (including their properties)

by comparing their local names, and providing better similarity

evaluation in particular when compound terms are used. ASM

outper-forms generic string-based similarity matchers because

it is based on a deeper linguistic analysis.

2.1.2 Structural

Descendants Similarity Inheritance Matcher

(DSI)
This matcher is based on the idea that if two nodes are similar,

then their descendants should be similar.

Siblings Similarity Contribution Matcher (SSC)
The Group Finder Matcher (GFM) is another structural

matcher that separate out the mappings provided by another

matcher (the input matcher).It determine groups of idea and

properties in the ontologies and expect that two concepts (or

properties) that exist to two groups that were not mapped by

the input matcher will likely have different meanings and

should not be mapped.

2.2 STRONG FACTOR OF

AGRMAKER
Offers a user interface built on an extensible architecture. This

architecture allows to configure the matching process to a high

degree. For that purpose AGREEMENTMAKER uses

internally different methods and similarity measures that can be

combined in different ways. Because of using three layers in

the Agreementmaker approach, we are getting the best results.

Otherwise if we are using only string matcher methods then we

will get the best results for some entities. Finally, third layer

matcher combines the results of two or more matchers so as to

obtain a unique final matching in two layers.

2.3 WEAK FACTOR OF AGRMAKER
A component dedicated to the detection and avoidance of

incoherence is not mentioned.

2.4 RESULT
In order to get the result for the AGREEMENTMAKER.I have

used the alcomo software[9] and netbeans IDE 7.0[10] for the

results of conference track and the results are mentioned in

terms of F-Measure. And the results are represents in the tables

1. And sample interface is listed in fig 1.I have used the

ontology, alignment, and reference alignment from OAEI web

site [11].

Table 1. Results for the conference track for AGRMAKER

using alcomo

ONTO-

LOGY

Con-

ference

ConOf Edas Ekaw Iasted sigkdd

cmt 48.78 55.17 64.51 46.15 57.14 82.75

3. FALCON [12]
Falcon is an infrastructure for Semantic Web applications,

which aims at providing fundamental technologies for finding,

aligning and learning ontologies, and, ultimately for capturing

knowledge from the Web via an ontology-driven approach.

3.1 Matching Algorithms (Matchers)

Linguistic matching
V-Doc takes a linguistic approach to ontology matching. Its

originality is the idea of build virtual documents.

Fundamentally, as an accumulation of heavy words, the virtual

document of a domain entity (e.g., a class or a property) in an

ontology contains not only the local descriptions, but also the

adjacent information to indicate the knowing meaning of the

entity. Document similarity can be calculated via traditional

vector space techniques, and further be used in certain

similarity-based approaches to ontology matching. Specifically,

the RDF graph structure is used to obtain the description

information from adjacent domain entities.

Structural matching
GMO is an repetitive structural matcher. It uses RDF bipartite

graphs to represent ontologies and computes structural

similarities between domain entities and between statements

(triples) in ontologies by longhand propagating similarities in

the bipartite graphs. GMO takes a set of external alignments as

input, which are typically found previously by other matchers

(in current implementation, the external alignments are the

ones with full similarities that are from V-Doc and I-Sub), and

incrementally return extra alignments as output. The

performance of GMO improves as the precision of external

alignments increases.

Partition-based block matching of large-scale

ontologies
Large-scale ontologies hike a big challenge to present ontology

matching systems because of their property and their large

nature. PBM uses a divide-and-conquer approach to finding

block mappings between large-scale ontologies , which has two

major advantages: (1) it avoids our matching system suffering

from lack of memory; and (2) it decreases the execution time

without loss of quality, because it is likely that large portions of

one or both input ontologies have no matching counterparts.

In special, PBM firstly divider domain entities of each

ontology into a number of little clusters based on their

structural proximity (e.g., the distance between classes in the

class hierarchy, and the overlapping between the domains of

properties), and then builds blocks by assigning RDF sentences

to the clusters.RDF sentences can provide more integrated

syntactic and semantic structures than RDF statements, because

they can encapsulate blank nodes into them. Finally, blocks are

matched via anchors (i.e., pre-found alignments by I-Sub) and

only block pairs with high similarities are further matched by

V-Doc and GMO.

Coordination rules
Due to the mixed ways in explicit semantics and the various

reasoning capabilities of ontology languages, ontologies are

often represented differently. So, it is necessary to align

ontologies before executing elementary matchers. Falcon-AO

implements 21 coordination rules to eliminate worthless

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.12, January 2012

12

axioms and reduce structural heterogeneity between the

ontologies to be matched. Generally, three categories of

coordination rules can be assigned to elementary matchers : (1)

removing excess statements; (2) inferring omitted statements,

e.g., the ones involving owl:inverseOf; and (3) build List

structures, e.g., using the rdfs:member property to describe the

relationship between a list and each of its members, instead of

RDF collection vocabularies(rdf:first, rdf:rest and rdf:nil).

Fig 1: sample interface of alcomo software in Netbeans IDE 7.0

Similarity combination strategy
Similarity combination is an crucial and hard issue in structure

ontology matching systems. Falcon-AO develops an approach

to step by step tune up the thresholds (cutoffs) based on the

measures of both the linguistic comparability and the structural

compare, which makes Falcon-AO robust in a variety of

matching scenarios.

The linguistic compare is calculated by examining the

dimension of the candidate alignments against the minimum

number of domain entities in the ontologies. The notion is that

if the number of alignments is close to the number of domain

entities in the smallest ontology, then we are almost done with

matching, and it is not necessary to run GMO anymore. The

structural equivalence is measured by comparing which built-in

properties are used in the ontologies, and how often.

Furthermore, it estimates the number of correct alignments

from GMO in proportion to the ones from V-Doc and I-Sub.

Falcon-AO considers these two kinds of comparison to

mechanically determine the similarity combination strategy.

For example, if the linguistic comparability is high, Falcon-AO

would lower the thresholds of V-Doc and I-Sub, so that more

alignments from V-Doc and I-Sub can be combined to the final

alignments.

3.2 Strong Factor of Falcon
As analyze to other systems, Falcon-AO has three strengths:

(1) it can fulfill various matching tasks, especially matching

large-scale ontologies; (2) it can stably achieve very good

precision and recall on both systematic and blind tests. (3) It is

economic; all the tasks can be carried out in a sensible time

only on an ordinary personal computer. For small ontologies,

Falcon-AO can complete the matching process within several

seconds, even for large-scale ontologies, Falcon-AO can

accomplish them within a few hours.

3.3 Weak Factor of Falcon
A component for generating coherent alignments is to our

knowledge not implemented in the FALCON system.

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.12, January 2012

13

3.4 Results
In order to get the result for the FALCON_AO.I have used the

alcomo software and netbeans IDE 7.0 for the results of

conference track and the results are mentioned in terms of F-

Measure. And the results are represents in the tables 2.I have

used the ontology, alignment, and reference alignment from

OAEI web site.

Table 2. Results for the conference track for FALCON AO

using alcomo

ONTO-

LOGY

Con-

ference

ConOf Edas Ekaw Iasted sigkdd

cmt 52.94 44.44 69.23 54.54 66.66 83.33

4. ASMOV [13]
Automated Semantic Matching of Ontologies with Verification

(ASMOV) is a good rule that uses lexical and structural

characteristics of two ontologies to repetitive calculate a

similarity measure between them, derives an alignment, and

then verifies it to ensure that it does not contain semantic

inconsistencies.

4.1 Matching Algorithms (Matchers)

4.1.1 Similarity calculation
A lexical (or terminological) similarity
The lexical property attribute consists of the entire human-

readable message provided in ontology. Three such lexical

features are considered in OWL ontologies: the id, the label,

and the comment.

Entity-set similarity
Entity-set similarity uses greddy selection algorithm in order to

obtain a set of correspondences between the first and second

ontology. This algorithm iteratively chooses the largest

correspondence in S and eliminates every other similarity for

first and second from S, until all dissimilar are eliminated.

Relational similarity
The relational similarity is computed by union the similarities

between the parents and children of the entities being analyze.

As classes or properties may include multiple parents and

children, the similarity calculation is calculated as the average

of the similarities of all parents or children, in order to restrict

the results between 0 and 1.

Internal similarity
The internal similarity is calculated differently for classes and

properties in the ontology.

Extensional similarity
The extensional similarity measure for two classes is calculated

in the same way as the children hierarchical similarity.

 To determine extensional similarity between properties,

all individuals that contain a value for a given property are

analyzed to determine a list of possible matches. Only

properties which are both object and both datatype can have an

extensional similarity; otherwise, the similarity is undefined.

4.1.2 Semantic verification process
Pre-alignment extraction
In order to perform semantic verification, a pre-alignment is

first extracted from the similarity matrix that results from the

similarity calculations. This pre-alignment is obtained using a

greedy algorithm.

Semantic verification
The pre-alignment is then passed through a process of semantic

verification, designed to verify that certain axioms inferred

from an alignment are actually asserted in an ontology,

removing correspondences that lead to inferences that cannot

be verified.

4.2 Strong Factor in Asmov
In ASMOV algorithms they have using the concepts called

semantic verification, the advantages of semantic verification is

if we have small amount of information in the ontology then

we can calculate the measures.

4.3 Weak Factor in Asmov
ASMOV still needs to improve its ability to work with very

large ontologies and resources. While some disk-based storage

of partial results has been implemented, the entire contents of

the ontologies still needs to loaded in memory prior to

performing the matching process. This needs to be further

improved to use permanent storage in order to enable the

alignment of very large ontologies. We also need to continue

the implementation of the ability to infer assertions in order to

utilize them for similarity measurement and semantic

verification. In addition, we are also working in the

improvement of the general scalability of the ASMOV

algorithm for the processing of ontologies with a large number

of entities. Finally, we need to reexamine the use of an

appropriate threshold value to optimize accuracy.

4.4 Results
In order to get the result for the ASMOV.I have used the

alcomo software and netbeans IDE 7.0 for the results of

conference track and the results are mentioned in terms of F-

Measure. And the results are represents in the tables 3.I have

used the ontology, alignment, and reference alignment from

OAEI web site.

Table 3. Results for the conference track for ASMOV using

alcomo

ONTOL-

OGY

Con-

ference

ConOf Edas Ekaw Iasted sigkdd

cmt 47.61 37.83 55.55 43.74 36.36 54.05

5. CODI [14]
The question of linking entities in heterogeneous and localized

data repositories is the impulsive power behind the data and

knowledge integration effort. We describe our probabilistic-

logical alignment system CODI (Combinatorial Optimization

for Data Integration). The system supply an indicative structure

for the alignment of individuals, concepts, and properties of

two heterogeneous ontologies. CODI vantage both logical

schema information and lexical similarity measures with a

well-defined semantics for A-Box and T-Box matching. The

alignments are computed by solving corresponding

combinatorial optimization problems.

5.1 Matching Algorithms (Matcher)

Cardinality Constraints
A performing often practical in real-world setting is the

mixture of a functional one-to-one alignment.. Within the

Markov Logic framework, we can include a set of difficult

cardinality constraints, confining the alignment to be functional

and one-to-one.

Coherence Constraints
Incoherence occurs when axioms in ontologies advantage to

logical contradictions. Distinctly, it is desired to avoid

incoherence during the alignment process. All present

approaches that put a focus on alignment coherence remove

correspondences after computing the alignment. Within the

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.12, January 2012

14

Markov Logic framework we can incorporate incoherence

reducing constraints during the alignment process.

Stability Constraint
Various formulations to ontology matching transfer alignment

grounds derived from structural relationships between concepts

and properties. These methods leverage the concept that

present evidence for the equivalence of concepts C and D also

makes it more likely that, for example, child concepts of C and

D are equivalent. One such approach to grounds propagation is

similarity flooding. As a reciprocal idea, the general notion of

stability was introduced, expressing that an alignment should

not introduce new structural knowledge.

Combination of Different Similarity Measures
Here lexical string similarity measures significantly increase.

In a first step we collect and standardize all string information

like ids, labels and annotations from the entities. During the

normalisation process we split tokens into separate words if

necessary (e.g.hasAuthor is transformed to has Author), replace

special characters with spaces, and remove few words like a or

the according to a stop-words list

5.2 Strong Factor of Codi
CODI performs concept, property, and instance alignments. It

combines logical and structural information with a-priori

similarity measures in a well-defined way by using the syntax

and semantics of Markov logic. The system therefore not only

aligns the entities with the highest lexical similarity but also

enforces the coherence and consistency of the resulting

alignment.

The overall results of the young system are very promising.

Especially when considering the fact that there are many

optimization possibilities with respect to the lexical similarity

measures that have not yet been investigated. The strength of

the CODI system is the combination of lexical and structural

information and the declarative nature that allows easy

experimentation. We will continue the development of the

CODI system and hope that our approach inspires other

researchers to leverage terminological structure for ontology

matching.

5.3 Weak Factor of Codi
Because Coherence and consistency are taken into account by a

set of hard constraints inspired by the patterns the system takes

much time to produce the results. Hence time complexity is

little bit high compare to other matching system.

5.4 Results
In order to get the result for the CODI.I have used the alcomo

software and netbeans IDE 7.0 for the results of conference

track and the results are mentioned in terms of F-Measure. And

the results are represents in the tables 4. I have used the

ontology, alignment, and reference alignment from OAEI web

site.

Table 4. Results for the conference track for CODI using

alcomo

ONTO-

LOGY

Con-

ference

ConOf Edas Ekaw Iasted sigkdd

cmt 36.36 38.09 76.19 62.5 88.88 72.72

6. AROMA [15]
AROMA is a hybrid, extensional and asymmetric matching

approach designed to find out relations of equivalence and

subsumption between entities, i.e. classes and properties,

issued from two textual taxonomies (web directories or OWL

ontologies). Our approach makes use of the association rule

paradigm [Agrawal et al., 1993], and a statistical

interestingness measure. AROMA relies on the following

assumption: An entity A will be more specific than or

equivalent to an entity B if the vocabulary (i.e. terms and also

data) used to describe A, its descendants, and its instances tend

to be included in that of B.

6.1 Matching Algorithms (Matchers)

The pre processing stage represents each entity
The first stage constructs a set of relevant terms and/or

datavalues for each class and property. To do this, we extract

the vocabulary of class and property from their annotations and

individual values with the help of single and binary term

extractor applied to stemmed text. In order to keep a morphism

between the partial orders of class and property subsumption

hierarchies in one hand and the inclusion of sets of term in the

other hand, the terms associated with a class or a property are

also associated with its ancestors.

Association rules between entities
The second stage of AROMA discovers the subsumption

relations by using the association rule model and the

implication intensity measure. In the context of AROMA, an

association rule a → b represents a quasi-implication (i.e. an

implication allowing some counter-examples) from the

vocabulary of entity a into the vocabulary of the entity b. Such

a rule could be interpreted as a subsumption relation from the

antecedent entity toward the consequent one. For example, the

binary rule car → vehicle means:”The concept car is more

specific than the concept vehicle”. The rule extraction

algorithm takes advantage of the partial order structure

provided by the subsumption relation, and a property of the

implication intensity for pruning the search space.

Cleaning and enhancing the resulting

alignment
The last stage concerns the post processing of the association

rules set. It performs the following tasks: deduction of

equivalence relations, suppression of cycles in the alignment

graph, suppression of redundant correspondences, selection of

the best correspondence for each entity (the alignment is an

injective function), the enhancement of the alignment by using

equality and a string similarity -based.

6.2 Strong Factor of Aroma
AROMA is a time efficient matcher compare to other matching

alignments. AROMA takes very less memory space in order to

find alignments.

6.3 Weak Factor of Aroma
On anatomy track the precision is also degradated due to the

subomption correspondences it returns. One way for doing that

is to tune the parameters and also to had some structural

matcher

6.4 Results
In order to get the result for the AROMA.I have used the

alcomo software and netbeans IDE 7.0 for the results of

conference track and the results are mentioned in terms of F-

Measure. And the results are represents in the tables 5. I have

used the ontology, alignment, and reference alignment from

OAEI web site.

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.12, January 2012

15

Table 5. Results for the conference track for CODI using

alcomo

ONTO-

LOGY

Con-

ference

ConOf Edas Ekaw Iasted sigkdd

cmt 36.84 21.42 46.15 26.08 33.33 46.15

7. RESEARCH DIRECTION
Agreementmaker
Agreementmaker using of linguistic matching and structural

matching, finally joining the results of both the matcher and

getting the measures. In this matcher, it is not describe about

any new specific concepts. All the concepts used in the

AGREEMENTMAKER are common strategies which are there

in ontology matching. In this algorithm it is not mentioned

what is the size of the ontology. What happened if the size of

the ontology is very big? If semantic verification implies in this

algorithm, then we would have got the good result.

Falcon
In falcon they have used many new concepts like partition-

based-block matching of large scale ontologies, similarity

combination strategies and coordination rule .In coordination

rule, saying that redundant statement removing. In many cases

we can see that many names are same and other information is

same. If we remove redundant statement there is lot of chances

are there going out of statement which is necessary for our

ontology matching. Falcon used that reconstructing the list

structure; if we do this there is chances are there that many

classes are losing its property.

8. COMPARISION OF DIFFERENT ONTOLOGY MATCHING SYSTEM

Table 6 showing five different ontology matching systems which is participated in OAEI

Matcher Linguistic Structural contribution

AGREEMENTM-

AKER

Label,comments,annotation &

instance matching

DSI & SSC

User interface,control,combin-

ation & LWC

FALCON V-Doc GMO V-Doc,Coordination rule

ASMOV
Lexical elements (id, label, and

comments)

relational structure (ancestor-

descendant hierarchy),internal

structure

semantic verification

CODI
lexical similarity lexSim

Internal structural matching.

Markov Logic Framework

AROMA

classes and properties, by a set of

terms

association rules between

entities

Asmov
In asmov we have similarity verification and semantic

verification. In semantic verification they remove correspondence

that is less likely to be satisfiable based on the information present

in the ontologies. In some cases that removed correspondence is

useful in order to get the good measures

Codi
CODI uses both soft and hard constraints that guide the matching

process. It defines a matching problem as an optimization

problem that takes care of both types of constraints. If we ignore

the soft constraints the correspondences filtered out by CODI

nearly coincide with a global optimal diagnosis. CODI has

generated the best alignments in terms of f-measure for the

CONFERENCE track of OAEI 2010. Further improvements have

to aim at generating good alignments with higher recall.

Alignments generated by CODI have a very low degree of

incoherence; however, CODI cannot guarantee coherence of the

generated alignments in general

Aroma
Divides the matching process in three successive steps. The final

step aims at cleaning and enhancing the resulting alignment. This

is done, for example, by removing redundant correspondences.

While cycles in the alignment graph are suppressed in this step,

the suppression of incoherence is not mentioned.

9. CONCLUSION
In this study paper we have discussed about many ontology

matching system and discussed about the advantages and

disadvantages. we have provided the results of the different

ontology matching system with conference track and we have the

f-measures by using alcomo software and we have given the

research direction for all ontology matching system in which we

have said about how to increasing the efficiency and

effectiveness of the ontology matching system

10. REFERENCES
[1] G.Widerhold, Mediators in the architecture of future

information systems,IEEE Computer 25(3)(1992).

[2] Gruber,T. (1993). “A Translation Approach to portable

ontology specification.” Knowledge cquisition 5920:199-220

[3] Jérôme Euzenat and Pavel Shvaiko. Ontology Matching.

Springer,eo 2007

[4] Willem Robert van Hage. Evaluating Ontology-Alignment

Techniques. PhD thesis, Vrije Universiteit Amsterdam, 2008.

[5] He Tan and Patrick Lambrix by A method for recommending

ontology alignment strategies

[6] The Ontology Alignment Source

http://alignapi.gforge.inria.fr/

[7] OAEI Paticipants

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.12, January 2012

16

http://oaei.ontologymatching.org/2010/results/conference/ind

ex.html

[8] Cruz IF, Antonelli FP, Stroe C, “AgreementMaker:

Efficient matching for large real‐ world schemas and

ontologies,” PVLDB, VLDB Endowment, vol. 2, no. 2, pp

1586–1589, 2009.

[9] ALCOMO Software http://web.informatik.uni-

mannheim.de/alcomo/

[10] NetBeans IDE http://netbeans.org/

[11] Alignment, Reference alignments, ontology

http://oaei.ontologymatching.org/2010/results/conference/ind

ex.html

[12] Wei Hu and Yuzhong Qu. Falcon-AO: A practical ontology

matching system. Journal of Web Semantics. 6(3): 237-239,

2008. (System Paper, SCI & EI index, JCR 2008 IF: 3.023)

[13] Yves R. Jean-Mary , E. Patrick Shironoshita , Mansur R.

Kabuka Ontology matching with semantic verification

[14] Jakob Huber, Timo Sztyler, Jan Noessner, and Christian

Meilicke CODI: Combinatorial Optimization for Data

Integration – Results for OAEI 2011

[15] Jérôme David-AROMA results for OAEI 2011

