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ABSTRACT

Schema mappings are high-level specifications that desthibrela-
tionship between two database schemas. Two operators emach
mappings, namely the composition operator and the invepseae
tor, are regarded as especially important. Progress onttitly &f
the inverse operator was not made until very recently, as guding
the exact semantics of this operator turned out to be a fd@licate
task. Furthermore, this notion is rather restrictive, giitds rare that
a schema mapping possesses an inverse.

In this paper, we introduce and study the notion of a quagrise
of a schema mapping. This notion is a principled relaxatibthe
notion of an inverse of a schema mapping; intuitively, it itained
from the notion of an inverse by not differentiating betwéestances
that are equivalent for data-exchange purposes. For schexppings
specified by source-to-target tuple-generating depeneeis-t tgds),
we give a necessary and sufficient combinatorial conditimritfe ex-
istence of a quasi-inverse, and then use this condition tairolboth
positive and negative results about the existence of qoasises. In
particular, we show that every LAV (local-as-view) schemapping
has a quasi-inverse, but that there are schema mappingfiegpby
full s-t tgds that have no quasi-inverse. After this, we gttlte lan-
guage needed to express quasi-inverses of schema mappeaujfesi
by s-t tgds, and we obtain a complete characterization. & clar-
acterize the language needed to express inverses of schapmngs,
and thereby solve a problem left open in the earlier studiiefriverse
operator. Finally, we show that quasi-inverses can be usedainy
cases to recover the data that was exported by the origihainsz
mapping when performing data exchange.
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1. INTRODUCTION

Schema mappings are high-level specifications that desthibre-
lationship between two database schemas. More precisehema
mapping is a triplet = (S, T, ) consisting of a source scherSaa
target schemd’, and a sek of database dependencies that specify the
relationship between the source schema and the target acl&nce
schema mappings form the essential building blocks of suabial
data inter-operability tasks as data integration and dathamge (see
the surveys [6, 7]), several different operators on scherappings
have been singled out as deserving study in their own rightThe
composition operator and the inverse operator have emeargdo of
the most fundamental operators on schema mappings.

By now, the composition operator has been investigated jathde
[5, 8, 9, 10]; however, progress on the study of the inversaaipr
was not made until very recently, as even finding the exacaséns
of this operator turned out to be a delicate task. In [3], thecept
of an inverse of a schema mapping was rigorously defined arizhit
sic properties were studied. The definition of an inverse giren by
first defining the concept of thidentity schema mappingd and then
stipulating that a schema mapping’ is aninverseof a schema map-
ping M if the composition ofM with M’ yields the identity schema
mappingld, in symbolsM o M’ = 1d.

Unfortunately, the notion of an inverse of a schema mappinged
out to be rather restrictive, since it is rare that a schemaping pos-
sesses an inverse. Indeed, as shown in [3], if a schema ngappin
is invertible, thenM satisfies theunique-solutions properfywhich
asserts that different source instances must have diffefaces of
solutions(that is, different sets of target instances satisfyingsibeci-
fications of M). This necessary condition for invertibility can be used
as a simple, yet powerful, sufficient condition for non-irtility. In
particular, none of the following natural schema mappingsspsses
an inverse, because it is easy to see that none of them hasitheu
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Projection: This is the schema mapping specified by the dependency
P(z,y) — Q(x).

Union: This is the schema mapping specified by the dependencies
P(z) — S(z) andQ(z) — S(x).

Decomposition: This is the schema mapping specified by the depen-
dencyP(z,y,2) — Q(z,y) A R(y, 2).

Moreover, the invertibility of a schema mapping is not rabas it

is affected by changes to the source schema, even when tea-dep

dencies remain intact. Specifically, assume thdt = (S, T, )

is an invertible schema mapping. If the source sché&mia aug-



mented with a new relation symbdl, then the new schema mapping
M* = (SU{R}, T,X) is no longer invertible.

In view of these limitations of the notion of an inverse of aama
mapping, it is natural to ask: is there a good alternativéonodf an
inverse that is not as restrictive as the original notior8ij fput is still
useful in data exchange? In what follows, we address thistaureby
formulating the notion of guasi-inversef a schema mapping, by ex-
ploring its properties in depth, and by making a case fordefuiness.
Conceptual contributionsWe introduce the notion of @uasi-inverse
of a schema mappindt = (S, T, X) as a principled relaxation of the
notion of an inverse mapping d¥1. Intuitively, the notion of a quasi-
inverse is obtained from the notion of an inverse by not difféiat-

and sufficient combinatorial condition, called thabset propertyfor
the existence of a quasi-inverse. We then apply this camit obtain
both positive and negative results about the existenceadiqoverses.
On the positive side, we use the subset property as a suffioten
dition for quasi-invertibility to show that every LAV (lotas-view)
schema mapping has a quasi-inverse; this result providesfyng
explanation for the quasi-invertibility of the projectiamion, and de-
composition schema mappings. On the negative side, we eseliset
property as a necessary condition for quasi-invertibiiityshow that
there are simple schema mappings specified by full s-t tgaishve
no quasi-inverse; a fortiori, such schema mappings havavesse.
The language of inverses and quasi-invei&esinvestigate the langu-

ing betweergroundinstances (i.e., null-free source instances) that areage needed to express quasi-inverses of schema mappirngtesidey

equivalent for data-exchange purposes. In more formalstewa first
consider the equivalence relatien, between ground instances such
thatl; ~aq Iz holds if I; andI> have the samspace of solutionghat

is, for every target instancg, we have thatl,, J) = X if and only if
(I2, J) E X. We then say that a schema mappibt/ = (T, S, M’)

is aquasi-inverseof M if, in a precise technical sens&f o M’ = Id
holds modulo the equivalence relatien..

s-t tgds, and we obtain a complete characterization. Spaltjfi we
show that if a schema mapping specified by a finite set of s tgd
is quasi-invertible, then it has a quasi-inverse specifigd Hinite
set of target-to-source disjunctive tgds with constant$ iaequali-
ties (in fact, inequalities among constants suffice). Meegowe give
an exponential-time algorithm for constructing such a giragrse.
The left-hand side of a target-to-source disjunctive tgthwonstants

We show that the concept of a quasi-inverse of a schema nmppirand inequalities is a conjunction of target atoms, formofake form

is actually part of a unifying framework in which differerglaxations
of the notion of an inverse of a schema mapping can be obtdiped
using different equivalence relations that egBnement®f the equiv-
alence relation- o4 (i.e., they are contained i o). This framework
captures, as special cases, both inverses and quasidsvers fact,
the notion of an inverse is the strictest one, while the motiba quasi-
inverse is the most relaxed one; all other relaxations ofbteon of
an inverse lie in between.

Numerous non-invertible schema mappings possess nattalka-
ful quasi-inverses. Indeed, let us revisit the precedingngles of
non-invertible schema mappings.

Projection: The schema mapping specified Byz,y) — Q(z) has
a quasi-inverse specified l§y(z) — JyP(z,y). Intuitively, this
quasi-inverse describes the “best” you can do to recovarrgto
instances.

Union: The schema mapping specified by the dependerieies —
S(z) andQ(x) — S(x) has a quasi-inverse specified Byz) —

P(z) vV Q(x). Quasi-inverses need not be unique up to logical

equivalence (the same holds true for inverses as well). eshde
the schema mapping specified Byz) — P(z) is also a quasi-
inverse, as are the schema mapping specified ) — Q(x)
and the schema mapping specifieddt) — P(z) A Q(x).

Constantx) that evaluate to true only whenis instantiated to a con-
stant (non-null) value, and inequalities # x;; the right-hand side
is a disjunction of conjunctive queries over the source. Wmsthat
our expressibility result is optimal by proving tha proper fragment
of the language of disjunctive tgds with constants and inéties suf-
fices to express quasi-inverses; that is, both constantmeqdalities
in the left-hand side of dependencies are needed, as arealispihc-
tions and existential quantifiers in the right-hand sideagehdencies.
For schema mappings specified by a finite set of full s-t tgdsskow
that if such a schema mapping is quasi-invertible, thenstahguasi-
inverse specified by a finite set of target-to-source digjuatgds with
inequalities; in other words, the predica@®nstantis not needed in
this case. We also show that every LAV schema mapping hasskqua
inverse specified by a finite set of target-to-source tgds imizquali-
ties and constants; thus, in this case, there is no needdjndiions
in the right-hand side of dependencies.

Concerning the language needed to express inverses of achep
pings specified by s-t tgds, the paper [3] focussed only oarges
specified by target-to-source tgds, and left open the pnobfecharac-
terizing the language needed to express inverses of schamgimys.
Here, we settle this problem by showing that if a schema nmappi
specified by a finite set of s-t tgds is invertible, then it hasraerse
specified by a finite set of target-to-source tgds with caristand in-

Decomposition:The schema mapping specified by the dependencequalities. This turns out to be an optimal result as well.

P(z,y,z) — Q(z,y) A R(y,z) has a quasi-inverse specified
by Q(z,y) A R(y,z) — P(xz,y,z). Another quasi-inverse of
this schema mapping is specified ®yz,y) — 3zP(z,y, z) and
R(y,z) — JzP(z,y, 2).
Finally, if M = (S, T, X) is an invertible schema mapping and we
augmentS with a new relation symbaR, theneveryinverse of M is
a quasi-inverse of the resulting non-invertible schemapimgpM™ =
(SU{R}, T,X). Moreover, if a schema mappingt’ = (T,S,Y’)
is a quasi-inverse of a non-invertible schema mappig then the
schema mappingt” = (T,S U {R},¥’) is a quasi-inverse af1*.
Thus, unlike the notion of an inverse, the notion of a quasggise is
robust when relation symbols are added to the source schema.
Technical Contributions Our results span three different directions:
an exact criterion for the existence of quasi-inverses,pteta char-
acterizations of the languages needed to express quassas and
inverses, and results on the use of quasi-inverses in deteaege.

Existence of quasi-inversésor schema mappings specified by source-

to-target tuple-generating dependencies (s-t tgds), veegghecessary

Although we have completely characterized the languageetke
to express quasi-inverses and inverses of schema mapmpaggied
by a finite set of s-t tgds, the complexity of deciding the ttise a
quasi-inverse and of an inverse of such schema mappingsrepen
problems. In fact, even the decidability of these problesnspien.
Using quasi-inverses in data exchannce it is rare that a schema
mapping M has an inverse, we cannot hope to always obtain an ex-
act copy of the original ground instance from target instancThe
notion of a quasi-inverse is motivated from the idea thamfisirity
up to the space of solutions” is often good enough for datdraxge
applications; this is why the definition of a quasi-inver§@schema
mapping M relaxes exact equality between ground instances {o-
equivalence. We show that, even though it is not possibledover
an exact copy of the original source instance, in many casasi{
inverses allow us to recover a source instance that hasvaguot”
properties from the data-exchange point of view.

More formally, assume thatt = (S, T, X) is a schema mapping
specified by a finite set of s-t tgds ald’ = (T, S,Y’) is a quasi-




inverse of M specified by a finite set of target-to-source disjunctive(In general, there may be several such instari¢dsut they are all

tgds with constants and inequalities among constants. \0e fat
M’ is sound which means thatt" has the following property. Let
I be an arbitrary ground instance and 1éthe the result of chasing
I with ¥. Suppose we chadé back from target to source with the
disjunctive dependencies M’ to obtain a se¥’ of source instances
and then we chase every membenoWwith the dependencies i to
obtain a set/’ of target instances. Thed' contains a target instance
U’ that can be mapped homomorphically idfo thus, the target in-
stancel/’ contains (up to a homomorphism) only factdéfalthough
not necessarily all of them. Furthermore i’ is obtained by apply-
ing our algorithm for constructing a quasi-inverse./of, then M’ is
faithful, which means that the skt contains a target instané€ that

is homomorphically equivalent t@. In other words, there is a source
instancél” in V whose chase with is homomorphically equivalent to
U. This instancéd/ is thus “data-exchange equivalent” to the original
source instancé.

2. PRELIMINARIES

A schemaR is a finite sequencgRy, . . ., Rx) of relation symbols,
each of a fixed arity. Ainstancel overR is asequenceR?, ..., Ri),
where eachR! is a finite relation of the same arity @,. We shall
often useR; to denote both the relation symbol and the relatith
that interprets it. Aratom overR is a formulaP(v1, ..., vm ), Where
P is arelation symbol iR andv;, . .. , v, are variables.

In what follows, we assume thétis a fixedsourceschema and is

a fixedtargetschema. We also assume that we have a fixed infinite se&

Const of constants and an infinite séar of nulls that is disjoint from
Const. For source instances, our main focus is on instances wdth in
vidual values frontConst only; we call such source instancgund
instances. In contrast, target instances typically hadwithual values
from Const U Var. Intuitively, this models the situation in which we
perform data exchange froito T: the individual values of source
instances are known, while incomplete information in thec#cation
of data exchange may give rise to null values in the targéaines.
Dependencies, schema mappings, and data exchange notions Re-
call that a schema mapping is a tripld = (S, T, ) consisting of a
source schem8, a target schemd, and a sek of database depen-
dencies that specify the relationship between the soutvensg and
the target schema. We say thet is specified by.

We review several notions from [4] that will be needed in haper.
Let M = (S, T, X) be a schema mapping. Ifa is ground instance,
then asolution forI underM is a target instancé such tha(7, J) =
X. The set of all solutions fof underM is denoted bysol(M, I).

LetJ, J' be two target instances. A functiégnfrom ConstU Var to
Const U Var is ahomomorphisnfrom .J to J’ if for every c in Const,
we have thak(c) = ¢, and for every relation symbdt in T and every
tuple (a1, ...,an) € R’, we have thath(a1), ..., h(an)) € R’
The instanceg andJ’ are said to béhomomorphically equivalerit
there are homomorphisms froto .J* and from.J’ to J.

Given a schema mappingyt = (S, T, X) and a ground instancg
auniversal solutiorfor I underM is a solutionJ for I underM such
that for every solution/’ for I under. M, there is a homomorphism
h : J — J'. Intuitively, universal solutions are the “most general”
solutions among the space of all solutions for

A source-to-target tuple-generating dependeriaghort, ars-t tgd
is a first-order formula of the formix(¢(x) — Iy (x,y)), where
¢(x) is a conjunction of atoms ove3, ¢ (x,y) is a conjunction of
atoms ovefT, and every variable is occurs in an atom ip(x).

homomorphically equivalent.)

Our goal in this paper is to investigate inverses and quagirses of
schema mappings1 = (S, T, X), whereX is a finite set of s-t tgds.
In particular, we will identify the languages needed forregsing such
inverses and quasi-inverses, and will show that these &gegumust
be richer than the language of target-to-source tgds. Theniog
definition introduces the richer classes of dependenciedatk

DEFINITION 2.1. Let Constant be a relation symbol that is differ-
ent from all relation symbols i8 and T.

1. Adisjunctive tgd with constants and inequalities frahto S is a
first-order formula of the form

Vx(p(x) = \/ Jyiti(x,y4)),

i=1
where:

e the formulap(x) is a conjunction of
(1) atoms ovefT, such that every variable ir occurs in one
of them;
(2) formulas of the form Constapt), wherez is a variable
in x;
(3) inequalitiesr # ', wherex andz’ are variables inx.

e Each formulay;(x, y:) is a conjunction of atoms ové.

Naturally, a formula Constaift) evaluates to true if and only if
is interpreted by a value i€onst.

Adisjunctive tgd with constants and inequalities among t@oris
is a disjunctive tgd with inequalities and constants whéaefor-
mulas Constarftz) and Constar(tc’) occur as conjuncts ap(x)
whenever the inequality # z’ is a conjunct ofp(x).

Clearly, disjunctive tgds with constants and inequaligetend the lan-
guage of tgds with three features: (1) formulas of the f@wnstantx)

in the left-hand side; (2) inequalities in the left-handesidnd (3) dis-
junctions in the right-hand side. If the right-hand sidesists of a sin-
gle disjunct, then we talk abotgds with constants and inequalities
The concepts oflisjunctive tgds with inequalitiesgds with inequal-
ities, and other such special cases of Definition 2.1 are defined in a
analogous way. For example,

P(z,y,z) A Constanfz) Az # y — FwQ(z,w) V Q(z,y)
is a disjunctive tgd with constants and inequalities,
Plz,y,2) Aa £y — FwQ(z,w) v Q(z,y)
is a disjunctive tgd with inequalities, and

P(z,y,2) Nz #y — Q(z,y)

is a tgd with inequalities. Note that, for convenience, weshdropped
the universal quantifiers in the front.
Composing and inverting schema mappings Next, we recall the con-
cept of thecompositiorof two schema mappings, introduced in [5, 9],
and the concept of ainverseof a schema mapping, introduced in [3].
Let M2 = (S17 Sz, 212) andM23 = (Sz7 Sg, 223) be schema
mappings. TheompositionM20.M 33 is a schema mappin®1, Ss,
¥13) such that for evers:-instancel and everySs-instancek, we
have that(I, K) = 313 if and only if there is arB»-instanceJ such
that(Z, J) = 12 and(J, K) = 323. When the schemas involved are
understood from the context, we will often wrifa, o Y53 to denote
the compositionM 12 o Mas.

If M = (S, T,X) is a schema mapping specified by a finite set Let S be a replica of the source sche®gthat is, for every relation

3 of s-t tgds, therchasingl with ¥ produces a target instanéé
such thatU is a universal solution fof under M. We shall often
write thatU = chase:(I) and say thaU is theresult of the chase.

symbol R of S, the schem#® contains a relation symbdt that is not
in S and has the same arity & Clearly, every source instan¢enas
a replica instancé overS.



e If M* = (8,8, ©*) is a schema mapping, we writast(M*) for
the set of all pairg1:, I>) such thatl; is a groundS-instance,l»
is a groundS-instance, andl:, I2) = X*.

e Theidentity schema mappinig, by definition, the schema map-

2. There are ground instancé$ and 5 and a target instancé such
that (I1, I2) ~a,0) (17, 13), (IY, J) = %, and(J, I3) = X',
As an immediate consequence of the definitions, we have/iffat
is an inverse of\ if and only if M” is an(=, =)-inverse of%. Thus,

pingId = (S, gjm)’ whereX14 consists of the dependencies informally, a(~1, ~2)-inverse of M is an inverse ofM modulo the

R(x) — R(x) asR ranges over the relation symbols$n Thus,
Inst(Id) consists of all pairg/;, I2) of a groundS-instancel;
and a grounds-instancel; such thatl; C I.

e Let M = (S, T, X) be a schema mapping. We say that a schem

mappingM’ = (T,S,Y’) is aninverseof M if Inst(Id)
Inst(MoM’). This means that, for every pdif,, I>) of a ground
S-instancel; and a ground-instancel,, we have thaf; C I, if
and only if there is a target instandesuch that(;, J) = ¥ and
(J,b) EX.
From now on and for notational simplicity, we will writ8 to also
denote its replic®; it will be clear from the context if we refer 18 or
to its replica. Moreover, we will use the same symbol to detatth a
groundS-instancel and its replicaS-instancel.

3. AUNIFYING FRAMEWORK

In this section, we develop a unifying framework for definirgd
studying a spectrum of notions that relax the notion of aerise of a
schema mapping in a principled manner. The key idea is nafferd
entiate between ground instances thaeayaivalenfor data-exchange
purposes.

DEFINITION 3.1. Let M = (S, T, X) be a schema mapping and
let I, I’ be two ground instances.

We writel ~ ¢ I’ to denote thaBol(M, I) = Sol(M, I'). When
M is understood from the context, we may writén place of~ 4.

equivalence relations, ~3.
Next, we introduce a combinatorial property that will be dige
characterize the existence @f1, ~2)-inverses.

DEFINITION 3.4. Let M = (S, T, X) be a schema mapping. We
aéay thatM has the(~1, ~2)-subset propertif for every pair(/1, I2)
of ground instances such th8bl(M, I>) C Sol(M, I), there is a
pair (11, I5) of ground instances such thah, I2) ~(1.2) (11, I5) and
I C L.

Before stating any technical results, let us give some imgigthe
(~1,~2)-subset property. It is easy to see thatlfis a set of s-t
tgds andl; C Iy, thenSol(M, Iz) C Sol(M, I;). Note also that
the (=, =)-subset property asserts thasil(M, I>) C Sol(M, I1),
thenI; C I»; hence, itis the converse of the preceding fact. Thus, the
(~1, ~2)-subset property can be construed as a weak converse of the
fact thatifI; C I, thenSol(M, I2) C Sol(M, I.); informally, it is
a converse modulo the equivalence relatiensand~-.

Our first theorem asserts that the;, ~2)-subset property is a nec-
essary and sufficient condition for the existence ¢fa, ~2)-inverse
of a schema mapping!t = (S, T, X) in which X is a set of s-t tgds.

THEOREM 3.5. Assume thaM = (S, T, X)) is a schema mapping
in whichX is a finite set of s-t tgds and let;, ~2 be two equivalence
relations on ground instances such thatC~ ¢ and~2C~ . Then
the following are equivalent:

1. M has a(~1, ~2)-inverse.

Clearly, ~ ¢ is an equivalence relation on ground instances. We2- M has the(~1, ~2)-subset property.

will use this equivalence relation to define relaxationshef hotion of
an inverse. Before doing so, we introduce an auxiliary cphice

DEFINITION 3.2. Let~; and ~2 be two equivalence relations on
ground instances, and IdD be a binary relation between ground in-
stances. We set

Dl~i,~o] =

{(I, I2) : AR L5((1 ~1 1) A

(I1,15) € D A (I2 ~2 I5))}.
Itis easy to see thab[~1,~2] =~1 o D o ~3, whereo denotes the
composition of two binary relations.

In what follows, we will use the notation (; o) to denote therod-
uctequivalence relation of two equivalence relatiensand~-. This
means thatli, I2) ~(1,2) (I1, 1) ifand only if Iy ~; I1 andlz ~2
I}. Thus, we have that

Dl[~1, ~s2] {(I, I2) : 3L I5((1h, I2) ~(,2) (11, 15) A

We are now ready to give the crucial definition of iamerse with
respect to two equivalence relatignghich generalizes the concept of
an inverse in [3].

DEFINITION 3.3. Assume thaM = (S, T, X) is a schema map-

PrROOF (Sketch)Assume thatM’ = (T,S,Y') is a (~1, ~2)-
inverse ofYX. Let (I1,12) be a pair of ground instances such that
Sol(M, I2) C Sol(M, I1). Since(lz, I) € Inst(Id), it follows that
(I2, I2) € Inst(M o M')[~1, ~2]. Therefore, there is a paifs, 1)
of ground instances and a target instadcsuch that(/z, I2) ~(1,2)
(Is, I4), and such thals, J) = X and(J, I4) E ¥'. Sincelz ~1 I3
and~;C~ aq, we obtain thatlz ~ ¢ Is. Hence, sinc€ls, J) = X,
it follows that (12, J) = X. SinceSol(3, I2) C Sol(X, I1), we have
that(1, J) E X. Consequently /1, I1) € Inst(MoAM"), whichim-
plies that(11, I4) € Inst(Id)[~1, ~2]. In turn, this implies that there
is a pair(I1, 1) of ground instances such thdt, Is) ~,2) (I1,14)
andI] C I;. Sincely ~2 I, andly ~o I}, we have thafly ~o I}.
Therefore,(I1,I2) ~,2y (I1,14) wherel; C Ij. This establishes
the implication(1) = (2).

For the implication2) = (1), assume thaM has the(~1, ~2)-
subset property. Put

D ={(J,I): Jisuniversal forl underM}.

Let M’ = (T, S, %) be the schema mapping such thdt7) € D
if and only if (J,I) = ¥'. It can be shown thaM’ is a(~1, ~2)-
inverse of%; details appear in the full paper.

Theorem 3.5 yields the following necessary and sufficientidmn

ping and~, ~2 are two equivalence relations on ground instancesfor the existence of an inverse.

such thatv; C~ ¢ and~2C~ . We say that schema mapping’ =
(T,S,%)is a(~1,~2)-inverseof M if

InSt(Id)[’\-q7 Nz] = Inst(/\/l o M,)[Nh Nz].
This means that, for every paff1, I>) of ground instances, the fol-
lowing statements are equivalent:

1. There are ground instancely and I3 such that(I1, I2) ~1,2)
(I{, I5) and I} C I3,

COROLLARY 3.6. Assume that\{ = (S, T, X) is a schema map-
ping whereX: is a finite set of s-t tgds. Then the following statements
are equivalent:

1. M has an inverse.

2. M has the(=, =)-subset property, that is to say,if and I, are
two ground instances such thgbl(M, I3) C Sol(M, I1), then
I, C Is.



As mentioned in the Introduction, thmique-solutions propertyas
identified in [3] as a necessary condition for a schema mappihto
have an inverse. By definition, this property says thdi iand I, are
ground instances such that # I, then we have tha&ol(M, I1) #
Sol(M, I). Clearly, the(=, =)-subset property implies the unique-
solutions property. Indeed, Hol(M, I1) = Sol(M, I2), then by ap-
plying the (=, =)-subset property twice, we have that C I, and
I, C I, and sol; = I». In the full paper we show that there is a

thatI5 ~aq I2; moreover, we have thdt C I3. This shows that\t
has the(~ a4, ~a1)-subset property (actually, this shows that has
the strongef =, ~ ¢ )-subset property).

Theorem 3.5 implies that1 has a quasi-inverse. As a matter of fact,
one can show directly that the schema mappiig= (T, S, &’) with
¥ consisting of the tgd

Q(z,y) AN R(y,2) — P(z,y, 2)

schema mappingu that is specified by a finite set of s-t tgds and hasis a quasi-inverse of1. One can also show directly that another quasi-

the unique-solutions property, but does not have(the=)-property.
Hence, the unique-solutions property is not a sufficiendi@n for
the existence of an inverse.

By varying the equivalence relations; and~5, we can obtain a

variety of (~1,~2)-inverses. The next proposition provides a basic

tool for comparing them.

PROPOSITION 3.7. Let M be a schema mapping and let, ~2,

~3, ~4 be four equivalence relations on ground instances such thathe notion of an inverse [3].

~1Cr3Cropg and ~oCryCropg. Every(~q, ~o)-inverse ofM is
also a(~3, ~4)-inverse ofM.

Proposition 3.7 implies that the spectrum(ef;, ~2)-inverses has
both “strongest” and “weakest” elements. Indeed, whdhis an(=
,=)-inverse of M (i.e., M’ is an inverse ofM), then for every two
equivalence relations; and~ contained inv A, we have that\’ is
a(~1, ~2)-inverse ofM. At the other end of the spectrum i’ is a
(~1, ~2)-inverse ofM, then M’ is also &~ 1, ~ 1 )-inverse of M.

In what follows, we will focus on=, =)-inverses (i.e., on inverses)
and on(~ aq, ~aq)-inverses, which we will refer to from now on as
quasi-inverses

DEFINITION 3.8. Let M = (S, T, X) be a schema mapping. We
say that a schema mappingt’ = (T, S, ¥') is aquasi-inversef M
if M’ is a(~n,~nr)-inverse ofM, that is,
Inst(Id) [~ a1, ~a] = Inst(M o M) [~oar, ~adl.

We say thatM is quasi-invertiblef it has a quasi-inverse, anihvert-
ible if it has an inverse.

inverse of M is the schema mappingt”’
consists of the tgds

Q(z,y)
R(y, z)

This also shows that the notion of a quasi-inverse of a sclmeapgping
need not be unique up to logical equivalence. The same haldgdr
O

The Projection Union, and Decompositiorschema mappings are
LAV (local-as-view)schema mappings, that is, the left-hand side of
each dependency is a single atom. The next result showsvbay
LAV schema mapping has a quasi-inverse. The proof genegatize
argument in Example 3.10.

= (T,S,%"), whereX"”

—  JzP(zx,y,2)
—  JzP(z,y,2).

PropPosITION 3.11. If M = (S, T, X) is a LAV schema mapping,
thenM has the(~ a4, ~ a1 )-subset property. Consequently, every LAV
schema mapping has a quasi-inverse.

PrROOF (Hint) Assume that/; and I, are two ground instances
such thaiSol(M, Iz) C Sol(M, I). LetJi be a universal solution
for I;, and letJ, be a universal solution fof,. Let I = I; U Is.
Clearly, I; C I5. In the full paper, we show thak ~ ¢ 15, which
implies thatM has the(~ 1, ~q)-subset property (and in fact the
stronger(=, ~ 4 )-subset property). ]

Our next result asserts that, in contrast to LAV schema nmayspi
there are schema mappings specifiedutlys-t tgds that have no quasi-
inverses. Recall that an s-t tgd figll if its right-hand side has no

PROPOSITION 3.9. Every quasi-inverse of an invertible schema maBX'Stem'al quantifiers; this means that it is of the forsa(o(x) —

ping M is an inverse ofM.

This proposition holds becauseft is invertible, then the unique-
solutions property implies that the equivalence relation coincides
with the equality relatior= on ground instances. Thus, for invertible
schema mappings, there is no distinction between inverss@asi-
inverses. In contrast, there are schema mappings that@reedible,
but have natural quasi-inverses. As a matter of fact, treetBramples
of schema mappings given in the Introductiédjection Union, and
Decompositiohhave this property. We revisit one of them.

ExaMpPLE 3.10. LetM be theDecompositionrschema mapping
specified by the tgd

P(z,y,2) — Q(z,y) A R(y, 2).

¥(x)), wherep(x) is a conjunction of source atoms agdx) is a
conjunction of target atoms.

PrRopPoOsSITION 3.12. There is a schema mappiny! that is speci-
fied by a single full s-t tgd and has no quasi-inverse.

PROOF (Hint) Let M be the schema mapping specified by the fol-
lowing full s-t tgd:

E(z,z) NE(z,y) — F(x,y) AN M(z).

It can be shown thatt does not have thev 1, ~ ¢ )-subset property,
which, by Theorem 3.5, implies tha¥! has no quasi-inverse. The
details can be found in the full paper.[]

Note that the~ A1, ~ ¢ )-subset property is used “positively” in the

First, M does not have an inverse, since it does not have the uniqu&roof of Proposition 3.11 and “negatively” in the proof obiosition

solutions property. For example, If and I, are source instances,
where Pt has exactly the tuple$(0, 0,0), (0,0, 1), (1,0,0)}, and
P2 has these tuples along witlt, 0, 1), thenI; and . have exactly
the same solutions. We claim, however, thdthas the(~ 1, ~a1)-
subset property. To see this, I8t and I> be two ground instances
such thatSol(M, I2) C Sol(M, I1). LetJ be the solution forl,
obtained by takingld? = m2(P™) and R/ = ma3(P2). Since
Sol(M, Iz) C Sol(M, 1), we have that/ is also inSol(M, I1),
SO7T12(P11) - 71'12(P12) andﬂ'zg(PIl) - 71'23(P12). Let Ié =

3.12. More precisely, thé~a(, ~1)-subset property is used as a
sufficient condition for the existence of quasi-inverse®inposition
3.11 and as a necessary condition in Proposition 3.12.

4. THE LANGUAGE OF QUASI-INVERSES

One of our main results is the following theorem, charazteg the
language for quasi-inverses of schema mappings specifiggtlsy

THEOREM 4.1. Let M be a schema mapping specified by a finite

I, U I,. From the two inclusions we have just established, it foow set of s-t tgds. I/ has a quasi-inverse then the following hold.



1. M has a quasi-inverseM’ specified by a finite set of disjunctive
tgds with constants and inequalities.

2. There is an exponential-time algorithm for producifvg .

3. Statement (1) is not necessarily true if we disallow eitioastants
or inequalities in the left-hand side, or disallow disjuiocts or
existential quantifiers in the right-hand side.

In fact, the quasi-inversa1’ that the algorithm produces has inequal-
ities only among constants.

We illustrate the intuition behind the construction./ef’, with two
examples. We begin with the union example, whereonsists of the
s-t tgdsP(z) — S(z) andQ(z) — S(z). There are two possible
“generators” ofS(x), namelyP(z) andQ(z). These possibilities are
reflected by the disjunctive tgfl(z) — P(z) vV Q(z) (we shall put
a variation of this disjunctive tgd int®’). As another example, |&t
consist of the s-t tgd§'(z,y) — P(z,y) andT(z,y) — P(z,x).
There is only one possible generatorffz, y) if z andy are differ-
ent, namelyS(z, y), and this is reflected by the tgd with inequalities
P(z,y)A\(z #y) — S(z,y). However, there are two possible gener-
ators of P(z, z), namelyS(x, z) andT'(z, y), and this is reflected by
the disjunctive tgdP (z, z) — S(z,z)VIyT (x,y). The algorithm for
producing quasi-inverses systematically considers alh gienerators.

We now discuss the machinery behind the algorithm to produée
including a formal definition of “generator”. i is a conjunction of
atoms (or an instantiation of atoms), defiheto be an instance whose
facts are the conjuncts ef. Note that/, may not be an instance in
the usual sense, because the active domain may includdbesrian
addition to constants or nulls. Thus, is a type of canonical instance.
Let x be a vector of distinct variables. @omplete descriptiof(x) is
a conjunction of equalities; = z; and inequalities:;, # x, among

the variables inx in a consistent manner, that completely describes

which variables are equal and which are unequal.

Let ¥ be a finite set of s-t tgds. We now define a Eétthat in-
cludesX and that is logically equivalent t&. For each membes
of 3, and for each complete descriptiérof the variables that each
appear in both the left-hand side and the right-hand side, afe-
lect a unique representative of each equivalence classndetd by
0, and letf (o, 0) be obtained fronv by replacing every variable in
o by the representative of its equivalence class. Létconsist of
> and all such formulas(c,d) (for all choices ofe in X and all
complete descriptioné of the variables that each appear in both the
left-hand side and the right-hand side ®f. For example, ifo is
R(z1, 2, x3,24) — Jy(Q(x1,y) A S(y,z2,23)), and ifd is (z1 =
xz3) A (1 # x2) A (x2 # w3), then{z1,z3} forms one equiva-
lence class andz.} is the other equivalence class, afif,d) is
R(z1, 22,21, 24) — y(Q(z1,y) N S(y, 22, 21)).

DEFINITION 4.2. Let8(x,z) be a conjunction of source atoms,

and letyr(x,y) be a conjunction of target atoms, where the mem-

bers ofx,y, z are all distinct, and the members »fare exactly the
variables that appear in both(x,z) and ¥t (x,y). LetX be a fi-
nite set of s-t tgds. We say thétx, z) is agenerator o8y yr (x,y)
(with respect ta¥) if the s-t tgd3(x,z) — Jyyr(x,y) is a logical
consequence af.

WhenX is understood, we shall often drop the words “with respect

to X". It follows easily from the standard theory of the chasettha
B(x,z) is a generator oyt (x, y) with respect ta= if and only if
the chase of 3(x,) With ¥ gives at least ..,y for a substitution
where someg/’ substitutes foy .

DEFINITION 4.3. The source formulé(x, z) is aminimal gener-
ator of Iy (x,y) if B(x,z) is a generator alyyr(x,y) and there

is no 3’ (x,z) that is a conjunction of a strict subset of the conjuncts

of 3(x, z) such that3’ (x, z) is a generator oy ¥r(x,y).

We shall make use of the following simple lemma.

LEMMA 4.4. Let X be a finite set of s-t tgds, each with at most
s1 conjuncts in its left-hand side. Leétr(x,y) be a conjunction of
so target atoms. Then every minimal generatoBgfyr (x,y) with
respect ta has at mosk; s2 conjuncts.

From Lemma 4.4, we see that there is a simple exhaustivetsear
algorithm for finding minimal generators:

Algorithm MinGen(M, 3yyr(x,y))

Input: A schema mappingt = (S, T, X), whereX is a finite set of
s-ttgds, and a formuldy ¢t (x,y), whereyr(x,y) is a conjunction
of target atoms, and where the variablexiry are all distinct, and all
appear injr(x, y).

Output: A finite set of the minimal generators &fy¢r(x,y) with
respect toz.

1. (Initialization.)
Initialize the setG of minimal generators oflyyr(x,y) to the
empty set.

2. (Exhaustive search.

Let s1 and sz be as in Lemma 4.4. Systematically check every
conjunctionf(x, z) (up to renaming of variables i) of at most
s1s2 atoms where the variables inare distinct and distinct from
members ok, y, to see if the chase df ) with X gives at least
Iy (x5 fOr a substitution where somyé substitutes fog . If so,
addg(x,z) to G.

(Minimize)

For each membef(x,z) of G, check to see if there is some
other 5'(x,z’) in G whose conjuncts are a subset of the con-
juncts of 3(x, z) (up to renaming of variables i, z'). If so, re-
move3(x, z) from G. Continue the process until there is no more
change inG.

Return G. [

The next algorithm produces a finite set of disjunctive tgdth w
constants and inequalities that defines a quasi-inverseitgists.

Algorithm Quasilnversef)

Input: A schema mappingt = (S, T, X), whereX is a finite set of
s-t tgds.

Output: A schema mapping’ = (T,S,%’), whereX' is a finite
set of disjunctive tgds with constants and inequalitieat th a quasi-
inverse ofM if M has a quasi-inverse.

1. (CreateX™.)
CreateX” from X as defined earlier.

(Create the formulas’.)

For each membes of X*, creates’ as follows. Assume that
o isis ¢s(x,u) — Jyyvr(x,y), where the variables ix are
distinct, and consist exactly of the variables that appedvath
¢s(x,u) andyr(x,y). The left-hand side o’ is the conjunc-
tion of Y1 (x,y), along with each of the formula@onstantx) for
memberse of x, along with the formulas:;; # x; for each pair
x5, x; of distinct variables irk. For each formulad(x, z) in the
output of MinGenM, Jyyr(x,y)), let 3z5(x, z) be a disjunct
in the right-hand side aof’.

3. (Constructy’.)

Let X' consist of each of these formula&

Return M’ = (T,S,%"). O

We prove in the full paper that this algorithm defines a qirastrse

of M if one exists. Note that the disjunction in the right-hardkeghat
is created in Step (2) of the algorithm is nonempty, sipgéx, u), the
left-hand side ob, is a generator ofly¢r(x,y), and so some subset
of the conjunctions ofs (x, u) forms a minimal generator.

3.

2.



EXAMPLE 4.5. LetX consist of the tgds:

P(x1,22,23) — Jy(S(x1,22,9) A Q(y,y))

(
U(‘T ) - Ely(‘s(xlv x1,y) A Q(yvy) A Q(l’l, y))
T(x3,x4) — S(xa,T4,3)

(

R Q(z1,x2).
Let oy be the first tgd i, Leto be
P(x1,@1,23) — Fy(S(z1, 1,9) A QY y)),
the result of replacing each occurrencergin o by x1. Thens; and

T1,T2,Ta) —

PrROOF (Hint) Let S consist of a binary relation symbdt, and
let T consist of a binary relation symbd@). Let X consist of the tgd
P(z,y) — 32(Q(x,2) A Q(z,y)). Let M = (S, T,%). Lety¥’
consist of the following tgd with constants:

Q(z, z) A Q(z,y) A Constanfz) A Constanfy) — P(x,y).

Let M’ = (T,S, ¥'). Itis shown in the full paper that’ is an
inverse of M, but M has no inverse specified by a set of disjunctive
tgds with inequalities (but no constants).[]

THEOREM 4.9. (Necessity of inequalities.) There is a LAV schema

o2 are both int*. To show Step (2) of the algorithm Quasilnverse, in mapping specified by full s-t tgds that has an inverse, buinuerse

this example we shall produeg| from o1, and we shall produce’
from o>. Thus, the algorithm puts; andc? into X',

The only generator ofly(S(z1,z2,y) A Q(y,y)), the right-hand
side ofo1, is P(x1, z2,73), SO0} is

S(z1,z2,9) A Q(y,y) A Constanfx1) A Constanfz2)
N1 # x2) — FxsP(x1, 2, 73)

There are four minimal generators®§(S(x1, z1,y) A Q(y,y)), the
right-hand side of2. The firstisP(z1, 1, x3), the left-hand side of
o2. The second i8/(z1), since its chase yieldS(z1, z1,y), Q(y,y),
Q(z1,y), which includes the conjuncts in the right-hand sideref
The third isT'(z1,x1) A R(z1,x1,x4), Since chasing the two facts
in this conjunct yieldsS(z1, z1, 1), Q(x1,z1), where the role of

in the right-hand side of is played by the variable;. The fourth
isT(x3,z1) A R(x3,x3,x4), since the chase of the two facts in this
conjunct yieldsS(z1, z1, z3), Q(zs, xz3), where the role of; in the
right-hand side ofr is played by the variables. Theno? is:

S(z1,z1,y) A Q(y,y) A Constanfz,) — ngP(:cl, Z1,%3)
U(z1)
Vv 3:64(’1_'(5617 £C1) A\ R(Ih r1, ZC4))
V 3:633:64(’1_'(:637 £C1) A\ R(CC:;7 3, ZC4))
Note that the fourth disjunct is implied by the third disjtfioy letting

the role ofxs be played byt1). So the third disjunct could be removed,
since we need only keep the more general disjunct. O

The next theorem asserts that the language of quasi-irvisrsightly
simplified in the case of full s-t tgds.

specified by a set of disjunctive tgds with constants.

PrROOF (Hint) Let S consist of the binary relation symbét and
the unary relation symbdr'. Let T consist of the binary relation sym-
bol P’ and the unary relation symbot3 and7”. Let X consist of
the tgdsP(z,y) — P'(z,y), P(z,2) — Q(x). T(x) — T'(x),
T(z) — P'(z,z). Let M = (S, T,X). Itis shown in the full paper
that M has an inverse, but no inverse specified by a set of disjunctiv
tgds with constants. [

THEOREM 4.10. (Necessity of disjunctions.) There is a schema
mapping specified by a finite set of full s-t tgds that has aiguasrse,
but has no quasi-inverse specified by a set of tgds with cotsstand
inequalities.

PrROOF (Hint) Let S consist of four unary relation symbolg;,
P», Ps, P,. and letT consist of six unary relation symbols, S2,
Ri3, Ri4, Ro3, R24. Let X consist of the tgd§31 (:C) — S (CC),
Py(z) — Si(z), Ps(z) — S2(z), Ps(x) — S2(x), along with the
four tgdsP;(x) A Pj(z) — Rij(z), fori € {1,2} andj € {3,4}.
Let M = (S, T, X). Itis shown in the full paper tha¥1 has a quasi-
inverse, but no quasi-inverse specified by a set of tgds waitistants
and inequalities. O

THEOREM 4.11. (Necessity of existential quantifiers.) There is a
LAV schema mapping specified by full s-t tgds that has a quesise,
but no quasi-inverse specified by a set of full disjunctids tgith con-
stants and inequalities.

PrROOF (Hint) Let S consist of a single binary relation symhBb|

THEOREM 4.6. Let M be a schema mapping specified by a finiteand letT consist of two unary relation symbolg andS. Let M =

set of full s-t tgds. IfM has a quasi-inverse, theM has a quasi-
inverse specified by a finite set of disjunctive tgds with uaéties.
Thus, constants are not needed.

Proposition 3.11 tells us that every LAV schema mapping has &
quasi-inverse. The next theorem asserts that disjuncii@sot needed
in the language of quasi-inverses of LAV schema mappings.

(S, T, X) whereX consists of the tgd®(z,y) — R(z), P(z,z) —
S(z). SinceM is a LAV mapping, it has a quasi-inverse by Propo-
sition 3.11. It is shown in the full paper tha#t has no quasi-inverse
that is specified by a set of full disjunctive tgds with conssaand
|nequaI|t|es O

Part (3) of Theorem 4.1 follows from Theorems 4.8, 4.9, 4&@]
4.11, along with Proposition 3.9. Note that Theorems 4.904and

THEOREM 4.7. Every LAV schema mapping has a quasi-inverse4.11 (along with Proposition 3.9) tell us that the result bédrem 4.6

specified by a finite set of tgds with constants and ineqealitThus,
disjunctions are not needed.

4.1 Necessity of the Language

In this section, we exhibit the schema mappings used to drave
(3) of Theorem 4.1, which says that constants, inequalitesunc-
tions, and existential quantifiers are needed in generakpoess a
quasi-inverse. We shall take advantage of Proposition@tarh re-
sults about inverses into results about quasi-inverses.shaé also
show the optimality of Theorems 4.6 and 4.7.

is optimal, in that inequalities, disjunctions, and exisi@ quantifiers
are needed in general to specify a quasi-inverse of a schexpping
specified by a finite set of full s-t tgds. Similarly, Theorems, 4.9,
and 4.11 (along with Proposition 3.9) tell us that the resfilfheo-
rem 4.7 is optimal, in that constants, inequalities, andtexitial quan-
tifiers are needed in general to specify a quasi-inverse éfaschema

mapping.

5. THE LANGUAGE OF INVERSES

The focus in [3] is on inverses that are specified by a finiteofet

THEOREM 4.8. (Necessity of constants.) There is a LAV schemagds. For example, given a schema mappirigpecified by a finite set

mapping that has an inverse, but no inverse specified by af sk$-0
junctive tgds with inequalities.

of s-t tgds, [3] gives an algorithm for constructing a schen@oping
specified by finite set of tgds that is an inverse\dfif and only if there



is an inverse of\ that is specified by a finite set of tgds. If there is an 3. (Construct a full tgdv (X, I') for each prime instancé.)

inverse M’ but there is no inverse specified by a finite set of tgds, then

the algorithm in [3] will not findAM’. The “language of inverses” is
left as an open problem in [3]. This is the question as to wdragliage

is needed to specify the inverse.®, whenM is specified by a finite
set of s-t tgds. The next theorem resolves this open problem.

THEOREM 5.1. Let M be a schema mapping specified by a finite

set of s-t tgds. I\ has an inverse then the following hold.

1. M has an inverseM’ specified by a finite set of full tgds with
constants and inequalities.

2. There is an exponential-time algorithm for producifvg .

3. Statement (1) is not necessarily true if we disallow eitioastants
or inequalities in the left-hand side, even if we allow exisial
quantifiers in the right-hand side (and so allow non-full degden-
cies to specifyM’).

For each prime source atomgenerated in Step (1), Iét, be the
prime instance containing onty. Let, be the conjunction of the
facts ofchase: (1. ). Form a full tgdw (X, I,) whose left-hand side
is the conjunction of), with the formulasConstanz) for each
variablex that appears i, along with inequalities; # x; for
each pairz;, x; of distinct variables that appear in and whose
right-hand side igv.

4. (Constructx’.)

Let >’ consist of each of these formulagX, I'), one for each

prime instancd .

Return M’ = (T,S,%"). O

Assume thatM satisfies the constant-propagation property. Then

the algorithm gives an output. FurthermosgX, I.), as formed in
Step (3), is then a well-defined full tgd with constants aredjiralities,
since every variable in the right-hand side.d®:, I.,) necessarily ap-

In fact, the inverseM’ that the algorithm produces has inequalities Pears in the left-hand side.

only among constants.

EXAMPLE 5.4. LetS consist of a binary relation symb@l. LetT

Part (3) of Theorem 5.1 follows from Theorems 4.8 and 4.9. WVhe consist of a binary relation symbg@), ternary relation symba$, and

M is a schema mapping specified by a finite sefulifs-t tgds, we
show in the full paper that constants are no longer needédthualh
Theorem 4.9 tells us that inequalities are still needed.

We now discuss the machinery used to prove Theorem 5.1.

DEFINITION 5.2. A schema mappingt = (S, T,X), whereX
is a finite set of s-t tgds, satisfies tbenstant-propagation propertf
for every ground instancg, every member of the active domain bf
is in the active domain athase;(I).

unary relation symbal. Let M = (S, T, ) whereX consists of the
tgds:

R(z1,z2) A R(z2, 1) — JyQ(z1,y)
R(x1,22) — JyS(z1,z2,y)
R(:C17£C1) — U(ml)

Then M satisfies the constant-propagation property, since thsecha

Itis straightforward to see tha! satisfies the constant-propagation Of £(z1, z2) is S(z1, 22, ), which contains both of the variables

property precisely if, for each relation symbalin S, the chase of
R(z1,...,zm) with X includes each of the: distinct variablese,,
..., Tm, Wherem is the arity ofRR.

We shall use the following proposition from [3].

PrRoPOSITION 5.3. [3] Every invertible schema mapping that is
specified by a finite set of s-t tgds satisfies the constamagetion

property.

Define aprime atomto be one that contains precisely the vari-

ablesxq, 2, ...,z for somek, and where the initial appearance
of x; precedes the initial appearanceaofif ¢ < j. For example,
P(x1,x2,21,x3,x2) IS a prime atom, bu€(x2,z1) and R(x2, x3)
are not. Note that for every atom, there is a unique renanfingrd
ables to obtain a prime atom. Definpr@me instanceo be an instance
whose only fact is a single prime atom. As with our definitidn/g,

a prime instance is not an instance in the usual sense, buyje af
canonical instance. We now give an algorithm that produnés\erse

if one exists.

Algorithm Inverse(\)

Input: A schema mappingt = (S, T, X)), whereX is a finite set of
s-t tgds.

Output: A schema mapping\t’ = (T, S,>’), whereX' is a finite

set of full tgds with constants and inequalities, abtl is an inverse
of M if M has an inverse. There is no outputAd does not satisfy
the constant-propagation property.

1. (Verify that M satisfies the constant-propagation property.
Check to see if, for each relation symbalin S, the chase of
R(z1,...,zm) with X includes each of the: distinct variables
z1,...,ZTm, Wherem is the arity of R. If not, halt without output.
If so, continue to the next step.

2. (Generate all prime source atoms in lexicographic order.

andz; of R(z1, z2). The two prime source atoms aRéx1,z;) and
R(z1,z2). The two prime instances afg (., »,) = {R(x1,z1)} and
13(11’12) = {R(:El, 1’2)} The tgdw(E, 13(11711)) is

Q(I17y1) /\S(ml,ml,yg) /\U(ml)/\Constan(:cl) (1)
— R(CC17£C1)
The tgdw (2, Ir(z,,2,)) IS
S(z1,x2,y) A Constanfx:) A Constanfzz) A (z1 # x2) (2

— R(z1,z2)

The output of Inverset) is M’ = (T,S,Y’), whereX’ consists
of (1) and (2). O

We show in the full paper that j# is invertible, then the output1’
of the algorithm is an inverse gd¢1. Also, we show that\t’ is the most
general (or “weakest”) inverse, in the sense thatif = (T, S, %)
is another inverse of, thenX” logically impliesY:’.

Proposition 3.9 tells us that every quasi-inverse of anrtitMe sche-
ma mappingM is an inverse ofM. The reader might therefore won-
der why we need both the algorithms Quasilnverse and Inysirsee
the Quasilnverse algorithm will necessarily produce ariis® if the
input is an invertible schema mapping. The answer is thdtindase,
the Quasilnverse algorithm will produce an inverse spetifig dis-
junctive tgds with constants and equalities where disjonstmay ac-
tually appear, even though there is an inverse specified Ibyafiad
non-disjunctive) tgds with constants and equalities thatibverse al-
gorithm will find (an example appears in the full paper).

6. QUASI-INVERSESIN DATA EXCHANGE

Next, we shall describe two desirable properties that avetse”
should possess for data exchange. Here, we use the ternisérive

For example, ifR is a ternary source relation symbol, the atomsloosely, to mean a schema mapping’ that goes in the reverse di-
for R, in lexicographic order, ar®(z1, z1,z1), R(z1,21,22), rection of M. We will then show that quasi-inverses have the two
R(x1, 22, 71), R(%1, T2, T2), R(x1, T2, 23). properties.
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Figurel: M’ and M" arefaithful with respect to M.

First, it is desirable for an inverse to beund Specifically, assume
that M = (S, T, X) is a schema mapping whekis a finite set of
s-t tgds, and assume thatt’ = (T,S,Y’) is an “inverse” schema
mapping. For the moment, assume thatis given by a finite set of
tgds. Suppose that we perform data exchange withby chasing a
ground instancd with X, to obtain a target instandé, denoted by
U = chase:(I).
U with M’ and obtainV’ (i.e., computd/ = chasegy (U)). ThenM’
is soundwith respect taM if the following holds for every choice of
ground instancd: When we redo the original exchange withbut
this time starting fron1”, we obtain asubsebf the facts that are it/
(modulo homomorphic images of nulls). Intuitively, the ukf the
reverse data exchange wit’, followed by a data exchange witht

(i.e.,chase; (1)), does not introduce any new information that cannotfor every atoml’ (1,
be found inU. If, additionally, all the data iV can be embedded

homomorphically intochase:(V'), then no information that is i/
has been lost. We then say thet’ is faithful with respect toM.

EXAMPLE 6.1. Let us revisit the earlier Decomposition example

with a schema mappingt = (S, T, ) whereX consists of the fol-
lowing s-t tgd:
P(z,y,z) — Q(z,y) A R(y, 2).
Let us recall, from Example 3.10, thatl has quasi-inversest’ and
M" specified by the following sefs’ andX" of tgds:
Y {Q(z,y) AR(y,2) — P(z,y,2) }
2" = {Q(x,y) — IzP(z,y,2),
R(y,z) — 3aP(z,y,2) }

extra tuples with nulls. The two instancEsandU-, however, are ho-
momorphically equivalent. It can be shown that this is troiedvery
ground instancé, and thereforeM”’ is faithful with respect toM.

It turns out that it is not an accident thatl has faithful quasi-
inverses. In this section, we show thatAfl is a schema mapping
that is specified by a finite set of s-t tgds and has a quasisay¢hen
M is guaranteed to have a faithful quasi-inverse (and therigthgo
Quasilnverse produces one). ]

Note that nulls may arise when we chdswith a schema mapping
M, and also when we chase the redullwith an “inverse” M’. In
particular, the result of the reverse data exchange mayeauatssarily
be a ground instance, but rather a source instance with tidlsever,
if the inverse is faithful, these nulls do not matter: whenmeéo the
data exchange witiM, we obtain a target instance that is homomor-
phically equivalent to the original resul.

In order to define soundness and faithfulness in the genasa, c
when M’ is expressed by a set of disjunctive tgds with constants and
inequalities, we need to consider an extension of the chasthik
more general language. The standard notion of the chasesczasby
extended to handle théonstantpredicate and the inequalities in the
left-hand side of the tgds i&’. However, when the right-hand side
of a tgd inX’ contains disjunction, we need to use itfisjunctive
chase Chasing with disjunctive dependencies has been considere
before in various contexts [2, 4]; we use a similar notioreh&rhich
we make precise via the following three definitions. Whenrdedj the
disjunctive chase, we do not need to assume a separatioa guarce

We can then perform a reverse data exchange fron@nd a target schema. However, the subsequent definitionseanlts

about soundness and faithfulness will apply the disjuectiiase in
the context where such separation exists.

DEFINITION 6.2. Let¢(x) be a conjunction of atoms that may in-
clude constants and inequalities as in Definition 2.1. Eete an
instance oveConst U Var. Ahomomorphisnt from ¢(x) to K is a
mapping from the variables to values inConst U Var such that: (1)
...,xE)in ¢ we have thal'(h(x1),. .., h(zk))
is a fact in K, (2) for every inequalityr; # x; in ¢, we have that
h(z;) # h(z;), and, (3) for every formula Constgnt) in ¢, we have
thath(x) is in Const.

DEFINITION 6.3 (DISJUNCTIVECHASE STEP). Leto be a dis-
junctive tgd with constants and inequalities of the form:

Vx[p(x) = Byt (x1,y1) V...V Iyptp(Xp, ¥p))]-

Leto; be the tgd with constants and inequalities that is obtaimenhf
o by taking just one disjunct:

Vx[p(x) — (Byihi(xi,yi))]

Let K be an instance oveConst U Var. Assume thakt is a homomor-
phism from¢(x) to K such that for each € {1,...,p}, there is no
extension of. to a homomorphism from(x) A ¥;(x:,yi) to K. We

Let I be the ground instance shown in Figure 1. The result of chasinS2Y thato can be applied td< with homomorphisnt.. Note that this

I with X (i.e., the result of the data exchange wit) is the instance
U shown in the figure. If we now chadé with X’ (i.e., perform

the reverse data exchange witit’), we obtain the source instance

V1. Furthermore, if we now redo the original data exchange with
starting fromV4, the result is identical t&/. In fact, it can be shown

that, for every ground instande the result of redoing the original data

exchange orV; is identical toU. Hence, M’ is faithful with respect
to M.

Consider nowM”. Again, letU be the result of the first data ex-

also means that; can be be applied t& with homomorphism (this
is the non-disjunctive definition of a chase step).

Let K1,..., K, be the instances that result by applying each of
o1,...,0p to K with homomorphisnk. We say thathe result of ap-

plyingo to K isthe se{ K1, ..., K}, and writeK Sk, {Ki,...,Kp}.
DEFINITION 6.4 (DISJUNCTIVECHASE). Let ¥ be a finite set

of disjunctive tgds with constants and inequalities. Tigunctive
chase of an instanck with X is a tree (finite or infinite) that ha®&’

change orf with M. Let Vz be obtained, as in the figure, by a reverse @S @ root and for each nod&”, if K" has childrenk, . ..., Ky, then

data exchange wittM” from U. If we now redo the original data it must be the case thdt”’ 2k {Ki,...

exchange withM starting fromV%, the result is the instandé,. The
instancd/s is different from the target instanéébecausé/, contains

, K, } for somes in X and
some homomorphisia. Moreover, each leak,, in the tree has the
requirement that there is n® in 3 and no homomorphista such that



o can be applied td< with h. When the chase tree is finite we say that THEOREM 6.8. Let M be a schema mapping specified by a finite
the result of the disjunctive chase Af with X is the set of leaves in  set of s-t tgds. IfM has a quasi-inverse, then the schema mapping
the chase tree. obtained by applying the algorith@uasilnvers®n M is faithful with

In the case when the disjunctive tgds are from a sch&na a respect taM.

schemasS, we can chase instances of the fo(th I) whereJ is a

T-instance and is an S-instance. Note that any such chase ree/. CONCLUDING REMARKS

will be finite (since there is no recursion). Our case of ieselis ap- The notion of an inverse of a schema mapping is rather réséjc
plying the disjunctive chase to an instance of the fgm@) where  since it is rare that a schema mapping has an inverse. Wefdtere
U = chase:(I), for some ground instande The result of such chase introduced and studied a more relaxed notion of a quasisavef a
isaset{(U,V1),..., (U, Vi,)} ofinstances wher#i, ..., V,,, areS-  schema mapping. Both inverses and quasi-inverses areabpases
instances. I denotes the s€tV1, ..., V;, }, we shall also say that of a unifying framework for inverses that we developed. Weegan
is the result of chasing/ with >’ and write} = chasey, (U). Fur- exact criterion for the existence of quasi-inverses, ceteptharacteri-
thermore, let us denote By’ = chase:(V) the set of all instancel8”  zations of the languages needed to express quasi-invers@sarses,
that are obtained by chasing, in the standard way, each nreimbé  and results regarding the use of quasi-inverses in dataageh

V with X. Some of the important remaining problems are decision ant co

DEFINITION 6.5. LetM = (S, T, X) be a schema mapping where plexity issues. We have shown that for LAV schema mappings, a
S is a finite set of s-t tgds, and lett’ = (T, S, ') be a schema guasi-inverse always exists. However, the complexity efdacision

mapping where' is a finite set of disjunctive tgds with constants and Prolem for the existence of a quasi-inverse of a schema imgspec-
inequalities. ified by a finite set of s-t tgds (even in the full case) remajpso We

;- . . do not know whether the problem is even decidable. SimilaHg
(1) We say thai\1” is soundwith respect toM if: complexity of the decision problem for the existence of areise of
for every ground instancé over S, if U = chas&(l), V =  aschema mapping specified by a finite set of s-t tgds (evereifuth
chasey (U) andit’ = chase:(V), then there is a homomorphism case) remains open. Again, we do not know whether the protsem
from some member &f into U. even decidable. Another open problem concerns the optinalthe
(2) We say that\t’ is faithful with respect taM if: algorithms Quasilnverse and Inverse. Given a schema mgspici-
for every ground instancé over S, if U — chase;(I), V = fied by a finite set of s-t tgds, these algorithms produce asaheap-
chasey (U) andi{’ = chase:(V), then there is some member of

ping that is exponential in the size of the input schema nrappiVe
U’ that is homomorphically equivalent 6. do not know whether the size of a quasi-inverse is necegsajio-

nential, and similarly for an inverse. If it turns out thaeta is always

Regarding the above definition, note that in the case whedghe
pendencies i’ have no disjunction, the s&t of source instances
becomes a singleton set. Thus A’ is faithful, chasing withy' re-

a polynomial-size quasi-inverse, this raises the quesifdinding a
polynomial-time algorithm that can produce it. Similartile same
question arises for inverses.
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PROPOSITION 6.6. [Universality of “chase of the chasellet M =
(S, T, X) be a schema mapping wheXeis a finite set of s-t tgds and  [5]
let M’ = (T,S,Y') be a schema mapping whe¥ is a finite set
of disjunctive tgds with constants and inequalities amoogstants.
Moreover, letl be a ground instance oves. If U = chase:(I) and (6]
V = chasey (U) then for everyK such that(7, K) € Inst(MoM'),
there isV € V such that there is a homomorphism fréfnto K. 7

The next theorem shows that every quasi-inverse specifietishy
junctive tgds with constants and inequalities among cosia sound.
We have shown earlier that this language is sufficient toesgpguasi-
inverses of schema mappings that are specified by s-t tgéssddond
theorem states that, furthermore, every quasi-inversairad by ap-
plying the Quasilnverse algorithm is faithful. The proofdlese two

results will be given in the full paper. [10]

THEOREM 6.7. Let M be a schema mapping specified by a finite
set of s-t tgds. 1fM’ is a quasi-inverse of\ that is specified by
a finite set of disjunctive tgds with constants and ineqgigsliamong
constants, theiM’ is sound with respect taA1.



