
Quasi-inverses of Schema Mappings

Ronald Fagin Phokion G. Kolaitis∗ Lucian Popa
IBM Almaden Research Center

{fagin,kolaitis,lucian}@almaden.ibm.com

Wang-Chiew Tan†

UC Santa Cruz
wctan@cs.ucsc.edu

ABSTRACT
Schema mappings are high-level specifications that describe the rela-
tionship between two database schemas. Two operators on schema
mappings, namely the composition operator and the inverse opera-
tor, are regarded as especially important. Progress on the study of
the inverse operator was not made until very recently, as even finding
the exact semantics of this operator turned out to be a fairlydelicate
task. Furthermore, this notion is rather restrictive, since it is rare that
a schema mapping possesses an inverse.

In this paper, we introduce and study the notion of a quasi-inverse
of a schema mapping. This notion is a principled relaxation of the
notion of an inverse of a schema mapping; intuitively, it is obtained
from the notion of an inverse by not differentiating betweeninstances
that are equivalent for data-exchange purposes. For schemamappings
specified by source-to-target tuple-generating dependencies (s-t tgds),
we give a necessary and sufficient combinatorial condition for the ex-
istence of a quasi-inverse, and then use this condition to obtain both
positive and negative results about the existence of quasi-inverses. In
particular, we show that every LAV (local-as-view) schema mapping
has a quasi-inverse, but that there are schema mappings specified by
full s-t tgds that have no quasi-inverse. After this, we study the lan-
guage needed to express quasi-inverses of schema mappings specified
by s-t tgds, and we obtain a complete characterization. We also char-
acterize the language needed to express inverses of schema mappings,
and thereby solve a problem left open in the earlier study of the inverse
operator. Finally, we show that quasi-inverses can be used in many
cases to recover the data that was exported by the original schema
mapping when performing data exchange.

Categories and Subject Descriptors
H.2.5 [Heterogeneous Databases]: Data translation; H.2.4 [Systems]:
Relational Databases

General Terms
Algorithms, Theory

∗On leave from UC Santa Cruz
†Supported in part by NSF CAREER Award IIS-0347065 and NSF
grant IIS-0430994. Work partially done while at IBM Almaden.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’07,June 11–14, 2007, Beijing, China.
Copyright 2007 ACM 978-1-59593-685-1/07/0006 ...$5.00.

Keywords
Schema mapping, data exchange, data integration, metadatamodel
management, inverse, quasi-inverse, dependencies, chase

1. INTRODUCTION
Schema mappings are high-level specifications that describe the re-

lationship between two database schemas. More precisely, aschema
mapping is a tripleM = (S,T,Σ) consisting of a source schemaS, a
target schemaT, and a setΣ of database dependencies that specify the
relationship between the source schema and the target schema. Since
schema mappings form the essential building blocks of such crucial
data inter-operability tasks as data integration and data exchange (see
the surveys [6, 7]), several different operators on schema mappings
have been singled out as deserving study in their own right [1]. The
composition operator and the inverse operator have emergedas two of
the most fundamental operators on schema mappings.

By now, the composition operator has been investigated in depth
[5, 8, 9, 10]; however, progress on the study of the inverse operator
was not made until very recently, as even finding the exact semantics
of this operator turned out to be a delicate task. In [3], the concept
of an inverse of a schema mapping was rigorously defined and its ba-
sic properties were studied. The definition of an inverse wasgiven by
first defining the concept of theidentityschema mappingId and then
stipulating that a schema mappingM′ is aninverseof a schema map-
pingM if the composition ofM with M′ yields the identity schema
mappingId, in symbolsM◦M′ = Id.

Unfortunately, the notion of an inverse of a schema mapping turned
out to be rather restrictive, since it is rare that a schema mapping pos-
sesses an inverse. Indeed, as shown in [3], if a schema mapping M
is invertible, thenM satisfies theunique-solutions property, which
asserts that different source instances must have different spaces of
solutions(that is, different sets of target instances satisfying thespeci-
fications ofM). This necessary condition for invertibility can be used
as a simple, yet powerful, sufficient condition for non-invertibility. In
particular, none of the following natural schema mappings possesses
an inverse, because it is easy to see that none of them has the unique-
solutions property:

Projection: This is the schema mapping specified by the dependency
P (x, y) → Q(x).

Union: This is the schema mapping specified by the dependencies
P (x) → S(x) andQ(x) → S(x).

Decomposition:This is the schema mapping specified by the depen-
dencyP (x, y, z) → Q(x, y) ∧R(y, z).

Moreover, the invertibility of a schema mapping is not robust, as it
is affected by changes to the source schema, even when the depen-
dencies remain intact. Specifically, assume thatM = (S,T,Σ)
is an invertible schema mapping. If the source schemaS is aug-

mented with a new relation symbolR, then the new schema mapping
M∗ = (S ∪ {R},T,Σ) is no longer invertible.

In view of these limitations of the notion of an inverse of a schema
mapping, it is natural to ask: is there a good alternative notion of an
inverse that is not as restrictive as the original notion in [3], but is still
useful in data exchange? In what follows, we address this question by
formulating the notion of aquasi-inverseof a schema mapping, by ex-
ploring its properties in depth, and by making a case for its usefulness.
Conceptual contributions We introduce the notion of aquasi-inverse
of a schema mappingM = (S,T,Σ) as a principled relaxation of the
notion of an inverse mapping ofM. Intuitively, the notion of a quasi-
inverse is obtained from the notion of an inverse by not differentiat-
ing betweengroundinstances (i.e., null-free source instances) that are
equivalent for data-exchange purposes. In more formal terms, we first
consider the equivalence relation∼M between ground instances such
thatI1 ∼M I2 holds ifI1 andI2 have the samespace of solutions, that
is, for every target instanceJ , we have that(I1, J) |= Σ if and only if
(I2, J) |= Σ. We then say that a schema mappingM′ = (T,S,M′)
is aquasi-inverseof M if, in a precise technical sense,M◦M′ = Id
holds modulo the equivalence relation∼M.

We show that the concept of a quasi-inverse of a schema mapping
is actually part of a unifying framework in which different relaxations
of the notion of an inverse of a schema mapping can be obtainedby
using different equivalence relations that arerefinementsof the equiv-
alence relation∼M (i.e., they are contained in∼M). This framework
captures, as special cases, both inverses and quasi-inverses. In fact,
the notion of an inverse is the strictest one, while the notion of a quasi-
inverse is the most relaxed one; all other relaxations of thenotion of
an inverse lie in between.

Numerous non-invertible schema mappings possess natural and use-
ful quasi-inverses. Indeed, let us revisit the preceding examples of
non-invertible schema mappings.

Projection: The schema mapping specified byP (x, y) → Q(x) has
a quasi-inverse specified byQ(x) → ∃yP (x, y). Intuitively, this
quasi-inverse describes the “best” you can do to recover ground
instances.

Union: The schema mapping specified by the dependenciesP (x) →
S(x) andQ(x) → S(x) has a quasi-inverse specified byS(x) →
P (x) ∨ Q(x). Quasi-inverses need not be unique up to logical
equivalence (the same holds true for inverses as well). Indeed,
the schema mapping specified byS(x) → P (x) is also a quasi-
inverse, as are the schema mapping specified byS(x) → Q(x)
and the schema mapping specified byS(x) → P (x) ∧Q(x).

Decomposition:The schema mapping specified by the dependency
P (x, y, z) → Q(x, y) ∧ R(y, z) has a quasi-inverse specified
by Q(x, y) ∧ R(y, z) → P (x, y, z). Another quasi-inverse of
this schema mapping is specified byQ(x, y) → ∃zP (x, y, z) and
R(y, z) → ∃xP (x, y, z).

Finally, if M = (S,T,Σ) is an invertible schema mapping and we
augmentS with a new relation symbolR, theneveryinverse ofM is
a quasi-inverse of the resulting non-invertible schema mappingM∗ =
(S ∪ {R},T,Σ). Moreover, if a schema mappingM′ = (T,S,Σ′)
is a quasi-inverse of a non-invertible schema mappingM, then the
schema mappingM′′ = (T,S ∪ {R},Σ′) is a quasi-inverse ofM∗.
Thus, unlike the notion of an inverse, the notion of a quasi-inverse is
robust when relation symbols are added to the source schema.
Technical Contributions Our results span three different directions:
an exact criterion for the existence of quasi-inverses, complete char-
acterizations of the languages needed to express quasi-inverses and
inverses, and results on the use of quasi-inverses in data exchange.
Existence of quasi-inversesFor schema mappings specified by source-
to-target tuple-generating dependencies (s-t tgds), we give a necessary

and sufficient combinatorial condition, called thesubset property, for
the existence of a quasi-inverse. We then apply this condition to obtain
both positive and negative results about the existence of quasi-inverses.
On the positive side, we use the subset property as a sufficient con-
dition for quasi-invertibility to show that every LAV (local-as-view)
schema mapping has a quasi-inverse; this result provides a unifying
explanation for the quasi-invertibility of the projection, union, and de-
composition schema mappings. On the negative side, we use the subset
property as a necessary condition for quasi-invertibilityto show that
there are simple schema mappings specified by full s-t tgds that have
no quasi-inverse; a fortiori, such schema mappings have no inverse.
The language of inverses and quasi-inversesWe investigate the langu-
age needed to express quasi-inverses of schema mappings specified by
s-t tgds, and we obtain a complete characterization. Specifically, we
show that if a schema mapping specified by a finite set of s-t tgds
is quasi-invertible, then it has a quasi-inverse specified by a finite
set of target-to-source disjunctive tgds with constants and inequali-
ties (in fact, inequalities among constants suffice). Moreover, we give
an exponential-time algorithm for constructing such a quasi-inverse.
The left-hand side of a target-to-source disjunctive tgd with constants
and inequalities is a conjunction of target atoms, formulasof the form
Constant(x) that evaluate to true only whenx is instantiated to a con-
stant (non-null) value, and inequalitiesxi 6= xj ; the right-hand side
is a disjunction of conjunctive queries over the source. We show that
our expressibility result is optimal by proving thatno proper fragment
of the language of disjunctive tgds with constants and inequalities suf-
fices to express quasi-inverses; that is, both constants andinequalities
in the left-hand side of dependencies are needed, as are bothdisjunc-
tions and existential quantifiers in the right-hand side of dependencies.
For schema mappings specified by a finite set of full s-t tgds, we show
that if such a schema mapping is quasi-invertible, then it has a quasi-
inverse specified by a finite set of target-to-source disjunctive tgds with
inequalities; in other words, the predicateConstantis not needed in
this case. We also show that every LAV schema mapping has a quasi-
inverse specified by a finite set of target-to-source tgds with inequali-
ties and constants; thus, in this case, there is no need for disjunctions
in the right-hand side of dependencies.

Concerning the language needed to express inverses of schema map-
pings specified by s-t tgds, the paper [3] focussed only on inverses
specified by target-to-source tgds, and left open the problem of charac-
terizing the language needed to express inverses of schema mappings.
Here, we settle this problem by showing that if a schema mapping
specified by a finite set of s-t tgds is invertible, then it has an inverse
specified by a finite set of target-to-source tgds with constants and in-
equalities. This turns out to be an optimal result as well.

Although we have completely characterized the language needed
to express quasi-inverses and inverses of schema mappings specified
by a finite set of s-t tgds, the complexity of deciding the existence a
quasi-inverse and of an inverse of such schema mappings remain open
problems. In fact, even the decidability of these problems is open.
Using quasi-inverses in data exchangeSince it is rare that a schema
mappingM has an inverse, we cannot hope to always obtain an ex-
act copy of the original ground instance from target instances. The
notion of a quasi-inverse is motivated from the idea that “similarity
up to the space of solutions” is often good enough for data-exchange
applications; this is why the definition of a quasi-inverse of a schema
mappingM relaxes exact equality between ground instances to∼M-
equivalence. We show that, even though it is not possible to recover
an exact copy of the original source instance, in many cases quasi-
inverses allow us to recover a source instance that has “equivalent”
properties from the data-exchange point of view.

More formally, assume thatM = (S,T,Σ) is a schema mapping
specified by a finite set of s-t tgds andM′ = (T,S,Σ′) is a quasi-

inverse ofM specified by a finite set of target-to-source disjunctive
tgds with constants and inequalities among constants. We show that
M′ is sound, which means thatM′ has the following property. Let
I be an arbitrary ground instance and letU be the result of chasing
I with Σ. Suppose we chaseU back from target to source with the
disjunctive dependencies inΣ′ to obtain a setV of source instances
and then we chase every member ofV with the dependencies inΣ to
obtain a setU ′ of target instances. ThenU ′ contains a target instance
U ′ that can be mapped homomorphically intoU ; thus, the target in-
stanceU ′ contains (up to a homomorphism) only facts ofU , although
not necessarily all of them. Furthermore, ifM′ is obtained by apply-
ing our algorithm for constructing a quasi-inverse ofM, thenM′ is
faithful, which means that the setU ′ contains a target instanceU ′ that
is homomorphically equivalent toU . In other words, there is a source
instanceV in V whose chase withΣ is homomorphically equivalent to
U . This instanceV is thus “data-exchange equivalent” to the original
source instanceI .

2. PRELIMINARIES
A schemaR is a finite sequence(R1, . . . , Rk) of relation symbols,

each of a fixed arity. AninstanceI overR is a sequence(RI1, . . . , R
I
k),

where eachRIi is a finite relation of the same arity asRi. We shall
often useRi to denote both the relation symbol and the relationRIi
that interprets it. Anatom overR is a formulaP (v1, . . . , vm), where
P is a relation symbol inR andv1, . . . , vm are variables.

In what follows, we assume thatS is a fixedsourceschema andT is
a fixedtargetschema. We also assume that we have a fixed infinite set
Const of constants and an infinite setVar of nulls that is disjoint from
Const. For source instances, our main focus is on instances with indi-
vidual values fromConst only; we call such source instancesground
instances. In contrast, target instances typically have individual values
from Const ∪ Var. Intuitively, this models the situation in which we
perform data exchange fromS to T: the individual values of source
instances are known, while incomplete information in the specification
of data exchange may give rise to null values in the target instances.
Dependencies, schema mappings, and data exchange notions Re-
call that a schema mapping is a tripleM = (S,T,Σ) consisting of a
source schemaS, a target schemaT, and a setΣ of database depen-
dencies that specify the relationship between the source schema and
the target schema. We say thatM is specified byΣ.

We review several notions from [4] that will be needed in thispaper.
Let M = (S,T,Σ) be a schema mapping. IfI a is ground instance,
then asolution forI underM is a target instanceJ such that(I, J) |=
Σ. The set of all solutions forI underM is denoted bySol(M, I).

LetJ , J ′ be two target instances. A functionh from Const∪Var to
Const∪Var is ahomomorphismfrom J to J ′ if for everyc in Const,
we have thath(c) = c, and for every relation symbolR in T and every
tuple (a1, . . . , an) ∈ RJ , we have that(h(a1), . . . , h(an)) ∈ RJ

′

.
The instancesJ andJ ′ are said to behomomorphically equivalentif
there are homomorphisms fromJ to J ′ and fromJ ′ to J .

Given a schema mappingM = (S,T,Σ) and a ground instanceI ,
auniversal solutionfor I underM is a solutionJ for I underM such
that for every solutionJ ′ for I underM, there is a homomorphism
h : J → J ′. Intuitively, universal solutions are the “most general”
solutions among the space of all solutions forI .

A source-to-target tuple-generating dependency, in short, ans-t tgd,
is a first-order formula of the form∀x(ϕ(x) → ∃yψ(x,y)), where
ϕ(x) is a conjunction of atoms overS, ψ(x,y) is a conjunction of
atoms overT, and every variable inx occurs in an atom inϕ(x).

If M = (S,T,Σ) is a schema mapping specified by a finite set
Σ of s-t tgds, thenchasingI with Σ produces a target instanceU
such thatU is a universal solution forI underM. We shall often
write thatU = chaseΣ(I) and say thatU is the result of the chase.

(In general, there may be several such instancesU but they are all
homomorphically equivalent.)

Our goal in this paper is to investigate inverses and quasi-inverses of
schema mappingsM = (S,T,Σ), whereΣ is a finite set of s-t tgds.
In particular, we will identify the languages needed for expressing such
inverses and quasi-inverses, and will show that these languages must
be richer than the language of target-to-source tgds. The following
definition introduces the richer classes of dependencies needed.

DEFINITION 2.1. Let Constant be a relation symbol that is differ-
ent from all relation symbols inS andT.

1. Adisjunctive tgd with constants and inequalities fromT to S is a
first-order formula of the form

∀x(ϕ(x) →
n_
i=1

∃yiψi(x,yi)),

where:

• the formulaϕ(x) is a conjunction of
(1) atoms overT, such that every variable inx occurs in one
of them;
(2) formulas of the form Constant(x), wherex is a variable
in x;
(3) inequalitiesx 6= x′, wherex andx′ are variables inx.

• Each formulaψi(x,yi) is a conjunction of atoms overS.

Naturally, a formula Constant(x) evaluates to true if and only ifx
is interpreted by a value inConst.

2. Adisjunctive tgd with constants and inequalities among constants
is a disjunctive tgd with inequalities and constants where the for-
mulas Constant(x) and Constant(x′) occur as conjuncts ofϕ(x)
whenever the inequalityx 6= x′ is a conjunct ofϕ(x).

Clearly, disjunctive tgds with constants and inequalitiesextend the lan-
guage of tgds with three features: (1) formulas of the formConstant(x)
in the left-hand side; (2) inequalities in the left-hand side; and (3) dis-
junctions in the right-hand side. If the right-hand side consists of a sin-
gle disjunct, then we talk abouttgds with constants and inequalities.
The concepts ofdisjunctive tgds with inequalities, tgds with inequal-
ities, and other such special cases of Definition 2.1 are defined in an
analogous way. For example,

P (x, y, z) ∧ Constant(x) ∧ x 6= y → ∃wQ(x,w) ∨Q(x, y)

is a disjunctive tgd with constants and inequalities,

P (x, y, z) ∧ x 6= y → ∃wQ(x,w) ∨Q(x, y)

is a disjunctive tgd with inequalities, and

P (x, y, z) ∧ x 6= y → Q(x, y)

is a tgd with inequalities. Note that, for convenience, we have dropped
the universal quantifiers in the front.
Composing and inverting schema mappings Next, we recall the con-
cept of thecompositionof two schema mappings, introduced in [5, 9],
and the concept of aninverseof a schema mapping, introduced in [3].

Let M12 = (S1,S2,Σ12) andM23 = (S2,S3,Σ23) be schema
mappings. ThecompositionM12◦M23 is a schema mapping(S1, S3,
Σ13) such that for everyS1-instanceI and everyS3-instanceK, we
have that(I,K) |= Σ13 if and only if there is anS2-instanceJ such
that(I, J) |= Σ12 and(J,K) |= Σ23. When the schemas involved are
understood from the context, we will often writeΣ12 ◦ Σ23 to denote
the compositionM12 ◦M23.

Let Ŝ be a replica of the source schemaS, that is, for every relation
symbolR of S, the schemâS contains a relation symbol̂R that is not
in S and has the same arity asR. Clearly, every source instanceI has
a replica instancêI over Ŝ.

• If M∗ = (S, Ŝ,Σ∗) is a schema mapping, we writeInst(M∗) for
the set of all pairs(I1, I2) such thatI1 is a groundS-instance,I2
is a ground̂S-instance, and(I1, I2) |= Σ∗.

• The identity schema mappingis, by definition, the schema map-
ping Id = (S, Ŝ,ΣId), whereΣId consists of the dependencies
R(x) → R̂(x) asR ranges over the relation symbols inS. Thus,
Inst(Id) consists of all pairs(I1, I2) of a groundS-instanceI1
and a ground̂S-instanceI2 such thatÎ1 ⊆ I2.

• Let M = (S,T,Σ) be a schema mapping. We say that a schema
mappingM′ = (T, Ŝ,Σ′) is an inverseof M if Inst(Id) =
Inst(M◦M′). This means that, for every pair(I1, I2) of a ground
S-instanceI1 and a ground̂S-instanceI2, we have that̂I1 ⊆ I2 if
and only if there is a target instanceJ such that(I1, J) |= Σ and
(J, I2) |= Σ′.

From now on and for notational simplicity, we will writeS to also
denote its replicâS; it will be clear from the context if we refer toS or
to its replica. Moreover, we will use the same symbol to denote both a
groundS-instanceI and its replicâS-instanceÎ .

3. A UNIFYING FRAMEWORK
In this section, we develop a unifying framework for definingand

studying a spectrum of notions that relax the notion of an inverse of a
schema mapping in a principled manner. The key idea is not to differ-
entiate between ground instances that areequivalentfor data-exchange
purposes.

DEFINITION 3.1. LetM = (S,T,Σ) be a schema mapping and
let I , I ′ be two ground instances.

We writeI ∼M I ′ to denote thatSol(M, I) = Sol(M, I ′). When
M is understood from the context, we may write∼ in place of∼M.

Clearly, ∼M is an equivalence relation on ground instances. We
will use this equivalence relation to define relaxations of the notion of
an inverse. Before doing so, we introduce an auxiliary concept.

DEFINITION 3.2. Let∼1 and∼2 be two equivalence relations on
ground instances, and letD be a binary relation between ground in-
stances. We set

D[∼1,∼2] = {(I1, I2) : ∃I ′1I
′
2((I1 ∼1 I

′
1) ∧

(I ′1, I
′
2) ∈ D ∧ (I2 ∼2 I

′
2))}.

It is easy to see thatD[∼1,∼2] =∼1 ◦ D ◦ ∼2, where◦ denotes the
composition of two binary relations.

In what follows, we will use the notation∼(1,2) to denote theprod-
uct equivalence relation of two equivalence relations∼1 and∼2. This
means that(I1, I2) ∼(1,2) (I ′1, I

′
2) if and only if I1 ∼1 I

′
1 andI2 ∼2

I ′2. Thus, we have that

D[∼1,∼2] = {(I1, I2) : ∃I ′1I
′
2((I1, I2) ∼(1,2) (I ′1, I

′
2) ∧

(I ′1, I
′
2) ∈ D)}.

We are now ready to give the crucial definition of aninverse with
respect to two equivalence relations, which generalizes the concept of
an inverse in [3].

DEFINITION 3.3. Assume thatM = (S,T,Σ) is a schema map-
ping and∼1, ∼2 are two equivalence relations on ground instances
such that∼1⊆∼M and∼2⊆∼M. We say that schema mappingM′ =
(T,S,Σ′) is a (∼1,∼2)-inverseof M if

Inst(Id)[∼1,∼2] = Inst(M◦M′)[∼1,∼2].

This means that, for every pair(I1, I2) of ground instances, the fol-
lowing statements are equivalent:

1. There are ground instancesI ′1 and I ′2 such that(I1, I2) ∼(1,2)

(I ′1, I
′
2) andI ′1 ⊆ I ′2.

2. There are ground instancesI ′′1 andI ′′2 and a target instanceJ such
that (I1, I2) ∼(1,2) (I ′′1 , I

′′
2), (I ′′1 , J) |= Σ, and(J, I ′′2) |= Σ′.

As an immediate consequence of the definitions, we have thatM′

is an inverse ofM if and only ifM′ is an(=,=)-inverse ofΣ. Thus,
informally, a(∼1,∼2)-inverse ofM is an inverse ofM modulo the
equivalence relations∼1, ∼2.

Next, we introduce a combinatorial property that will be used to
characterize the existence of(∼1,∼2)-inverses.

DEFINITION 3.4. LetM = (S,T,Σ) be a schema mapping. We
say thatM has the(∼1,∼2)-subset propertyif for every pair(I1, I2)
of ground instances such thatSol(M, I2) ⊆ Sol(M, I1), there is a
pair (I ′1, I

′
2) of ground instances such that(I1, I2) ∼(1,2) (I ′1, I

′
2) and

I ′1 ⊆ I ′2.

Before stating any technical results, let us give some insight to the
(∼1,∼2)-subset property. It is easy to see that ifΣ is a set of s-t
tgds andI1 ⊆ I2, thenSol(M, I2) ⊆ Sol(M, I1). Note also that
the(=,=)-subset property asserts that ifSol(M, I2) ⊆ Sol(M, I1),
thenI1 ⊆ I2; hence, it is the converse of the preceding fact. Thus, the
(∼1,∼2)-subset property can be construed as a weak converse of the
fact that ifI1 ⊆ I2, thenSol(M, I2) ⊆ Sol(M, I1); informally, it is
a converse modulo the equivalence relations∼1 and∼2.

Our first theorem asserts that the(∼1,∼2)-subset property is a nec-
essary and sufficient condition for the existence of a(∼1,∼2)-inverse
of a schema mappingM = (S,T,Σ) in whichΣ is a set of s-t tgds.

THEOREM 3.5. Assume thatM = (S,T,Σ) is a schema mapping
in whichΣ is a finite set of s-t tgds and let∼1, ∼2 be two equivalence
relations on ground instances such that∼1⊆∼M and∼2⊆∼M. Then
the following are equivalent:

1. M has a(∼1,∼2)-inverse.

2. M has the(∼1,∼2)-subset property.

PROOF. (Sketch)Assume thatM′ = (T,S,Σ′) is a (∼1,∼2)-
inverse ofΣ. Let (I1, I2) be a pair of ground instances such that
Sol(M, I2) ⊆ Sol(M, I1). Since(I2, I2) ∈ Inst(Id), it follows that
(I2, I2) ∈ Inst(M◦M′)[∼1,∼2]. Therefore, there is a pair(I3, I4)
of ground instances and a target instanceJ such that(I2, I2) ∼(1,2)

(I3, I4), and such that(I3, J) |= Σ and(J, I4) |= Σ′. SinceI2 ∼1 I3
and∼1⊆∼M, we obtain thatI2 ∼M I3. Hence, since(I3, J) |= Σ,
it follows that(I2, J) |= Σ. SinceSol(Σ, I2) ⊆ Sol(Σ, I1), we have
that(I1, J) |= Σ. Consequently,(I1, I4) ∈ Inst(M◦M′), which im-
plies that(I1, I4) ∈ Inst(Id)[∼1,∼2]. In turn, this implies that there
is a pair(I ′1, I

′
4) of ground instances such that(I1, I4) ∼(1,2) (I ′1, I

′
4)

andI ′1 ⊆ I ′4. SinceI2 ∼2 I4 andI4 ∼2 I
′
4, we have thatI2 ∼2 I

′
4.

Therefore,(I1, I2) ∼(1,2) (I ′1, I
′
4) whereI ′1 ⊆ I ′4. This establishes

the implication(1) =⇒ (2).
For the implication(2) =⇒ (1), assume thatM has the(∼1,∼2)-

subset property. Put

D = {(J, I) : J is universal forI underM}.

Let M′ = (T,S,Σ′) be the schema mapping such that(J, I) ∈ D

if and only if (J, I) |= Σ′. It can be shown thatM′ is a (∼1,∼2)-
inverse ofΣ; details appear in the full paper.

Theorem 3.5 yields the following necessary and sufficient condition
for the existence of an inverse.

COROLLARY 3.6. Assume thatM = (S,T,Σ) is a schema map-
ping whereΣ is a finite set of s-t tgds. Then the following statements
are equivalent:

1. M has an inverse.

2. M has the(=,=)-subset property, that is to say, ifI1 andI2 are
two ground instances such thatSol(M, I2) ⊆ Sol(M, I1), then
I1 ⊆ I2.

As mentioned in the Introduction, theunique-solutions propertywas
identified in [3] as a necessary condition for a schema mapping M to
have an inverse. By definition, this property says that ifI1 andI2 are
ground instances such thatI1 6= I2, then we have thatSol(M, I1) 6=
Sol(M, I2). Clearly, the(=,=)-subset property implies the unique-
solutions property. Indeed, ifSol(M, I1) = Sol(M, I2), then by ap-
plying the (=,=)-subset property twice, we have thatI1 ⊆ I2 and
I2 ⊆ I1, and soI1 = I2. In the full paper we show that there is a
schema mappingM that is specified by a finite set of s-t tgds and has
the unique-solutions property, but does not have the(=,=)-property.
Hence, the unique-solutions property is not a sufficient condition for
the existence of an inverse.

By varying the equivalence relations∼1 and∼2, we can obtain a
variety of (∼1,∼2)-inverses. The next proposition provides a basic
tool for comparing them.

PROPOSITION 3.7. LetM be a schema mapping and let∼1, ∼2,
∼3, ∼4 be four equivalence relations on ground instances such that
∼1⊆∼3⊆∼M and∼2⊆∼4⊆∼M. Every(∼1,∼2)-inverse ofM is
also a(∼3,∼4)-inverse ofM.

Proposition 3.7 implies that the spectrum of(∼1,∼2)-inverses has
both “strongest” and “weakest” elements. Indeed, whenM′ is an(=
,=)-inverse ofM (i.e.,M′ is an inverse ofM), then for every two
equivalence relations∼1 and∼2 contained in∼M, we have thatM′ is
a(∼1,∼2)-inverse ofM. At the other end of the spectrum, ifM′ is a
(∼1,∼2)-inverse ofM, thenM′ is also a(∼M,∼M)-inverse ofM.
In what follows, we will focus on(=,=)-inverses (i.e., on inverses)
and on(∼M,∼M)-inverses, which we will refer to from now on as
quasi-inverses.

DEFINITION 3.8. LetM = (S,T,Σ) be a schema mapping. We
say that a schema mappingM′ = (T,S,Σ′) is aquasi-inverseof M
if M′ is a (∼M,∼M)-inverse ofM, that is,

Inst(Id)[∼M,∼M] = Inst(M◦M′)[∼M,∼M].

We say thatM is quasi-invertibleif it has a quasi-inverse, andinvert-
ible if it has an inverse.

PROPOSITION 3.9. Every quasi-inverse of an invertible schema map-
pingM is an inverse ofM.

This proposition holds because ifM is invertible, then the unique-
solutions property implies that the equivalence relation∼M coincides
with the equality relation= on ground instances. Thus, for invertible
schema mappings, there is no distinction between inverses and quasi-
inverses. In contrast, there are schema mappings that are not invertible,
but have natural quasi-inverses. As a matter of fact, the three examples
of schema mappings given in the Introduction (Projection, Union, and
Decomposition) have this property. We revisit one of them.

EXAMPLE 3.10. LetM be theDecompositionschema mapping
specified by the tgd

P (x, y, z) → Q(x, y) ∧R(y, z).

First,M does not have an inverse, since it does not have the unique-
solutions property. For example, ifI1 and I2 are source instances,
whereP I1 has exactly the tuples{(0, 0, 0), (0, 0, 1), (1, 0, 0)}, and
P I2 has these tuples along with(1, 0, 1), thenI1 andI2 have exactly
the same solutions. We claim, however, thatM has the(∼M,∼M)-
subset property. To see this, letI1 and I2 be two ground instances
such thatSol(M, I2) ⊆ Sol(M, I1). Let J be the solution forI2
obtained by takingQJ = π12(P

I2) andRJ = π23(P
I2). Since

Sol(M, I2) ⊆ Sol(M, I1), we have thatJ is also inSol(M, I1),
so π12(P

I1) ⊆ π12(P
I2) and π23(P

I1) ⊆ π23(P
I2). Let I ′2 =

I1 ∪ I2. From the two inclusions we have just established, it follows

thatI ′2 ∼M I2; moreover, we have thatI1 ⊆ I ′2. This shows thatM
has the(∼M,∼M)-subset property (actually, this shows thatM has
the stronger(=,∼M)-subset property).

Theorem 3.5 implies thatM has a quasi-inverse. As a matter of fact,
one can show directly that the schema mappingM′ = (T,S,Σ′) with
Σ′ consisting of the tgd

Q(x, y) ∧R(y, z) → P (x, y, z)

is a quasi-inverse ofM. One can also show directly that another quasi-
inverse ofM is the schema mappingM′′ = (T,S,Σ′′), whereΣ′′

consists of the tgds

Q(x, y) → ∃zP (x, y, z)

R(y, z) → ∃xP (x, y, z).

This also shows that the notion of a quasi-inverse of a schemamapping
need not be unique up to logical equivalence. The same holds true for
the notion of an inverse [3].

The Projection, Union, andDecompositionschema mappings are
LAV (local-as-view)schema mappings, that is, the left-hand side of
each dependency is a single atom. The next result shows thatevery
LAV schema mapping has a quasi-inverse. The proof generalizes the
argument in Example 3.10.

PROPOSITION 3.11. If M = (S,T,Σ) is a LAV schema mapping,
thenM has the(∼M,∼M)-subset property. Consequently, every LAV
schema mapping has a quasi-inverse.

PROOF. (Hint) Assume thatI1 and I2 are two ground instances
such thatSol(M, I2) ⊆ Sol(M, I1). Let J1 be a universal solution
for I1, and letJ2 be a universal solution forI2. Let I ′2 = I1 ∪ I2.
Clearly,I1 ⊆ I ′2. In the full paper, we show thatI2 ∼M I ′2, which
implies thatM has the(∼M,∼M)-subset property (and in fact the
stronger(=,∼M)-subset property).

Our next result asserts that, in contrast to LAV schema mappings,
there are schema mappings specified byfull s-t tgds that have no quasi-
inverses. Recall that an s-t tgd isfull if its right-hand side has no
existential quantifiers; this means that it is of the form∀x(ϕ(x) →
ψ(x)), whereϕ(x) is a conjunction of source atoms andψ(x) is a
conjunction of target atoms.

PROPOSITION 3.12. There is a schema mappingM that is speci-
fied by a single full s-t tgd and has no quasi-inverse.

PROOF. (Hint) LetM be the schema mapping specified by the fol-
lowing full s-t tgd:

E(x, z) ∧E(z, y) → F (x, y) ∧M(z).

It can be shown thatM does not have the(∼M,∼M)-subset property,
which, by Theorem 3.5, implies thatM has no quasi-inverse. The
details can be found in the full paper.

Note that the(∼M,∼M)-subset property is used “positively” in the
proof of Proposition 3.11 and “negatively” in the proof of Proposition
3.12. More precisely, the(∼M,∼M)-subset property is used as a
sufficient condition for the existence of quasi-inverses inProposition
3.11 and as a necessary condition in Proposition 3.12.

4. THE LANGUAGE OF QUASI-INVERSES
One of our main results is the following theorem, characterizing the

language for quasi-inverses of schema mappings specified bytgds.

THEOREM 4.1. LetM be a schema mapping specified by a finite
set of s-t tgds. IfM has a quasi-inverse then the following hold.

1. M has a quasi-inverseM′ specified by a finite set of disjunctive
tgds with constants and inequalities.

2. There is an exponential-time algorithm for producingM′.

3. Statement (1) is not necessarily true if we disallow either constants
or inequalities in the left-hand side, or disallow disjunctions or
existential quantifiers in the right-hand side.

In fact, the quasi-inverseM′ that the algorithm produces has inequal-
ities only among constants.

We illustrate the intuition behind the construction ofM′, with two
examples. We begin with the union example, whereΣ consists of the
s-t tgdsP (x) → S(x) andQ(x) → S(x). There are two possible
“generators” ofS(x), namelyP (x) andQ(x). These possibilities are
reflected by the disjunctive tgdS(x) → P (x) ∨ Q(x) (we shall put
a variation of this disjunctive tgd intoΣ′). As another example, letΣ
consist of the s-t tgdsS(x, y) → P (x, y) andT (x, y) → P (x, x).
There is only one possible generator ofP (x, y) if x andy are differ-
ent, namelyS(x, y), and this is reflected by the tgd with inequalities
P (x, y)∧(x 6= y) → S(x, y). However, there are two possible gener-
ators ofP (x, x), namelyS(x, x) andT (x, y), and this is reflected by
the disjunctive tgdP (x, x) → S(x, x)∨∃yT (x,y). The algorithm for
producing quasi-inverses systematically considers all such generators.

We now discuss the machinery behind the algorithm to produceM′,
including a formal definition of “generator”. Ifα is a conjunction of
atoms (or an instantiation of atoms), defineIα to be an instance whose
facts are the conjuncts ofα. Note thatIα may not be an instance in
the usual sense, because the active domain may include variables, in
addition to constants or nulls. Thus,Iα is a type of canonical instance.
Let x be a vector of distinct variables. Acomplete descriptionδ(x) is
a conjunction of equalitiesxi = xj and inequalitiesxk 6= xℓ among
the variables inx in a consistent manner, that completely describes
which variables are equal and which are unequal.

Let Σ be a finite set of s-t tgds. We now define a setΣ∗ that in-
cludesΣ and that is logically equivalent toΣ. For each memberσ
of Σ, and for each complete descriptionδ of the variables that each
appear in both the left-hand side and the right-hand side ofσ, se-
lect a unique representative of each equivalence class determined by
δ, and letf(σ, δ) be obtained fromσ by replacing every variable in
σ by the representative of its equivalence class. LetΣ∗ consist of
Σ and all such formulasf(σ, δ) (for all choices ofσ in Σ and all
complete descriptionsδ of the variables that each appear in both the
left-hand side and the right-hand side ofσ). For example, ifσ is
R(x1, x2, x3, x4) → ∃y(Q(x1, y) ∧ S(y, x2, x3)), and ifδ is (x1 =
x3) ∧ (x1 6= x2) ∧ (x2 6= x3), then{x1, x3} forms one equiva-
lence class and{x2} is the other equivalence class, andf(σ, δ) is
R(x1, x2, x1, x4) → ∃y(Q(x1, y) ∧ S(y, x2, x1)).

DEFINITION 4.2. Letβ(x, z) be a conjunction of source atoms,
and letψT(x,y) be a conjunction of target atoms, where the mem-
bers ofx,y, z are all distinct, and the members ofx are exactly the
variables that appear in bothβ(x, z) andψT(x,y). Let Σ be a fi-
nite set of s-t tgds. We say thatβ(x, z) is agenerator of∃yψT(x,y)
(with respect toΣ) if the s-t tgdβ(x, z) → ∃yψT(x,y) is a logical
consequence ofΣ.

WhenΣ is understood, we shall often drop the words “with respect
to Σ”. It follows easily from the standard theory of the chase that
β(x, z) is a generator of∃yψT(x,y) with respect toΣ if and only if
the chase ofIβ(x,z) with Σ gives at leastIψT(x,y′) for a substitution
where somey′ substitutes fory.

DEFINITION 4.3. The source formulaβ(x, z) is aminimal gener-
ator of∃yψT(x,y) if β(x, z) is a generator of∃yψT(x,y) and there
is noβ′(x,z) that is a conjunction of a strict subset of the conjuncts
of β(x, z) such thatβ′(x,z) is a generator of∃yψT(x,y).

We shall make use of the following simple lemma.

LEMMA 4.4. Let Σ be a finite set of s-t tgds, each with at most
s1 conjuncts in its left-hand side. LetψT(x,y) be a conjunction of
s2 target atoms. Then every minimal generator of∃yψT(x,y) with
respect toΣ has at mosts1s2 conjuncts.

From Lemma 4.4, we see that there is a simple exhaustive-search
algorithm for finding minimal generators:

Algorithm MinGen(M,∃yψT(x,y))

Input: A schema mappingM = (S,T,Σ), whereΣ is a finite set of
s-t tgds, and a formula∃yψT(x,y), whereψT(x,y) is a conjunction
of target atoms, and where the variables inx,y are all distinct, and all
appear inψT(x,y).
Output: A finite set of the minimal generators of∃yψT(x,y) with
respect toΣ.

1. (Initialization.)
Initialize the setG of minimal generators of∃yψT(x,y) to the
empty set.

2. (Exhaustive search.)
Let s1 and s2 be as in Lemma 4.4. Systematically check every
conjunctionβ(x, z) (up to renaming of variables inz) of at most
s1s2 atoms where the variables inz are distinct and distinct from
members ofx,y, to see if the chase ofIβ(x,z) with Σ gives at least
IψT(x,y′) for a substitution where somey′ substitutes fory. If so,
addβ(x,z) toG.

3. (Minimize.)
For each memberβ(x, z) of G, check to see if there is some
other β′(x,z′) in G whose conjuncts are a subset of the con-
juncts ofβ(x, z) (up to renaming of variables inz, z′). If so, re-
moveβ(x, z) fromG. Continue the process until there is no more
change inG.
Return G.

The next algorithm produces a finite set of disjunctive tgds with
constants and inequalities that defines a quasi-inverse if one exists.

Algorithm QuasiInverse(M)
Input: A schema mappingM = (S,T,Σ), whereΣ is a finite set of
s-t tgds.
Output: A schema mappingM′ = (T,S,Σ′), whereΣ′ is a finite
set of disjunctive tgds with constants and inequalities, that is a quasi-
inverse ofM if M has a quasi-inverse.

1. (CreateΣ∗.)
CreateΣ∗ from Σ as defined earlier.

2. (Create the formulasσ′.)
For each memberσ of Σ∗, createσ′ as follows. Assume that
σ is is φS(x,u) → ∃yψT(x,y), where the variables inx are
distinct, and consist exactly of the variables that appear in both
φS(x,u) andψT(x,y). The left-hand side ofσ′ is the conjunc-
tion ofψT(x,y), along with each of the formulasConstant(x) for
membersx of x, along with the formulasxi 6= xj for each pair
xi, xj of distinct variables inx. For each formulaβ(x, z) in the
output of MinGen(M, ∃yψT(x,y)), let ∃zβ(x, z) be a disjunct
in the right-hand side ofσ′.

3. (ConstructΣ′.)
Let Σ′ consist of each of these formulasσ′.
Return M′ = (T,S,Σ′).

We prove in the full paper that this algorithm defines a quasi-inverse
of M if one exists. Note that the disjunction in the right-hand side that
is created in Step (2) of the algorithm is nonempty, sinceφS(x,u), the
left-hand side ofσ, is a generator of∃yψT(x,y), and so some subset
of the conjunctions ofφS(x,u) forms a minimal generator.

EXAMPLE 4.5. LetΣ consist of the tgds:

P (x1, x2, x3) → ∃y(S(x1, x2, y) ∧Q(y, y))

U(x1) → ∃y(S(x1, x1, y) ∧Q(y, y) ∧Q(x1, y))

T (x3, x4) → S(x4, x4, x3)

R(x1, x2, x4) → Q(x1, x2).

Let σ1 be the first tgd inΣ. Letσ2 be

P (x1, x1, x3) → ∃y(S(x1, x1, y) ∧Q(y, y)),

the result of replacing each occurrence ofx2 in σ1 by x1. Thenσ1 and
σ2 are both inΣ∗. To show Step (2) of the algorithm QuasiInverse, in
this example we shall produceσ′

1 from σ1, and we shall produceσ′
2

from σ2. Thus, the algorithm putsσ′
1 andσ′

2 into Σ′.
The only generator of∃y(S(x1, x2, y) ∧ Q(y, y)), the right-hand

side ofσ1, isP (x1, x2, x3), soσ′
1 is

S(x1, x2, y) ∧Q(y, y) ∧ Constant(x1) ∧ Constant(x2)

∧(x1 6= x2) → ∃x3P (x1, x2, x3)

There are four minimal generators of∃y(S(x1, x1, y)∧Q(y, y)), the
right-hand side ofσ2. The first isP (x1, x1, x3), the left-hand side of
σ2. The second isU(x1), since its chase yieldsS(x1, x1, y),Q(y, y),
Q(x1, y), which includes the conjuncts in the right-hand side ofσ2.
The third isT (x1, x1) ∧ R(x1, x1, x4), since chasing the two facts
in this conjunct yieldsS(x1, x1, x1), Q(x1, x1), where the role ofy
in the right-hand side ofσ2 is played by the variablex1. The fourth
is T (x3, x1) ∧ R(x3, x3, x4), since the chase of the two facts in this
conjunct yieldsS(x1, x1, x3), Q(x3, x3), where the role ofy in the
right-hand side ofσ2 is played by the variablex3. Thenσ′

2 is:

S(x1, x1, y) ∧Q(y, y) ∧ Constant(x1) → ∃x3P (x1, x1, x3)

∨ U(x1)

∨ ∃x4(T (x1, x1) ∧R(x1, x1, x4))

∨ ∃x3∃x4(T (x3, x1) ∧R(x3, x3, x4))

Note that the fourth disjunct is implied by the third disjunct (by letting
the role ofx3 be played byx1). So the third disjunct could be removed,
since we need only keep the more general disjunct.

The next theorem asserts that the language of quasi-inverses is slightly
simplified in the case of full s-t tgds.

THEOREM 4.6. LetM be a schema mapping specified by a finite
set of full s-t tgds. IfM has a quasi-inverse, thenM has a quasi-
inverse specified by a finite set of disjunctive tgds with inequalities.
Thus, constants are not needed.

Proposition 3.11 tells us that every LAV schema mapping has a
quasi-inverse. The next theorem asserts that disjunctionsare not needed
in the language of quasi-inverses of LAV schema mappings.

THEOREM 4.7. Every LAV schema mapping has a quasi-inverse
specified by a finite set of tgds with constants and inequalities. Thus,
disjunctions are not needed.

4.1 Necessity of the Language
In this section, we exhibit the schema mappings used to provePart

(3) of Theorem 4.1, which says that constants, inequalities, disjunc-
tions, and existential quantifiers are needed in general to express a
quasi-inverse. We shall take advantage of Proposition 3.9 to turn re-
sults about inverses into results about quasi-inverses. Weshall also
show the optimality of Theorems 4.6 and 4.7.

THEOREM 4.8. (Necessity of constants.) There is a LAV schema
mapping that has an inverse, but no inverse specified by a set of dis-
junctive tgds with inequalities.

PROOF. (Hint) Let S consist of a binary relation symbolP , and
let T consist of a binary relation symbolQ. Let Σ consist of the tgd
P (x, y) → ∃z(Q(x, z) ∧ Q(z, y)). Let M = (S,T,Σ). Let Σ′

consist of the following tgd with constants:

Q(x, z) ∧Q(z, y) ∧ Constant(x) ∧ Constant(y) → P (x, y).

Let M′ = (T,S, Σ′). It is shown in the full paper thatM′ is an
inverse ofM, butM has no inverse specified by a set of disjunctive
tgds with inequalities (but no constants).

THEOREM 4.9. (Necessity of inequalities.) There is a LAV schema
mapping specified by full s-t tgds that has an inverse, but no inverse
specified by a set of disjunctive tgds with constants.

PROOF. (Hint) Let S consist of the binary relation symbolP and
the unary relation symbolT . LetT consist of the binary relation sym-
bol P ′ and the unary relation symbolsQ andT ′. Let Σ consist of
the tgdsP (x, y) → P ′(x, y), P (x, x) → Q(x). T (x) → T ′(x),
T (x) → P ′(x, x). LetM = (S,T,Σ). It is shown in the full paper
thatM has an inverse, but no inverse specified by a set of disjunctive
tgds with constants.

THEOREM 4.10. (Necessity of disjunctions.) There is a schema
mapping specified by a finite set of full s-t tgds that has a quasi-inverse,
but has no quasi-inverse specified by a set of tgds with constants and
inequalities.

PROOF. (Hint) Let S consist of four unary relation symbolsP1,
P2, P3, P4. and letT consist of six unary relation symbolsS1, S2,
R13, R14, R23, R24. Let Σ consist of the tgdsP1(x) → S1(x),
P2(x) → S1(x), P3(x) → S2(x), P4(x) → S2(x), along with the
four tgdsPi(x) ∧ Pj(x) → Rij(x), for i ∈ {1, 2} andj ∈ {3, 4}.
Let M = (S,T,Σ). It is shown in the full paper thatM has a quasi-
inverse, but no quasi-inverse specified by a set of tgds with constants
and inequalities.

THEOREM 4.11. (Necessity of existential quantifiers.) There is a
LAV schema mapping specified by full s-t tgds that has a quasi-inverse,
but no quasi-inverse specified by a set of full disjunctive tgds with con-
stants and inequalities.

PROOF. (Hint) Let S consist of a single binary relation symbolP ,
and letT consist of two unary relation symbolsR andS. Let M =
(S,T,Σ) whereΣ consists of the tgdsP (x, y) → R(x), P (x, x) →
S(x). SinceM is a LAV mapping, it has a quasi-inverse by Propo-
sition 3.11. It is shown in the full paper thatM has no quasi-inverse
that is specified by a set of full disjunctive tgds with constants and
inequalities.

Part (3) of Theorem 4.1 follows from Theorems 4.8, 4.9, 4.10,and
4.11, along with Proposition 3.9. Note that Theorems 4.9, 4.10, and
4.11 (along with Proposition 3.9) tell us that the result of Theorem 4.6
is optimal, in that inequalities, disjunctions, and existential quantifiers
are needed in general to specify a quasi-inverse of a schema mapping
specified by a finite set of full s-t tgds. Similarly, Theorems4.8, 4.9,
and 4.11 (along with Proposition 3.9) tell us that the resultof Theo-
rem 4.7 is optimal, in that constants, inequalities, and existential quan-
tifiers are needed in general to specify a quasi-inverse of a LAV schema
mapping.

5. THE LANGUAGE OF INVERSES
The focus in [3] is on inverses that are specified by a finite setof

tgds. For example, given a schema mappingM specified by a finite set
of s-t tgds, [3] gives an algorithm for constructing a schemamapping
specified by finite set of tgds that is an inverse ofM if and only if there

is an inverse ofM that is specified by a finite set of tgds. If there is an
inverseM′ but there is no inverse specified by a finite set of tgds, then
the algorithm in [3] will not findM′. The “language of inverses” is
left as an open problem in [3]. This is the question as to what language
is needed to specify the inverse ofM, whenM is specified by a finite
set of s-t tgds. The next theorem resolves this open problem.

THEOREM 5.1. LetM be a schema mapping specified by a finite
set of s-t tgds. IfM has an inverse then the following hold.

1. M has an inverseM′ specified by a finite set of full tgds with
constants and inequalities.

2. There is an exponential-time algorithm for producingM′.

3. Statement (1) is not necessarily true if we disallow either constants
or inequalities in the left-hand side, even if we allow existential
quantifiers in the right-hand side (and so allow non-full dependen-
cies to specifyM′).

In fact, the inverseM′ that the algorithm produces has inequalities
only among constants.

Part (3) of Theorem 5.1 follows from Theorems 4.8 and 4.9. When
M is a schema mapping specified by a finite set offull s-t tgds, we
show in the full paper that constants are no longer needed, although
Theorem 4.9 tells us that inequalities are still needed.

We now discuss the machinery used to prove Theorem 5.1.
DEFINITION 5.2. A schema mappingM = (S,T,Σ), whereΣ

is a finite set of s-t tgds, satisfies theconstant-propagation propertyif
for every ground instanceI , every member of the active domain ofI
is in the active domain ofchaseΣ(I).

It is straightforward to see thatM satisfies the constant-propagation
property precisely if, for each relation symbolR in S, the chase of
R(x1, . . . , xm) with Σ includes each of them distinct variablesx1,
. . ., xm, wherem is the arity ofR.

We shall use the following proposition from [3].

PROPOSITION 5.3. [3] Every invertible schema mapping that is
specified by a finite set of s-t tgds satisfies the constant-propagation
property.

Define aprime atomto be one that contains precisely the vari-
ablesx1, x2, . . . , xk for somek, and where the initial appearance
of xi precedes the initial appearance ofxj if i < j. For example,
P (x1, x2, x1, x3, x2) is a prime atom, butQ(x2, x1) andR(x2, x3)
are not. Note that for every atom, there is a unique renaming of vari-
ables to obtain a prime atom. Define aprime instanceto be an instance
whose only fact is a single prime atom. As with our definition of Iα,
a prime instance is not an instance in the usual sense, but is atype of
canonical instance. We now give an algorithm that produces an inverse
if one exists.

Algorithm Inverse(M)
Input: A schema mappingM = (S,T,Σ), whereΣ is a finite set of
s-t tgds.
Output: A schema mappingM′ = (T,S,Σ′), whereΣ′ is a finite
set of full tgds with constants and inequalities, andM′ is an inverse
of M if M has an inverse. There is no output ifM does not satisfy
the constant-propagation property.

1. (Verify thatM satisfies the constant-propagation property.)
Check to see if, for each relation symbolR in S, the chase of
R(x1, . . . , xm) with Σ includes each of them distinct variables
x1, . . . , xm, wherem is the arity ofR. If not, halt without output.
If so, continue to the next step.

2. (Generate all prime source atoms in lexicographic order.)
For example, ifR is a ternary source relation symbol, the atoms
for R, in lexicographic order, areR(x1, x1, x1), R(x1, x1, x2),
R(x1, x2, x1),R(x1, x2, x2),R(x1, x2, x3).

3. (Construct a full tgdω(Σ, I) for each prime instanceI .)
For each prime source atomα generated in Step (1), letIα be the
prime instance containing onlyα. Letψα be the conjunction of the
facts ofchaseΣ(Iα). Form a full tgdω(Σ, Iα) whose left-hand side
is the conjunction ofψα with the formulasConstant(x) for each
variablex that appears inα, along with inequalitiesxi 6= xj for
each pairxi, xj of distinct variables that appear inα, and whose
right-hand side isα.

4. (ConstructΣ′.)
Let Σ′ consist of each of these formulasω(Σ, I), one for each
prime instanceI .
Return M′ = (T,S,Σ′).

Assume thatM satisfies the constant-propagation property. Then
the algorithm gives an output. Furthermore,ω(Σ, Iα), as formed in
Step (3), is then a well-defined full tgd with constants and inequalities,
since every variable in the right-hand side ofω(Σ, Iα) necessarily ap-
pears in the left-hand side.

EXAMPLE 5.4. LetS consist of a binary relation symbolR. LetT
consist of a binary relation symbolQ, ternary relation symbolS, and
unary relation symbolU . LetM = (S,T,Σ) whereΣ consists of the
tgds:

R(x1, x2) ∧R(x2, x1) → ∃yQ(x1, y)

R(x1, x2) → ∃yS(x1, x2, y)

R(x1, x1) → U(x1)

ThenM satisfies the constant-propagation property, since the chase
of R(x1, x2) is S(x1, x2, y), which contains both of the variablesx1

andx2 of R(x1, x2). The two prime source atoms areR(x1, x1) and
R(x1, x2). The two prime instances areIR(x1,x1) = {R(x1, x1)} and
IR(x1,x2) = {R(x1, x2)}. The tgdω(Σ, IR(x1,x1)) is

Q(x1, y1) ∧ S(x1, x1, y2) ∧ U(x1) ∧ Constant(x1) (1)

→ R(x1, x1)

The tgdω(Σ, IR(x1,x2)) is

S(x1, x2, y) ∧ Constant(x1) ∧ Constant(x2) ∧ (x1 6= x2) (2)

→ R(x1, x2)

The output of Inverse(M) is M′ = (T,S,Σ′), whereΣ′ consists
of (1) and (2).

We show in the full paper that ifM is invertible, then the outputM′

of the algorithm is an inverse ofM. Also, we show thatM′ is the most
general (or “weakest”) inverse, in the sense that ifM′′ = (T,S,Σ′′)
is another inverse ofM, thenΣ′′ logically impliesΣ′.

Proposition 3.9 tells us that every quasi-inverse of an invertible sche-
ma mappingM is an inverse ofM. The reader might therefore won-
der why we need both the algorithms QuasiInverse and Inverse, since
the QuasiInverse algorithm will necessarily produce an inverse if the
input is an invertible schema mapping. The answer is that in this case,
the QuasiInverse algorithm will produce an inverse specified by dis-
junctive tgds with constants and equalities where disjunctions may ac-
tually appear, even though there is an inverse specified by full (and
non-disjunctive) tgds with constants and equalities that the Inverse al-
gorithm will find (an example appears in the full paper).

6. QUASI-INVERSES IN DATA EXCHANGE
Next, we shall describe two desirable properties that an “inverse”

should possess for data exchange. Here, we use the term “inverse”
loosely, to mean a schema mappingM′ that goes in the reverse di-
rection ofM. We will then show that quasi-inverses have the two
properties.

P
a b c
a’ b c’

I chase (I)
Q
a b
a’ b

R
b c
b c’

U
chase (U)

Σ’

Σ

P
a b c
a b c’
a’ b c
a’ b c’

V1 chase (V1)Σ

P
a b Z
a’ b Z’
X b c
X’ b c’

V2

chase (U)

chase (V2)Σ

Q
a b
a’ b
X b
X’ b

R
b Z
b Z’
b c
b c’

U2

Σ’’

Figure 1: M′ and M′′ are faithful with respect to M.

First, it is desirable for an inverse to besound. Specifically, assume
thatM = (S,T,Σ) is a schema mapping whereΣ is a finite set of
s-t tgds, and assume thatM′ = (T,S,Σ′) is an “inverse” schema
mapping. For the moment, assume thatΣ′ is given by a finite set of
tgds. Suppose that we perform data exchange withM, by chasing a
ground instanceI with Σ, to obtain a target instanceU , denoted by
U = chaseΣ(I). We can then perform a reverse data exchange from
U with M′ and obtainV (i.e., computeV = chaseΣ′(U)). ThenM′

is soundwith respect toM if the following holds for every choice of
ground instanceI : When we redo the original exchange withΣ but
this time starting fromV , we obtain asubsetof the facts that are inU
(modulo homomorphic images of nulls). Intuitively, the result of the
reverse data exchange withM′, followed by a data exchange withM
(i.e.,chaseΣ(V)), does not introduce any new information that cannot
be found inU . If, additionally, all the data inU can be embedded
homomorphically intochaseΣ(V), then no information that is inU
has been lost. We then say thatM′ is faithful with respect toM.

EXAMPLE 6.1. Let us revisit the earlier Decomposition example
with a schema mappingM = (S,T,Σ) whereΣ consists of the fol-
lowing s-t tgd:

P (x, y, z) → Q(x, y) ∧R(y, z).

Let us recall, from Example 3.10, thatM has quasi-inversesM′ and
M′′ specified by the following setsΣ′ andΣ′′ of tgds:

Σ′ = { Q(x, y) ∧R(y, z) → P (x, y, z) }

Σ′′ = { Q(x, y) → ∃zP (x, y, z),

R(y, z) → ∃xP (x, y, z) }

Let I be the ground instance shown in Figure 1. The result of chasing
I with Σ (i.e., the result of the data exchange withM) is the instance
U shown in the figure. If we now chaseU with Σ′ (i.e., perform
the reverse data exchange withM′), we obtain the source instance
V1. Furthermore, if we now redo the original data exchange withM
starting fromV1, the result is identical toU . In fact, it can be shown
that, for every ground instanceI , the result of redoing the original data
exchange onV1 is identical toU . Hence,M′ is faithful with respect
toM.

Consider nowM′′. Again, letU be the result of the first data ex-
change onI with M. LetV2 be obtained, as in the figure, by a reverse
data exchange withM′′ from U . If we now redo the original data
exchange withM starting fromV2, the result is the instanceU2. The
instanceU2 is different from the target instanceU becauseU2 contains

extra tuples with nulls. The two instancesU andU2, however, are ho-
momorphically equivalent. It can be shown that this is true for every
ground instanceI , and thereforeM′′ is faithful with respect toM.

It turns out that it is not an accident thatM has faithful quasi-
inverses. In this section, we show that ifM is a schema mapping
that is specified by a finite set of s-t tgds and has a quasi-inverse, then
M is guaranteed to have a faithful quasi-inverse (and the algorithm
QuasiInverse produces one).

Note that nulls may arise when we chaseI with a schema mapping
M, and also when we chase the resultU with an “inverse”M′. In
particular, the result of the reverse data exchange may not necessarily
be a ground instance, but rather a source instance with nulls. However,
if the inverse is faithful, these nulls do not matter: when weredo the
data exchange withM, we obtain a target instance that is homomor-
phically equivalent to the original resultU .

In order to define soundness and faithfulness in the general case,
whenM′ is expressed by a set of disjunctive tgds with constants and
inequalities, we need to consider an extension of the chase for this
more general language. The standard notion of the chase can be easily
extended to handle theConstantpredicate and the inequalities in the
left-hand side of the tgds inΣ′. However, when the right-hand side
of a tgd in Σ′ contains disjunction, we need to use thedisjunctive
chase. Chasing with disjunctive dependencies has been considered
before in various contexts [2, 4]; we use a similar notion here, which
we make precise via the following three definitions. When defining the
disjunctive chase, we do not need to assume a separation intoa source
and a target schema. However, the subsequent definitions andresults
about soundness and faithfulness will apply the disjunctive chase in
the context where such separation exists.

DEFINITION 6.2. Letφ(x) be a conjunction of atoms that may in-
clude constants and inequalities as in Definition 2.1. LetK be an
instance overConst ∪ Var. A homomorphismh from φ(x) toK is a
mapping from the variablesx to values inConst ∪ Var such that: (1)
for every atomT (x1, . . . , xk) in φ we have thatT (h(x1), . . . , h(xk))
is a fact inK, (2) for every inequalityxi 6= xj in φ, we have that
h(xi) 6= h(xj), and, (3) for every formula Constant(x) in φ, we have
thath(x) is in Const.

DEFINITION 6.3 (DISJUNCTIVECHASE STEP). Letσ be a dis-
junctive tgd with constants and inequalities of the form:

∀x[φ(x) → (∃y1ψ1(x1,y1) ∨ . . . ∨ ∃ypψp(xp,yp))].

Letσi be the tgd with constants and inequalities that is obtained from
σ by taking just one disjunct:

∀x[φ(x) → (∃yiψi(xi,yi))]

LetK be an instance overConst∪Var. Assume thath is a homomor-
phism fromφ(x) toK such that for eachi ∈ {1, . . . , p}, there is no
extension ofh to a homomorphism fromφ(x) ∧ ψi(xi,yi) toK. We
say thatσ can be applied toK with homomorphismh. Note that this
also means thatσi can be be applied toK with homomorphismh (this
is the non-disjunctive definition of a chase step).

Let K1, . . . ,Kp be the instances that result by applying each of
σ1, . . . , σp toK with homomorphismh. We say thatthe result of ap-

plyingσ toK is the set{K1, . . . ,Kp}, and writeK
σ,h
−→ {K1, . . . ,Kp}.

DEFINITION 6.4 (DISJUNCTIVECHASE). Let Σ be a finite set
of disjunctive tgds with constants and inequalities. Thedisjunctive
chase of an instanceK with Σ is a tree (finite or infinite) that hasK
as a root and for each nodeK′, if K′ has childrenK1, . . . , Kp, then

it must be the case thatK′ σ,h
−→ {K1, . . . ,Kp} for someσ in Σ and

some homomorphismh. Moreover, each leafKm in the tree has the
requirement that there is noσ in Σ and no homomorphismh such that

σ can be applied toK withh. When the chase tree is finite we say that
the result of the disjunctive chase ofK with Σ is the set of leaves in
the chase tree.

In the case when the disjunctive tgds are from a schemaT to a
schemaS, we can chase instances of the form(J, I) whereJ is a
T-instance andI is an S-instance. Note that any such chase tree
will be finite (since there is no recursion). Our case of interest is ap-
plying the disjunctive chase to an instance of the form(U, ∅) where
U = chaseΣ(I), for some ground instanceI . The result of such chase
is a set{(U, V1), . . . , (U, Vm)} of instances whereV1, . . . , Vm areS-
instances. IfV denotes the set{V1, . . . , Vm}, we shall also say thatV
is the result of chasingU with Σ′ and writeV = chaseΣ′(U). Fur-
thermore, let us denote byU ′ = chaseΣ(V) the set of all instancesU ′

that are obtained by chasing, in the standard way, each member V of
V with Σ.

DEFINITION 6.5. LetM = (S,T,Σ) be a schema mapping where
Σ is a finite set of s-t tgds, and letM′ = (T,S,Σ′) be a schema
mapping whereΣ′ is a finite set of disjunctive tgds with constants and
inequalities.

(1) We say thatM′ is soundwith respect toM if:

for every ground instanceI over S, if U = chaseΣ(I), V =
chaseΣ′(U) andU ′ = chaseΣ(V), then there is a homomorphism
from some member ofU ′ intoU .

(2) We say thatM′ is faithful with respect toM if:

for every ground instanceI over S, if U = chaseΣ(I), V =
chaseΣ′(U) andU ′ = chaseΣ(V), then there is some member of
U ′ that is homomorphically equivalent toU .

Regarding the above definition, note that in the case when thede-
pendencies inΣ′ have no disjunction, the setV of source instances
becomes a singleton set. Thus, ifM′ is faithful, chasing withΣ′ re-
covers a single source instance whose chase (withΣ) is homomorphi-
cally equivalent toU . In fact, even when the dependencies inΣ′ have
disjunction, ifM′ is faithful, we can still recover a single source in-
stance: we search among the instances inV to find the source instance
whose chase (withΣ) is homomorphically equivalent toU .

The following proposition states an important property of the dis-
junctive chase in the context of bidirectional data exchange, when the
disjunctive tgds (with constants and inequalities among constants) are
part of the “reverse” mapping. The proof of this proposition, which
is essential in proving the two main theorems of this section, will be
given in the full version of this paper.

PROPOSITION 6.6. [Universality of “chase of the chase”]LetM =
(S,T,Σ) be a schema mapping whereΣ is a finite set of s-t tgds and
let M′ = (T,S,Σ′) be a schema mapping whereΣ′ is a finite set
of disjunctive tgds with constants and inequalities among constants.
Moreover, letI be a ground instance overS. If U = chaseΣ(I) and
V = chaseΣ′(U) then for everyK such that(I,K) ∈ Inst(M◦M′),
there isV ∈ V such that there is a homomorphism fromV toK.

The next theorem shows that every quasi-inverse specified bydis-
junctive tgds with constants and inequalities among constants is sound.
We have shown earlier that this language is sufficient to express quasi-
inverses of schema mappings that are specified by s-t tgds. The second
theorem states that, furthermore, every quasi-inverse obtained by ap-
plying the QuasiInverse algorithm is faithful. The proofs of these two
results will be given in the full paper.

THEOREM 6.7. LetM be a schema mapping specified by a finite
set of s-t tgds. IfM′ is a quasi-inverse ofM that is specified by
a finite set of disjunctive tgds with constants and inequalities among
constants, thenM′ is sound with respect toM.

THEOREM 6.8. LetM be a schema mapping specified by a finite
set of s-t tgds. IfM has a quasi-inverse, then the schema mapping
obtained by applying the algorithmQuasiInverseonM is faithful with
respect toM.

7. CONCLUDING REMARKS
The notion of an inverse of a schema mapping is rather restrictive,

since it is rare that a schema mapping has an inverse. We therefore
introduced and studied a more relaxed notion of a quasi-inverse of a
schema mapping. Both inverses and quasi-inverses are special cases
of a unifying framework for inverses that we developed. We gave an
exact criterion for the existence of quasi-inverses, complete characteri-
zations of the languages needed to express quasi-inverses and inverses,
and results regarding the use of quasi-inverses in data exchange.

Some of the important remaining problems are decision and com-
plexity issues. We have shown that for LAV schema mappings, a
quasi-inverse always exists. However, the complexity of the decision
problem for the existence of a quasi-inverse of a schema mapping spec-
ified by a finite set of s-t tgds (even in the full case) remains open. We
do not know whether the problem is even decidable. Similarly, the
complexity of the decision problem for the existence of an inverse of
a schema mapping specified by a finite set of s-t tgds (even in the full
case) remains open. Again, we do not know whether the problemis
even decidable. Another open problem concerns the optimality of the
algorithms QuasiInverse and Inverse. Given a schema mapping speci-
fied by a finite set of s-t tgds, these algorithms produce a schema map-
ping that is exponential in the size of the input schema mapping. We
do not know whether the size of a quasi-inverse is necessarily expo-
nential, and similarly for an inverse. If it turns out that there is always
a polynomial-size quasi-inverse, this raises the questionof finding a
polynomial-time algorithm that can produce it. Similarly,the same
question arises for inverses.

8. REFERENCES
[1] P. A. Bernstein. Applying Model Management to ClassicalMeta-Data

Problems. InConference on Innovative Data Systems Research (CIDR),
pages 209–220, 2003.

[2] A. Deutsch and V. Tannen. Optimization Properties for Classes of
Conjunctive Regular Path Queries. InInternational Workshop on
Database Programming Languages (DBPL), pages 21–39, 2001.

[3] R. Fagin. Inverting Schema Mappings. InACM Symposium on Principles
of Database Systems (PODS), pages 50–59, 2006. To appear,ACM
Trans. on Database Systems (TODS).

[4] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data Exchange:
Semantics and Query Answering.Theoretical Computer Science (TCS),
336(1):89–124, 2005.

[5] R. Fagin, P. G. Kolaitis, L. Popa, and W.-C. Tan. Composing Schema
Mappings: Second-order Dependencies to the Rescue.ACM
Transactions on Database Systems (TODS), 30(4):994–1055, 2005.

[6] P. G. Kolaitis. Schema Mappings, Data Exchange, and Metadata
Management. InACM Symposium on Principles of Database Systems
(PODS), pages 61–75, 2005.

[7] M. Lenzerini. Data Integration: A Theoretical Perspective. In ACM
Symposium on Principles of Database Systems (PODS), pages 233–246,
2002.

[8] J. Madhavan and A. Y. Halevy. Composing Mappings Among Data
Sources. InInternational Conference on Very Large Data Bases (VLDB),
pages 572–583, 2003.

[9] S. Melnik. Generic Model Management: Concepts and Algorithms,
volume 2967 ofLecture Notes in Computer Science. Springer, 2004.

[10] A. Nash, P. A. Bernstein, and S. Melnik. Composition of Mappings
Given by Embedded Dependencies. InACM Symposium on Principles of
Database Systems (PODS), pages 172–183, 2005.

