
Schema Matching for Context-Aware Computing
Wenwei Xue, Hungkeng Pung, Paulito P. Palmes

School of Computing
National University of Singapore

3 Science Drive 2, Singapore 117543
{dcsxw, dcsphk, dcsppp}@nus.edu.sg

Tao Gu
Institute for Infocomm Research

21 Heng Mui Keng Terrace, Singapore 119613
tgu@i2r.a-star.edu.sg

ABSTRACT
Context-aware computing is a key paradigm of ubiquitous
computing in which applications automatically adapt their
operations to dynamic context data from multiple sources.
Managing a number of distributed sources, a middleware that
facilitates the development of context-aware applications
must provide a uniform view of all these sources to the
applications. Local schemas of context data from individual
sources need to be matched into a set of global schemas in
the middleware, upon which applications can issue context
queries to acquire data. In this paper, we study this problem
of schema matching for context-aware computing. We
propose a multi-criteria algorithm to determine candidate
attribute matches between two schemas. The algorithm
adaptively adjusts the priorities of different criteria based
on previous matching results to improve the efficiency and
accuracy of succeeding operations. We further develop an
algorithm to categorize a new local schema into one of the
global schemas whenever possible via a shared attribute
dictionary. Our results based on schemas from real-world
websites demonstrate the good matching accuracy achieved
by our algorithms.

Categories and Subject Descriptors
H5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous; H3.3 Information search and retrieval:
Clustering; H2.1 Logical design: Schema and subschema.

General Terms
Algorithms, Management, Performance, Design.

Keywords
Context awareness, ubiquitous computing, middleware,
context attributes, context schemas, schema matching.

INTRODUCTION
Context awareness is an essential enabler for the unattended
operation/behavior adaptation of applications in ubiquitous

computing [1]. A context-aware application is conscious of
the context of many data sources in the physical world,
such as a person or a shop, and adapts to such dynamic data
automatically and continuously. We adopt the definition of
context by Dey [2] as “any information that can be used to
characterize the situation of an entity”. We then define a
context source as a logical component from which context
data related to some physical-world entity can be acquired.

Examples of real-world context data include the location of
a person, the temperature in a house and the opening hours
of a shop. Correspondingly, the context sources can be the
PDA of the person, the PCs located in the house or shop. A
context source often collects context data from a local sensor
network or legacy database [4,6]. It then provides the data
to external applications in a common format based on some
context model such as key-value pairs or ontologies [1].

There has been a lot of recent research effort in context-
aware computing on building generic middleware systems
to support the development of various applications [7]. One
main function of a context-aware middleware is to manage
data from numerous context sources and provide the data
via different application interfaces, such as services [4] or
declarative queries [6]. In this paper, we investigate the
problem of matching data schemas among multiple context
sources in the infrastructure of a context-aware middleware
under development in our research project.

From the perspective of data management, a schema is a
specific description of data in terms of a general data model
[18]. Each context source in our infrastructure maintains a
local schema that describes all context data it can provide.
The schema is submitted to the middleware when the source
is registered. We call such a schema a context schema. We
define a context attribute as a kind of context data described
in a schema, e.g., location, temperature and opening_hours.

Our problem of context schema matching is how to integrate
individual local schemas from different context sources into
a set of global schemas in the middleware, as depicted in
Figure 1. Given the global schemas, the applications on top
of the middleware are able to see a unified abstract view of
underlying heterogeneous sources and access context data
in a consistent manner. The global schemas dynamically
evolve when the context attributes provided by numerous
sources are incrementally added and clustered into them.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UbiComp'08, September 21-24, 2008, Seoul, Korea.
Copyright 2008 ACM 978-1-60558-136-1/08/09...$5.00.

Applications can clearly view these related attributes and
quickly access new attributes when they become available.
To the best of our knowledge, there is no previous work [7]
that studies this problem of automatic schema matching in a
context-aware middleware.

GS1 GS2 GSn

Schema matcher

LS1

Middleware

Context sources

Global context schemas

Declarative application interface

D1 D2 D3 Dm

LS2

Local schemas

Applications

Match

Figure 1. Schema matching in context-aware middleware

Schema matching has been widely studied in the database
literature [3,9,12,13,17]. Compared to traditional database
scenarios, the novel features of context sources in ubiquitous
computing pose several notable challenges to our problem
of context schema matching:

• No instance-level matching. A context schema describes
many sensory attributes whose values are collected from
physical sensors on-the-fly and in general not stored into
databases due to the unbound data volume and update cost
[11,21]. Furthermore, these real-time sensor readings are
intrinsically unreliable while it is impractical to assume
all context sources are internally equipped with sufficient
mechanisms for sensor data cleaning. Therefore, instance-
level approaches in traditional databases [17] that utilize
attribute values from schema instances for matching are
error-prone and do not appeal to our scenario.

• No constraint-based matching. According to our real-
world case studies, multiple context sources usually define
different data properties, such as types and value ranges,
for equivalent attributes. For instance, one source provides
its temperature in integer values with a pre-defined unit
(e.g., 30°C), while the other may provide the value and
unit as a string (e.g., “30°C”). The goal of our context
schema matching is to explore the high-level semantic
equivalence between context attributes and schemas while
the low-level implementation details of individual schemas
are of less concern. Therefore, constraint-based matching
in traditional databases [17] that utilizes data properties in
the schemas does not appeal to our scenario either.

• Dynamic joining of context sources. Numerous sources in
various context domains, such as persons, houses and
shops, may register to the middleware continuously over
time. A context schema matcher in our scenario should

require tiny computation cost to ensure the timeliness of
matching a new local schema into the global schemas. In
the meanwhile, the matcher must be adaptive to changing
domain patterns of schema inputs. Many schema matchers
for traditional databases [17] employ a supervised learning
approach, which makes them inappropriate for our scenario
due to the heavy computation cost or the human effort to
obtain and incrementally update the training dataset.

• Autonomous context sources. Our middleware allows any
networked context source to register for data provision.
These sources are indifferent to one another and can be
owned by multiple organizations at different geographical
locations. Each source composes and submits its context
schema to the middleware separately. It is unreasonable
for the middleware to impose a common name space
among all sources for schema composition. Moreover,
there is no sharing of system-level processing capabilities
among the sources as those in federated databases [18].

Addressing these challenges, we propose a lightweight and
adaptive schema matcher for context-aware computing in
this paper. Our matcher consists of two main algorithms: (i)
an algorithm for Context Attribute Matching (CAM), and
(ii) an algorithm for Context Schema Matching (CSM).

CAM computes the similarity between a pair of context
attributes by comparing their names, and text descriptions if
available. The similarity is measured by one of several pre-
defined matching criteria, such as stemming and substring
detection. The criteria are invoked in a decreasing order of
their priorities, whose values are periodically recomputed
based on the previous matching accuracy each criterion has
achieved. This enables the algorithm to be adaptive to the
current patterns of schema inputs for efficiency and accuracy
improvement: the criterion with better performance recently
is used first to seek for a possible match for an attribute pair.

The candidate matches found by CAM are handed over to
the system administrator of our middleware for confirmation.
Redundant attributes in a new local schema with a confirmed
correct match are replaced by corresponding attributes in
the global schemas. Such user feedback is the basis for CAM
to adaptively adjust the priorities of its multiple criteria.

CSM examines the similarity between a local schema and
each global schema based on their accumulated attribute
similarities output from CAM. If the two schemas have a
similarity score larger than a threshold, the local schema can
be merged into the global schema. Again multiple candidate
matches are possible and human confirmation is involved.

The human confirmation of matching algorithm outputs is
motivated by the fact that only the middleware administrator
knows or has the right to tell “what is a correct match”.
Since the matcher provides all candidate matches while the
administrator only confirms which are correct, the human
effort involved is minor. If confirmation is undesirable, this
option can be disabled in our schema matcher. It suggests
the matcher is given the full power to regard every matching
decision it makes as correct. In this case, for each local

attribute or schema, the matcher automatically regards the
candidate match for it with the highest similarity score as
the ground truth and incorporates this match into the global
schemas. The administrator can also specify missing matches
to amend the matcher outputs whenever convenient.

We have evaluated the performance of our context schema
matcher using real-world schemas extracted from a number
of websites. The experimental results demonstrate that even
without human confirmation, our proposed algorithms can
achieve high matching accuracy with tiny computation cost.

Although in this paper we present the design of our schema
matcher under the setting of context-aware middleware, the
proposed matching algorithms are generic and can be applied
to other application scenarios of context-aware computing.
One example is the local schema matching between two
neighboring peers of context sources in a P2P database [13].

The remainder of the paper is organized as follows. We first
introduce some background knowledge of our context-aware
middleware related to schema matching. Next, we present
our algorithms for context attribute and schema matching in
detail. We then present initial performance evaluation results
for our matching algorithms. Finally, we discuss related work
and conclude the paper with future research directions.

SYSTEM BACKGROUND

Overview of Middleware Infrastructure
Figure 2 shows the overall four-layered infrastructure of our
middleware. The schema matcher is a component of the
context data management layer. This layer provides a SQL-
based query interface over the global schemas that allows
services/applications in the upper layers to acquire context
data from sources in the lower layer. SQL-based queries
have been investigated to be comparable to more complex
context queries such as RDF queries [5]. Distributed query
dissemination, execution and optimization techniques are
also equipped in the layer. The service management layer
provides functionalities of service organization, discovery
and workflow-based composition. A detailed description of
the middleware components in each layer is beyond the
scope of this paper.

Service management

Context sources

Context-aware applications

Context data management

C
ontext-aw

are m
iddlew

are

Figure 2. Infrastructure of our context-aware middleware

Context Modeling
The current design of our schema matcher assumes a simple
attribute-value approach to context modeling. Similar to the

schema of a table in relational databases [18], a context
schema in our middleware contains a schema name as well
as the names, types, text descriptions and other additional
information about a set of context attributes.

The motivation is to make the initial design of our schema
matcher generic and indifferent to specific context modeling
approaches. Extending the matcher to incorporate and utilize
the complex features of more expressive context models,
such as the widely-used ontology model in today’s semantic
web [1,4], is an ongoing direction of our research work.

Schema Templates
A schema template is an XML file provided by a context
source upon registration. It specifies the context schema of
the source to our schema matcher. The implementation
details of the schema templates are omitted here.

We make the current snapshot of global schemas in our
middleware publicly-available via a web interface, together
with example templates for these schemas. They serve as a
guidance and reference for the context sources to compose
specific templates for their local schemas.

In the schema template, a context source can explicitly
specify the exact matching between attributes in its local
schema and those in the global schemas. The source can also
indicate which global schema matches the local schema.
This alleviates the schema matcher’s workload however in
most cases a context source is not able or willing to do such
manual matching.

Schema Mapping
After a local schema is matched with the global schemas, a
schema mapping is sent to the corresponding context source.
The mapping specifies the following information to the
source: (i) for each attribute in the local schema, the attribute
has been merged to which attribute in the global schemas,
or it defines a new attribute in a global schema, (ii) whether
the local schema is merged into one of the existing global
schemas, or it becomes a new global schema. The matcher
does not store the mapping between the global schemas and
individual local schemas. Such information is distributed to
corresponding context sources and stored locally instead.

The syntax of a context query issued to our middleware is
based on the set of global schemas. When the context query
is routed to a source of required data, the source converts
the query syntax from the global schemas to its local schema
using the schema mapping it stores and processes the query.

Our matching algorithms ensure that only new attributes or
schemas will be added into the global schemas, whereas no
existing attribute or schema will ever be deleted. This ensures
consistency of previous schema mappings when the global
schemas are continuously evolving upon registration of new
sources. Otherwise, the schema matcher must send updates
for previous mappings to all related sources upon removal
of any existing global attribute or schema. This brings heavy
extra workload to the system.

MATCHING OF CONTEXT ATTRIBUTES
Our context schema matcher is a name-based matcher [17].
CAM matches a pair of attributes according to the similarity
between the attribute names, or text descriptions if available.
CSM matches a new local schema with the global schemas
based on the attribute match outputs of CAM. In this regard,
our schema matching problem maps to a text processing
problem over the schema templates.

We present our adaptive, multi-criteria matching of context
attributes in this section. The matching of context schemas
will be described in the next section.

Multiple Matching Criteria
In order to test whether a pair of context attributes forms a
candidate match, CAM applies a list of pre-defined matching
criteria. These criteria measure the similarity between two
attributes in different ways based on the linguistic similarities
in their names and descriptions. Each criterion is associated
with a priority in [0,1], whose value is periodically adjusted.
When a criterion reports a match for an attribute pair, the
similarity score of the pair is assigned to be the current
priority of the criterion.

The following matching criteria are employed for CAM in
the current prototype of our schema matcher:

(1) Equality. The criterion reports a match if the names of
the two attributes are equivalent.
(2) Stemming. The criterion reports a match if the names of
the two attributes are equivalent after stemming. We use the
Porter’s Algorithm for stemming [16].
(3) Substring. The criterion reports a match if one attribute
name is a substring of the other after stemming.
(4) Longest Common Substring (LCS). Suppose the names
of the two attributes are s1 and s2 and the longest common
substring of these two strings is s. The criterion reports a
match if s.len > N and s.len / min(s1.len, s2.len) > τ. We use
the dynamic programming algorithm for LCS detection
[10]. The integer N > 0 and the real numberτ ∈ (0,1) are
two pre-defined thresholds. The default values of N and τ
are 2 and 0.8 in our schema matcher.
(5) Synonym. The criterion reports a match if the names of
the two attributes are synonyms (e.g., house and home,
phone and telephone). We download and use the WordNet
[20] lexical database for synonym checking.
(6) Description. The criterion is only used when both of the
two attributes have a text description. Language keywords
are extracted from the descriptions by removing those words
appeared in a stop word list [19]. The keywords are then
stemmed and stored with corresponding attributes.
Suppose the two attributes are a and b and their keyword
sets are Ka and Kb. K = Ka ∩ Kb = {ki} (i = 1, 2, …, n).The
criterion reports b matches a if Equation (1) is satisfied. fkai
in the equation is the appearance frequency of ki in Ka and
Nka the size of Ka. ρ ∈ (0,1) is a pre-defined threshold
whose default value is 0.7 in our schema matcher.

 ρ>
∑
=

Ka

n

i
Kai

N

f
1 (1)

As revealed by Equation (1), the matching reported by this
criterion may not be symmetric. In other words, b matches
a does not mean a matches b in terms of their descriptions.

Description matching is very useful to match an attribute to
an equivalent combination of other attributes. For instance,
our schema matcher can determine two attributes latitude
and longitude in a local schema match the attribute location in
the global schemas if and only if all attributes are specified
with similar text descriptions. Therefore, we suggest context
sources to provide attribute descriptions in their local schema
templates to enhance the opportunity of matching.

Criterion (1) is a special case of Criterion (2). We separate
them since Criterion (2) is more time-consuming and there
is no need to invoke it if Criterion (1) has been satisfied.
The same case applies to Criteria (3) and (4).

The six matching criteria are sorted in a decreasing order of
their priorities in the list all the time. The initial priorities of
all criteria are one. The default order of Criteria (1)-(6) is
the same as the order we present them above. We have tried
several other criteria, such as edit distance and hypernym
[17], but excluded them from our schema matcher due to the
unsatisfactory accuracy they achieved on trial datasets.

Algorithm for Attribute Matching
Based on the list of matching criteria, the CAM algorithm
in our schema matcher is depicted in Algorithm 1. An
equivalent illustration of the algorithm is given in Figure 3.

Given a pair of context attributes, the algorithm invokes the
matching criteria in order (Line 1) to look for a candidate
match between the pair. If the option of confirmation is
enabled, a match achieved by some criterion (Line 2) is
presented to the administrator to decide whether it is correct
(Line 3). Otherwise, the function attributeConfirm simply
returns true every time it is called.

Algorithm 1: Context Attribute Matching
Input: a pair of context attributes (a, b)
Output: candidate matches between a and b
1: for each mci (1 ≤ i ≤ n) in mcList do
2: if attributeMatch(a, b, mci) then
3: isCorrect = attributeConfirm(a, b, mci);
4: if isCorrect then
5: mci.matchCount ++;
6: append (a, b, mci) to matchList;
7: else mci.matchCount – – ;
8: if | mci.matchCount | = = Na then
9: updateMatchingCriterion(mci);

10: if isCorrect then return;

mc1: Equality p1

mc2: Stemming p2

mc3: Substring p3

mc4: LCS p4

mc5: Synonym p5

Attribute pair
(a, b)

Candidate match
(a, b, mci)

Confirmation

mc6: Description p6

Decreasing order

Figure 3. Multi-criteria context attribute matching

If a candidate match is correct, a local match counter of the
corresponding criterion is increased (Line 5). In contrast,
this counter will be decreased upon a wrong match (Line 7).
Correct candidates are inserted into a global match list (Line
6) and are used later for context schema matching.

When the match counter of a criterion has its absolute value
reach a threshold Na (Line 8), the priority of the criterion is
increased or decreased by ∆ ∈ (0,1), depending on whether
the counter value is positive or negative. The intuition is to
give higher/lower priority to a criterion that has produced
considerable number of correct/wrong matches recently. The
default values of the two parameters are Na = 20 and ∆ = 0.1.

After the priority of a criterion is updated, the match counter
of the criterion is reset to zero. The criterion then switches
its position up or down in the list based on the new priority
until the correct order of the list is recovered. The priority
of a criterion may become less than zero or larger than one
after an update. In this case, the priority is set to zero or one
after the list re-ordering is finished. All these operations are
performed in the updateMatchingCriterion function (Line 9).

By dynamically updating the priorities of matching criteria
based on their recent accuracy, the algorithm is adaptive to
the changing patterns of schema inputs. It is expected that
such adaptivity will enhance the accuracy and efficiency of
the matching process. The adaptivity also makes the initial
order of the criteria unimportant at all.

We have designed different adaptive tuning mechanisms for
the threshold parameters in individual matching criteria and
implemented them in the updateMatchingCriterion function.
For instance, the τ value of LCS is decreased by ∆ whenever
the priority of the criterion is increased. The intuition is to
allow more opportunities for a criterion to report candidate
matches when its recent accuracy is good and to make the
default values of the threshold parameters less significant.

If a criterion reports a matching for an attribute pair, its
succeeding criteria in the list need not be invoked for the
pair any more (Line 10). In this way, the algorithm always
tries to use a single criterion with the highest recent accuracy
to offer a candidate match for an attribute pair.

In addition to adaptivity, another advantage of the algorithm
is its flexibility. At any time new matching criteria can be
easily added to any position in the list with proper initial

settings of their priorities, and old criteria can be removed.
The execution of the algorithm will not be affected.

MATCHING OF CONTEXT SCHEMAS
Now we describe how our schema matcher integrates a local
schema into the current set of global schemas. Algorithm 2
briefly depicts our algorithm for context schema matching,
CSM.

Algorithm 2: Context Schema Matching
Input: a local context schema LS,
 the current set of global schemas RGS
Output: candidate match of LS in RGS
1: selfMatching(LS);
2: if LS is specified to be a part of GS in RGS then
3: intraSchemaMatch(LS, GS);
4: Else
5: dictionaryMatch(LS);
6: S = interSchemaMatch(LS, RGS);
7: schemaConfirm(S);
8: updateSchema(S, RGS);
9: updateDictionary(S);

Intra-schema Matching
We first discuss a simple but restricted case in which the
local schema is known to be part of a global schema (Lines
2-3 in Algorithm 2). As previously presented, this semantics
can be specified in the schema template.

As shown in Figure 4, in this case the process of schema
matching involves the matching of every pair of attributes
in the local and global schemas using CAM. This process is
very similar to the join operation in relational databases [17,
18]. All candidate matches of attribute pairs are available in
the global match list after this “joining” process.

a1

a2

a3

an

b1

b2

b3

bm

Global schemaLocal schema

CAM

Figure 4. Match a local schema with corresponding global

schema

For each attribute in the local schema, CSM only allows it
to be finally merged to one attribute in the global schema.
As a result, if two candidate matches (a, b1) and (a, b2) are
both confirmed as correct, the one achieved by a criterion
with a larger priority is kept and the other is removed from
the global match list.

The candidate matches in the global match list are examined
when the process of schema matching ends. Each attribute
in the local schema is either merged to its matched attribute

or added as a new attribute in the global schema. A schema
mapping is formed and sent to the context source.

An appearance counter is kept for each attribute in a global
schema. It indicates the attribute is the aggregation of how
many equivalent attributes from different local schemas.

Before integrating a local schema with the global schemas,
CSM first match the schema with itself to remove redundant
attributes (Line 1 in Algorithm 2). This process is the same
as that in Figure 4 and we call it self matching.

Inter-schema Matching
We next describe the general case of our schema matching
in which the local schema has not been explicitly specified
to be a part of any global schema. In this case, a naïve
approach is to examine matching between the local schema
and every existing global schema. Such linear search is time-
consuming when the number of global schemas is large.

Our CSM algorithm addresses the problem by maintaining
a shared attribute dictionary among all global schemas. The
motivation is that many attributes are common to different
schemas. As a result, the total number of attributes in all
global schemas after matching can be reasonably small. For
instance, as illustrated in Figure 5, the name, location and
phone attributes are shared by the three schemas describing
context data of real-world shops, houses and persons.

name SHOP HOUSE PERSON

location SHOP HOUSE PERSON

phone SHOP HOUSE PERSON
products SHOP

area SHOP HOUSE

birthday PERSON

Local schema

Attribute name

A pointer to a global schema

a1

a2

a3

an

Attribute dictionary

CAM

Figure 5. Match a local schema with attribute dictionary

The dictionary includes all context attributes that appear in
one or more current global schemas. Each dictionary entry
contains the name of an attribute, keywords extracted from
the attribute descriptions (if any), and a list of pointers each
of which points to a global schema that the attribute belongs
to. Accordingly, a global schema contains a number of
pointers to the entries in the dictionary. Figure 5 illustrates
the attribute dictionary with example context attributes and
their corresponding global schemas.

We ensure any two attributes in the dictionary cannot match
each other via CAM. Otherwise they will be merged into a
single attribute. For instance, suppose an attribute telephone
is to be newly incorporated into the dictionary. The attribute
is merged into the existing attribute phone (synonyms). No
new entry is appended to the dictionary.

During the matching process in CSM, the new local schema
performs a join with the attribute dictionary using CAM as
the join predicate, as shown in Figure 5 (Line 5 in Algorithm

2). For each attribute in the local schema, a set of attributes
in the dictionary each of which forms a candidate match
with it are obtained after the join. Unlike the previous case
of intra-schema matching, all these candidate matches will
be kept for the attribute. The candidates are further filtered
if human confirmation is involved.

For each existing global schema, CSM computes the total
number of attributes in the local schema having at least one
candidate match in this global schema (Line 6). This number
is called the match count of the global schema in terms of
the local schema, denoted as Nmc. Suppose the total number
of attributes in the local schema is Nl, the similarity between
this local and global schema pair is measured as Nmc / Nl.

All global schemas with a similarity score Nmc / Nl larger
than a threshold Nd will be regarded as a candidate match to
the local schema. At most one of them can be confirmed by
the administrator as a correct match, or CSM automatically
selects the one with the highest similarity score as the correct
match (Line 7) and breaks ties randomly. The default value
of Nd is 0.6 in our schema matcher.

The local schema is merged into the corresponding global
schema if there is a correct match (Line 8). The appearance
counters of the global schema attributes are updated. Even
if an attribute in the local schema does not have any match
in this global schema, the attribute is still aggregated with
its correct match in another global schema if such match
exists. Otherwise, the attribute is inserted as a new entry in
the dictionary with a pointer to the global schema (Line 9).

The local schema is inserted as a new global schema in the
middleware if it does not match any existing global schema.
Attributes in the local schema are aggregated with existing
entries or inserted as new entries in the dictionary, the same
as the situation with a correct schema match.

In our schema matcher, different matching orders of local
schemas from the same set of context sources can result in
different syntactic evolution of the global schemas. As an
example, the name of an attribute in the global schemas will
be that in the first added local schema having the attribute.
This syntax difference does not affect the semantic accuracy
of the global schemas. However, a wrong attribute or schema
match incurs incorrect semantics in the global schemas and
may affect the correctness of the subsequent matches in a
cascading way. This is one of the main reasons why we add
human confirmation to the matcher and try best to eliminate
the wrong matches. As for the missed matches, they add
redundant attributes in the global schemas and have less
significant semantic impact.

PERFORMANCE EVALUATION
In this section, we present an initial performance evaluation
of our context schema matcher.

Schema Dataset
The schema dataset we used for our experiments contains
schema information extracted from 30 real-world websites.

We used these schemas because websites are heterogeneous,
autonomous data sources in the Web that can be categorized
into different domains, which bears some similarity to our
context sources over the semantic web. These schemas are
composed by website administrators with domain-specific
knowledge in a way similar to that for our context sources.
Both involve the human understanding and representation
of various kinds of data.

The best dataset to evaluate our context schema matcher is
the actual context schemas composed by the administrators
of real-world context sources. We are collecting a survey
schema dataset from many researchers having experiences
on sensor network deployment and management for a further
evaluation of our matcher in future.

The websites in the 30-schema dataset can be categorized
into three context domains: SHOP, HOUSE and PERSON.
Each website is an information directory for the physical-
world entities in the corresponding domain. For instance, a
HOUSE website introduces a number of houses for sale or
rent in a country. There are 10 websites in each domain.

A schema is composed from the HTML form template of a
website that describes the entities in the domain. We copied
the names of form fields directly to be the attribute names
in the schema. For a field whose name has multiple words,
such as “opening hours” for a shop and “first name” for a
person, we used underscores to connect the compound words
since the attribute names in our context schemas do not
allow spaces. If there are two or more alternative names
shown in the HTML form for a field, such as “first name”
and “given name” for a person, the first one was used as the
attribute name in the schema whereas the others were used
as descriptions. If available, the descriptions of form fields
were also copied directly and used as attribute descriptions.

Domain Example
attributes Example websites

SHOP
name,

category,
products

http://www.yellowpage.com.au/
http://www.made-in-china.com/

HOUSE
address,

no_of_rooms,
price

http://www.singaporeexpats.com/
http://www.flatsdb.com/

PERSON
date_of_birth,

phone,
e-mail

http://www.myspace.com/
http://person.com/

Table 1. Example attributes of schemas in different domains
from real-world websites

The number of attributes in the 30 schemas varies from 6-
29. The average number of attributes per schema is 12.
Table 1 lists a few example attributes and source websites
belonging to each of the three domains.

The correct list of matches among the attributes in the 30
schemas of the dataset was recorded during the composition

of the schemas. It serves as the ground truth in the evaluation
of the accuracy achieved by our matching algorithms. In the
ideal case, our schema matcher should be able to merge all
corresponding schemas belonging to the same domain so
that an input trace of the 30 schemas will only result in 3
global schemas.

Accuracy of Attribute Matching
We used two performance metrics, precision and recall, to
evaluate the accuracy of our proposed matching algorithms.
Let N1 be the number of matches reported by the algorithm
over the dataset, N2 the number of correct matches within
N1 and N3 the total number of correct matches in the dataset.
The two metrics are defined below:

 12 / NNprecison = (2)

 32 / NNrecall = (3)

We first evaluated the accuracy of CAM. Figure 6 shows
the precision and recall achieved by CAM when the dataset
size varied from 6 to 30 schemas. For each dataset size, the
number of schemas in each of the three domains was the
same. For example, the dataset of size 18 had 6 schemas in
each domain.

88.2% 88.4%86.7% 86.4% 86.0%
77.3% 77.0% 77.7% 80.8% 81.3%

0%

20%

40%

60%

80%

100%

6 12 18 24 30
Number of Schemas

M
at

ch
in

g
Ac

cu
ra

cy

precision recall

Figure 6. Accuracy of attribute matching with different
dataset sizes

Each value in the figure is the average of several experimental
runs. For each run of the experiment, a random subset was
selected from the total of 30 schemas to avoid bias. The same
setting was used for all figures shown in the following.

In Figure 6 we see that CAM achieved good accuracy and
stable results over datasets of different sizes. The precision
was around 86-88% while recall was between 77-81%. The
stable performance of CAM is desirable since the schema
matcher needs to run continuously and provide consistent
performance over a long period of time.

Figure 7 illustrates the accuracy of different CAM variants
with a fixed dataset size of 30 schemas. In the figure, CAM
refers to the full implementation of our algorithm for context
attribute matching with the six criteria. CAM-SUB is the
variant of CAM that does not use substring detection in
Criteria (3) and (4), CAM-SYN does not use synonym
detection in Criterion (5), and CAM-SUBSYN does not use
both substring and synonym detection in Criteria (3) to (5).
Human confirmation is disabled in this experiment. Hence,
the results in the figure only depict worst-case performance
of the variants without supervision. Since there are only few

attributes having descriptions in the 30 schemas, the CAM-
DESCRIPTION variant was not included in our experiment.

88.4% 89.7%
94.9% 100.0%

63.6%

84.4%

59.9%

81.3%

0%

20%

40%

60%

80%

100%

CAM CAM-SUB CAM-SYN CAM-SUBSYN

M
at

ch
in

g
A

cc
ur

ac
y

precision recall

Figure 7. Accuracy of attribute matching for different CAM
variants without human confirmation

As shown in Figure 7, CAM-SUBSYN achieved 100%
precision in the experiment while CAM-SUB had 89.7%
and CAM-SYN had 94.9%. These values are all larger than
the 88.4% precision of CAM. The result suggests for our
schema dataset, substring and synonym detection were the
sources of wrong matches whereas equality and stemming
always produced correct matches.

The figure indicates synonym detection caused more wrong
matches than substring detection. One possible explanation
is that the synonyms are too general or not domain-specific,
thereby producing many wrong matches upon the ground
truth of a particular domain. Also, there is a high probability
for related attributes to share a common substring, because
of the tendency of people to use attribute names based on
common root words.

As for recall, the figure shows that substring detection was
very helpful to improve this metric. Without these criteria,
the recall of CAM-SUB was only around 60%. Compared
to CAM which had 81.3% recall, CAM-SUB suffered more
than 20% decrease in performance. The main reason is the
nature of the dataset. It is characterized by the prevalence of
multi-word attributes that can only be matched by substring
detection (e.g., company_name vs. name and no_of_rooms
vs. number_of_rooms).

Interestingly, Figure 7 reveals that synonym detection had
no contribution to the improvement of recall. The criterion
even decreased the recall slightly in our experiment. CAM-
SYN had a recall of 84.4%, which is larger than the 81.3%
one of CAM. This was because for our schema dataset,
synonym detection not only provided a few correct matches,
but also made many wrong matches such as state and land.
A previous wrong match caused several succeeding correct
matches to go undetected, which decreased both precision
and recall. Furthermore, the number of wrong synonym
matches was larger than that of the correct synonym
matches in the experiment. This caused a negative impact
on the overall performance of precision and recall.

The same problem existed for substring detection. However,
substring detection achieved much more correct matches
than wrong matches in the experiment. This caused positive
improvement of the performance as a whole.

100.0% 100.0% 100.0% 100.0%
90.8%

66.8%

87.5%

63.6%

0%

20%

40%

60%

80%

100%

CAM CAM-SUB CAM-SYN CAM-SUBSYN

M
at

ch
in

g
A

cc
ur

ac
y

precision recall
Figure 8. Accuracy of attribute matching for different CAM

variants with human confirmation

As a counterpart of Figure 7, Figure 8 shows the accuracy
of different CAM variants with human confirmation of the
ground truth. Compared to Figure 7, results in this figure
described the best-case accuracy achievable by the variants.
The dataset size was still 30 schemas in this experiment.

In Figure 8, the precision of all variants was 100% since
human confirmation filtered out wrong matches. There was
also a significant increase in the recall performance of all
variants because more correct matches were detected by
both substring and synonym detection without side effects
of the wrong matches. Figure 8 complements the results of
Figure 7 and reiterates our prior observation regarding the
superiority of substring detection over synonym detection
with respect to the current schema dataset. This conclusion
is indicated by the superior recall performance of CAM-
SYN compared to CAM-SUB in both figures.

To summarize, results of Figures 7 and 8 suggest that real-
world schemas from the Web tend to use the same names or
names with the same stem for equivalent attributes. CAM-
SUBSYN achieved as high as 100% precision and 64%
recall upon our dataset. The schemas also often use names
with common substrings for equivalent attributes, which
makes substring detection an important component for any
matcher. On the other hand, the success of using synonym
detection depends on choosing synonym sources that have
the proper context of the schemas being processed in order
to truly identify the equivalent attributes.

Accuracy of Schema Matching
To evaluate the accuracy of CSM, we first created three
global schemas in the schema matcher corresponding to the
SHOP, HOUSE and PERSON domains. Each global schema
contains the union of all attributes appeared in the schemas
of the domain in our dataset. For equivalent attributes, only
a randomly-chosen one was added into the global schema.

After running several trials of the experiment using all the
30 schemas, our schema matcher had 100% precision and
recall in all trials. CSM successfully matched every schema
in the dataset to the corresponding global schema of the
domain. The result demonstrated the effectiveness of CSM.

Computation Overhead
We implemented our schema matcher in Java and ran the
experiments on a PC with Intel Pentium 2.0GHz CPU, 1GB

main memory and Windows XP OS. The computation cost
of matching a schema in the dataset in our experiments was
between 0-200ms, which is tiny and negligible. The result
indicated the efficiency of our matching algorithms.

We have performed trial experiments with different initial
orders of the matching criteria in CAM and found that the
criteria can be adaptively re-ordered based on characteristics
of our 30-schema dataset. As a typical example, the criteria
of substring detection were always put ahead of synonym
detection after an experimental run, because there are more
substring matches than synonym matches in the dataset. We
are crawling hundreds of schemas from various websites to
form a larger experimental dataset for an ongoing extensive
evaluation on the adaptivity of our matcher.

Our current results revealed many interesting observations
on real-world schemas that guide us to the enhancement of
our matching algorithms. One possible research direction is
the incorporation of a Latent Semantic Analysis (LSA) [8]
criterion in CAM by mining web documents to build domain-
specific context dictionaries, which may help to lessen the
number of wrong matches caused by synonym detection.

RELATED WORK
Existing approaches to database schema matching can be
categorized into the following taxonomy [12,17]:

(1) Schema-level vs. Instance-level – whether to consider
the contents of data or just the schema information.

(2) Element-level vs. Structure-level – whether to consider
the schema elements individually or complex combinations
of the elements.

(3) Language-based vs. Constraint-based – whether to
consider the matching based on the texts (names) of the
elements or based on certain constraints.

(4) Hybrid vs. Composite – whether the matcher employs a
combination of dependent matching criteria or independent
ones that are aggregated using certain weights.

According to this taxonomy, the context schema matcher we
propose is schema-level, element-level, language-based and
hybrid. Instance or constraint-based matching is not quite
appropriate to our problem as described in the Introduction.
Structure-level or composite matching is still applicable and
we are investigating how to incorporate them to improve our
matching algorithms. We have not employed structure-level
matching in our current algorithms since the computation
cost of checking complex schema structures is considerable.
Moreover, human confirmation can help to reduce certain
wrong matches caused by ignoring structures, e.g., wrongly
matching two schemas in different domains with a common
subset. Composite matching brings the problem of adaptive
tuning of the criteria weights.

LSD [3] uses machine learning to match XML data sources
to a pre-defined global schema. Both schema and instance-
level matching are performed in LSD. It uses a composite

model and applies supervised learning to adjust the criteria
weights based on user-supplied training data. In comparison,
our matcher integrates schemas from context sources based
on an attribute-value relational model. Like unsupervised
learning approaches our matcher does not reply on a training
dataset that needs substantial user effort to prepare. It can
work reasonably well even without human effort of match
confirmation. Our matching algorithms are designed to be
lightweight and adaptive to the real-time patterns of schema
inputs from context sources in different domains.

Cupid [12] employs a hybrid model of three stages. The first
stage uses language-based matching to categorize elements
based on names, types and domains. It computes element
similarities using substring matching and other methods. The
second stage converts the original schema into tree structure
and applies bottom-up matching to find structural similarity
between pairs of elements. The last stage uses the calculated
weighted mean from previous two stages to decide mapping
among elements and structures. We apply substring detection
in our matcher for context attributes and demonstrate that
this criterion is very useful in practice.

SemInt [9] utilizes clustering and neural networks to find
attribute matches in different database schemas based on
the signatures generated by multiple matching criteria. The
authors observed that clustering performs well in matching
nearly identical attributes whereas the neural network with
training is better in less similar attributes. We use a context
schema matching algorithm similar to clustering that groups
the local schemas into global ones.

Our matcher is aimed at effectively and efficiently handling
the matching of various schemas from a large number of
context sources that are registered to the middleware in real
time. To our best knowledge, all prior approaches to schema
matching in traditional databases have not been presented
or evaluated in an online manner using tens of schemas.
Some of them involve processing that is unnecessary or
inapplicable to our scenario of context-aware computing.
Therefore, their performance in our scenario is unknown. We
are identifying a few traditional database matchers that may
be applicable in our middleware. An extensive performance
comparison between these matchers and our matcher is an
important direction of our future work.

There have been many publications on ontology matching
in the research community [14,15]. Using our current context
schema matcher as a starting point, we are studying how to
extend our work to develop a more generic and complex
ontology matcher in context-aware computing. The goal is
to design a real-time ontology matcher that ensures both
good accuracy and small computation cost despite the more
versatile information encapsulated in the ontology model.
Our CAM algorithm can be used as a sub-component of the
ontology matcher to check the name similarities of classes,
instances, properties and relationships in two ontologies.
The shared attribute dictionary used in our CSM can be
extended to represent other types of ontology elements.

CONCLUSION
We propose a name-based schema matcher for context-
aware computing in this paper. We designed a CAM
algorithm to match individual attributes in a local schema
with those in a set of global schemas. The algorithm
employs multiple matching criteria sorted and examined by
a decreasing order of their priorities. The priorities and
parameters of the criteria are dynamically adjusted based on
the recent matching accuracy, which makes the algorithm
adaptive to the current patterns of schema inputs. We further
designed a CSM algorithm that uses the CAM outputs to
integrate a local schema into one of the global schemas
based on the largest common subset of matched attributes.
The algorithm uses a shared attribute dictionary in the
matcher that contains all attributes in the global schemas.

We have conducted an initial performance evaluation of our
matcher using schemas obtained from real-world websites.
The results demonstrate the good accuracy of our proposed
CAM and CSM algorithms. Specifically, we have shown in
our experiments that attribute matching based on equality,
stemming and substring detection over their names are quite
accurate in practice. Synonym detection has both strengths
and weaknesses and must be put into the particular domain
context of the schemas for a more subtle consideration.

Our ongoing and future work includes collecting large-scale
datasets to further evaluate the performance of our schema
matcher and compare it with traditional database matchers,
extending our matcher to ontology matching and exploring
the effects of using domain-specific LSA dictionaries rather
than a general word directory for synonym detection.

ACKNOWLEDGMENTS
This work is funded by the Science and Engineering
Research Council of Singapore under the research grant
SERC 0521210083. We thank our shepherd, Tim Kindberg,
for his guidance and helpful suggestions on improving this
paper. We also thank the anonymous reviewers for their
constructive comments.

REFERENCES
1. Chen, G. and Kotz, D. A Survey of Context-Aware

Mobile Computing Research. Technical Report TR2000-
381, Dartmouth College, 2000.

2. Dey, A.K. Understanding and Using Context. Personal
Ubiquitous Computing 5, 1 (2001), 4-7.

3. Doan, A.H., Domingos, P. and Halevy, A. Reconciling
Schemas of Disparate Data Sources: A Machine-
Learning Approach. In Proc. SIGMOD 2001, ACM
Press (2001), 509-520.

4. Gu, T., Pung, H.K. and Zhang, D.Q. A Service-Oriented
Middleware for Building Context-Aware Services.
Journal of Network Computer and Applications 28, 1
(2005), 1-18.

5. Haghighi, P.D., Zaslavsky, A. and Krishnaswamy, S. An
Evaluation of Query Languages for Context-Aware
Computing. In Proc. DEXA 2006, Springer-Verlag
(2006), 455-462.

6. Judd, G. and Steenkiste, P. Providing Contextual
Information to Pervasive Computing Applications. In
Proc. Percom 2003, IEEE Computer Society (2003), 133.

7. Kjær, K.E. A Survey of Context-Aware Middleware. In
Proc. Software Engineering 2007, ACTA Press (2007),
148-155.

8. Landauer, T., Foltz, P.W. and Laham, D. Introduction to
Latent Semantic Analysis. Discourse Processes 25
(1998), 259-284.

9. Li, W.S. and Clifton, C. SemInt: A Tool for Identifying
Attribute Correspondences in Heterogeneous Databases
Using Neural Network. Data Knowledge Engineering 33,
1 (2000), 49-84.

10. Longest Common Substring Problem.
http://en.wikipedia.org/wiki/Longest_common_substrin
g_problem.

11. Madden, S., Franklin, M.J., Hellerstein, J.M. and Hong,
W. TinyDB: an Acquisitional Query Processing System
for Sensor Networks. ACM Transactions on Database
Systems 30, 1 (2005), 122-173.

12. Madhavan, J., Bernstein, P.A. and Rahm, E. Generic
Schema Matching with Cupid. In Proc. VLDB 2001,
VLDB Proceedings (2001), 49-58.

13. Ng, W.S., Ooi, B.C., Tan, K.L. and Zhou, A. PeerDB: A
P2P-based System for Distributed Data Sharing. In
Proc. SIGMOD 2003, ACM Press (2003), 659.

14. Noy, N.F. Semantic Integration: A Survey of Ontology-
Based Approaches. SIGMOD Record 33, 4 (2004), 65-70.

15. Ontology Matching.
http://www.ontologymatching.org/index.html.

16. Porter Stemming Algorithm.
http://tartarus.org/~martin/PorterStemmer/.

17. Rahm, E. and Bernstein, P.A. A Survey of Approaches
to Automatic Schema Matching. The VLDB Journal 10,
4 (2001), 334-350.

18. Ramakrishnan R. and Gehrke J. Database Management
Systems. McGraw-Hill, Columbus, OH, USA, 2002.

19. Stop Word List.
http://www.dcs.gla.ac.uk/idom/ir_resources/linguistic_u
tils/stop_words.

20. WordNet. http://wordnet.princeton.edu/.
21. Yao, Y. and Gehrke, J. The Cougar Approach to In-

Network Query Processing in Sensor Networks.
SIGMOD Record 31, 3 (2002), 9-18.

