
QODI: Query as Context in Automatic Data Integration

Aibo Tian, Juan F. Sequeda, Daniel P. Miranker
Department of Computer Science
The University of Texas at Austin

{atian, jsequeda, miranker}@cs.utexas.edu

ABSTRACT
QODI is an ontology-based data integration system (OBDI) com-
prising both ontology mapping and query reformulation methods.
QODI is distinguished in that the ontology mapping algorithm dy-
namically determines a partial mapping specific to the reformula-
tion of each query. The mapping algorithm decomposes a query
into a set of paths, and compares the sets of paths with a similar de-
composition of a source ontology. The query provides application
context not available in traditional ontology matching; thereby the
system is able to disambiguate mappings for different queries. The
path-based solution also simplifies query reformulation, implicitly
resolving the problem of missing entity mappings.

Using three real world test sets, QODI achieves favorable re-
sults compared to AgreementMaker, a leading ontology matching
system, and an ontology-based implementation of the methods de-
tailed for Clio, the state-of-the-art relational data integration and
exchange system.

1. INTRODUCTION
Web-wide integration of structured data is being enabled by the

emerging Semantic Web protocols that specify uniform query inter-
faces to the databases included in the deep web [23]. These devel-
opments were recently boosted by W3C ratification of standards
for publishing relational database content as RDF [12, 3]. The
scope of the deep web underscores the need for automating data
integration. The Semantic Web technology stack enables an ontol-
ogy to serve as a federating data model. Heterogeneous distributed
database systems that use an ontology as a federating data model
are called ontology-based data integration (OBDI) systems [43].

This paper details the development and performance of an auto-
matic OBDI system, QODI (for Query-driven Ontology-based Data
Integration) [41, 40]. QODI considers two OWL ontologies: the
target ontology, which is the federating data model, and the source
ontology. SPARQL queries are issued over the target ontology by
users, and translated to the queries over the source ontology. Al-
though QODI is designed to integrate RDF data sources, a primary
motivation is the integration of relational data. Several of our test
cases comprise relational databases virtualized as RDF, and SQL

schemas translated to ontologies [34, 42]. Figure 1 illustrates a
pair of relational schemas about the domain of course. Figure 2 il-
lustrates the ontologies per translation rules in the virtualization of
those databases as Semantic Web data sources.

In the typical organization of an OBDI system, ontology map-
ping is a separate and prerequisite step of query reformulation (see
Figure 3(a)). Ontology matching algorithms may be introduced
to automatically determine corresponding entities between two on-
tologies [8, 36]. In this paper, an entity refers to a class or a prop-
erty. We tested AgreementMaker [11], one of the top finishers in
2010 Ontology Alignment Evaluation Initiative (OAEI) [1]. The
highest accuracy of AgreementMaker on all test sets is less than
42%. Inspection of these results revealed two dominant challenges,
missing mapping and ambiguous mapping. We introduce a running
example to illustrate the challenges. Figure 2 shows the target (T)
and the source (S) ontologies. Figure 4(a) is a SPARQL query q
which asks for the time of any course that is taught by Einstein.

• The missing mapping challenge: some entities do not have
any mapping, such as the class Schedule and property has-
Schedule in S. Ontology matching algorithms can find out
that both Course in T and S are mapped, and time and date
are mapped. However, Schedule and hasSchedule, which are
in the middle of the path from Course to date, do not have
any mapping. Query q cannot be reformulated for execution
on S without including Schedule and hasSchedule.

• The ambiguous mapping challenge: an entity in the target
ontology has an ambiguous mapping if it can be mapped to
more than one entity in the source ontology, and the correct
choice is dependent on the application. In other words, there
is simply not enough information in the ontologies alone to
determine a correct mapping.

An example of an ambiguous mapping considers that prop-
erty name of class People in T can be mapped to name of
either class Teacher or Student in S. There is no basis for
preferring one mapping or another. However, if one con-
siders the SPARQL query in Figure 4(a), clearly Teacher is
preferred. A complementary query would prefer Student.

Some ontology matching programs would identify this ex-
ample as a complex mapping such that name of People maps
to the union of both name of Teacher and Student, since both
Teacher and Student can be identified as subclasses of Peo-
ple. In isolation of an application, the logic of the complex
mapping is correct. But, if the example query is reformulated
using both alternatives, the query will be incorrect. Thus,
only after the query is known, is it possible to disambiguate
the mapping.

1

Course

id title time

People

id name

teacher

c_id p_id

student

c_id p_id

(a) Target Database

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

Course!
id! name! hasSchedule!
! ! !
! ! !

Schedule!
id! date! place!
! ! !
! ! !

offeredBy!
c_id! t_id!
! !
! !

takenBy!
c_id! s_id!
! !
! !

Student!
id! name!
! !
! !

Teacher!
id! name!
! !
! !

(b) Source Database

Figure 1: Relational database examples about the domain of
course. Arrows represent foreign keys.

time

name

Course

string

date

People

teacher student

title

(a) Target Ontology (T)

hasSchedule

name

Course

string date

Student

name

Teacher

place

Schedule

date

offeredBy takenBy

name

(b) Source Ontology (S)

Figure 2: Ontology examples about the domain of course.
Oval vertices represent classes, and rectangular vertices are
datatypes. Edges represent object properties, or datatype prop-
erties.

Ambiguous mappings occur often in real world applications. In
our experiments, two out of three test domains have ambiguity.
Around 10% to 30% of queries involve ambiguous mappings in
the test cases with ambiguity.

To resolve these challenges, we introduce query-specific ontol-
ogy mapping. For each input query, the system determines a partial
ontology mapping sufficient to reformulate the specific query. In
effect, a query becomes a third argument to the ontology mapping
algorithm (see Figure 3(b)). To resolve ambiguous mappings, the
query is leveraged to provide context for choosing among compet-
ing mappings. Note that using the query as context requires no
extra input from users or experts.

Centering on the subgraph components of ontologies and queries
enables another departure from typical mapping systems. In QODI,
both the input query and the source ontology are decomposed into
paths, and mapping concerns identifying correspondences between
paths instead of entities. Path similarity is estimated based on the
feature vectors that are generated by representing each path as a
bag of entity labels. The similarity is not dependent on the pre-
cise alignment of entities within paths, so the missing mapping
challenge is resolved. Given an input query, QODI searches for
a subgraph of the source ontology, such that the set of path corre-
spondences has the highest confidence. QODI exploits heuristics to
efficiently find the mapping. The heuristic search algorithms guar-
antee to find an optimal solution.

In our running example, the path that contains People and name
in query q also contains the property teacher. In ontology S, the
path with Teacher has higher string vector similarity than the one
with Student. The two path correspondences for the query in Fig-
ure 4(a) should be:

{T :Course, T :teacher, T :People, T :name, string}
= {S:Course, S:offeredBy, S:Teacher, S:name, string}
{T :Course, T :time, date}
= {S:Course, S:hasSchedule, S:Schedule, S:date, date}

Note that this mapping is specific to the query. If another query asks

Ontology
Mapping

Query
Reformulation

Ontology T

Query q over T

Ontology S
Query over S

(a) Traditional

Ontology
Mapping

Query
Reformulation

Ontology T

Query q over T

Ontology S
Query over S

(b) The proposed, QODI

Figure 3: Diagram of OBDI systems with traditional and the
proposed ontology mapping components.

for the time of any course that is taken by Einstein, the mapped path
should contain S:Student instead of S:Teacher.

QODI is evaluated on real world test cases from three domains:
Bibliography, Conference Organization and Life Science. The base-
lines include an ontology-based implementation of Clio, the state
of the art data integration / exchange system, and ontology match-
ing systems that generate correspondences between entities, such
as AgreementMaker. QODI outperforms all baselines on all test
cases.

2. RELATED WORK
As stated in a recent book of data integration, some aspects of

data integration can be viewed as a knowledge representation prob-
lem, which uses ontologies as data models [15]. Recent review
articles, one on schema matching [8] and the other on ontology
matching [36], make note of the overlap between schema and on-
tology matching problems. As remarked by Shvaiko and Euzenat,
“ they often share similar matching solutions” [36].

Doan et. al. states that “relational schemas can be viewed as on-
tologies with restricted relationship types” [16]. This is exploited
in our test sets, which includes ontologies translated from relational
data sources by Ultrawrap [35]. Ultrawrap details the syntax and
semantics of a translation from relational schemas to OWL ontolo-
gies. In addition to the readily apparent mapping of tables to classes
and attributes to datatype properties, the translation considers in-
tegrity constraints to create object properties [42, 34].

Clio, the state-of-the-art semi-automatic data integration and ex-
change system has close similarities with QODI [19]. Schema
mapping in Clio is done in 2-steps: finding initial mappings be-
tween attributes; and associating mappings by logical inference
through referential constraints. The mapping association is done
by a modification of the chase algorithm [30]. Thus, part of the
mapping process in Clio exploits an implicit graph representation
of the relational schema. Recall that the translation from relational
schemas to ontologies by Ultrawrap creates an explicit graph rep-
resentation that includes integrity constraints. Thus, Clio’s map-
ping association in a relational schema is similar to path following
in an ontology. The mapping result of Clio is independent from
user queries. In the case of ambiguity, Clio may generate incorrect
mappings in the first step, and propagate those errors to the final
mapping. QODI dynamically generates mapping for each input
query. The query provides context information to resolve ambigu-
ous mappings. Based on our experiments, QODI’s capability of
disambiguation provides measurable performance improvement.

Contextual information has been exploited in schema mapping
by Bohannon [9]. Context is mined from categorical attributes.

2

This research is limited to a static mapping without considering
queries. Thus, it does not address the ambiguity problem.

Pay-as-you-go data integration systems are designed to resolve
large-scale data integration problems [24, 13]. They are distin-
guished by accumulating partial mappings over time. Those frame-
works are designed to scale up the data integration systems, instead
of addressing ambiguity.

Ambiguity and uncertainty are related. Dong proposes proba-
bilistic schema mapping, which lists all entity mapping candidates
with probabilities, to detail uncertainty problem [17]. In QODI, the
probability of entity mapping is captured by the similarity between
entities. Our claim is that the correct mapping can be determined
given the user query as constraints. Uncertainty in schema match-
ing has also been studied for XML schemas [21].

A semi-automatic OBDI system, Karma, is recently built to map
structured data sources to ontologies [25]. Similar as Karma, the
combination of QODI and Ultrawrap is also capable for integrating
structured sources. However, the mapping component of Karma
does not consider the context from queries for disambiguation. On-
tology based data access (OBDA) uses ontologies expressed in De-
scription Logic as a conceptual view over data sources [10, 26].
Our method can also be used to generate mappings for OBDA with
proper representation.

Schema matching and ontology matching have been well stud-
ied [7, 36, 18, 8]. Existing schema matching systems use schemas
and instances for matching, such as iMap [14], Similarity Flood-
ing [31], GLUE [16], Corpus-based matching [28], and Cupid [29].
Sorrentino et. al. proposes schema normalization for schema match-
ing [37]. Multiple schema mappings are merged in [2]. Many on-
tology matching systems compete in the OAEI [1], such as Agree-
mentMaker [11], RiMOM [27], and COMA++ [5]. Parundekar,
Knoblock, and Ambite discover mapping between concepts through
conjunctions and disjunctions of linked data [32]. PARIS align on-
tologies and instances at the same time [39]. Zhong et. al. consid-
ers matching between unbalanced ontologies [44]. In addition to
using schemas and instances, SPHINX [6] and MWeaver [33] con-
sider user-given examples for matching. In the ontology matching
and schema matching world, most of systems focus on mapping
between entities. In this paper, we formally define query-specific
mapping to facilitate OBDI systems.

3. PROBLEM DEFINITION
The approach comprises decomposing a SPARQL query into a

set of paths, then matching and scoring each of those paths with
a path in the source ontology. The following section begins with
graph definitions and culminates with the formal definition of the
mapping problem, a q-mapping.

3.1 Basic Definition

DEFINITION 3.1 (ONTOLOGY). An ontology is defined as a
tuple< C, PH , PO , PD , D >, where C, PH , PO , PD , andD rep-
resent the finite sets of classes, class hierarchies, object properties,
datatype properties, and datatypes, respectively.

Classes represent concepts. Object properties are relationships
between classes. The domain of an object property p is the class
that p belongs to. The range of an object property p is the class
that the value of p belongs to. Datatype properties are relationships
between classes and datatypes. The domain of a datatype property
p is the class that p belongs to. The range of a datatype property
p is the type of the value of p. Defined by the direct mapping,
a relational schema can be translated to an ontology by applying

rules [35, 42]. The rules include tables to classes, the attributes
that are foreign keys to object properties, and the attributes that
are not foreign keys to datatype properties. See Figure 1 and 2 for
relational databases and their corresponding ontologies.

An ontology graph is a representation of an ontology as a di-
rected labeled graph (see Figure 2).

DEFINITION 3.2 (ONTOLOGY GRAPH). An Ontology Graph,
G = (V,E), with vertex set V and edge setE, is a directed labeled
graph, where V = C ∪D, E = PO ∪PD , and with the constraint
that for each edge e, the initial vertex is its domain and the terminal
vertex is its range.

To simplify handling inheritance relationships, rather than cod-
ing the logic of inheritance into the path-related algorithms, the
graph representation of an ontology is expanded by replicating prop-
erties. If the domains or ranges of a property have subclasses, new
edges with the same label as the property are created for each of
the subclasses.

Target and source ontologies are distinguished as T and S, re-
spectively. We also use these notations to interchangeably denote
ontologies or ontology graphs. The target ontology represents the
federating data model.

DEFINITION 3.3 (SOURCE). A source of a directed labeled
graph G is a vertex with 0 in-degree. The set of all sources of
G is denoted SOURCEG.

LEMMA 3.1. The sources of an ontology graph only represent
classes.

The proof follows from the fact that vertices representing datatypes
have non-zero in-degree.

DEFINITION 3.4 (SINK). A sink of a directed labeled graph
G is a vertex with 0 out-degree. The set of all sinks of G is denoted
SINKG.

DEFINITION 3.5 (PATH). A path in a directed labeled graph
G is an ordered list of vertices and edges such that: 1) the first
and last elements of the path are vertices; 2) for each vertex v
that is neither the first nor last element in the list, both its previous
element and next element are edges; 3) for each edge e in the list,
its previous element is its initial vertex in the graph, and its next
element is its terminal vertex.

The length of a path p, denoted as |p|, is the sum of the number
of vertices and edges in p. A path of graph G is also a subgraph
of G, although the representation is different. We use path to inter-
changeably denote both a path and a corresponding subgraph.

DEFINITION 3.6 (SS-PATH). A source-to-sink path or ss-path
is a path from vertex v1 to vertex v2 in a directed labeled graph G,
where v1 is a source and v2 is a sink.

More than one ss-path may connect a source and a sink.

DEFINITION 3.7 (SS-PATH-SET). The set of all possible ss-
paths from source v1 to sink v2 in a directed labeled graph G is
called an ss-path-set (denoted as SS-PATH-SETG,v1,v2).

We also use SS-PATH-SETG,v1 to denote the set of all ss-paths
from source v1 to all sinks.

As an example, the SS-PATH-SETT,Course,string contains three
ss-paths (see Figure 2).

{{Course, title, string}
{Course, teacher, People, name, string}
{Course, student, People, name, string}}

3

Algorithm 1 Generate a query graph.
Input: ontology T and SPARQL query q
Output: query graph Q
V = ∅, E = ∅
// Construct a map to record all rdf:type
M is a map from variables to classes
for all triple pattern t in q do
s, p, o is the subject, predicate and object of t
if p is rdf:type then

Add s as key and o as value to M
end if

end for
// Translate triple patterns into a subgraph of T
// Vertices are either given by rdf:type or inferred as the domains
and ranges of predicates
// Edges are predicates
for all triple pattern t in q do
s, p, o is the subject, predicate and object of t
if p is not rdf:type then

if M has key s then
d is the value of s in M

else
d is a domain of p

end if
if M has key o then
r is the value of o in M

else
r is a range of p

end if
Add d and r to V
Add p to E, directing from d to r

end if
end for
return Q = (V,E)

DEFINITION 3.8 (GRAPH-SS-PATH-SET). Given a directed la-
beled graph G, the set of all ss-paths (denoted as GRAPH-SS-
PATH-SETG) is the union of all ss-path-sets from all sources to
all sinks in G.

A query graph is a subgraph of an ontology graph that corre-
sponds to a SPARQL query. The query graph of the SPARQL query
in Figure 4(a) is shown in Figure 4(b).

DEFINITION 3.9 (QUERY GRAPH). Given a SPARQL query q
over ontology T , a query graph (denoted as Q) is the subgraph of
T generated by applying Algorithm 1.

3.2 Assumptions
Basic assumptions are as follows:
1. All object properties and datatype properties have domains

and ranges. This assumption simplifies the construction of ontol-
ogy graphs. For manually designed ontologies, high quality ones
have domains and ranges. For the ontologies translated from rela-
tional schemas, the domains and ranges are created automatically.

2. We consider conjunctive SPARQL queries in the SELECT
query form, and exclude variables from the predicates of triple pat-
terns. For each variable, the class, which is the type that the variable
is binding to, either can be inferred from the domains or ranges of
predicates in the query or is provided by rdf:type. Given these as-
sumptions, there exists only one query graph for each query. For
simplicity, we leave the relaxing of these assumptions for future

Prefix course : < T/Course >

Prefix people : < T/People >

Select ?t

Where {
?c course : time ?t .

?c course : teacher ?p .

?p people : name “Einstein′′ .}

Note that since the predicate of a triple pattern is not allowed to be a variable
in our definition, there exists only one query graph for each query q. The query
graph of the SPARQL query in Figure ?? is shown in Figure ??.

2.3 Problem Definition

A ss-path correspondence records the mapping confidence between two ss-paths.

Definition 9 (SS-PATH CORRESPONDENCE). Given two graphs G and
G′, a ss-path correspondence between two ss-paths p and p′ (denoted by πp,p′) is
a tuple < p, p′, cp >, such that p ∈ GRAPH-SS-PATH-SETG, p

′ ∈ GRAPH-SS-
PATH-SETG′ , and cp is a confidence measure.

We say p ∈ πp,p′ , and p′ ∈ πp,p′ . We also use απp,p′ to denote the confi-
dence measure, which is απp,p′ = cp. In the above definition, we assume the
correspondence measures equivalence.

Definition 10 (MATCH CANDIDATE). Given a query graph Tq, a graph
G is called a match candidate in terms of a set of correspondences ΩTq,G, where
ΩTq,G = {πp,p′ : p ∈ GRAPH-SS-PATH-SETTq

, p′ ∈ GRAPH-SS-PATH-SETG},
if the following conditions are satisfied:

– G is a subgraph of S;

– SINKG ⊆ SINKS;

– for all ss-path p ∈ GRAPH-SS-PATH-SETTq
, there exists exact one ss-path

correspondence πp,p′ ∈ ΩTq,G, where p′ ∈ GRAPH-SS-PATH-SETG;

– for all ss-path p′ ∈ GRAPH-SS-PATH-SETG, there exists exact one ss-path
correspondence πp,p′ ∈ ΩTq,G, where p ∈ GRAPH-SS-PATH-SETTq

;

– for all pair of ss-paths p1, p2 ∈ GRAPH-SS-PATH-SETTq
, if SOURCEp1

= SOURCEp2 , the two corresponded ss-paths p′1, p
′
2 ∈ GRAPH-SS-PATH-

SETG, πp1,p′
1
∈ ΩTq,G, πp2,p′

2
∈ ΩTq,G, also share the same source, SOURCEp′

1

= SOURCEp′
2
;

(a) SPARQL query over T

time

name

Course

string

date

People

teacher

(b) Query graph

Figure 4: An example of SPARQL query, which asks for the
time of any course taught by Einstein. A question mark indi-
cates that element is a variable.

work. If multiple query graphs are allowed, each of them can be
mapped separately.

3. The sinks of a query graph only represent datatypes. This
paper focuses on ontologies that describe database content. User
queries are mostly issued for retrieving or transferring data, which
are values of datatype properties. Retrieving database data ulti-
mately requires the rewriting of datatype properties.

3.3 Query-Specific Mapping
Given the target ontology T , the source ontology S, and a query

q over T , our task is to find correspondences between the ss-paths
in the query graph Q to the paths in the source ontology graph.

An ss-path correspondence records the mapping confidence be-
tween two ss-paths. We consider the relation of the two ss-paths
as equivalence. The expressions of ss-path correspondence is in
GLAV formalism [20].

DEFINITION 3.10 (SS-PATH CORRESPONDENCE). Given two
directed labeled graphs G and G′, an ss-path correspondence be-
tween two ss-paths p and p′ (denoted by πp,p′) is< p, p′, απp,p′ >,
such that p ∈ GRAPH-SS-PATH-SETG, p′ ∈ GRAPH-SS-PATH-
SETG′ , and απp,p′ is a confidence measure.

A match candidate is a set of ss-path correspondences between
the ss-paths in the query graph, and the ss-paths in a subgraph of
the source ontology.

DEFINITION 3.11 (MATCH CANDIDATE). Given a query graph
Q, a match candidate ΩQ,G is a set of ss-path correspondences be-
tween the ss-paths in Q and the ss-paths in a graph G, which is a
subgraph of S, if the following conditions are satisfied:

• The sinks of G are datatypes;

• for each ss-path p ∈ GRAPH-SS-PATH-SETQ, there exists
exactly one ss-path correspondence πp,p′ ∈ ΩQ,G, where
p′ ∈ GRAPH-SS-PATH-SETG;

• for each ss-path p′ ∈ GRAPH-SS-PATH-SETG, there exists
ss-path correspondences πp,p′ ∈ ΩQ,G, where p ∈ GRAPH-
SS-PATH-SETQ;

• for each pair of ss-paths p1, p2 ∈ GRAPH-SS-PATH-SETQ,
if SOURCEp1 = SOURCEp2 , the two corresponding ss-paths
p′1, p

′
2 ∈GRAPH-SS-PATH-SETG also share a common source,

SOURCEp′1 = SOURCEp′2 , where πp1,p
′
1
∈ ΩQ,G, πp2,p

′
2
∈

ΩQ,G.

This definition contains several constraints. First, all sinks of G
are datatypes. Recall that the sinks of the query graph Q are also
datatypes. Thus, the values of datatype properties in the input query
can be translated to the values in the reformulated query. Second,

4

we are interested in a one-to-one mapping, which restricts each ss-
path in Q to be contained in exactly one correspondence. Third,
if the ss-paths in Q share a source, the mapped ss-paths in G also
share a source.

We assign a confidence measure βΩQ,G , which is defined as the
product of all ss-path correspondence confidence measures:

βΩQ,G =
∏

πp,p′ ∈ ΩQ,G

απp,p′

The task of query-specific ontology mapping, q-mapping, is to
find the match candidate with the highest confidence.

DEFINITION 3.12 (Q-MAPPING). Given two ontology graphs
T , S, and a SPARQL query q over T , the query-specific ontology
mapping (denoted as q-mapping(T ,S,q)) is the set of ss-path cor-
respondences ΩQ,Ḡ, where Q is the query graph, and Ḡ is a sub-
graph of S, such that:

• ΩQ,Ḡ is a match candidate;

• βΩQ,Ḡ
= maxG⊆S βΩQ,G .

4. QODI: MAPPING ALGORITHM
The algorithmic goals include defining a similarity score be-

tween pairs of ss-paths, and determining the highest scoring set
of path correspondences without an exhaustive search.

4.1 ss-path Similarity Measure
The ss-path similarity measure must be able to disambiguate un-

certain mappings. Given a pair of ss-paths, the similarity is a prod-
uct of four factors: similarity between source classes, similarity
between datatype properties, similarity between path labels, and a
penalty for path length differences. The source class and datatype
property determine the two ends of an ss-path. A path label is a list
of strings containing the labels of all entities except datatypes in an
ss-path. Path labels are used to disambiguate uncertain mappings.
Path length differences are penalized.

Similarity estimation of source classes and datatype properties
has been well studied in prior work [11, 27, 14, 18]. Any exist-
ing method may be used for this component. We evaluated three
matchers: Substring string similarity that measures the portion of
the longest common substrings, SMOA string similarity [38], and
AgreementMaker [11]. Substring similarity is a simple string dis-
tance measure, SMOA is a sophisticated string distance measure,
and AgreementMaker is an ontology matching system that consid-
ers both labels and structures. The similarity between all classes
and datatype properties can be computed beforehand and stored as
similarity matrices for lookup.

We borrow techniques from information retrieval to measure the
similarity between path labels. For an ss-path, we process the labels
of all entities except datatypes in the path using linguistic process-
ing, and add the processed strings to a list. The linguistic process-
ing includes tokenization by punctuation, numbers, and uppercase
letters (if the letter is not preceded by an uppercase letter); stop
words removal; and stemming (using SimPack1). All strings are
converted to lowercase. A feature vector is generated by indexing
the list of strings, and using frequencies as features. Given that dif-
ferent label may contain a different number of tokens, the frequency
of a token is set to one over the number of tokens (after removing

1files.ifi.uzh.ch/ddis/oldweb/ddis/research/simpack/

stop words) in a label. The path label similarity, SL, between two
ss-paths p and p′ is computed as,

SL(p, p′) =

∑m
i=1 min(fi(p), fi(p

′))∑m
i=1 fi(p) + fi(p′)−min(fi(p), fi(p′))

(1)

where fi(p) is the ith element of the feature vector of ss-path p, and
m is the dimension of the feature vectors.

If two paths are similar, their lengths should not have large dif-
ference. We use an exponential function to penalize the path length
difference. The penalty SLE of two paths p and p′ is defined as,

SLE(p, p′) = e−η · | |p|−|p
′| | (2)

where |p| is the length of path p, and η is a non-negative real num-
ber. With the same length difference, a large η gives more penalty.

The ss-path similarity measure, SSS , is defined as,

SSS(p, p′) = SC(p, p′)
1

np · SD(p, p′) · SL(p, p′) · SLE(p, p′)
(3)

where SC and SD are similarity measures for source classes and
datatype properties, which are provided by matchers. np is the
number of ss-paths in the query graph that share the same source
as p. np is introduced because the same similarity between sources
will be multiplied np times when measuring the confidence of a
match candidate. Note that an ss-path contains one source and one
datatype property.

4.2 q-mapping
We denote the set of all possible match candidates of query graph

Q as MQ. Ḡ, which is the subgraph of S involved in the match
candidate with the highest similarity, is determined by maximizing
the confidence measure as,

Ḡ = arg max
ΩQ,G∈MQ

βΩQ,G

= arg max
ΩQ,G∈MQ

{
∏

πp,p′∈ΩQ,G

SSS(p, p′) }

= argG⊆S {
∏

c∈SOURCE(Q)

{ max
c′∈SOURCE(G)

{

∏
p∈SS-PATH-SET(Q,c)

{ max
p′∈SS-PATH-SET(G,c′)

SSS(p, p′)}}}} (4)

q-mapping(T ,S,q) is the set of ss-path correspondences ΩQ,Ḡ
between Q and Ḡ. Equation (4) specifies the problem of finding
the optimal subgraph of S as the problem of finding a set of optimal
ss-paths that shares a source in S for each set of ss-paths that shares
a source in Q. This reflects the restriction in Definition 3.11 that, if
two ss-paths in query graphQ share a source, the corresponding ss-
paths in the match candidate also share a source. The maximization
is a joint process at two levels. First, the similarity between ss-
paths models a joint probability over all entities within the ss-paths.
Second, all ss-paths with the same source are mapped as a group.

DEFINITION 4.1 (COMPLETE Q-MAPPING). A q-mapping
with a set of correspondences ΩQ,Ḡ is complete, if for every ss-path
in the query graph Q, there exists a correspondence to an ss-path
in Ḡ with non-zero confidence measure.

If a q-mapping is not a complete q-mapping, we can include the
number of mapped ss-paths as an additional measure, and com-
pute the confidence measure based only on mapped ss-paths. The
mapping with the largest number of mapped ss-paths is used as the
mapping. If multiple mappings have the same number of mapped
ss-paths, the one with the highest confidence measure is used.

5

Algorithm 2 Generate reachable label sets.
Input: ontology graph G without reachable label sets
Output: ontology graph G with reachable label sets

for all vertex v of G do
for all sink s of G do
v.reachable[s] = ∅

end for
end for
// q stores all vertices that will be expanded
Queue q = ∅
for all sink s of G do
q.enqueue(s)

end for
while q 6= ∅ do
v = q.dequeue()
for all parent vertex p of v do

// changed records whether p.reachable is changed
changed = false
Ep is the set of all edges from p to v
for all sink s of G do

// prop is the set of entities that will be propagated
prop = v.reachable[s] ∪ Ep ∪ {p}
if p.reachable[s] 6⊇ prop then
p.reachable[s] = p.reachable[s] ∪ prop
changed = true

end if
end for
if changed == true then
q.enqueue(p)

end if
end for

end while
for all vertex v of G do

for all sink s of G do
set v.reachable labels[s] as the labels of v.reachable[s]

end for
end for
return G

4.3 Solving the Maximization
Equation (4) does not specify how to solve the maximization. A

naive algorithm may score all possible match candidates. However,
the number of all possible paths can be exponential in the number
of vertices for acyclic ontology graphs, and is infinite for cyclic
ontology graphs. It is infeasible to compute similarity between all
pairs of paths. Thus, we employ heuristic search algorithms to re-
duce the computation.

We decompose the search problem into two phases: 1) given an
ss-path in the query graph, and given a vertex in S, search for the
ss-path in S with the given vertex as source that has the highest
similarity; 2) given a set of ss-paths that share a source in the query
graph, find a set of paths in S that share a source and have the
highest product of similarities. Phase 1) is a subproblem of 2).
Thus, we solve 1) then 2).

Phase 1) can be solved by a heuristic search algorithm similar to
A* search. A* is commonly applied to find a minimal cost path in
a graph [22]. In this context, A* requires a function that computes
the cost of a partial path, and a heuristic cost function that estimates
the cost of completing a path. The search is guaranteed to terminate
with an optimal path if the heuristic is admissible, which means the
heuristic never overestimates the actual cost. We cannot exploit the
traditional structure of A* search. Our definition of path similarity

$

% '

&

D�
D�E�

E�

F�

G� G�
^&�F�`
^�`

^&�'�F��G�`
^'�G�`

^$�%�&�'�D��D��E��E��F��G�`
^$�%�'�D��D��E��G�`

^$�%�&�'�D��D��E��E��F��G�`
^$�%�'�D��D��E��G�`

Figure 5: An example ontology graph with reachable label
sets. The dashed boxes around each non-sink vertex contain
the reachable label sets through the two datatype properties c1
and d1. For example, the reachable label set from C through
c1 is {C, c1}, and through d1 is empty.

considers all labels in a path as a bag of words. Thus, we can not
decompose a partially computed answer into the sum of two func-
tions. We define a single function that, given a partial path, will
never overestimate the cost of a complete optimal path. With sim-
ilar proof as A* search, our heuristic search is guaranteed to find
an optimal path. The implementation of the search algorithm re-
mains largely unchanged. Search states, representing partial paths,
are saved in an open-list P . P is initialized by the path that only
contains one vertex (the given vertex). The paths in P are sorted in
ascending order using our heuristic function rather than the sum of
two functions. The search terminates when a path p̄ containing a
sink (datatype) is pulled from P .

We introduce two techniques to help create the heuristic cost
function. First, the similarity between datatype properties (SD),
which is a factor of SSS , is considered at the beginning of the
search. A datatype property is the last edge in an ss-path, and con-
nects to a datatype. Thus, a large amount of computation can be
potentially wasted by the search algorithm before discovering the
similarity between datatype properties is low. To address this, P is
initialized by a set of paths, such that each path only contains the
given vertex and only leads to the sink through a specific datatype
property. Following that, SD is a constant for each path. SC is also
a constant, since the source vertex is given. Only the cost of adding
new vertices and edges to the path needs to be considered by the
heuristic cost function.

The second technique is a preprocessing step that associates reach-
able label sets and shortest path lengths to each interior vertices of
the ontology. We define a reachable label set from a vertex through
a datatype property as the union of the path labels of all possible
paths from the vertex to a datatype through the datatype property.
Each vertex of S is associated with the reachable label sets, from
itself through each datatype property. Figure 5 illustrates an exam-
ple of reachable label sets. The reachable label sets are computed
by recursively propagating the reachable label sets of each vertex
to its parents. The algorithm terminates when the reachable label
sets are not changed for all vertices. The pseudo code is detailed
in Algorithm 2. The worst case complexity of this algorithm is
quadratic in the number of vertices. Given that a reachable label
set is a superset of the labels that may appear in an optimal path,
a heuristic can be defined to guarantee the optimality. In addition,
each vertex of S is also associated with the lengths of the shortest
paths from itself to datatypes through each datatype property. The
lengths of shortest paths are also used in the heuristic. Note that the
preprocessing only need run once, and the reachable label sets and
the lengths of shortest paths are stored for fast lookup.

6

We denote the ss-path in the query graph as q, the path in S
that needs heuristic scoring as p, the last element of p as x, and
the objective datatype as e. The reachable label set from x to e
is denoted as Lx,e, and the length of the shortest path from x to
e is denoted as lx,e. sc and sd are the source class similarity, and
the datatype property similarity, respectively. The heuristic cost
function h is defined as follows:

h(p) = − sc
1
nq · sd ·

∑m
i=1 min(fi(q), fi(p) + f̄i(q, p, Lx,e))∑m
i=1 fi(q) + fi(p)−min(fi(q), fi(p))

· e−η · g(q,p,lx,e) (5)

where nq is the number of paths in the query graph that share the
same source as q, and fi(p) is the ith element of the feature vector
of path p. f̄i(q, p, Lx,e) and g(q, p, lx,e) are defined as,

f̄i(q, p, Lx,e) ={
max(fi(q)− fi(p), 0) , if x 6= e and string i ∈ Lx,e
0 , otherwise (6)

g(q, p, lx,e) =

{
max(|p|+ lx,e − 1− |q|, 0) , if x 6= e
| |p| − |q| | , if x = e

(7)
Let us denote the path as p̄, when the search terminates. Based

on the termination condition, x = e. Substituting x with e, h(p̄) =
−SSS(q, p̄), where SSS is defined in (3). The following lemma
and theorem prove that p̄ is the best scoring path. Lemma 4.1 cor-
responds to the proof of admissibility of the heuristic in A* search,
and Theorem 4.1 corresponds to the proof of correctness.

LEMMA 4.1. Suppose the search has not terminated. For any
optimal path p̃, there exists a path p in the priority queue P , which
can be expanded to p̃, such that h(p) ≤ h(p̃).

PROOF. h is the negation of a product of four non-negative fac-
tors. We will prove that each factor of h(p) is greater than or equal
to the corresponding factor of h(p̃). Then h(p) ≤ h(p̃).

The first two factors, sc and sd, are the same for both p and p̃.
Consider the third factor. Denote the last element in path p as

x. The reachable label set, Lx,e, contains the labels of all possible
paths from x to e, including those in the optimal path p̃. Per the
definition of f̄i, the numerator in h(p) is greater than or equal to
that in h(p̃). Since p is a sub-path of p̃, the denominator in h(p) is
less than or equal to that in h(p̃). Thus the third factor of h(p) is
greater than or equal to the third factor of h(p̃).

Consider the forth factor. lx,e is the length of the shortest path
from x to e, so |p|+ lx,e − 1 ≤ |p̃|. Consider two cases:

1. |p| + lx,e − 1 ≥ |q|. Then g(q, p, lx,e) = |p| + lx,e −
1 − |q|, and g(q, p̃, le,e) = |p̃| − |q|. Thus, g(q, p, lx,e) ≤
g(q, p̃, le,e).

2. |p|+lx,e−1 < |q|. Then g(q, p, lx,e) = 0, and g(q, p̃, le,e) ≥
0. Thus, g(q, p, lx,e) ≤ g(q, p̃, le,e).

Thus the forth factor of h(p) is greater than or equal to the forth
factor of h(p̃).

THEOREM 4.1. When the search terminates, the path p̄ is an
optimal path.

The proof of Theorem 4.1 can be derived from the proof of the
similar theorem for A* search by substituting the sum of the two
cost functions with our heuristic h(p) [22]. We omit further details.

If there is no path from the given vertex through any datatype
property, the reachable label sets of the vertex are all empty. We

Algorithm 3 Query reformulation.
Input: SPARQL query qt on ontology T , and q-mapping M
Output: SPARQL query qs on ontology S

// Select clause
Copy the select clause from qt to qs
// Where clause
qs + = “Where {”
for all ss-path correspondence πp,p′ in M do

for all property e in path p′ do
if e is datatype property then

Assign a variable c to the domain of e
Assign the value v of the datatype in p to the range of e
qs + = c + e.URI + v

else
Assign a variable c1 to the domain of e
Assign a variable c2 to the range of e
qs + = c1 + e.URI + c2

end if
end for

end for
qs + = “}”
return qs

do not need to run the search algorithm. Otherwise, Theorem 4.1
guarantees that the algorithm will find an optimal path. An optimal
path has finite length. If a path p has infinite length, h is infinites-
imal, because the forth factor of h is infinitesimal while the other
factors are bounded by 1. Most real world queries do not have cy-
cles, so we prune cyclic paths during the search to further reduce
the computation. If a path contains a vertex more than once or has
two vertices in the same class hierarchy, the path is removed. This
heuristic can be disabled for the applications with cyclic queries.

Phase 2) involves selecting a vertex as a source, and jointly find-
ing multiple optimal paths that share a source. It is not easy to
extend the search algorithm in phase 1) to the second phase. A
naive algorithm can search all classes, and apply the search algo-
rithm in phase 1) with each of them as the source vertex. We exploit
another heuristic algorithm to prune unlikely classes. For each pos-
sible source class, we exploit the heuristic proposed in phase 1) to
estimate the product of the highest path similarities of all paths as
the score for the class. The algorithm in phase 1) runs using each
class as the given source in descending order of the estimated score.
If the real score of a class is greater than or equal to the estimated
score of the remaining classes, those classes can be pruned. This
algorithm also terminates with an optimal solution. The proof is
similar to the proof of Theorem 4.1.

If the query graph has multiple sources, the algorithm in phase
2) runs for each source separately.

5. QODI: QUERY REFORMULATION
A central challenge in query reformulation, missing mapping, is

resolved prior to the reformulation step in QODI. The missing map-
ping problem in QODI manifests as a mapping between a path in
the query graph and a path in the source ontology graph. The de-
termination of an ss-path correspondence anticipates that the paths
may be of different lengths. In traditional data integration systems
with entity-to-entity mapping, the query reformulation algorithm
must include explicit postprocessing steps, e.g. the Generalize-
With-Join operator [4], when lacking subgraph isomorphism.

Instead, QODI’s query reformulation algorithm exploits the fact
that a q-mapping contains ss-path correspondences that cover the

7

query graph. Pseudo-code for the reformulation algorithm is given
in Algorithm 3. Informally, the algorithm traverses the mapped
ss-paths in the correspondences, and generates a triple pattern for
each graph edge. The URI of each edge in the ss-path is translated
as the predicate of a triple. The subject and object of the triple
are variables or literals assigned to the domain and range of the
edge, respectively. Assigning variables to classes that are shared
by multiple paths is an open research topic. We do not elaborate on
this topic, since the primary focus of this paper is mapping.

6. EXPERIMENTAL SETUP
The objectives of the evaluation are threefold: to determine how

well the method resolves ambiguity, how capable the method is of
generating complete q-mappings for a SPARQL query, and finally,
how accurate the mappings are.

6.1 Test Sets
The test sets comprise one pair of ontologies from each of three

domains: Bibliography, Conference Organization and Life Science.
The test cases include three ontologies used in OAEI [1], two on-
tologies created from direct mapping relational databases, and one
ontology created by a standards organization.

The Bibliography domain comprises the UMBC ontology from
the OAEI benchmark track, and an ontology that models DBLP,
generated from the direct mapping of a SQL schema defined for
a DBLP metadata database through Ultrawrap [35] . Class hier-
archies are manually added. The Conference domain consists of
the two ontologies from the OAEI conference track, SIGKDD and
SOFSEM. The Life Science domain consists of Darwin Core and
Specify. Darwin Core is an ontology at the center of the standard-
ization efforts of the Global Biodiversity Information Foundation
(GBIF). The Specify ontology was created from direct mapping the
SQL schema of the database in the Specify biological collections
software package2. Specify is used in over 200 locations. We have
made the ensemble test suite available on our website3.

Sets of test queries are also required, and were created as follows.
First, groundtruth mappings were manually generated, containing
all correct ss-path mappings between each pair of ontologies. Sub-
sequently, a computer program systematically generated two kinds
of SPARQL queries for each ontology. 1) A PathOnly query has a
query graph consisting of only one ss-path in the groundtruth map-
pings. 2) A ClassAll query has a query graph consisting of the set
of all ss-paths that share a source in the groundtruth mappings. All
queries with only one ss-path are removed from ClassAll queries.

The primary motivation for PathOnly queries is to test the map-
ping systems’ ability to generate correct path mappings. ClassAll
queries are complex compared to PathOnly queries. For example,
one ClassAll query for Life Science contains 14 ss-paths in the
query graph. If any of these ss-paths is incorrectly mapped, the
mapping fails. Since the queries were generated from groundtruth
mappings, they have complete q-mappings.

Figure 6 shows examples of PathOnly and ClassAll queries gen-
erated for the DBLP ontology.

6.2 Metrics
One key metric is to measure ambiguity. An accurate measure of

ambiguity requires a manual alignment of ontologies anticipating
a wide range of applications. Since a perfect measure would have
to take into account all possible application scenarios, it is difficult
for a manual measure to assure perfect accuracy.

2http://specifysoftware.org/
3http://www.cs.utexas.edu/~atian/page/dataset.html

(a) PathOnly SPARQL query

(b) ClassAll SPARQL query

Figure 6: Example SPARQL queries in the query set

We define an approximate measure of ambiguity. There are two
aspects to the approximation. First, only mapping between datatype
properties is considered as the source of ambiguity. Second, two
datatype properties are considered as mapped if a matcher, as op-
posed to a human labeler, assigns them the highest similarity.

DEFINITION 6.1 (DATATYPE AMBIGUOUS Q-MAPPING). Gi-
ven a datatype property similarity measure SD , a target ontology
T , a source ontology S, a query q over T , and the set of ss-path
correspondences Ω of q-mapping(T ,S,q), the mapping is datatype
ambiguous if for at least one ss-path correspondence πpt,ps ∈ Ω,
SD(pt, ps) = maxp SD(pt, p), and there exists a datatype prop-
erty d /∈ ps, such that the similarity between d and the datatype
property of pt equals SD(pt, ps).

Note that the definition of datatype ambiguous q-mapping de-
pends on the similarity measure of a matcher.
ambiguous rate is used as the metric to measure the proportion

of queries that have datatype ambiguous q-mappings.

ambiguous rate =

queries with datatype ambiguous q-mapping
queries

(8)

where # represents the number of.
The remaining assessments concern the proportion of queries for

which a system is able to generate complete q-mappings indepen-
dent of correctness, and subsequently, the proportion of queries that
are correctly mapped. The metrics are reminiscent of recall and
precision used in ontology matching and information retrieval.
valid rate is the proportion of queries with complete q-mappings

generated.

valid rate =
queries with complete q-mappings generated

queries
(9)

For measuring the accuracy of mapping systems, we should con-
sider the case that a query is correctly mapped, and also the case
that part of a query is correctly mapped. Thus, we define both
a query-based precision measure, query precision, and a path-
based precision measure, path precision.

query precision =
correctly mapped queries

queries
(10)

path precision =∑
q percentage of correctly mapped ss-paths in q

queries
(11)

8

B↑ B↓ C↑ C↓ L↑ L↓
ambiguous rate 0.242 0.113 0 0 0.333 0.111

Substring 0.267 0.000 - - 0.333 0.250
Clio Substring 0.667 0.000 - - 0.417 0.500

QODI Substring 0.933 0.000 - - 0.500 0.500

Table 1: The ambiguous rate and query precision with Sub-
string as matcher. Row 2 contains the ambiguous rates of dif-
ferent test sets. Rows 3, 4, and 5 contain the query precisions
of different methods that only count the queries with datatype
ambiguous q-mapping in PathOnly query sets. B↑ uses UMBC
and B↓ uses DBLP as the target ontology for the Bibliography
test set. C↑ uses SIGKDD and C↓ uses SOFSEM as the tar-
get ontology for the Conference test set. L↑ uses Darwin Core
and L↓ uses Specify as the target ontology for the Life Science
test set. If ambiguous rate is zero, there is no query precision
for the queries with datatype ambiguous q-mapping. Higher
query precision means better performance.

B↑ B↓ C↑ C↓ L↑ L↓
ambiguous rate 0.177 0 0 0 0.194 0

SMOA 0.364 - - - 0.143 -
Clio SMOA 0.364 - - - 0.429 -

QODI SMOA 0.636 - - - 0.714 -

Table 2: The ambiguous rate and query precision with SMOA
as matcher. See caption of Table 1 for details.

where an individual query in the test set is denoted q.

6.3 Baselines
We compare QODI against two kinds of baselines: ontology

matching systems, and methods from an existing mapping system
for data integration.

In ontology matching systems, a matcher computes the similarity
between classes, object properties, and datatype properties. Given
a query, each entity is translated to an entity in S with the highest
similarity.

Clio is a relational data integration and exchange system that is
closely related to QODI [19]. Clio generates mappings between
attributes in relational databases, and finds associations between
those mappings through foreign key constraints. The identification
of foreign key constraints to associate tables is similar to the direct
mapping implemented by Ultrawrap [35] that generated the ontolo-
gies used in our test cases. Thus, we are able to implement base-
lines similar to Clio. A matcher first generates mappings between
datatype properties by picking the ones with the highest similarity.
Given a query, the baselines find the match candidates that contain
all the mapped datatype properties. Clio asks a user to pick one
match candidate, which is not allowed in our automated setting.
We approximate this process by first picking the match candidates
with highest similarity between source classes, and then picking
the one with the least summation of path lengths. The only differ-
ence between Clio baselines and QODI is that these baselines do
not consider the labels inside a path.

We use three matchers for the proposed method and all baselines.
One matcher is substring string similarity that measures the portion
of the longest common substrings between entity labels. The sec-
ond matcher is SMOA string similarity between entity labels [38].
The third is AgreementMaker configured as detailed in OAEI 2010
conference track [11].

B↑ B↓ C↑ C↓ L↑ L↓
ambiguous rate 0 0 0 0 0.139 0

AgreementMaker - - - - 0.000 -
Clio AgreementMaker - - - - 0.000 -

QODI AgreementMaker - - - - 0.200 -

Table 3: The ambiguous rate and query precision with Agree-
mentMaker as matcher. See caption of Table 1 for details.

7. EXPERIMENTAL RESULTS
Given a pair of ontologies, O1 and O2, the experiments are con-

ducted on two directions of mappings: from O1 (target) to O2

(source), and from O2 (target) to O1 (source). The results for the
two mapping directions are shown separately for ambiguous rate
to distinguish the differences. For valid rate, query precision and
path precision, the average results of both mapping directions are
reported. We set η = 0.3 based on the tuning on the Bibliography
test set with PathOnly queries using Substring as matcher. Sec-
tion 7.4 discusses the accuracy using different η.

7.1 Ambiguity
Two questions concern ambiguity. How ambiguous are our test

sets? What is the accuracy of a method on queries with ambigu-
ous mappings? For the first question, we measure the ambigu-
ous rate. For the second question, we measure the query precision
of PathOnly queries with ambiguous mappings. Since each PathOnly
query corresponds to one path mapping in the groundtruth, the
query precision shows the capability of disambiguation.

Per Definition 6.1 and Equation (8), ambiguous rate is related to
matchers. The results using each matcher are reported separately
in Table 1, 2, and 3.

Two out of three test sets, Bibliography and Life Science, have
non-zero ambiguity. The ambiguous rate measured with different
matchers are different, but they share similarities on the two test
sets. All three matchers assert that L↑ has ambiguity. The rates
range from 0.139 to 0.333. Two matchers, Substring and SMOA,
agree on the ambiguity of B↑. The rates are 0.242 and 0.177. For
both L↑ and B↑, QODI achieves the highest query precision on
the queries with datatype ambiguous q-mappings. Especially for
B↑, QODI achieves 0.933 and 0.636 query precision comparing to
0.667 and 0.364 from Clio. This shows that QODI is capable of
disambiguation.

7.2 Valid rate
Figure 7 shows the valid rate for each test set. The three methods

of QODI achieve 100% valid rate for all test sets. This is because
QODI does not determine any entity mapping beforehand. Each
path correspondence is assigned a confidence, and the mapped paths
has the highest confidence.

The Clio baselines are able to generate complete mappings for
two thirds of test sets. Bibliography and Life Science with Clas-
sAll query set are the exceptions. Bibliography and Life Science
have many datatype ambiguous q-mappings as shown in Table 1,
2, and 3. For some ClassAll queries, Clio cannot find a complete
q-mapping if the mapped entities are incorrectly selected from am-
biguous mappings.

The comparison between QODI and Clio shows that disambigua-
tion is important even for generating complete q-mappings regard-
less of correctness.

The generic mapping baselines are able to generate complete q-
mappings for less than 50% of PathOnly queries, but barely gen-
erate complete q-mappings for ClassAll queries. The big gap be-

9

0.428	
 0.396	
 0.420	

1.000	
 1.000	
 1.000	
 1.000	
 1.000	
 1.000	

0.000	

0.100	

0.200	

0.300	

0.400	

0.500	

0.600	

0.700	

0.800	

0.900	

1.000	

(a) Bibliography, PathOnly

0.375	

0.417	

0.500	

1.000	
 1.000	
 1.000	
 1.000	
 1.000	
 1.000	

0.000	

0.100	

0.200	

0.300	

0.400	

0.500	

0.600	

0.700	

0.800	

0.900	

1.000	

(b) Conference, PathOnly

0.375	

0.431	

0.306	

1.000	
 1.000	
 1.000	
 1.000	
 1.000	
 1.000	

0.000	

0.100	

0.200	

0.300	

0.400	

0.500	

0.600	

0.700	

0.800	

0.900	

1.000	

(c) Life Science, PathOnly

Substring*
SMOA*
AgreementMaker*
Clio_Substring*
Clio_SMOA*
Clio_AgreementMaker*
QODI_Substring*
QODI_SMOA*
QODI_AgreementMaker*

(d) legend

0.063	
 0.063	
 0.063	

0.938	

0.563	
 0.563	

1.000	
 1.000	
 1.000	

0.000	

0.100	

0.200	

0.300	

0.400	

0.500	

0.600	

0.700	

0.800	

0.900	

1.000	

(e) Bibliography, ClassAll

0.167	
 0.167	
 0.167	

1.000	
 1.000	
 1.000	
 1.000	
 1.000	
 1.000	

0.000	

0.100	

0.200	

0.300	

0.400	

0.500	

0.600	

0.700	

0.800	

0.900	

1.000	

(f) Conference, ClassAll

0.000	
 0.000	
 0.000	

1.000	

0.834	

1.000	
 1.000	
 1.000	
 1.000	

0.000	

0.100	

0.200	

0.300	

0.400	

0.500	

0.600	

0.700	

0.800	

0.900	

1.000	

(g) Life Science, ClassAll

Substring*
SMOA*
AgreementMaker*
Clio_Substring*
Clio_SMOA*
Clio_AgreementMaker*
QODI_Substring*
QODI_SMOA*
QODI_AgreementMaker*

(h) legend

Figure 7: Valid rate for different test sets. Higher number means better performance.

0.339	
 0.347	

0.266	

0.581	

0.525	

0.460	

0.702	

0.565	

0.468	

0.000	

0.100	

0.200	

0.300	

0.400	

0.500	

0.600	

0.700	

0.800	

(a) Bibliography, PathOnly

0.375	

0.417	
 0.417	

0.375	

0.417	

0.500	
 0.500	

0.458	

0.625	

0.000	

0.100	

0.200	

0.300	

0.400	

0.500	

0.600	

0.700	

0.800	

(b) Conference, PathOnly

0.320	

0.375	

0.278	

0.597	
 0.584	

0.320	

0.764	

0.833	

0.639	

-­‐0.050	

0.050	

0.150	

0.250	

0.350	

0.450	

0.550	

0.650	

0.750	

0.850	

0.950	

(c) Life Science, PathOnly

Substring*
SMOA*
AgreementMaker*
Clio_Substring*
Clio_SMOA*
Clio_AgreementMaker*
QODI_Substring*
QODI_SMOA*
QODI_AgreementMaker*

(d) legend

0.063	
 0.063	
 0.063	
 0.063	
 0.063	
 0.063	

0.250	

0.125	
 0.125	

0.000	

0.050	

0.100	

0.150	

0.200	

0.250	

0.300	

(e) Bibliography, ClassAll

0.167	
 0.167	
 0.167	
 0.167	
 0.167	
 0.167	
 0.167	
 0.167	

0.417	

0.000	

0.050	

0.100	

0.150	

0.200	

0.250	

0.300	

0.350	

0.400	

0.450	

0.500	

(f) Conference, ClassAll

0.000	
 0.000	
 0.000	
 0.000	
 0.000	
 0.000	

0.333	
 0.333	
 0.333	

0.000	

0.050	

0.100	

0.150	

0.200	

0.250	

0.300	

0.350	

0.400	

(g) Life Science, ClassAll

Substring*
SMOA*
AgreementMaker*
Clio_Substring*
Clio_SMOA*
Clio_AgreementMaker*
QODI_Substring*
QODI_SMOA*
QODI_AgreementMaker*

(h) legend

Figure 8: Query precision for different test sets. Higher number means better performance.

tween generic mappings and Clio baselines demonstrates the im-
portance of the missing mapping challenge.

7.3 Precision
Figure 8 and 9 show the precisions of all methods. For all test

sets, at least one QODI method dominates all baselines in terms
of both precision measures. For ClassAll query sets, there are big
gaps between QODI and all baselines. QODI is the only system
that achieves non-zero query precision for the Life Science test set
with ClassAll query set. For the ClassAll query set, each query has
more than one path that shares a source. On one hand, more paths
may lead to poor mapping results since each path may be mapped
incorrectly. On the other hand the context from different paths may
be used by QODI to map the correct source class shared by the
paths. The precision results indicate the importance of resolving
the ambiguous mapping challenge.

Comparing Clio baselines to generic mapping baselines, for all
test sets and all measures, at least one Clio baseline dominates or
performs as well as generic mapping baselines.

7.4 Parameter Tuning
Figure 10 shows the query precision using different path length

penalty parameter η. With the same length difference, a large η
gives big penalty. As a special case, η = 0 does not have any
penalty on the path length.

For most cases, the penalty improves query precision comparing
to the case of η = 0. However, if η is too large, the query precision
can be decreased. With large η, the penalty of length dominates the
similarities of source classes, datatype properties, and path labels
in (3). Thus only the paths with the same lengths are considered as
similar, ignoring the labels of the paths. For Life Science, most of
the mapped paths in the groundtruth have the same length, so the
precision is not decreased with large η.

8. DISCUSSION
This work identifies ambiguous mappings as sources of errors in

automatic data integration. In our experiments, two out of three test
domains have ambiguity. Around 10% to 30% of queries involve
ambiguous mappings in the test sets with ambiguity.

10

0.339	
 0.347	

0.266	

0.581	

0.525	

0.460	

0.702	

0.565	

0.468	

0.000	

0.100	

0.200	

0.300	

0.400	

0.500	

0.600	

0.700	

0.800	

(a) Bibliography, PathOnly

0.375	

0.417	
 0.417	

0.375	

0.417	

0.500	
 0.500	

0.458	

0.625	

0.000	

0.100	

0.200	

0.300	

0.400	

0.500	

0.600	

0.700	

0.800	

(b) Conference, PathOnly

0.320	

0.375	

0.278	

0.597	
 0.584	

0.320	

0.764	

0.833	

0.639	

-­‐0.050	

0.050	

0.150	

0.250	

0.350	

0.450	

0.550	

0.650	

0.750	

0.850	

0.950	

(c) Life Science, PathOnly

Substring*
SMOA*
AgreementMaker*
Clio_Substring*
Clio_SMOA*
Clio_AgreementMaker*
QODI_Substring*
QODI_SMOA*
QODI_AgreementMaker*

(d) legend

0.344	
 0.347	

0.289	

0.449	

0.416	

0.340	

0.670	

0.545	

0.426	

0.000	

0.100	

0.200	

0.300	

0.400	

0.500	

0.600	

0.700	

0.800	

(e) Bibliography, ClassAll

0.167	
 0.167	
 0.167	
 0.167	
 0.167	

0.333	

0.208	

0.333	

0.500	

-­‐0.050	

0.050	

0.150	

0.250	

0.350	

0.450	

0.550	

(f) Conference, ClassAll

0.286	
 0.295	

0.236	

0.466	

0.380	

0.211	

0.842	

0.892	
 0.881	

0.000	

0.100	

0.200	

0.300	

0.400	

0.500	

0.600	

0.700	

0.800	

0.900	

1.000	

(g) Life Science, ClassAll

Substring*
SMOA*
AgreementMaker*
Clio_Substring*
Clio_SMOA*
Clio_AgreementMaker*
QODI_Substring*
QODI_SMOA*
QODI_AgreementMaker*

(h) legend

Figure 9: Path precision for different test sets. Higher number means better performance.

0.200$

0.300$

0.400$

0.500$

0.600$

0.700$

0.800$

0.0$ 0.2$ 0.4$ 0.6$ 0.8$ 1.0$ 1.2$ 1.4$ 1.6$ 1.8$ 2.0$

Substring$

SMOA$

AgreementMaker$

(a) Bibliography, PathOnly

0.200$

0.250$

0.300$

0.350$

0.400$

0.450$

0.500$

0.550$

0.600$

0.650$

0.0$ 0.2$ 0.4$ 0.6$ 0.8$ 1.0$ 1.2$ 1.4$ 1.6$ 1.8$ 2.0$

Substring$

SMOA$

AgreementMaker$

(b) Conference, PathOnly

0.300$

0.400$

0.500$

0.600$

0.700$

0.800$

0.900$

0.0$ 0.2$ 0.4$ 0.6$ 0.8$ 1.0$ 1.2$ 1.4$ 1.6$ 1.8$ 2.0$

Substring$

SMOA$

AgreementMaker$

(c) Life Science, PathOnly0.000#

0.050#

0.100#

0.150#

0.200#

0.250#

0.300#

0.350#

0.0# 0.2# 0.4# 0.6# 0.8# 1.0# 1.2# 1.4# 1.6# 1.8# 2.0#

Substring#

SMOA#

AgreementMaker#

(d) legend

0.000#

0.050#

0.100#

0.150#

0.200#

0.250#

0.300#

0.0# 0.2# 0.4# 0.6# 0.8# 1.0# 1.2# 1.4# 1.6# 1.8# 2.0#

Substring#

SMOA#

AgreementMaker#

(e) Bibliography, ClassAll

0.000#

0.050#

0.100#

0.150#

0.200#

0.250#

0.300#

0.350#

0.400#

0.450#

0.0# 0.2# 0.4# 0.6# 0.8# 1.0# 1.2# 1.4# 1.6# 1.8# 2.0#

Substring#

SMOA#

AgreementMaker#

(f) Conference, ClassAll

0.000#

0.050#

0.100#

0.150#

0.200#

0.250#

0.300#

0.350#

0.0# 0.2# 0.4# 0.6# 0.8# 1.0# 1.2# 1.4# 1.6# 1.8# 2.0#

Substring#

SMOA#

AgreementMaker#

(g) Life Science, ClassAll0.000#

0.050#

0.100#

0.150#

0.200#

0.250#

0.300#

0.350#

0.0# 0.2# 0.4# 0.6# 0.8# 1.0# 1.2# 1.4# 1.6# 1.8# 2.0#

Substring#

SMOA#

AgreementMaker#

(h) legend

Figure 10: Query precision (vertical axis) when using different η (horizontal axis).

We introduce query-specific ontology mapping to resolve am-
biguous mappings, and implement an OBDI system, QODI. For all
test sets in our evaluation, at least one QODI method outperforms
all baselines with both precision measures.

Future work consists of at least three possible directions. First,
new methods of path similarities can be explored. In our current
implementation, contexts are extracted as path labels, and factors
of the path similarity are multiplied as probabilities. Other methods
that extract context from queries as well as weighting schemes that
balance different factors should be studied. Second, although the
focus of this presentation is algorithmic, the fundamental organiza-
tion of QODI admits integration of user interaction for refinement.
Users input may be integrated at different places. Similarity be-
tween entities is pre-computed and stored in matrices. Values in the
matrices may be overwritten directly by users. When a q-mapping
is generated, users may label the correctness of path correspon-
dences. After executing the reformulated query, users may label
the correctness of the query results. These labels can be exploited
by machine learning algorithms to subsequently adjust both path

mapping and similarity between entities. Third, path mappings can
be accumulated over time as in pay-as-you-go systems. Although
QODI may choose different entity mappings for different queries,
the path mapping is static for a specific path. This motivates a de-
sign of workload to accumulate path mappings over time, such that
a path mapped before need not be mapped in future.

9. REFERENCES
[1] Ontology Alignment Evaluation Initiative.

oaei.ontologymatching.org/.
[2] B. Alexe, M. Hernández, L. Popa, and W.-C. Tan.

Mapmerge: correlating independent schema mappings. The
VLDB Journal, 21(2):191–211, 2012.

[3] M. Arenas, A. Bertails, E. Prud’hommeaux, and J. Sequeda.
Direct mapping of relational data to RDF. W3C
Recommendation.

[4] Y. Arens, C. Knoblock, and W. Shen. Query reformulation
for dynamic information integration. Journal of Intelligent
Information Systems, 6(2):99–130, 1996.

11

[5] D. Aumueller, H. Do, S. Massmann, and E. Rahm. Schema
and ontology matching with coma++. In Proc. SIGMOD,
pages 906–908. ACM, 2005.

[6] F. Barbançon and D. P. Miranker. Sphinx: Schema
integration by example. Journal of Intelligent Information
Systems, 29(2):145–184, 2007.

[7] Z. Bellahsene, A. Bonifati, and E. Rahm, editors. Schema
Matching and Mapping. Springer, 2011.

[8] P. Bernstein, J. Madhavan, and E. Rahm. Generic schema
matching, ten years later. Proc. VLDB, 4(11), 2011.

[9] P. Bohannon, E. Elnahrawy, W. Fan, and M. Flaster. Putting
context into schema matching. In Proc. VLDB, pages
307–318. VLDB Endowment, 2006.

[10] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini,
A. Poggi, M. Rodriguez-Muro, R. Rosati, M. Ruzzi, and
D. Savo. The mastro system for ontology-based data access.
Semantic Web, 2(1):43–53, 2011.

[11] I. Cruz, F. Antonelli, and C. Stroe. Agreementmaker:
efficient matching for large real-world schemas and
ontologies. Proc. VLDB, 2(2):1586–1589, 2009.

[12] S. Das, S. Sundara, and R. Cyganiak. R2rml: Rdb to rdf
mapping language. W3C Recommendation.

[13] A. Das Sarma, X. Dong, and A. Halevy. Bootstrapping
pay-as-you-go data integration systems. In Proc. SIGMOD,
pages 861–874. ACM, 2008.

[14] R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and
P. Domingos. imap: discovering complex semantic matches
between database schemas. In Proc. SIGMOD, pages
383–394. ACM, 2004.

[15] A. Doan, A. Halevy, and Z. Ives. Principles of Data
Integration. Elsevier Science, 2012.

[16] A. Doan, J. Madhavan, R. Dhamankar, P. Domingos, and
A. Halevy. Learning to match ontologies on the semantic
web. The VLDB Journal, 12(4):303–319, 2003.

[17] X. Dong, A. Halevy, and C. Yu. Data integration with
uncertainty. The VLDB Journal, 18(2):469–500, 2009.

[18] J. Euzenat and P. Shvaiko. Ontology matching.
Springer-Verlag New York Inc, 2007.

[19] R. Fagin, L. Haas, M. Hernández, R. Miller, L. Popa, and
Y. Velegrakis. Clio: Schema mapping creation and data
exchange. Conceptual Modeling: Foundations and
Applications, pages 198–236, 2009.

[20] M. Friedman, A. Levy, T. Millstein, et al. Navigational plans
for data integration. In Proc. AAAI, pages 67–73, 1999.

[21] J. Gong, R. Cheng, and D. W. Cheung. Efficient management
of uncertainty in xml schema matching. The VLDB Journal,
21(3):385–409, 2012.

[22] P. Hart, N. Nilsson, and B. Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE Trans.
Systems Science and Cybernetics, 4(2):100–107, 1968.

[23] T. Heath and C. Bizer. Linked data: Evolving the web into a
global data space. Synthesis Lectures on the Semantic Web:
Theory and Technology, 1(1):1–136, 2011.

[24] S. Jeffery, M. Franklin, and A. Halevy. Pay-as-you-go user
feedback for dataspace systems. In Proc. SIGMOD, pages
847–860. ACM, 2008.

[25] C. Knoblock, P. Szekely, J. Ambite, A. Goel, S. Gupta,
K. Lerman, M. Muslea, M. Taheriyan, and P. Mallick.
Semi-automatically mapping structured sources into the
semantic web. The Semantic Web: Research and

Applications, pages 375–390, 2012.
[26] R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and

M. Zakharyaschev. The combined approach to
ontology-based data access. In Proc. IJCAI, pages
2656–2661, 2011.

[27] J. Li, J. Tang, Y. Li, and Q. Luo. Rimom: A dynamic
multistrategy ontology alignment framework. IEEE Trans.
Knowl. Data Eng., 21(8):1218–1232, 2009.

[28] J. Madhavan, P. Bernstein, A. Doan, and A. Halevy.
Corpus-based schema matching. In Proc. ICDE, pages
57–68. IEEE, 2005.

[29] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic schema
matching with cupid. In Proc. VLDB, pages 49–58, 2001.

[30] D. Maier, A. O. Mendelzon, and Y. Sagiv. Testing
implications of data dependencies. ACM Trans. Database
Systems (TODS), 4(4):455–469, 1979.

[31] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity
flooding: A versatile graph matching algorithm and its
application to schema matching. In Proc. ICDE, pages
117–128. IEEE, 2002.

[32] R. Parundekar, C. A. Knoblock, and J. L. Ambite.
Discovering concept coverings in ontologies of linked data
sources. In Proc. ISWC, pages 427–443. Springer-Verlag,
2012.

[33] L. Qian, M. J. Cafarella, and H. Jagadish. Sample-driven
schema mapping. In Proc. SIGMOD, pages 73–84, 2012.

[34] J. F. Sequeda, M. Arenas, and D. P. Miranker. On directly
mapping relational databases to rdf and owl. In Proc. WWW,
Lyon, France, pages 649–658, 2012.

[35] J. F. Sequeda and D. P. Miranker. Ultrawrap: Sparql
execution on relational data. Technical Report TR-12-10,
University of Texas at Austin, 2012.

[36] P. Shvaiko and J. Euzenat. Ontology matching: state of the
art and future challenges. IEEE Trans. Knowledge and Data
Engineering, 2012.

[37] S. Sorrentino, S. Bergamaschi, M. Gawinecki, and L. Po.
Schema normalization for improving schema matching. In
Conceptual Modeling-ER, pages 280–293. Springer, 2009.

[38] G. Stoilos, G. Stamou, and S. Kollias. A string metric for
ontology alignment. Proc. ISWC, pages 624–637, 2005.

[39] F. M. Suchanek, S. Abiteboul, and P. Senellart. Paris:
Probabilistic alignment of relations, instances, and schema.
Proc. VLDB, 5(3):157–168, 2011.

[40] A. Tian, J. F. Sequeda, and D. P. Miranker. On ambiguity and
query-specific ontology mapping. In Proc. ISWC Workshop
on Ontology Matching, poster, Boston, US, November 2012.

[41] A. Tian, J. F. Sequeda, and D. P. Miranker. Queries, the
missing link in automatic data integration. In Proc. ISWC
Posters and Demonstrations Track, Boston, US, November
2012.

[42] S. Tirmizi, J. Sequeda, and D. Miranker. Translating sql
applications to the semantic web. In Database and Expert
Systems Applications, pages 450–464. Springer, 2008.

[43] H. Wache, T. Voegele, U. Visser, H. Stuckenschmidt,
G. Schuster, H. Neumann, and S. Hübner. Ontology-based
integration of information-a survey of existing approaches.
In IJCAI-01 workshop: ontologies and information sharing,
volume 2001, pages 108–117, 2001.

[44] Q. Zhong, H. Li, J. Li, G. Xie, J. Tang, L. Zhou, and Y. Pan.
A gauss function based approach for unbalanced ontology
matching. In Proc. SIGMOD, pages 669–680. ACM, 2009.

12

