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ABSTRACT
Background knowledge in form of ontologies is an important source
of information for many tasks in the semantic web, e.g., ontology
matching, ontology construction and editing, natural language pro-
cessing. In particular, ontology matching and integration can ben-
efit from background ontologies as semantic relationships may be
discovered which cannot be identified otherwise. In existing ap-
proaches, the background ontology has to be provided often by
the user. Therefore, we present an approach that uses background
knowledge for matching; but in contrast to other approaches, our
approach is able to identify appropriate background ontologies au-
tomatically. We implemented this approach in our matching frame-
work GeRoMeSuite and tested it with several data sets from the
Ontology Alignment Evaluation Initiative (OAEI) campaign. The
evaluation shows that the use of background knowledge improves
the result in most cases and that our ontology discovery process is
able to find appropriate background knowledge to bridge the gap
between the two input ontologies.

Categories and Subject Descriptors
H.2.1 [Database Management]: Logical Design—Data models;
H.2.1 [Database Management]: Heterogeneous Databases

General Terms
Algorithms

Keywords
Ontology Matching, Background Knowledge, Schema Matching

1. INTRODUCTION

Ontology matching is the process of aligning two ontologies by
detecting semantic relationships between them. Various methods
and systems [21] to automatically discover these relationships have
been proposed. Most of these methods concentrate on features
encoded in the ontologies (e.g., lexical and structural methods).
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While these methods deliver good results for some cases, they are
limited to the information contained in the input ontologies. There-
fore, background knowledge in form of an additional ontology may
be useful to detect semantic relationships [7].

It has been shown in previous work that using an ontology as
background knowledge can improve the match result [4], but the
selection of the background ontology is obviously an important
step. While earlier work either relied on the user to provide such an
ontology [4], or used very general upper ontologies (e.g., SUMO,
[14]), our approach is able to select the background ontology auto-
matically. The ontology can be selected from a repository or it can
be retrieved from the web. A similar approach to ours for selecting
ontologies as background knowledge has been proposed in [19], but
it has two main drawbacks: (i) background ontologies are selected
for each pair of concepts to be matched, which requires significant
additional effort if the ontologies to be matched are large; (ii) the
ontology selection relies on the ranking of external search engines
which is based on popularity rather than on quality of the ontolo-
gies. In contrast, in our approach we select background ontologies
for the pair of ontologies to be matched, and not for each pair of
concepts; thus, the expensive steps of finding ontologies and com-
puting anchor matches have to be done only once. In addition,
our method uses an adaptable measure for the similarity between
the input ontologies and the background ontologies. The ranking
of external search engines is only used for an initial preselection
phase, the final selection uses our own measures.

The contribution of this paper is a method for finding background
knowledge in the form of ontologies. The method constructs a local
repository of ontologies which can be used as background knowl-
edge in ontology matching or other ontology engineering tasks. If
the repository does not yet contain suitable ontologies for a given
task, the method will search the web for new ontologies, thereby
extending the knowledge of the repository. Our method applies an
efficient and scalable solution based on information retrieval tech-
niques. Ontologies are translated into text documents by extracting
concept names, comments and labels, but also structural features of
ontologies are taken into account.

The approach is validated by a systematic evaluation of our sys-
tem. As the evaluation gives some interesting results about the fea-
tures of our approach as well as about the applicability of back-
ground ontologies in matching, the evaluation results are useful in
general for further research in this direction.

The structure of the paper is as follows. The next section presents
our approach for the automatic selection of the background on-
tology. In section 3, we will discuss the integration of the ap-
proach into our matching framework GeRoMeSuite [12]. Section
4 presents the evaluation results. Related work is discussed in sec-
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Figure 1: Selection of the background ontology

tion 5, before we conclude our paper and point out future work.

2.SELECTING BACKGROUND KNOWLEDGE

A background ontology should reduce the semantic gap between
the source and target ontology. In some cases, the user knows
which ontology is suitable for a matching task. However, in gen-
eral, it is unlikely for a user to know which ontology to use; or, the
matching is performed in a fully automatic scenario. Therefore, the
matching system must be able to select an ontology to be used as
background knowledge automatically.

An overview of our approach is given in Fig. 1. We select on-
tologies as background knowledge from a local repository using
two queriesQS andQT representing the input ontologies S and T .
For both queries, we will get a ranked list of ontologies with a sim-
ilarity score. We select those ontologies as background ontologies
which have the highest combined similarity to both input ontolo-
gies. The details on the construction of the queriesQS andQT and
the similarity measure are given in section 2.1 and 2.2 below.

In case of no appropriate ontology is found in the local reposi-
tory, we generate a single query to query a search engine to retrieve
ontologies from the web. Only a single query is used because the
external search engines just return a ranked list of results, without
similarity scores. Thus, a combination of similarity scores as in the
case for the local repository queries is not possible. The strategies
for generating the web query will be discussed in section 2.3.

2.1 Querying the Local Repository

The selection approach should be automatic and efficient. It is
not possible to analyze all the stored ontologies in detail. To per-
form this task, we apply information retrieval (IR) techniques. Ba-
sically, we ask the question which ontology looks similar to the
given ontology. This is done by looking for an ontology in the
repository that has a very high keyword similarity both with the
source and target ontology. With the vector space (VS) informa-
tion retrieval model [20], it is possible to check whether a docu-
ment looks similar to another document in an efficient and scalable
way. We apply the VS retrieval model for the search in the local
ontology repository by using Apache Lucene.

The ontologies to be added to the repository are translated to a
corresponding background document (BGdoc). A BGdoc is created
by extracting information such as concept names, comments and
labels from the ontology and applying some text processing, like
stemming and tokenization. While selecting an ontology from the
repository as background knowledge, we would like to choose an
ontology that is richly structured, as more relationships can be in-
ferred from such an ontology. Hence, we collect several structural
features and calculate a boosting factor for each of the ontologies.
This value is also stored in the corresponding BGdoc. When the
document is indexed by Lucene, the lexical portion is used as the
content of the Lucene Document object and the calculated boosting

factor is used as the Lucene DocBoost value. The current imple-
mentation of boosting prioritizes an ontology that has a higher class
hierarchy. We also tried other functions to compute the boosting
value, but the selected function performed best.

For the given source and target ontology separate BGdocs are
created. The lexical portion of the BGdocs are used to construct
two separate queriesQS andQT , which are executed using Lucene
to get the similarity assessments wrt. all the stored documents.

2.2 Similarity Measure

For the source and target ontologies, we compute a ranking along
with the similarity measures of the ontologies that are stored in the
index. For a background ontology O, the similarity measures with
the source and target ontologies are sim(O,S) and sim(O, T ),
respectively. We want to select an ontology that (i) is most sim-
ilar to S and T (i.e., maximize sim(O,S) + sim(O, T )), (ii)
is similar to both ontologies, and not only to one (i.e., minimize
|sim(O,S) − sim(O, T )|), and (iii) there should be a minimal
similarity of the ontology to both S and T (i.e., thresholds for
sim(O,S) and sim(O, T )). Thus, for the set of candidate back-
ground ontologies B, we want to find O ∈ B which maximizes
(α(sim(O,S) + sim(O, T ))− β|sim(O,S)− sim(O, T )|).

The objective of this equation is to select an ontology that is sim-
ilar to both the source and target ontologies and in case there is a tie,
higher emphasis is given on the individual similarities (i.e., α > β).
Using a very high value for α does not perform well, as this may
prefer ontologies that are very similar to one of the input ontologies
and highly dissimilar to the other. Hence, we set α to a value only
slightly higher than β. Furthermore, the threshold for the required
minimal similarity has to be defined. Higher thresholds will only
select ontologies that have very high keyword similarity with both
the source and target models; but, such an ontology may not exist.
On the other hand, with a lower threshold, it is possible to select
an ontology that overlaps only in certain parts with the source and
target ontologies. As a result, we initially set this threshold to a
higher value. This value gets readjusted by a minimization factor
to a lower value in subsequent attempts. Between two attempts
to select an ontology from the repository, the web is searched for
ontologies and new ontologies are added to the repository as ex-
plained below. Lowering the threshold will have no impact on a
good background ontology that is added to the repository between
two attempts as it should have a similarity higher than the thresh-
old. The initial value for the threshold and a lower bound are based
on our evaluations and set to 0.4 and 0.1, respectively. During the
evaluation, we will show that even if we use an irrelevant ontology,
it does not deteriorate the result by much. On the other hand, any
background ontology may allow us to find correspondences that
cannot be found by directly matching the source and the target.

2.3 Web Query

If no ontology in the repository satisfies the selection criteria, we
need to develop a way of adding more ontologies to the repository.
We use several search engines to find new ontologies in the web.
On the one hand, we use standard web search engines and query
specifically for OWL and RDF files (only Google supports searches
for these file types). On the other hand, we also use ontology search
engines such as Swoogle [8] and Watson [6]. Like [19], we made
the experience that the top results returned by these systems are
often very general ontologies (e.g., FOAF), which are not helpful
as background knowledge in ontology matching.



Both types of search engines need a set of keywords as input.
However, the APIs of the systems have a limited query length and
increasing the number of keywords in the query reduces the num-
ber of results. Thus, we need to select keywords from the source
and target ontologies that represent them best. The selection of key-
words is based on the term frequency (tf ) and the inverse document
frequency (idf ) measures from information retrieval [20].

(tf · idf)w,D =

(
tfw,D

tfw,D + k · |D|

)
·
(
log
|C|
dfw

)

tfw,D is the number of occurences of a term w in a document D,
|D| is the size of the document, and k is a squashing parameter.
|C| is the size of the document collection and dfw is the number of
documents in which the term w occurs. Note that in the left part of
the tf · idf formula, we use a variant that squashes repeated occur-
rences of a term w in the document D, i.e., the first occurrence has
a higher weight than the following occurrences of the term [13]. We
use 2 as value for the squashing parameter k in our implementation,
which favors smaller ontologies.

If the input ontologies contain terms that are not yet in the local
repository (e.g., ontologies from a new domain have to be matched)
the idf part of the formula above cannot be used to find good key-
words and we can rely only on the term frequency in the input on-
tologies. In that case, we might have to query the search engines
several times with different keywords, and might have to download
more ontologies than we need for matching. However, this enriches
at the same time our local repository and as a consequence, the se-
lection process of keywords in subsequent matching tasks is im-
proved. Please note that the final selection of ontologies will be
made by the query to the local repository, as described above.

Our current implementation tries the following four strategies to
formulate a query. All of these approaches select keywords from
the BGdoc representation of the corresponding ontology.

Top-k strategy based on (tf · idf): We select a certain number of
keywords which have the highest values for (tf · idf)w,D .

High-idf strategy: A keyword, which is specific to a document
and rare in the document collection, will have a high idf value.

Concept name based strategy: Sometimes selecting keywords
from the bag of words is not very useful, as these terms are tok-
enized and stemmed. Querying with only the original terms pro-
duces in some cases better results. Hence, we select keywords
based on (tf · idf) only if a keyword exists as an original term
(concept name or label) in the input ontologies.

Random strategy: This is an optimistic way of generating web
queries using random keywords from the input ontologies. Al-
though this strategy might not find relevant ontologies, the repos-
itory should be rich with many ontologies and the search for new
ontologies should not fail.

We try each of the strategies with different numbers of keywords
from the input ontologies. As an example, we start by applying
the top-k strategy with k = 5, i.e., we choose five words from both
source and target ontologies. Moreover, we use a set of filters on the
selected keywords, e.g., we do not allow a word and its stemmed
root to co-exist in the web query. Finally, we apply the query to
search engines and download the found ontologies and add them
to our local repository. If we cannot retrieve an appropriate back-
ground ontology with the top-5 strategy we apply the top-k strategy
with k = 3 and k = 2. We apply a similar approach for the other
strategies as well.
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Figure 2: Matching using a background ontology

3. SEMANTIC MATCHING

The presented matching approach has been implemented in our
matching framework of GeRoMeSuite [12]. GeRoMeSuite supports
the development of model management operators and is neither
limited to ontologies nor to schema matching. The generic ap-
proach of GeRoMeSuite favors heterogeneous matching tasks (e.g.,
matching XML Schema and OWL ontologies) [18], but also ‘pure’
ontology matching is possible [17]. The tool provides several well
known matching strategies for lexical and structural matching. Com-
plex matching strategies using several individual matchers can be
easily composed in a graphical user interface.

The presented approach using background knowledge is imple-
mented as a new matcher component and can be easily integrated
into new or existing match configurations. The matcher can also
make use of existing matching strategies already defined in GeRoMe-
Suite, which is the case for anchor matching with the background
ontology and for direct matching. The overall matching strategy
using background knowledge has five steps (cf. Fig. 2):

1. Compute the direct alignmentAdir between S and T : we use
a match configuration DM (Direct Match) which is based on the
configuration used in OAEI 2010 [17].

2. Use the match configuration DM to compute the anchor
matches: for each background ontology O, one alignment AO,S

between O and S and another alignment AO,T between O and T
is computed.

3. Derive semantic matches: for each pair of correspondences
fromAO,S andAO,T , determine whether there exists a relationship
(i.e., equivalence, subsumption) between the model elements from
O. We use standard reasoning over subsumption and equivalence
relationships inAO,S ,AO,T andO. All the correspondences found
in this way are called semantic matches and are stored in Asem.

4. Aggregate the results of Adir and Asem for all selected back-
ground ontologies by creating the union of the alignments to get
the final result set.

5. Consistency check: finally, we apply logical consistency checks
defined by validation rules as in ASMOV [11] on the aggregated
result to remove inconsistencies.

With the help of automatic selection and semantic matching, the
approach returns a richer set of correspondences between source
and target ontologies. As a side of effect of the approach, we can
provide semantic relationships in our match result, i.e., subsump-
tion relationships as well as equivalence relationships, although the
anchor matches and direct match contain only equivalence relation-
ships. Of course, also subsumption relationships could be present
in AO,S , AO,T , and AS,T , but it is not required for deriving sub-
sumptions in the final result. In case automatic selection fails to find
an ontology, the semantic matching returns the direct match Adir

as a result. Also, in case the automatic selection finds more than
one ontology as background knowledge, they are used for semantic
matching independently and a unified result set is produced.



4. EVALUATION RESULTS

4.1 Metrics and Data Set

Precision and recall are the common measures for the quality
of an alignment, but they are not suitable for semantic alignments,
which include subsumption relationships [9]. Two alignments may
share the same precision and recall value, although one might be
very close to the expected result and the other quite distant from
it. To overcome this weakness, semantic precision and semantic
recall are proposed [9]. Let A be the computed alignment and
R the given reference alignment. The basic idea of the proposed
semantic measures is to take into account the relationships which
can be derived from the computed and the reference alignments.
The α-consequence of an alignment A (same for R) contains all
the correspondences that can be inferred from the correspondences
in A, and is written as Cn(A) (or Cn(R)). Semantic precision
(Psem(A,R)) and semantic recall (Rsem(A,R)) are defined as

Psem(A,R) =
|A ∩ Cn(R)|
|A| Rsem(A,R) =

|Cn(A) ∩R|
|R|

The semantic f-measure (Fsem(A,R)) is defined as the harmonic
mean of Psem(A,R) and Rsem(A,R).

We used data sets from the benchmark and conference tracks of
OAEI. We merged reference alignments from OAEI 2010 (which
contain only equivalences), from the oriented track in OAEI 2009
(which contain only subsumptions), and the semantic reference align-
ments provided on the CSR web site1 for the conference track. We
divided the benchmark data sets into nine groups: the easy tasks
1xx, seven groups in the 2xx series grouped according to their dif-
ficulty, and the real world ontologies in 3xx.

4.2 Results

The evaluation addresses the following issues:
1. Number of background ontologies: We analyzed the impact
of the quality of the background ontology on the match results. We
used relevant and irrelevant ontologies as background knowledge
and checked how the match results change if one or several back-
ground ontologies are used.
2. Performance of automatic selection: We evaluated how vari-
ous parameters control the quality of automatic selection and how
automatic selection controls the quality of the match result.
3. Overall performance: The overall performance of the matcher
is compared to the direct match result (Adir).
4. Runtime performance: Finally, we take a look at the runtime
required by the matcher.

As matcher for computing the direct match Adir and the anchor
matches AO,S and AO,T we used our matching tool GeRoMeSuite
[12, 18] with the configuration used for OAEI 2010 [17], which
produced a result in the top 5 for the benchmark track. The con-
figuration favors precision over recall, i.e., the result should not
contain too many false positives. This is beneficial for a matching
approach using background knowledge as we will explain below.

1. How many ontologies should be used as background knowl-
edge? We first compared the results of the semantic matcher us-
ing only one or several background ontologies. In the case of the
conference track of OAEI, we used 11 ontologies as background
knowledge which were not used as source or target ontology of
the present matching task (cf. fig. 3). Aggregated Recall is the re-
call which can be achieved if we take the union of the alignments
1http://www.icsd.aegean.gr/ai-lab1/csr/
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Figure 3: Aggregated vs. Max Recall in Conference Track

across all background ontologies. Max Recall is the maximum re-
call value that can be achieved when using only one ontology as
background knowledge. It is easy to see, that the aggregated result
is in most cases significantly better than the result from a single
ontology. Thus, in general no single ontology can achieve the same
result as the aggregated result of several ontologies as background
knowledge. These results are in line with the results of [3].

Using additional background ontologies obviously increases re-
call, but false positives might be added to the match result and harm
precision. The question is whether the f-measure for the match re-
sult decreases if we use many ontologies (including also irrelevant
ontologies). We evaluated this by using ontologies as background
knowledge which have not been chosen by our automatic selec-
tion approach. As we use a ‘pessimistic’ matcher which aims at a
high precision rather than a high recall, the f-measure is not sig-
nificantly decreased. Only few matches with irrelevant background
ontologies will be introduced by the anchor matches; therefore, the
overall result has still a high f-measure which is comparable with
the f-measure of the direct match result.

To summarize, we have shown that one should use more than
one ontology as background knowledge. As a compromise between
result quality and runtime, we use atmost three ontologies.

2. What is the performance of automatic selection? The au-
tomatic selection procedure should select ontologies, which pro-
duce the highest f-measure for the given matching task compared
to other ontologies available as background knowledge. This is
the upper bound for the automatic selection procedure. The lower
bound is the comparison of the match result using the selected
background ontology with a randomly chosen background ontol-
ogy. To simulate a random choice, we computed the average f-
measure over all background ontologies stored in the repository.

Fig. 4 shows the semantic f-measure of the match results for
the benchmark and conference tracks of OAEI. For the benchmark
track, we computed the semantic f-measure using all other bench-
mark ontologies as background ontology separately and took the
average and maximal semantic f-measure. Then, we compared
these two values with the computed match result using the auto-
matic selection procedure. As we select at most three ontologies,
we aggregate the results for the selected background ontologies
(take the union of the alignments). For group 4, 7, 8, 9, the re-
sult is significantly higher than the average result and very close to
the maximum attainable semantic f-measure, as a ‘bridging’ ontol-
ogy is chosen as background ontology, i.e., an ontology that can
build a semantic bridge between source and target ontologies. For
all other groups, the direct match result is already very good (f-
measure > 90%), so the scope of improvement is not too high.
For the benchmark track, we can conclude that automatic selection
performs very well, but we must admit that the artificial structure
of the matching tasks is advantageous for our approach (only in
this artificial setting, there are ontologies, which are exact semantic
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Figure 4: Automatic Selection for Benchmark and Conference

bridges between the source and target ontology).

The results for the conference track (lower part of fig. 4) with
real world ontologies underlines the advantages of our approach.
For each of the tasks, we computed the semantic f-measure using
all other conference ontologies as background and computed the
average and maximum of the individual results. In 6 cases, we
had a higher result than the average result and in 4 cases, lower
values. The problem with each of those 4 cases is that there was
no obviously good background ontology for the matching task. As
a result, our approach selected multiple ontologies. Among the
selected ontologies, one ontology performed bad and incorporated
several false positives, which descreased precision. Although the
recall increased, the drop of precision resulted in the aggregated
f-measure to be lower than the average result.

During the evaluation, we made two observations:
A. Automatic selection does not prefer large ontologies: One of
the concerns of this approach is that it might prefer large ontologies
because they will share many keywords with the input ontologies.
In those cases, it might be possible that a large ontology will be pre-
ferred over more relevant small ontologies. Our method automat-
ically retrieved some large ontologies from the web (like SUMO).
However, the automatic selection method selected almost always
(except for one case) an ontology from the benchmark or confer-
ence track as background ontology. This shows that the generated
BGdocs and the similarity function implemented in Lucene to com-
pare BGdocs work very well. Thus, automatic selection strictly
tries to select ontologies that are more relevant, and the concern of
selecting larger ontologies is not apparent from the test cases.
B. The richness of the repository impacts the selection proce-
dure: It is obvious that with more ontologies in the repository, we
have a higher chance to choose a good background ontology. But
also the similarity values and thereby the ranking of existing on-
tologies changes if more ontologies are added to the repository: the
value of idf changes with adding new ontologies and automatic se-
lection performs more precisely.
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Figure 5: F-Measure in Benchmark and Conference Track

3. What is the overall performance? We compare the overall
performance of our approach with a direct matcher that does not
use background ontologies (the configuration of GeRoMeSuite for
OAEI 2010). Fig. 5 shows the results of the direct matcher and the
presented approach. As the direct matcher computes only equiv-
alence relationships, we added a simple reasoning procedure over
the computed equivalence relationships and the axioms (subsump-
tion and equivalence) in the input ontologies. As it can be seen in
the upper part of fig. 5, the direct matcher computes already very
good results for the five easy groups in the benchmark track. As
there is not much room for improvement, the semantic matcher
performs only slightly better in these cases. In the more difficult
tasks in groups 4, 7, 8, and 9, the benefit of background ontologies
is more visible as the f-measure can be increased significantly.

The lower diagram in fig. 5 shows the results for the conference
track. The result is improved in 6 cases; in 4 cases the f-measure
is increased by more than 0.1. On the other hand, in 4 cases the
f-measure is slightly decreased. As discussed before, this is caused
by one background ontology in the aggregated result introducing
many false positives. For future work, we will consider these prob-
lems in more detail; first ideas to avoid too many false positives
include a new aggregation method (e.g., majority vote instead of
taking the union) or a stricter method for alignment validation.

Compared to the results of the oriented track in OAEI 2009, we
achieve a similar or higher performance than the best matching sys-
tems in this track. However, we have to note that the measures used
are different: the oriented track in OAEI 2009 just evaluated sub-
sumption relationships, no equivalence relationships, and thus, did
not use the semantic precision and recall. Therefore, we do not
show here diagrams comparing the measures. For the benchmark
track, we also achieve on average an f-measure of slightly more
than 0.9 (similar to ASMOV [11], the best system in this category).
For the conference track, we achieve in many tasks a better perfor-
mance than the machine-learning based approach of CSR [22].

In general, the approach works well if the ontologies to be matched
are semantically different such that a background ontology can be
used to detect new relationships. If the source and target ontology
are more similar to each other than to any other background ontol-
ogy, matching using background ontologies should not be applied.

4. What is the runtime performance of the approach? As we



align three pairs of ontologies, we need at least the triple runtime of
a direct match approach. The overhead for constructing the back-
ground documents, querying Lucene, etc. is not very high (about
2 seconds for tasks in the benchmark track, compared to about 10
seconds for matching one pair of ontologies directly, using a stan-
dard PC with 2GHz CPU and 2 GB RAM). The approach scales
also to larger ontologies with several thousands elements as the in-
formation retrieval techniques, which are at the core of our back-
ground knowledge selection approach, are made for large docu-
ments and large document collections.

If we have to query the web, the runtime of the system is not any-
more under our control as it depends on many factors, e.g., response
time of the search engines, download time for the ontologies, etc.

5. RELATED WORK

The closest work of this paper is done in [19] which uses multi-
ple, automatically selected ontologies as this increases the coverage
of the background knowledge. To detect a relationship between a
pair concepts, they create a query for Swoogle [8] to retrieve mul-
tiple background ontologies. The main problem of this approach is
that background ontologies are searched for every pair of concepts,
which is very inefficient if thousands of pairs have to be matched.

Background knowledge in the form of a domain ontology is used
in [4]. The approach is similar to our semantic matching method
introduced in section 3 as it also matches the input ontologies with
the background ontology and then composes the computed anchor
matches to derive new relationships. However, the background on-
tology is provided by the user. In a following work [3], the benefit
of using multiple ontologies as background knowledge is studied;
the results are similar to ours.

Upper ontologies (e.g., WordNet, SUMO-OWL) are also applied
as background knowledge [14], but there is no significant improve-
ment as domain specific relationships cannot be detected. S-Match
is a semantic matcher that uses WordNet senses as a source of back-
ground knowledge [10]. In this approach, the concept names are
translated to logical formulas between their constituents, which are
mapped to the corresponding WordNet senses. As for matching
with upper ontologies, the ontologies may contain domain specific
knowledge, which are not covered in WordNet.

Information retrieval techniques have been also applied in ontol-
ogy matching [5, 16]. The basic idea is to convert each concept into
a virtual document with a number of fields that encode the struc-
tural, lexical and semantic information associated with that con-
cept. Each virtual document is represented as a term vector; and
a match between two models is computed using cosine similarity
between two term vectors.

Semantic search engines such as Swoogle [8] or Watson [6] sup-
port keyword queries to find ontologies, as we use them also in our
approach. Searching for similar ontologies of a given ontology is
not directly supported. Other semantic search engines (e.g., Sindice
[15]) are focused on finding individual objects or triples in linked
data rather than complete ontologies. An approach based on query
expansion of given keywords to find ontologies is presented in [2],
but the system does not include a ranking mechanism. An approach
for ranking of ontologies based on structural features is presented
in [1], but the ranking is done only wrt. to keywords given by a user
and is not based on the similarity to other ontologies.

6. CONCLUSION

Previous work on ontology alignment has introduced ideas to
harness background knowledge given in the form of domain knowl-
edge encoded in an ontology. However, the problem of selecting
an appropriate ontology has been so far ignored or upper ontolo-
gies were used that often are not appropriate for matching detailed
domain ontologies. In this work, we have presented a novel ap-
proach for automatically selecting background knowledge from a
local repository. Our approach does neither favor general upper on-
tologies nor too specific ontologies that only match one of the two
input ontologies. Moreover, the repository of background knowl-
edge ontologies is successively built and expanded while more on-
tology alignment tasks are handled by the system.

The evaluation has shown that our approach improves the direct
match result in many cases significantly. We have shown that using
more background ontologies improves the results, and that even
selecting a bad ontology as background knowledge usually does
not harm the results. For future work, we want to combine this
approach for semantic matching with other approaches semantic
matching, e.g., based on machine learning.
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