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ABSTRACT 
Context-aware computing is a key paradigm of ubiquitous 
computing in which applications automatically adapt their 
operations to dynamic context data from multiple sources. 
Managing a number of distributed sources, a middleware that 
facilitates the development of context-aware applications 
must provide a uniform view of all these sources to the 
applications. Local schemas of context data from individual 
sources need to be matched into a set of global schemas in 
the middleware, upon which applications can issue context 
queries to acquire data. In this paper, we study this problem 
of schema matching for context-aware computing. We 
propose a multi-criteria algorithm to determine candidate 
attribute matches between two schemas. The algorithm 
adaptively adjusts the priorities of different criteria based 
on previous matching results to improve the efficiency and 
accuracy of succeeding operations. We further develop an 
algorithm to categorize a new local schema into one of the 
global schemas whenever possible via a shared attribute 
dictionary. Our results based on schemas from real-world 
websites demonstrate the good matching accuracy achieved 
by our algorithms. 

Categories and Subject Descriptors 
H5.m. Information interfaces and presentation (e.g., HCI): 
Miscellaneous; H3.3 Information search and retrieval: 
Clustering; H2.1 Logical design: Schema and subschema. 

General Terms 
Algorithms, Management, Performance, Design. 

Keywords 
Context awareness, ubiquitous computing, middleware, 
context attributes, context schemas, schema matching. 

INTRODUCTION 
Context awareness is an essential enabler for the unattended 
operation/behavior adaptation of applications in ubiquitous 

computing [1]. A context-aware application is conscious of 
the context of many data sources in the physical world, 
such as a person or a shop, and adapts to such dynamic data 
automatically and continuously. We adopt the definition of 
context by Dey [2] as “any information that can be used to 
characterize the situation of an entity”. We then define a 
context source as a logical component from which context 
data related to some physical-world entity can be acquired. 

Examples of real-world context data include the location of 
a person, the temperature in a house and the opening hours 
of a shop. Correspondingly, the context sources can be the 
PDA of the person, the PCs located in the house or shop. A 
context source often collects context data from a local sensor 
network or legacy database [4,6]. It then provides the data 
to external applications in a common format based on some 
context model such as key-value pairs or ontologies [1]. 

There has been a lot of recent research effort in context-
aware computing on building generic middleware systems 
to support the development of various applications [7]. One 
main function of a context-aware middleware is to manage 
data from numerous context sources and provide the data 
via different application interfaces, such as services [4] or 
declarative queries [6]. In this paper, we investigate the 
problem of matching data schemas among multiple context 
sources in the infrastructure of a context-aware middleware 
under development in our research project. 

From the perspective of data management, a schema is a 
specific description of data in terms of a general data model 
[18]. Each context source in our infrastructure maintains a 
local schema that describes all context data it can provide. 
The schema is submitted to the middleware when the source 
is registered. We call such a schema a context schema. We 
define a context attribute as a kind of context data described 
in a schema, e.g., location, temperature and opening_hours. 

Our problem of context schema matching is how to integrate 
individual local schemas from different context sources into 
a set of global schemas in the middleware, as depicted in 
Figure 1. Given the global schemas, the applications on top 
of the middleware are able to see a unified abstract view of 
underlying heterogeneous sources and access context data 
in a consistent manner. The global schemas dynamically 
evolve when the context attributes provided by numerous 
sources are incrementally added and clustered into them. 
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Applications can clearly view these related attributes and 
quickly access new attributes when they become available. 
To the best of our knowledge, there is no previous work [7] 
that studies this problem of automatic schema matching in a 
context-aware middleware. 

GS1 GS2 GSn

Schema matcher

LS1

Middleware

Context sources

Global context schemas

Declarative application interface

D1 D2 D3 Dm

LS2

Local schemas

Applications

Match

 
Figure 1. Schema matching in context-aware middleware 

Schema matching has been widely studied in the database 
literature [3,9,12,13,17]. Compared to traditional database 
scenarios, the novel features of context sources in ubiquitous 
computing pose several notable challenges to our problem 
of context schema matching: 

• No instance-level matching. A context schema describes 
many sensory attributes whose values are collected from 
physical sensors on-the-fly and in general not stored into 
databases due to the unbound data volume and update cost 
[11,21]. Furthermore, these real-time sensor readings are 
intrinsically unreliable while it is impractical to assume 
all context sources are internally equipped with sufficient 
mechanisms for sensor data cleaning. Therefore, instance-
level approaches in traditional databases [17] that utilize 
attribute values from schema instances for matching are 
error-prone and do not appeal to our scenario. 

• No constraint-based matching. According to our real-
world case studies, multiple context sources usually define 
different data properties, such as types and value ranges, 
for equivalent attributes. For instance, one source provides 
its temperature in integer values with a pre-defined unit 
(e.g., 30°C), while the other may provide the value and 
unit as a string (e.g., “30°C”). The goal of our context 
schema matching is to explore the high-level semantic 
equivalence between context attributes and schemas while 
the low-level implementation details of individual schemas 
are of less concern. Therefore, constraint-based matching 
in traditional databases [17] that utilizes data properties in 
the schemas does not appeal to our scenario either. 

• Dynamic joining of context sources. Numerous sources in 
various context domains, such as persons, houses and 
shops, may register to the middleware continuously over 
time. A context schema matcher in our scenario should 

require tiny computation cost to ensure the timeliness of 
matching a new local schema into the global schemas. In 
the meanwhile, the matcher must be adaptive to changing 
domain patterns of schema inputs. Many schema matchers 
for traditional databases [17] employ a supervised learning 
approach, which makes them inappropriate for our scenario 
due to the heavy computation cost or the human effort to 
obtain and incrementally update the training dataset. 

• Autonomous context sources. Our middleware allows any 
networked context source to register for data provision. 
These sources are indifferent to one another and can be 
owned by multiple organizations at different geographical 
locations. Each source composes and submits its context 
schema to the middleware separately. It is unreasonable 
for the middleware to impose a common name space 
among all sources for schema composition. Moreover, 
there is no sharing of system-level processing capabilities 
among the sources as those in federated databases [18]. 

Addressing these challenges, we propose a lightweight and 
adaptive schema matcher for context-aware computing in 
this paper. Our matcher consists of two main algorithms: (i) 
an algorithm for Context Attribute Matching (CAM), and 
(ii) an algorithm for Context Schema Matching (CSM). 

CAM computes the similarity between a pair of context 
attributes by comparing their names, and text descriptions if 
available. The similarity is measured by one of several pre-
defined matching criteria, such as stemming and substring 
detection. The criteria are invoked in a decreasing order of 
their priorities, whose values are periodically recomputed 
based on the previous matching accuracy each criterion has 
achieved. This enables the algorithm to be adaptive to the 
current patterns of schema inputs for efficiency and accuracy 
improvement: the criterion with better performance recently 
is used first to seek for a possible match for an attribute pair. 

The candidate matches found by CAM are handed over to 
the system administrator of our middleware for confirmation. 
Redundant attributes in a new local schema with a confirmed 
correct match are replaced by corresponding attributes in 
the global schemas. Such user feedback is the basis for CAM 
to adaptively adjust the priorities of its multiple criteria. 

CSM examines the similarity between a local schema and 
each global schema based on their accumulated attribute 
similarities output from CAM. If the two schemas have a 
similarity score larger than a threshold, the local schema can 
be merged into the global schema. Again multiple candidate 
matches are possible and human confirmation is involved. 

The human confirmation of matching algorithm outputs is 
motivated by the fact that only the middleware administrator 
knows or has the right to tell “what is a correct match”. 
Since the matcher provides all candidate matches while the 
administrator only confirms which are correct, the human 
effort involved is minor. If confirmation is undesirable, this 
option can be disabled in our schema matcher. It suggests 
the matcher is given the full power to regard every matching 
decision it makes as correct. In this case, for each local 



attribute or schema, the matcher automatically regards the 
candidate match for it with the highest similarity score as 
the ground truth and incorporates this match into the global 
schemas. The administrator can also specify missing matches 
to amend the matcher outputs whenever convenient. 

We have evaluated the performance of our context schema 
matcher using real-world schemas extracted from a number 
of websites. The experimental results demonstrate that even 
without human confirmation, our proposed algorithms can 
achieve high matching accuracy with tiny computation cost. 

Although in this paper we present the design of our schema 
matcher under the setting of context-aware middleware, the 
proposed matching algorithms are generic and can be applied 
to other application scenarios of context-aware computing. 
One example is the local schema matching between two 
neighboring peers of context sources in a P2P database [13]. 

The remainder of the paper is organized as follows. We first 
introduce some background knowledge of our context-aware 
middleware related to schema matching. Next, we present 
our algorithms for context attribute and schema matching in 
detail. We then present initial performance evaluation results 
for our matching algorithms. Finally, we discuss related work 
and conclude the paper with future research directions. 

SYSTEM BACKGROUND 

Overview of Middleware Infrastructure 
Figure 2 shows the overall four-layered infrastructure of our 
middleware. The schema matcher is a component of the 
context data management layer. This layer provides a SQL-
based query interface over the global schemas that allows 
services/applications in the upper layers to acquire context 
data from sources in the lower layer. SQL-based queries 
have been investigated to be comparable to more complex 
context queries such as RDF queries [5]. Distributed query 
dissemination, execution and optimization techniques are 
also equipped in the layer. The service management layer 
provides functionalities of service organization, discovery 
and workflow-based composition. A detailed description of 
the middleware components in each layer is beyond the 
scope of this paper. 
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Figure 2. Infrastructure of our context-aware middleware 

Context Modeling 
The current design of our schema matcher assumes a simple 
attribute-value approach to context modeling. Similar to the 

schema of a table in relational databases [18], a context 
schema in our middleware contains a schema name as well 
as the names, types, text descriptions and other additional 
information about a set of context attributes. 

The motivation is to make the initial design of our schema 
matcher generic and indifferent to specific context modeling 
approaches. Extending the matcher to incorporate and utilize 
the complex features of more expressive context models, 
such as the widely-used ontology model in today’s semantic 
web [1,4], is an ongoing direction of our research work. 

Schema Templates 
A schema template is an XML file provided by a context 
source upon registration. It specifies the context schema of 
the source to our schema matcher. The implementation 
details of the schema templates are omitted here. 

We make the current snapshot of global schemas in our 
middleware publicly-available via a web interface, together 
with example templates for these schemas. They serve as a 
guidance and reference for the context sources to compose 
specific templates for their local schemas. 

In the schema template, a context source can explicitly 
specify the exact matching between attributes in its local 
schema and those in the global schemas. The source can also 
indicate which global schema matches the local schema. 
This alleviates the schema matcher’s workload however in 
most cases a context source is not able or willing to do such 
manual matching. 

Schema Mapping 
After a local schema is matched with the global schemas, a 
schema mapping is sent to the corresponding context source. 
The mapping specifies the following information to the 
source: (i) for each attribute in the local schema, the attribute 
has been merged to which attribute in the global schemas, 
or it defines a new attribute in a global schema, (ii) whether 
the local schema is merged into one of the existing global 
schemas, or it becomes a new global schema. The matcher 
does not store the mapping between the global schemas and 
individual local schemas. Such information is distributed to 
corresponding context sources and stored locally instead. 

The syntax of a context query issued to our middleware is 
based on the set of global schemas. When the context query 
is routed to a source of required data, the source converts 
the query syntax from the global schemas to its local schema 
using the schema mapping it stores and processes the query. 

Our matching algorithms ensure that only new attributes or 
schemas will be added into the global schemas, whereas no 
existing attribute or schema will ever be deleted. This ensures 
consistency of previous schema mappings when the global 
schemas are continuously evolving upon registration of new 
sources. Otherwise, the schema matcher must send updates 
for previous mappings to all related sources upon removal 
of any existing global attribute or schema. This brings heavy 
extra workload to the system. 



 

MATCHING OF CONTEXT ATTRIBUTES 
Our context schema matcher is a name-based matcher [17]. 
CAM matches a pair of attributes according to the similarity 
between the attribute names, or text descriptions if available. 
CSM matches a new local schema with the global schemas 
based on the attribute match outputs of CAM. In this regard, 
our schema matching problem maps to a text processing 
problem over the schema templates. 

We present our adaptive, multi-criteria matching of context 
attributes in this section. The matching of context schemas 
will be described in the next section. 

Multiple Matching Criteria 
In order to test whether a pair of context attributes forms a 
candidate match, CAM applies a list of pre-defined matching 
criteria. These criteria measure the similarity between two 
attributes in different ways based on the linguistic similarities 
in their names and descriptions. Each criterion is associated 
with a priority in [0,1], whose value is periodically adjusted. 
When a criterion reports a match for an attribute pair, the 
similarity score of the pair is assigned to be the current 
priority of the criterion. 

The following matching criteria are employed for CAM in 
the current prototype of our schema matcher: 

(1) Equality. The criterion reports a match if the names of 
the two attributes are equivalent. 
(2) Stemming. The criterion reports a match if the names of 
the two attributes are equivalent after stemming. We use the 
Porter’s Algorithm for stemming [16]. 
(3) Substring. The criterion reports a match if one attribute 
name is a substring of the other after stemming. 
(4) Longest Common Substring (LCS). Suppose the names 
of the two attributes are s1 and s2 and the longest common 
substring of these two strings is s. The criterion reports a 
match if s.len > N and s.len / min(s1.len, s2.len) > τ. We use 
the dynamic programming algorithm for LCS detection 
[10]. The integer N > 0 and the real numberτ ∈ (0,1) are 
two pre-defined thresholds. The default values of N and τ 
are 2 and 0.8 in our schema matcher. 
(5) Synonym. The criterion reports a match if the names of 
the two attributes are synonyms (e.g., house and home, 
phone and telephone). We download and use the WordNet 
[20] lexical database for synonym checking. 
(6) Description. The criterion is only used when both of the 
two attributes have a text description. Language keywords 
are extracted from the descriptions by removing those words 
appeared in a stop word list [19]. The keywords are then 
stemmed and stored with corresponding attributes. 
Suppose the two attributes are a and b and their keyword 
sets are Ka and Kb. K = Ka ∩ Kb = {ki} (i = 1, 2, …, n).The 
criterion reports b matches a if Equation (1) is satisfied. fkai 
in the equation is the appearance frequency of ki in Ka and 
Nka the size of Ka. ρ ∈ (0,1) is a pre-defined threshold 
whose default value is 0.7 in our schema matcher. 

                                   ρ>
∑
=

Ka

n

i
Kai

N

f
1                                     (1) 

As revealed by Equation (1), the matching reported by this 
criterion may not be symmetric. In other words, b matches 
a does not mean a matches b in terms of their descriptions. 

Description matching is very useful to match an attribute to 
an equivalent combination of other attributes. For instance, 
our schema matcher can determine two attributes latitude 
and longitude in a local schema match the attribute location in 
the global schemas if and only if all attributes are specified 
with similar text descriptions. Therefore, we suggest context 
sources to provide attribute descriptions in their local schema 
templates to enhance the opportunity of matching. 

Criterion (1) is a special case of Criterion (2). We separate 
them since Criterion (2) is more time-consuming and there 
is no need to invoke it if Criterion (1) has been satisfied. 
The same case applies to Criteria (3) and (4). 

The six matching criteria are sorted in a decreasing order of 
their priorities in the list all the time. The initial priorities of 
all criteria are one. The default order of Criteria (1)-(6) is 
the same as the order we present them above. We have tried 
several other criteria, such as edit distance and hypernym 
[17], but excluded them from our schema matcher due to the 
unsatisfactory accuracy they achieved on trial datasets. 

Algorithm for Attribute Matching 
Based on the list of matching criteria, the CAM algorithm 
in our schema matcher is depicted in Algorithm 1. An 
equivalent illustration of the algorithm is given in Figure 3. 

Given a pair of context attributes, the algorithm invokes the 
matching criteria in order (Line 1) to look for a candidate 
match between the pair. If the option of confirmation is 
enabled, a match achieved by some criterion (Line 2) is 
presented to the administrator to decide whether it is correct 
(Line 3). Otherwise, the function attributeConfirm simply 
returns true every time it is called. 
 

Algorithm 1: Context Attribute Matching 
Input: a pair of context attributes (a, b) 
Output: candidate matches between a and b 
1: for each mci (1 ≤ i ≤ n) in mcList do 
2:    if attributeMatch(a, b, mci) then 
3:       isCorrect = attributeConfirm(a, b, mci); 
4:       if isCorrect then 
5:          mci.matchCount ++; 
6:          append (a, b, mci) to matchList; 
7:       else mci.matchCount – – ; 
8:       if | mci.matchCount | = = Na then 
9:             updateMatchingCriterion(mci); 

10:       if isCorrect then return; 
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Figure 3. Multi-criteria context attribute matching 

If a candidate match is correct, a local match counter of the 
corresponding criterion is increased (Line 5). In contrast, 
this counter will be decreased upon a wrong match (Line 7). 
Correct candidates are inserted into a global match list (Line 
6) and are used later for context schema matching. 

When the match counter of a criterion has its absolute value 
reach a threshold Na (Line 8), the priority of the criterion is 
increased or decreased by ∆ ∈ (0,1), depending on whether 
the counter value is positive or negative. The intuition is to 
give higher/lower priority to a criterion that has produced 
considerable number of correct/wrong matches recently. The 
default values of the two parameters are Na = 20 and ∆ = 0.1. 

After the priority of a criterion is updated, the match counter 
of the criterion is reset to zero. The criterion then switches 
its position up or down in the list based on the new priority 
until the correct order of the list is recovered. The priority 
of a criterion may become less than zero or larger than one 
after an update. In this case, the priority is set to zero or one 
after the list re-ordering is finished. All these operations are 
performed in the updateMatchingCriterion function (Line 9). 

By dynamically updating the priorities of matching criteria 
based on their recent accuracy, the algorithm is adaptive to 
the changing patterns of schema inputs. It is expected that 
such adaptivity will enhance the accuracy and efficiency of 
the matching process. The adaptivity also makes the initial 
order of the criteria unimportant at all. 

We have designed different adaptive tuning mechanisms for 
the threshold parameters in individual matching criteria and 
implemented them in the updateMatchingCriterion function. 
For instance, the τ value of LCS is decreased by ∆ whenever 
the priority of the criterion is increased. The intuition is to 
allow more opportunities for a criterion to report candidate 
matches when its recent accuracy is good and to make the 
default values of the threshold parameters less significant. 

If a criterion reports a matching for an attribute pair, its 
succeeding criteria in the list need not be invoked for the 
pair any more (Line 10). In this way, the algorithm always 
tries to use a single criterion with the highest recent accuracy 
to offer a candidate match for an attribute pair. 

In addition to adaptivity, another advantage of the algorithm 
is its flexibility. At any time new matching criteria can be 
easily added to any position in the list with proper initial 

settings of their priorities, and old criteria can be removed. 
The execution of the algorithm will not be affected. 

MATCHING OF CONTEXT SCHEMAS 
Now we describe how our schema matcher integrates a local 
schema into the current set of global schemas. Algorithm 2 
briefly depicts our algorithm for context schema matching, 
CSM. 

Algorithm 2: Context Schema Matching 
Input: a local context schema LS, 
            the current set of global schemas RGS 
Output: candidate match of LS in RGS 
1: selfMatching(LS); 
2: if LS is specified to be a part of GS in RGS then 
3:    intraSchemaMatch(LS, GS); 
4: Else 
5:    dictionaryMatch(LS); 
6:    S = interSchemaMatch(LS, RGS); 
7:    schemaConfirm(S); 
8:    updateSchema(S, RGS); 
9:    updateDictionary(S); 

 

Intra-schema Matching 
We first discuss a simple but restricted case in which the 
local schema is known to be part of a global schema (Lines 
2-3 in Algorithm 2). As previously presented, this semantics 
can be specified in the schema template. 

As shown in Figure 4, in this case the process of schema 
matching involves the matching of every pair of attributes 
in the local and global schemas using CAM. This process is 
very similar to the join operation in relational databases [17, 
18]. All candidate matches of attribute pairs are available in 
the global match list after this “joining” process. 
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Figure 4. Match a local schema with corresponding global 

schema 

For each attribute in the local schema, CSM only allows it 
to be finally merged to one attribute in the global schema. 
As a result, if two candidate matches (a, b1) and (a, b2) are 
both confirmed as correct, the one achieved by a criterion 
with a larger priority is kept and the other is removed from 
the global match list. 

The candidate matches in the global match list are examined 
when the process of schema matching ends. Each attribute 
in the local schema is either merged to its matched attribute 



 

or added as a new attribute in the global schema. A schema 
mapping is formed and sent to the context source. 

An appearance counter is kept for each attribute in a global 
schema. It indicates the attribute is the aggregation of how 
many equivalent attributes from different local schemas. 

Before integrating a local schema with the global schemas, 
CSM first match the schema with itself to remove redundant 
attributes (Line 1 in Algorithm 2). This process is the same 
as that in Figure 4 and we call it self matching. 

Inter-schema Matching 
We next describe the general case of our schema matching 
in which the local schema has not been explicitly specified 
to be a part of any global schema. In this case, a naïve 
approach is to examine matching between the local schema 
and every existing global schema. Such linear search is time-
consuming when the number of global schemas is large. 

Our CSM algorithm addresses the problem by maintaining 
a shared attribute dictionary among all global schemas. The 
motivation is that many attributes are common to different 
schemas. As a result, the total number of attributes in all 
global schemas after matching can be reasonably small. For 
instance, as illustrated in Figure 5, the name, location and 
phone attributes are shared by the three schemas describing 
context data of real-world shops, houses and persons. 

name SHOP HOUSE PERSON

location SHOP HOUSE PERSON

phone SHOP HOUSE PERSON
products SHOP

area SHOP HOUSE

birthday PERSON

Local schema

Attribute name

A pointer to a global schema

a1

a2

a3

an

Attribute dictionary

CAM

 
Figure 5. Match a local schema with attribute dictionary 

The dictionary includes all context attributes that appear in 
one or more current global schemas. Each dictionary entry 
contains the name of an attribute, keywords extracted from 
the attribute descriptions (if any), and a list of pointers each 
of which points to a global schema that the attribute belongs 
to. Accordingly, a global schema contains a number of 
pointers to the entries in the dictionary. Figure 5 illustrates 
the attribute dictionary with example context attributes and 
their corresponding global schemas. 

We ensure any two attributes in the dictionary cannot match 
each other via CAM. Otherwise they will be merged into a 
single attribute. For instance, suppose an attribute telephone 
is to be newly incorporated into the dictionary. The attribute 
is merged into the existing attribute phone (synonyms). No 
new entry is appended to the dictionary. 

During the matching process in CSM, the new local schema 
performs a join with the attribute dictionary using CAM as 
the join predicate, as shown in Figure 5 (Line 5 in Algorithm 

2). For each attribute in the local schema, a set of attributes 
in the dictionary each of which forms a candidate match 
with it are obtained after the join. Unlike the previous case 
of intra-schema matching, all these candidate matches will 
be kept for the attribute. The candidates are further filtered 
if human confirmation is involved. 

For each existing global schema, CSM computes the total 
number of attributes in the local schema having at least one 
candidate match in this global schema (Line 6). This number 
is called the match count of the global schema in terms of 
the local schema, denoted as Nmc. Suppose the total number 
of attributes in the local schema is Nl, the similarity between 
this local and global schema pair is measured as Nmc / Nl. 

All global schemas with a similarity score Nmc / Nl larger 
than a threshold Nd will be regarded as a candidate match to 
the local schema. At most one of them can be confirmed by 
the administrator as a correct match, or CSM automatically 
selects the one with the highest similarity score as the correct 
match (Line 7) and breaks ties randomly. The default value 
of Nd is 0.6 in our schema matcher. 

The local schema is merged into the corresponding global 
schema if there is a correct match (Line 8). The appearance 
counters of the global schema attributes are updated. Even 
if an attribute in the local schema does not have any match 
in this global schema, the attribute is still aggregated with 
its correct match in another global schema if such match 
exists. Otherwise, the attribute is inserted as a new entry in 
the dictionary with a pointer to the global schema (Line 9). 

The local schema is inserted as a new global schema in the 
middleware if it does not match any existing global schema. 
Attributes in the local schema are aggregated with existing 
entries or inserted as new entries in the dictionary, the same 
as the situation with a correct schema match. 

In our schema matcher, different matching orders of local 
schemas from the same set of context sources can result in 
different syntactic evolution of the global schemas. As an 
example, the name of an attribute in the global schemas will 
be that in the first added local schema having the attribute. 
This syntax difference does not affect the semantic accuracy 
of the global schemas. However, a wrong attribute or schema 
match incurs incorrect semantics in the global schemas and 
may affect the correctness of the subsequent matches in a 
cascading way. This is one of the main reasons why we add 
human confirmation to the matcher and try best to eliminate 
the wrong matches. As for the missed matches, they add 
redundant attributes in the global schemas and have less 
significant semantic impact. 

PERFORMANCE EVALUATION 
In this section, we present an initial performance evaluation 
of our context schema matcher. 

Schema Dataset 
The schema dataset we used for our experiments contains 
schema information extracted from 30 real-world websites. 



We used these schemas because websites are heterogeneous, 
autonomous data sources in the Web that can be categorized 
into different domains, which bears some similarity to our 
context sources over the semantic web. These schemas are 
composed by website administrators with domain-specific 
knowledge in a way similar to that for our context sources. 
Both involve the human understanding and representation 
of various kinds of data. 

The best dataset to evaluate our context schema matcher is 
the actual context schemas composed by the administrators 
of real-world context sources. We are collecting a survey 
schema dataset from many researchers having experiences 
on sensor network deployment and management for a further 
evaluation of our matcher in future. 

The websites in the 30-schema dataset can be categorized 
into three context domains: SHOP, HOUSE and PERSON. 
Each website is an information directory for the physical-
world entities in the corresponding domain. For instance, a 
HOUSE website introduces a number of houses for sale or 
rent in a country. There are 10 websites in each domain. 

A schema is composed from the HTML form template of a 
website that describes the entities in the domain. We copied 
the names of form fields directly to be the attribute names 
in the schema. For a field whose name has multiple words, 
such as “opening hours” for a shop and “first name” for a 
person, we used underscores to connect the compound words 
since the attribute names in our context schemas do not 
allow spaces. If there are two or more alternative names 
shown in the HTML form for a field, such as “first name” 
and “given name” for a person, the first one was used as the 
attribute name in the schema whereas the others were used 
as descriptions. If available, the descriptions of form fields 
were also copied directly and used as attribute descriptions. 
 

Domain Example 
attributes Example websites 

SHOP 
name, 

category, 
products 

http://www.yellowpage.com.au/ 
http://www.made-in-china.com/ 

HOUSE 
address, 

no_of_rooms,  
price 

http://www.singaporeexpats.com/
http://www.flatsdb.com/ 

PERSON 
date_of_birth, 

phone,        
e-mail 

http://www.myspace.com/ 
http://person.com/ 

 

Table 1. Example attributes of schemas in different domains 
from real-world websites 

The number of attributes in the 30 schemas varies from 6-
29. The average number of attributes per schema is 12. 
Table 1 lists a few example attributes and source websites 
belonging to each of the three domains. 

The correct list of matches among the attributes in the 30 
schemas of the dataset was recorded during the composition 

of the schemas. It serves as the ground truth in the evaluation 
of the accuracy achieved by our matching algorithms. In the 
ideal case, our schema matcher should be able to merge all 
corresponding schemas belonging to the same domain so 
that an input trace of the 30 schemas will only result in 3 
global schemas. 

Accuracy of Attribute Matching 
We used two performance metrics, precision and recall, to 
evaluate the accuracy of our proposed matching algorithms. 
Let N1 be the number of matches reported by the algorithm 
over the dataset, N2 the number of correct matches within 
N1 and N3 the total number of correct matches in the dataset. 
The two metrics are defined below: 

                            12 / NNprecison =                               (2) 

                              32 / NNrecall =                                  (3) 

We first evaluated the accuracy of CAM. Figure 6 shows 
the precision and recall achieved by CAM when the dataset 
size varied from 6 to 30 schemas. For each dataset size, the 
number of schemas in each of the three domains was the 
same. For example, the dataset of size 18 had 6 schemas in 
each domain. 

88.2% 88.4%86.7% 86.4% 86.0%
77.3% 77.0% 77.7% 80.8% 81.3%

0%

20%

40%

60%

80%

100%

6 12 18 24 30
Number of Schemas

M
at

ch
in

g 
Ac

cu
ra

cy

precision recall
 

Figure 6. Accuracy of attribute matching with different 
dataset sizes 

Each value in the figure is the average of several experimental 
runs. For each run of the experiment, a random subset was 
selected from the total of 30 schemas to avoid bias. The same 
setting was used for all figures shown in the following. 

In Figure 6 we see that CAM achieved good accuracy and 
stable results over datasets of different sizes. The precision 
was around 86-88% while recall was between 77-81%. The 
stable performance of CAM is desirable since the schema 
matcher needs to run continuously and provide consistent 
performance over a long period of time. 

Figure 7 illustrates the accuracy of different CAM variants 
with a fixed dataset size of 30 schemas. In the figure, CAM 
refers to the full implementation of our algorithm for context 
attribute matching with the six criteria. CAM-SUB is the 
variant of CAM that does not use substring detection in 
Criteria (3) and (4), CAM-SYN does not use synonym 
detection in Criterion (5), and CAM-SUBSYN does not use 
both substring and synonym detection in Criteria (3) to (5). 
Human confirmation is disabled in this experiment. Hence, 
the results in the figure only depict worst-case performance 
of the variants without supervision. Since there are only few 



 

attributes having descriptions in the 30 schemas, the CAM-
DESCRIPTION variant was not included in our experiment. 
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Figure 7. Accuracy of attribute matching for different CAM 
variants without human confirmation 

As shown in Figure 7, CAM-SUBSYN achieved 100% 
precision in the experiment while CAM-SUB had 89.7% 
and CAM-SYN had 94.9%. These values are all larger than 
the 88.4% precision of CAM. The result suggests for our 
schema dataset, substring and synonym detection were the 
sources of wrong matches whereas equality and stemming 
always produced correct matches. 

The figure indicates synonym detection caused more wrong 
matches than substring detection. One possible explanation 
is that the synonyms are too general or not domain-specific, 
thereby producing many wrong matches upon the ground 
truth of a particular domain. Also, there is a high probability 
for related attributes to share a common substring, because 
of the tendency of people to use attribute names based on 
common root words. 

As for recall, the figure shows that substring detection was 
very helpful to improve this metric. Without these criteria, 
the recall of CAM-SUB was only around 60%. Compared 
to CAM which had 81.3% recall, CAM-SUB suffered more 
than 20% decrease in performance. The main reason is the 
nature of the dataset. It is characterized by the prevalence of 
multi-word attributes that can only be matched by substring 
detection (e.g., company_name vs. name and no_of_rooms 
vs. number_of_rooms). 

Interestingly, Figure 7 reveals that synonym detection had 
no contribution to the improvement of recall. The criterion 
even decreased the recall slightly in our experiment. CAM-
SYN had a recall of 84.4%, which is larger than the 81.3% 
one of CAM. This was because for our schema dataset, 
synonym detection not only provided a few correct matches, 
but also made many wrong matches such as state and land. 
A previous wrong match caused several succeeding correct 
matches to go undetected, which decreased both precision 
and recall. Furthermore, the number of wrong synonym 
matches was larger than that of the correct synonym 
matches in the experiment. This caused a negative impact 
on the overall performance of precision and recall. 

The same problem existed for substring detection. However, 
substring detection achieved much more correct matches 
than wrong matches in the experiment. This caused positive 
improvement of the performance as a whole. 
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Figure 8. Accuracy of attribute matching for different CAM 

variants with human confirmation 

As a counterpart of Figure 7, Figure 8 shows the accuracy 
of different CAM variants with human confirmation of the 
ground truth. Compared to Figure 7, results in this figure 
described the best-case accuracy achievable by the variants. 
The dataset size was still 30 schemas in this experiment. 

In Figure 8, the precision of all variants was 100% since 
human confirmation filtered out wrong matches. There was 
also a significant increase in the recall performance of all 
variants because more correct matches were detected by 
both substring and synonym detection without side effects 
of the wrong matches. Figure 8 complements the results of 
Figure 7 and reiterates our prior observation regarding the 
superiority of substring detection over synonym detection 
with respect to the current schema dataset. This conclusion 
is indicated by the superior recall performance of CAM-
SYN compared to CAM-SUB in both figures. 

To summarize, results of Figures 7 and 8 suggest that real-
world schemas from the Web tend to use the same names or 
names with the same stem for equivalent attributes. CAM-
SUBSYN achieved as high as 100% precision and 64% 
recall upon our dataset. The schemas also often use names 
with common substrings for equivalent attributes, which 
makes substring detection an important component for any 
matcher. On the other hand, the success of using synonym 
detection depends on choosing synonym sources that have 
the proper context of the schemas being processed in order 
to truly identify the equivalent attributes. 

Accuracy of Schema Matching 
To evaluate the accuracy of CSM, we first created three 
global schemas in the schema matcher corresponding to the 
SHOP, HOUSE and PERSON domains. Each global schema 
contains the union of all attributes appeared in the schemas 
of the domain in our dataset. For equivalent attributes, only 
a randomly-chosen one was added into the global schema. 

After running several trials of the experiment using all the 
30 schemas, our schema matcher had 100% precision and 
recall in all trials. CSM successfully matched every schema 
in the dataset to the corresponding global schema of the 
domain. The result demonstrated the effectiveness of CSM. 

Computation Overhead 
We implemented our schema matcher in Java and ran the 
experiments on a PC with Intel Pentium 2.0GHz CPU, 1GB 



main memory and Windows XP OS. The computation cost 
of matching a schema in the dataset in our experiments was 
between 0-200ms, which is tiny and negligible. The result 
indicated the efficiency of our matching algorithms. 

We have performed trial experiments with different initial 
orders of the matching criteria in CAM and found that the 
criteria can be adaptively re-ordered based on characteristics 
of our 30-schema dataset. As a typical example, the criteria 
of substring detection were always put ahead of synonym 
detection after an experimental run, because there are more 
substring matches than synonym matches in the dataset. We 
are crawling hundreds of schemas from various websites to 
form a larger experimental dataset for an ongoing extensive 
evaluation on the adaptivity of our matcher. 

Our current results revealed many interesting observations 
on real-world schemas that guide us to the enhancement of 
our matching algorithms. One possible research direction is 
the incorporation of a Latent Semantic Analysis (LSA) [8] 
criterion in CAM by mining web documents to build domain-
specific context dictionaries, which may help to lessen the 
number of wrong matches caused by synonym detection. 

RELATED WORK 
Existing approaches to database schema matching can be 
categorized into the following taxonomy [12,17]: 

(1) Schema-level vs. Instance-level – whether to consider 
the contents of data or just the schema information. 

(2) Element-level vs. Structure-level – whether to consider 
the schema elements individually or complex combinations 
of the elements. 

(3) Language-based vs. Constraint-based – whether to 
consider the matching based on the texts (names) of the 
elements or based on certain constraints. 

(4) Hybrid vs. Composite – whether the matcher employs a 
combination of dependent matching criteria or independent 
ones that are aggregated using certain weights. 

According to this taxonomy, the context schema matcher we 
propose is schema-level, element-level, language-based and 
hybrid. Instance or constraint-based matching is not quite 
appropriate to our problem as described in the Introduction. 
Structure-level or composite matching is still applicable and 
we are investigating how to incorporate them to improve our 
matching algorithms. We have not employed structure-level 
matching in our current algorithms since the computation 
cost of checking complex schema structures is considerable. 
Moreover, human confirmation can help to reduce certain 
wrong matches caused by ignoring structures, e.g., wrongly 
matching two schemas in different domains with a common 
subset. Composite matching brings the problem of adaptive 
tuning of the criteria weights. 

LSD [3] uses machine learning to match XML data sources 
to a pre-defined global schema. Both schema and instance-
level matching are performed in LSD. It uses a composite 

model and applies supervised learning to adjust the criteria 
weights based on user-supplied training data. In comparison, 
our matcher integrates schemas from context sources based 
on an attribute-value relational model. Like unsupervised 
learning approaches our matcher does not reply on a training 
dataset that needs substantial user effort to prepare. It can 
work reasonably well even without human effort of match 
confirmation. Our matching algorithms are designed to be 
lightweight and adaptive to the real-time patterns of schema 
inputs from context sources in different domains. 

Cupid [12] employs a hybrid model of three stages. The first 
stage uses language-based matching to categorize elements 
based on names, types and domains. It computes element 
similarities using substring matching and other methods. The 
second stage converts the original schema into tree structure 
and applies bottom-up matching to find structural similarity 
between pairs of elements. The last stage uses the calculated 
weighted mean from previous two stages to decide mapping 
among elements and structures. We apply substring detection 
in our matcher for context attributes and demonstrate that 
this criterion is very useful in practice. 

SemInt [9] utilizes clustering and neural networks to find 
attribute matches in different database schemas based on 
the signatures generated by multiple matching criteria. The 
authors observed that clustering performs well in matching 
nearly identical attributes whereas the neural network with 
training is better in less similar attributes. We use a context 
schema matching algorithm similar to clustering that groups 
the local schemas into global ones. 

Our matcher is aimed at effectively and efficiently handling 
the matching of various schemas from a large number of 
context sources that are registered to the middleware in real 
time. To our best knowledge, all prior approaches to schema 
matching in traditional databases have not been presented 
or evaluated in an online manner using tens of schemas. 
Some of them involve processing that is unnecessary or 
inapplicable to our scenario of context-aware computing. 
Therefore, their performance in our scenario is unknown. We 
are identifying a few traditional database matchers that may 
be applicable in our middleware. An extensive performance 
comparison between these matchers and our matcher is an 
important direction of our future work. 

There have been many publications on ontology matching 
in the research community [14,15]. Using our current context 
schema matcher as a starting point, we are studying how to 
extend our work to develop a more generic and complex 
ontology matcher in context-aware computing. The goal is 
to design a real-time ontology matcher that ensures both 
good accuracy and small computation cost despite the more 
versatile information encapsulated in the ontology model. 
Our CAM algorithm can be used as a sub-component of the 
ontology matcher to check the name similarities of classes, 
instances, properties and relationships in two ontologies. 
The shared attribute dictionary used in our CSM can be 
extended to represent other types of ontology elements. 



 

CONCLUSION 
We propose a name-based schema matcher for context-
aware computing in this paper. We designed a CAM 
algorithm to match individual attributes in a local schema 
with those in a set of global schemas. The algorithm 
employs multiple matching criteria sorted and examined by 
a decreasing order of their priorities. The priorities and 
parameters of the criteria are dynamically adjusted based on 
the recent matching accuracy, which makes the algorithm 
adaptive to the current patterns of schema inputs. We further 
designed a CSM algorithm that uses the CAM outputs to 
integrate a local schema into one of the global schemas 
based on the largest common subset of matched attributes. 
The algorithm uses a shared attribute dictionary in the 
matcher that contains all attributes in the global schemas. 

We have conducted an initial performance evaluation of our 
matcher using schemas obtained from real-world websites. 
The results demonstrate the good accuracy of our proposed 
CAM and CSM algorithms. Specifically, we have shown in 
our experiments that attribute matching based on equality, 
stemming and substring detection over their names are quite 
accurate in practice. Synonym detection has both strengths 
and weaknesses and must be put into the particular domain 
context of the schemas for a more subtle consideration. 

Our ongoing and future work includes collecting large-scale 
datasets to further evaluate the performance of our schema 
matcher and compare it with traditional database matchers, 
extending our matcher to ontology matching and exploring 
the effects of using domain-specific LSA dictionaries rather 
than a general word directory for synonym detection. 
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