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Abstract. The Linking Open Data (LOD) project is an ongoing effort
to construct a global data space, i.e. the Web of Data. One important
part of this project is to establish owl:sameAs links among structured
data sources. Such links indicate equivalent instances that refer to the
same real-world object. The problem of discovering owl:sameAs links
between pairwise data sources is called instance matching. Most of the
existing approaches addressing this problem rely on the quality of prior
schema matching, which is not always good enough in the LOD scenario.
In this paper, we propose a schema-independent instance-pair similarity
metric based on several general descriptive features. We transform the
instance matching problem to the binary classification problem and solve
it by machine learning algorithms. Furthermore, we employ some transfer
learning methods to utilize the existing owl:sameAs links in LOD to
reduce the demand for labeled data. We carry out experiments on some
datasets of OAEI2010. The results show that our method performs well
on real-world LOD data and outperforms the participants of OAEI2010.

Keywords: Linking Open Data, instance matching, similarity matric,
machine learning, transfer learning

1 Introduction

Linked Data[4] is a way to construct a global data space, the Web of Data, by
interconnecting many structured data sources within the Linking Open Data3

(LOD) project. These data sources are published under the Resource Description
Framework4(RDF). Each of them may contain millions of RDF triples.

The main idea of Linked Data is to construct typed links between differ-
ent data sources. Such links describe the relationships between things so that
users can browse data among sources by navigating along the links and agents
can provide expressive query capabilities over the data on the web just like a

3 http://linkeddata.org/
4 http://www.w3.org/RDF/
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local database. An important link is owl:sameAs5 which indicates that the t-
wo instances it links refer to the same real-world object. Different data sources
may have different emphases in describing things. Various descriptions can be
aggregated according to the owl:sameAs links.

Currently, there are more than 300 data sources in LOD while there were
only twelve of them in 2007 when the project started. As more and more data
sources emerge, there is an urgent demand to provide owl:sameAs links from
the new data sources to the existing ones. At the same time, the existing links in
LOD are not as extensive as one would hope[17]. Instance matching is a practical
idea for constructing such links. In general, the existing approaches for matching
instances in LOD can be divided into two types. One is based on rules and the
other is based on the similarity metric of instance pairs. Most of these methods
do not always work well in the LOD scenario since they depend on the result
of property matchings. Property matching links the properties from different
data sources which have similar semantics such as foaf:name and dc:title.
Property matching is not trivial since the data sources usually design their own
ontologies to describe things. Furthermore, we noticed that although some prop-
erties in heterogeneous ontologies can not match, they have some connotative
relationships. Their values may be worth considering for instance matching. For
example, Freebase6 says that the fb:profession of Steve Jobs is “Chief Execu-
tive Officer”and his fb:place of death is “Palo Alto”, whereas DBpedia7 says
his dbp:residence is “Palo Alto California”and the information about “Chief
Executive Officer”is in the text of the dbp:abstract. Such information will be
ignored in property matching based methods, although it could be significant
for human beings to judge whether the two Jobses match. We are inspired to ex-
plore the “common-sense ”used for matching instances. The goal of this paper is
to develop an automated instance matching method that is “common”and pro-
vides high accuracy. Such method should be independent of property matching
to achieve “commonality”.

In this paper, we employ machine learning models for instance matching
based on some similarity metrics of instances. The matching instance pairs may
have some common features in the similarity metrics of each pair. For exam-
ple, two matching instances may share some significant words such as “Palo
Alto”and “Chief Executive Officer”which we mentioned above, while the non-
matching ones may not. Sharing some significant words is a common feature of
the matching instance pairs here. We design a similarity vector independent of
property matching to represent such features. Based on this vector, we train a
learning model to classify the instance pairs as matching or non-matching. To
minimize the demand for training data and promote the performance, we try to
use existing instance matching information in LOD for help. A transfer learning
method is applied to implement this idea.

5 http://www.w3.org/TR/2004/REC-owl-semantics-20040210/#owl_sameAs/
6 http://www.freebase.com/
7 http://www.dbpedia.org/
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We tried our approach on real LOD data sources which were chosen for
IM@OAEI20108. Our performance is better than the participating teams’. An-
other comparative experiment shows that the existing matching information can
really help matching instances from the new data source pairs.

The following technical contributions are made:

– We utilize the values of non-matching properties for instance matching. Such
values can be useful but are usually ignored by the existing instance matching
approaches.

– We propose a novel approach for instance matching which is independent of
property matching with high accuracy.

– We use existing owl:sameAs links to help match instances. Due to the het-
erogeneous ontologies constructed by various data sources, such information
is hardly utilized in the existing instance matching approaches.

The remainder of this paper is structured as follows. Section 2 gives some
definitions about instance matching and an overview of our proposed approach.
Section 3 describes the feature extraction process. The selection of machine learn-
ing models is discussed in Section 4. Experimental results on the LOD datasets
from LOD are reported in Section 5. Some related work is discussed in Section
6. Finally, Section 7 concludes this paper and discusses future work.

2 Definition and Framework

2.1 Problem Definition

An instance consists of some property-value descriptions about a real-world ob-
ject. A pair of distinct instances a and b match if they refer to the same object,
denoted by (a, b) ∈ R. In LOD, owl:sameAs links are established between match-
ing instances. When establishing such links, we usually consider a pair of data
sources each time.

Definition 1 (Instance Matching). Given two data sources A and B as in-
put, the goal of instance matching is to compute the set M = {(a, b)|(a, b) ∈
A×B, (a, b) ∈ R}.

According to the definition of instance matching, the problem of finding matching
instance pairs can be formalized as a binary classification problem.

Definition 2 (Instance Matching as Binary Classification). Given two
data sources A and B, the goal of instance matching is to find a classifier C :
(a, b)→ {−1, 1} for (a, b) ∈ A×B such that C maps the non-matching instance
pairs to class −1 and the matching ones to the class 1.

The binary classification problem can be solved by traditional machine learning
algorithms, which require multidimensional features as the input. In the problem
of instance matching, we extract a feature vector from each instance pair (a, b).

8 http://oaei.ontologymatching.org/2010/im/index.html
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Fig. 1: Overview of the framework

Definition 3 (Similarity Vector of Instance Pairs). The n-dimensional
feature vector v of an instance pair (a, b) consists of n various similarities of
instance a and b. Dimension vi = di(a, b), where di is the ith similarity metric
function for (a, b).

The feature vector of an instance pair indicates the similarities of the two in-
stances, which are computed by several metric functions. Some existing instance
matching (record linkage[11]) approaches also extract such a feature vector for
classification, while each di computes the similarity of two values, one from
each instance, that belong to a pair of matching properties (fields). Unlike
these approaches, our similarity metric functions are based on the property-
independent literal information extracted from each instance. The literal infor-
mation l = {l1, l2, . . . , ln} is similar to a virtual document generated from an
instance. For an instance pair (a, b), a similarity metric function di maps the
extracted literal information pair (lai , l

b
i ) to a real number in the range of [0, 1].

2.2 Framework

The framework of our approach is shown in Figure 1. We extract literal infor-
mation for each instance from the property-value descriptions. To get sufficient
literal information for the similarity metrics, we conduct the following prepro-
cessing for each property-value pair:

– A real-world object may be represented by an instance or a piece of text.
For consistency, if the value is a URI which represents another instance, we
will replace it by the label of that instance. Most of the instances have a
label value which usually belongs to the property rdfs:label or some other
common properties[10]. If the label of an instance is unavailable, we can
replace it by its text description.

– We will also replace each property by its label. If the label is unavailable, we
will use the last token (normalized) of the URI instead, e.g., “place of death
”for fb:place of death.
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For data sources A and B which contain |A| and |B| instances respectively, there
are |A|× |B| possible instance pairs. This is unacceptable since both |A| and |B|
can be one million or even larger. We use a simple pre-match method to sift
the possible matching pairs. An inverted index is built for instances of some key
words in their descriptions. The instances sharing the same keys in the index
are considered to be candidate matching instances. Our preliminary experiments
show that this sifting method can greatly reduce the number of pairs to test for
a match, without losing much recall (the recall is over 0.9).

After preprocessing and literal information extraction, we compute the simi-
larity vectors for the candidates. To train a binary classifier based on the similar-
ity vectors, we need to label some of them into class -1 (non-matching) or class 1
(matching). Thus the problem of instance matching can be solved by classifying
the unlabeled instance pairs. The existing matching instance pairs in LOD can
be considered as labeled data which may help to train the classifier. We employ
a transfer learning algorithm to improve the effect of the helping.

3 Feature Extraction

We extract some property-independent information from each instance and then
compute the similarity vectors for instance pairs based on this information. Since
the performance of a machine learning algorithm depends a lot on the quality
of feature extraction, the work in this section is vital for the next step.

3.1 Literal Information Extraction

We extract several sets of literal information from each instance. The first is
the text information set llabel, that is the label of an instance. The label is the
human-readable name for an instance, such that it can help people to identify
the real-world object. So labels are discriminative for instance matching. Next,
we extract the remaining text information from the instance. These sets are
divided into two parts. One is lproperty which consists of the text information
from properties. The other is the text information from the values. The number
of words in a value has a certain meaning. If the value only contains one word,
this word can be a specific symbol such as the ISBN for a book. If the number
of words is small, these words are likely to be the name of something, e.g. ”Palo
Alto”. If there are a lot of words in the value, they may be a text description.
These three kinds of values may play different roles in the problem of instance
matching. So we extract them as lsingle, lshort and llong respectively.

Besides the large amount of text information, there are also other types of
literal information in the instance descriptions. The common ones we used are
dates, numbers and links. In contrast to the text information, these types of
literal information are more useful for instance matching. If two instances share
some dates, numbers or links, they are likely to match. So we additionally extract
them as ldate, lnumber and llink. Note that:



6 Shu Rong, Xing Niu, Evan Wei Xiang, Haofen Wang, etc.

Table 1: Overall Statistics on Extraction Results

Dimension Num Metric Function Combination of Literal Information

1 IdfSim lsingle

2 TopIdfSim lsingle

3 IdfSim lsingle ∪ lshort ∪ llabel
4 TopIdfSim lsingle ∪ lshort ∪ llabel
5 CosSim lsingle ∪ lshort ∪ llabel ∪ lproperty ∪ llong

6 IdfSim lsingle ∪ lshort ∪ llabel ∪ lproperty ∪ llong

7 TopIdfSim lsingle ∪ lshort ∪ llabel ∪ lproperty ∪ llong

8 EditSim llabel
9 CountSim llabel
10 CountSim ldate
11 CountSim lnumber

12 CountSim llink

– There are many forms of dates. For convenience, we only extract the year
part of each date and the other parts are treated as text.

– Some dates and numbers may be included in the texts. We use meticulous
string processing to find them.

3.2 Similarity Metrics

Different similarity metric functions are used for different types of literal infor-
mation. As shown in Table 1, a 12-dimensional similarity vector is generated for
each instance pair.

For the text information, we use three functions, CosSim, IdfSim and TopIdfSim.
CosSim is a common similarity metric for texts. It computes the TF · IDF[7]
weights for the words from two word sets and then computes their cosine sim-
ilarity. Furthermore, in the particular problem of instance matching, the IDF
weights are more important. Some common words or common words for the do-
main may appear frequently in the descriptions of many instances. These words
with high TF weights but low IDF weights do not much help match instances.
While if a word only appears once in each data source, the two instances that
contain it are likely to match. According to this idea, IdfSim and TopIdfSim are
designed based on the IDF weights of words. IdfSim is similar to CosSim which
just removes the TF weights. For word sets T1 and T2, TopIdfSim computes the
similarity of W1 and W2, where Wi is a subset of Ti which consists of the words
with highest IDF weights in Ti. It is computed by:

TopIdfSim(T1, T2) =

∑
w∈W1∩T2

IDF(w) +
∑

w∈W2∩T1
IDF(w)∑

w∈W1
IDF(w) +

∑
w∈W2

IDF(w)
(1)

These three similarity metric functions act on the combinations of the extracted
word sets of text information. The combining strategy is based on the relaxed
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inclusion relation of these word sets from different instances, that is lsingle may
be included in lshort or llabel, and llong main contains all the other word sets.

Among the sets of text information, llabel is different from the others in two
ways as follows:

1. We only extract one label for each instance; so it can be treated as a set of
words or a string.

2. Since each word in a label can be significant for recognizing the entity, to
match two instances, the matching words of their labels are more important
than the non-matching ones.

So we design another two similarity metrics for llabel, which are EditSim and
CountSim.

EditSim(lalabel, l
b
label) = 1− EditDistance(Sa, Sb)

Max(|Sa|, |Sb|)
(2)

Where Sa stands for the string form of lalabel and EditDistance(Sa, Sb) is a clas-
sical string-distance measure, which represents the minimum number of editing
operations needed to make Sa and Sb the same. Each operation can be deleting
a character, inserting a character or changing a character in either Sa or Sb.

CountSim(lalabel, l
b
label) =

1− 2−|{w|w∈l
a
label∩l

b
label}|

1− 2−d(|l
a
label|+|l

b
label|)/2e

(3)

The literal information sets of dates, numbers and links also have the second
characteristic of the labels. So we use CountSim on them to generate similarities.
Note that two numbers are considered to be the same one if their difference is
lower than a threshold.

4 Learning Algorithms

After extracting the feature vectors, we can train the classifier for instance
matching. There are many machine learning algorithms for the binary classi-
fication problem. We need to carefully choose the appropriate ones according to
the characteristic of the input data.

4.1 Basic Learning Model

In our problem, the input data may contain millions instance pairs. So some
methods with high time cost such as Neural Networks and SVM with a com-
plex kernel are eliminated. After observing the feature space via a preliminary
experiment, we found that the data of the two classes are not linearly separa-
ble. A typical example is shown in Figure 2. x and y are two dimensions of the
similarity vector. The positive and negative regions represent the two classes.
Figure 2 indicates that for a similarity vector, if x is greater than a threshold,
it belongs to the class of matching instance pairs when y is large, but if x is less
than the threshold, it belongs to the matching class when y is small. From the
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Fig. 2: A typical example of the feature space

perspective of each single dimension, this situation does not meet our intuition.
The value of each dimension describes the similarity of two instances based on
a certain metric. The higher the value is, the more likely they will match. But
from the perspective of the correlation between the dimensions, such a situation
is reasonable. We will give an example to explain it.

On one hand, given two instance pairs (p1, p2) and (q1, q2), their similarity
vectors are u and v. We assume that u6 = v6 = 0.3, u5 = 0.1 and v5 = 0.3
where ui(vi) stands for the ith dimension of the similarity vector u(v). Probably,
instance p1 consists of long texts and instance p2 consists of short texts or single
words, so that u5 = 0.1. While q1 and q2 both consist of long texts which share
some common (for the domain) words, so v5 = 0.3. Furthermore, p1 and p2 may
share some important words such that u6 = 0.3. While the value 0.3 of v6 may
be obtained by the common words. According to the inference above, (p1, p2) is
likely to match while (q1, q2) is not. On the other hand, an instance pair with
large values of both dimensions 5 and 6 is likely to match.

Since the feature space is so complex, some linear classifiers are inapplicable
here, e.g. linear regression and SVM. Actually, the dimensions of our similarity
vector have some implicit associations, especially the ones generated from the
same combination of text sets. So the model we needed should properly handle
such associations for classification.

Consider the decision tree model: A decision tree is a binary tree. Each non-
leaf node t in the tree has a dimension-number kt and a threshold σt and each
leaf node has a label of one of the two classes. When a testing vector is sent to a
non-leaf node t, it will be sequentially sent to a child node according to whether
the value of ktth dimension of the vector is greater than σt. So a testing vector
will be sent to the root of the tree and finally get to a leaf node. The label of the
leaf node will be the class the vector belongs to. The vectors which arrive at node
t have passed the ancestors of t, i.e. At. In this way, the associations between
dimension of kt and the dimensions of {ka|a ∈ At} are taken into consideration
for classification.

4.2 AdaBoost with Random Forest

AdaBoost [12] is the predecessor of the transfer learning algorithm we will use.
It combines several weak classifiers to get a powerful classifier via an iterative
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process. In each round of iteration, it employs a basic learning model to train a
weak classifier with the current weighted examples. Then it increases the weights
of the examples which are incorrectly classified by the weak classifier, so that
these “difficult”ones will be classified better in the following rounds. In this way,
AdaBoost may improve the performance of the basic learning model.

We found that some classical decision tree algorithms do not show good
performance working with AdaBoost. In the training phase, the decision tree
will continually grow to satisfy the training data. Since AdaBoost combines the
examples from source and target domain for training, the trained tree-classifier
will achieve good performance on both source and target domain examples. This
leads to a situation where few incorrectly classified examples can be found during
the iterations and the weights are hardly changed.

To solve this problem, we choose a specific decision tree model, Random
Forest. A random forest contains several decision trees. Each of them is trained
with a newly constructed training set, which is chosen by randomly picking some
examples with replacement from the whole training data. The classification result
of the random forest is a voting result of these trees. Due to the chosen strategy
of the training set, most trees will only be good at classifying the examples in the
dominating distribution. The remaining examples will be incorrectly classified so
that they will be reweighted. Our preliminary experiments show that as a basic
learning model of AdaBoost, Random Tree is superior to the other decision tree
models, e.g. J48Tree[20].

4.3 Transfer Learning

To train an efficient classifier, a number of training examples are needed and
should be labeled manually. To reduce the manual work, we want to utilize the
existing matching instance pairs in LOD for help. But most machine learning
methods work well only under the assumption that the training and testing data
are drawn from the same feature space and the same distribution[24]. Training
data which is generated from the existing matching instance pairs does not
meet this requirement. Transfer learning [24] can utilize the data from different
distributed domains (source domain) to help the target task, thus reducing the
need for training data in the target domain (the domain of testing data).

There are two main kinds of transfer learning methods: the instance-transfer
and the feature-representation-transfer. The former assumes that the feature
spaces of the source and target domain are the same while the distributions of
the data from the two domains are different. Such methods try to find examples
from the source domain which can be reused to help the target domain task.
The latter assumes that the feature spaces of the source and target domain
are different. Such methods focus on finding the “good”common features which
reduce the difference between the source and target domains and the error of
classification.

The property matching independent similarity vectors we generated natural-
ly compose a common feature space for all the data source pairs. So we employ
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TrAdaBoost [8] for help, which is a classical algorithm for instance-transfer learn-
ing. TrAdaBoost is an extension of the AdaBoost [12] algorithm. It assumes that
the feature spaces of source and target domain are the same while the distri-
butions of the data from the two domains are different. Due to the different
distributions, some of the source domain data may be helpful in training the
classifier for the target domain but some of it may not be and could even be
harmful. TrAdaBoost iteratively adjusts the weighting of the source domain data
to reduce the effect of the “bad”source data. In each round of iteration, TrAd-
aBoost trains the basic classifier on the weighted source and target data. The
source domain examples which are classified incorrectly by the classifier are con-
sidered to be the bad source data, so their weights are reduced. Meanwhile,
TrAdaBoost uses the same strategy as AdaBoost that is to increase the weights
of the incorrectly classified examples in the target domain.

Random Forest is a suitable basic learning model for TrAdaBoost, as well as
for AdaBoost. The interface of TrAdaBoost is generic. We can directly apply it
on the problem of instance matching by treating the instance pairs from a pair
of data sources, which are to be matched, as the target domain, and the existing
matching information between another pair of data sources as the source domain.
But not all the source domains can help to train the classifier on the target
domain via TrAdaBoost. A source domains can be harmful if its distribution is
quite different from that of the target domain.

The problem of how to automatically choose a helpful source domain has not
been theoretically solved yet[9]. Intuitively, the more similar the distributions
of the two domains are, the more likely the source domain can help. In the
problem of instance matching, the distribution of a domain is decided by the
heterogeneity between the ways of describing objects which are used by the data
sources (We call it describing heterogeneity for short). So when we want to match
the instances of a data source pair (A,B), we should use another pair (C,D) for
help, such that the describing heterogeneities of (A,B) and (C,D) are similar.

5 Experiments

First, we will show the experimental results of our proposed approach without
transfer learning. We use the dataset provided by the data interlinking track
of IM@OAEI2010 and compare our approach with the participants’. We chose
this dataset because many others are not from LOD. Then we will give some
comparative experiments to show whether a source domain we chose from LOD
is helpful to instance matching via transfer learning.

5.1 Without Transfer Learning

The goal of the data interlinking track of IM@OAEI2010 is to find all the
owl:sameAs links from four data sources to the ones in LOD. These four da-
ta sources are also in LOD; they are:



A Machine Learning Approach for Instance Matching 11

– Sider9, about some drugs and their effects.
– DrugBank10, about drugs and their chemical, pharmaceutical and pharma-

cological information.
– DiseaSome11, about disorders and genes.
– DailyMed12, about marketed drugs and chemical structure, mechanism of

action, indication, usage, contraindications and adverse reactions for the
drugs.

These data sources are already linked to LOD and the existing links will be treat-
ed as the standard answers. The well-known Recall, Precision and F-Measure are
used for evaluation.

Two teams, ObjectCoref and RiMOM took part in this track. Their report-
s of results can be found in [32] and [16]. ObjectCoref[17] uses a self-learning
framework to iteratively extend a kernel of matching instances. In each round
of iteration, the most discriminative property-value pair is learned from the ker-
nel for the further matching. RiMOM[19] is a multi-strategy ontology matching
framework. It combines three strategies when facing an instance matching prob-
lem.

1. Edit distance between labels of two instances.
2. Cosine of the TF · IDF vectors for the text description of the instances to

match.
3. Cosine of the TF·IDF vectors for the text description of the instances related

to the ones to match.

In Table 2, we give the results of matching instances for each data source
pair. RiMOM also gave their results on some other data source pairs which are
not shown here, since we can not find the dumps of those data sources. For each
testing data source pair, we randomly labeled 5% of the similarity vectors as
training data (no more than 2000 for these datasets). Obviously, our proposed
approach works better than ObjectCoref and RiMOM on these datasets.

For ObjectCoref, the process of learning discriminative property-value pairs
depends on the lax matches of properties from different data sources. From the
report of ObjectCoref[16], we can see that the matching properties found for
these datasets are mainly about names and aliases. By analyzing the data, we
find that Sider, DrugBank and DayliMed contain a lot of aliases for each instance,
while DiseaSome does not. Furthermore, some non-matching instances have sim-
ilar aliases. So ObjectCoref got high recall and low precision on Sider-DrugBank
and Sider-DailyMed, but low recall and high precision on Sider-DiseaSome. In
general, ObjectCoref did not get good performance since the properties of names
and aliases do not match well. In contrast, RiMOM is a property matching inde-
pendent approach. But the similarity metric that combines the three strategies
is not accurate enough for instance matching.

9 http://sideeffects.embl.de/
10 http://www.drugbank.ca/
11 http://http://diseasome.kobic.re.kr/
12 http://dailymed.nlm.nih.gov/

http://sideeffects.embl.de/
http://www.drugbank.ca/
http://http://diseasome.kobic.re.kr/
http://dailymed.nlm.nih.gov/
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Table 2: Compare with the Participants of IM@OAEI2010

Data Set Approach Recall Precision F-Measure

Sider-DrugBank ObjectCoref 0.996 0.302 0.464
RiMOM 0.342 0.961 0.504

AdaBoost 0.859 0.952 0.903

Sider-DiseaSome ObjectCoref 0.668 0.837 0.743
RiMOM 0.315 0.837 0.458

AdaBoost 0.726 0.875 0.794

Sider-DailyMed ObjectCoref 0.999 0.548 0.708
RiMOM 0.567 0.706 0.629

AdaBoost 0.672 0.805 0.733

Sider-DBpedia RiMOM 0.482 0.717 0.576
AdaBoost 0.643 0.639 0.641

DailyMed-DBpedia RiMOM 0.246 0.293 0.267
AdaBoost 0.373 0.377 0.375

Table 3: Transfer GeoNames-DBpedia to LinkedGeoData-DBpedia

Training Examples AdaBoost AdaBoost(Source) TrAdaboost

900 0.284 0.372 0.378
1500 0.383 0.396 0.432
3000 0.444 0.416 0.458
6000 0.524 0.450 0.516
15000 0.544 0.491 0.536

We noticed that our proposed approach has an enormous advantage on the
data set Sider-DrugBank. The probable reason is that we can make use of the
names and aliases for instance matching. Our approach eliminates the ill effects
of the duplicate names by giving them low IDF weights.

5.2 With Transfer Learning

We choose GeoNames13, LinkedGeoData14 and DBpedia as the datasets for
the experiments on transfer learning. GeoNames and LinkedGeoData are da-
ta sources in LOD. Both of them are about geographic information and have
owl:sameAs links to DBpedia. GeoNames and LinkedGeoData have similar be-
haviors in describing real-world objects. So the the describing heterogeneities of
GeoNames-DBpedia and LinkedGeoData-DBpedia are similar. We try to use the
information on the existing matching instances between GeoNames and DBpedia
to help matching LinkedGeoData and DBpedia.

13 http://www.geonames.org/
14 http://linkedgeodata.org/

http://www.geonames.org/
http://linkedgeodata.org/


A Machine Learning Approach for Instance Matching 13

The result is shown in Table 3. AdaBoost denotes the AdaBoost model
applied only on the training data from the target domain (LinkedGeoData-
DBpedia). AdaBoost(Source) and TrAdaBoost respectively denote the Ad-
aBoost and TrAdaBoost model applied on the training data from both domains.
Training Examples denotes the number of training instance pairs we labeled
in the target domain. 900 examples are about 0.01% of all the pre-matching in-
stance pairs between LinkedGeoData and DBpedia. We can see that the source
domain we chose is really helpful via TrAdaBoost. But directly using the source
domain for training can be harmful. Furthermore, the less training data there is
in the target domain, the more the source domain can help. If there is efficient
training data in the target domain, the source domain is entirely useless. These
experimental results match our intuition about transfer learning.

6 Related Work

Although the problem of instance matching has emerged along with the devel-
opment of LOD in recent years, a similar problem, Record linkage, was examined
much earlier. Thus a lot of relevant approaches have been proposed.

6.1 Record Linkage

Record linkage, also known as duplicate detection or object identification, is a
classical problem in the area of databases. The goal of record linkage is to deter-
mine the pairs of records that are associated with the same entity across various
data sets. It is similar to the instance matching problem. For more than five
decades, the traditional database community has discussed this problem a lot.
Some surveys can be found in [33], [34] and [11].

The early approaches focus on similarity metrics for single field (column)
matching. Many of them are even widely used today, such as edit distance, Q-
gram distance, etc. The similarity vector in our work is based on TF · IDF[7] and
its variants.

The approaches for multi-field matching are mainly based on probabilistic
models, developed by the machine learning community. The learning methods
were applied on record linkage by extracting the feature vector of similarities
from the comparable fields. Such approaches classify the record pairs as matching
or not, employing CART[6], SVM[3] and so on. Semi-supervised, active and
unsupervised learning algorithms have been proposed to reduce the demand
for training data. Unlike the properties of linked data sources, the number of
fields in a record linkage problem is usually quite small. Thus the comparable
fields can be easily found manually. So the data base community doesn’t pay
attention to the problem known as Structural heterogeneity. A simple schema-
independent method has also been proposed which treats the whole record as
one large field. But experiments in [3] show that SVM based on the similarity
metric of multiple comparable fields usually outperforms it. It’s easy to see that
such an elaborate similarity metric benefits record linkage when the fields can
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well match. Some distance-based methods which have also been proposed for for
multi-field matching do not employ machine learning algorithms[13][1], but the
distance measures are also based on schema matching.

Some other work focuses on postprocessing. The main idea is that the match-
ing relations between records or fields should be consistent[2][25]. Such methods
based on graph model can play an important role in instance matching problems
as the linked data settings are more structured. They are complementary to our
proposed work which uses only the literal information.

6.2 Instance Matching

Some of the existing links in LOD are discovered manually with some tools. One
well-known instance matching tool is the Silk Link Discovery Framework[31]
which allows setting link specifications for given data sources. Domain related
knowledge is required to design such specifications.

The automatic instance matching approaches are often domain specific or
property matching dependent. The approach proposed in [29] matches the FOAF
instances using SVM. Since all of the instances are described with FOAF, the
features for classification are easily determined according to the limited number
of properties. More domain-specific approaches can be found in [27] and [28].
Among the domain-independent approaches, [14] matches instances according
to their inverse functional properties (IFP). Such properties are not sufficient in
LOD, so [15] tries to find more IFPs with a statistical method. ObjectCoref[17]
employs a self-learning framework to iteratively find the discriminative property-
value pairs for instance matching, which are lax IFPs. RAVEN[22] applies active
learning techniques for instance matching. Both ObjectCoref and RAVEN match
the properties from different data sources by measuring value similarities. Similar
ideas are proposed in the domain of schema matching [26].

Finally, some papers focus on improving the efficiency of instance matching.
[21] limits the number of candidate instance pairs to match based on the triangle
equation. [30], [23] and [18] generate candidates by indexing some key words of
instances. This kind of method can be applied to optimize ours.

7 Conclusion and Feature Work

In this paper, we presented a property matching independent approach for in-
stance matching. We transformed the problem of instance matching to a clas-
sification problem, by designing a novel feature vector of high-level similarity
metrics. Suitable learning models were selected according to the feature space.
Our experimental results on the datasets of IM@OAEI2010 shown that such a
feature vector is reasonable for instance matching, and our approach performed
much better than the contest participants. Furthermore, we tried to utilize the
information of existing matches in LOD to help match new data sources via a
transfer learning algorithm. The experiments also show that such information is
really helpful.

In future work, we will try to explore the following issues:
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– The information on property matching and the relationships between in-
stances can be taken into consideration in the similarity metrics. It may
enrich the features for instance matching.

– Random Forest and Adaboost are similar in the result of classification[5].
Cooperation of Random Forest and TrAdaboost can be explored.

– The number of dimensions of the current similarity feature space is too
low for machine learning with so many matching instances in LOD. More
property matching independent similarity metrics need to be designed to
make the best use of the information in the existing matches.

– We hope to find a powerful way to automatically choose a helpful source
domain for the problem of instance matching.
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