
 1

Visualization of Mappings Between Schemas
George G. Robertson, Mary P. Czerwinski, John E. Churchill

Microsoft Research
One Microsoft Way, Redmond, WA

{ggr, marycz, echurch}@microsoft.com

ABSTRACT
In this paper we describe a novel approach to the
visualization of the mapping between two schemas. Current
approaches to visually defining such a mapping fail when
the schemas or maps become large. The new approach uses
various information visualization techniques to simplify the
view, making it possible for users to effectively deal with
much larger schemas and maps. A user study verifies that
the new approach is useful, usable, and effective. The
primary contribution is a demonstration of novel ways to
effectively present highly complex information.

ACM Classification Keywords
H5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

Keywords
Visualization, schema mapping, hierarchy visualization,
interaction techniques, XSLT, XML

INTRODUCTION
A common problem in electronic business applications is
transforming data from one XML (Extensible Markup
Language [7]) schema into another. For example, data may
come into a company in some industry-standard schema
and must be transformed into a company-specific and/or
need-specific schema. Ultimately, this is done with an
XSLT (eXtensible Stylesheet Language: Transformations
[7]) style sheet. However, for complex schemas and
mappings, defining that XSLT style sheet is very difficult.

One current, well-received solution to this problem is
exemplified by the Microsoft BizTalk Schema Mapper [3],
which provides a visual means of building a functional
mapping from a source schema to a destination schema.
Figure 1 shows a map between two simple schemas. The
source schema is on the left, the destination schema is on

the right, and the mapping is shown between them. The
mapping is a network of functoids (functional operations)
connected by links to schema elements and other functoids.
Once a mapping is visually defined, an XSLT style sheet is
compiled for use.

Figure 1. BizTalk Schema Mapper for a simple map.

Figure 2. Example of failure to scale well for large maps.

The problem with the current solution is that it does not
scale well to large schemas or large maps, and yet that is
exactly what businesses need. Figure 2 is an example of
such a failure, with thousands of elements in each schema
and dozens of functoids. The details of interest become lost
in a maze of complexity. In the current solution, a user may

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

CHI 2005, April 2–7, 2005, Portland, Oregon, USA.

Copyright 2005 ACM 1-58113-998-5/05/0004…$5.00.

 2

select any schema element, link, or functoid, but only that
item is highlighted. This means that to find a relationship
between a source schema element and a destination element
requires multiple selections and much scrolling of both the
schemas and the map in order to establish a reasonable
view.

Through customer visits, we have collected many examples
of maps in real use that are similar to or even larger than the
example shown in Figure 2. An informal survey of BizTalk
users indicates that complex maps like this may occur about
10% of the time, but they take up in excess of 50% of the
end user’s edit and creation time because of the complexity.

BizTalk’s approach to schema mapping is similar to a
number of other schema mapper systems, including BEA
WebLogic Workshop [4], IBM WebSphere [9], TibCo
BusinessWorks [16], Altova [2], Stylus Studio [15], Cape
Clear [5], Sonic Software [14], and ActiveState [1]. Each
of these systems has the same problems of scale, and the
solutions we present could be applied to any of them.

Users of these schema mapper systems fall into two broad
categories. The primary users are developers who use these
tools to define how data flows in businesses. Initially, a
developer spends much time creating and editing these
mappings. Later, as new or different data is introduced into
a business, a developer might need to revisit a mapping to
make improvements. For that task, the developer may
spend time navigating through the mapping to learn (or
relearn) how the mapping was constructed, then spend time
editing old parts or creating new parts of the mapping. The
secondary users are business managers who examine the
mappings to ensure that they properly reflect business
process policy. These users tend to only navigate through
the schemas and mappings. Both kinds of users suffer when
schemas and mappings get large. Both the navigation task
and the semantic editing task become harder.

Based on several years of feedback from real users of these
systems, there appear to be two primary problems. First,
when a developer is editing a mapping, help is needed in
understanding the semantic relationship between elements
and the semantic meaning of the mapping. This problem
gets much harder as the schemas and mappings get large.
While we do have research underway in this area, it is not
the focus of this paper, as it is a less frequently performed
mapping activity.

Second, basic navigation tasks (e.g., finding what schema
elements are linked to what other schema elements) are
very common and are seriously impaired when the schemas
and mappings get large. This is the primary area of research
reported on in this paper. The user study task selection and
performance criteria are based on solving these navigation
problems. The study participants were experienced schema
mapper users and they confirmed that our task selection
reflected typical tasks and accounted for where they spent
most of their time while using schema mappers.

In this paper, we propose a new Schema Mapper
visualization which addresses the problems of scale
experienced by current users for navigation tasks. We use
novel visualization and interaction techniques inspired by
the information visualization community to solve these
problems. After describing these new techniques, we
describe the results of a user study that verifies the
usefulness, usability, and effectiveness of the new
techniques.

SCHEMA MAPPER VISUALIZATION IMPROVEMENTS
The basic approach to scaling to large schemas and maps is
to focus on the most relevant items of interest and de-
emphasize or remove items of no relevance for a particular
interaction. This approach is similar to the way dynamic
queries [13] are used as a filtering mechanism for visual
information seeking. However, the techniques reported here

Figure 3. Baseline configuration; similar to original BizTalk Mapper

 3

are driven by item selection rather than query sliders. We
will describe the new techniques in order of importance.
The figures used to illustrate each technique are screenshots
from our implementation of Schema Mapper and the map
used in our user study; a map from an actual BizTalk user.

We started this design process by implementing a prototype
with the same visualization and behavior as BizTalk
Schema Mapper. Figure 3 shows this configuration. Notice
that one of the source schema elements has been selected,
but only that item is highlighted.

Highlight Propagation
The most important change is to propagate highlighting
whenever any item (schema element, link, or functoid) is
selected. By propagation, we mean that all links are
followed in both directions, and every schema element,
link, and functoid that is relevant to the selected item is
highlighted as well. For complex maps, that would not be
sufficient because of the density of links. So, in addition,
we de-emphasize all the links and functoids that are not
highlighted. The de-emphasis is accomplished by drawing
the links in gray and the functoids with 30% transparency.
Figure 4 illustrates highlight propagation.

Notice that we still have a problem if the functoids or
schema elements of interest are not visible, since the basic
interactive behavior does no auto-scrolling.

Figure 4. Highlight propagation after selecting element.

Auto-scrolling
Text editors have had some form of auto-scrolling for many
years. If you type past the end of the visible region of a
document, the editor auto-scrolls to the appropriate place so
that you can continue typing. In a similar way, we
introduce three kinds of auto-scrolling to the Schema
Mapper visualization. Each technique is driven by a user
selection of an item.

Auto-scroll Map
After highlight propagation, the map is auto-scrolled so that
the mid-point between the top-most and bottom-most
highlighted functoids is vertically centered on the vertical
position of the selected schema element.

An alternative is to auto-scroll so that the mid-point
between the top-most and bottom-most highlighted
functoids is vertically centered on the center of the window.
However, our intention is to line up the related schema
elements and functoids; to accomplish that, both schemas

would have to scroll as well. Informal user feedback
confirmed that this alternative involved too much motion,
so instead we center on the selected schema element.

Auto-scroll Columns within Map
When the map is auto-scrolled, it is often still the case that
the functoids along the selected path (between source
schema element, functoids, and destination schema
element) are not aligned. This happens partly because the
maps are laid out by hand and partly because of inherit
complexity of the linking network. To address this
problem, we use a technique originally suggested by the
Cone Tree visualization [12]. In Cone Trees, the path from
a selected node to the root is centered, so that at each level
of the tree the appropriate node is centered. The 2D
equivalent is to move each column of the map so that the
next functoid on the selected path is centered on that path.
This is only done for the top-most highlighted functoid in
each column. The result is that the entire selected path is
centered on the originally selected schema element.

 Figure 5. Auto-scrolling of map, columns, and schemas.

Auto-scroll Schema Tree Views
To complete this centering, we also need to center the
highlighted schema element(s) in the related schema.
When we do this, we would like to animate the scrolling of
the node in the tree view to its new location. This is
inspired by the Polyarchy visualization [11], which used
animated transitions to ensure that users do not lose track of
the nature of complex transitions. The standard Windows
TreeView control [17] does not support centering of a node
or animated scrolling. We introduced these two techniques
into a modified version of the TreeView control to allow
their use in the Schema Mapper visualization.

Figure 5 shows the effects of these three auto-scroll
techniques after selecting a destination schema element.
While this helps a great deal, we still may have a problem if
the distance between related schema elements is large,
because of intervening information not relevant at the
moment. Figure 5 shows such a case, with one of the
highlighted source schema elements not visible.

Coalescing Trees
To address the problem of non-relevant information being
displayed in the schema tree view, we introduce a method
for coalescing nodes deemed not relevant at the moment.
This technique was partly inspired by the Polyarchy

 4

visualization [11], which only shows tree nodes relevant to
the current user query. It was also inspired by the Favorite
Folders technique [7], which provides a way to manually
mark which folders to keep in a tree view. But instead of
marking items manually, Schema Mapper uses implicit
relevance based on two factors: whether a schema element
or any of its descendants has a link, and the selected and
highlighted schema elements. Figure 6 shows the result of
the same selection as in Figure 5, but with coalescing trees.
Notice that the highlighted source schema elements are now
much closer together and fully visible on the screen.

Figure 6. Coalesced trees.

Figure 7 shows a close-up view near one of the coalesced
nodes of the source schema. Hovering over a node will
produce a tooltip that describes what has been coalesced. If
you click on the coalesced node’s down-arrow, the
coalesced nodes are made visible and the down-arrow
becomes an up-arrow. Clicking on the up-arrow will re-
coalesce those nodes. Notice that there are multiple
coalesced node sets at the same level in this hierarchy.
Favorite Folders actually puts all of its coalesced nodes for
a level into one ellipsis at the end of the level. However,
for schema management, the order of the nodes has
meaning; hence, it is desirable to have coalesced node sets
appear in place rather than being combined.

Multi-Select
On some occasions, a user wants to know how multiple
schema elements interact. Currently that requires
sequential selection and human memory. We have added
multiple selection capability to the Schema Mapper
visualization to address this problem. The first selection is
done with a single click of the mouse button. Additional
selections are done with a mouse click while holding down
the Shift key. Figure 8 shows selection of three elements of
the source schema. Notice that highlight propagation and
auto-scroll are driven by the multiple selections.

Figure 8. Multi-selection of three source schema elements.

Incremental Search
Coupling search capabilities with these new visualization
features should provide powerful and fast ways for the user
to find relevant information. We have added a search type-
in box above each schema (see Figure 10), along with a
checkbox to indicate whether the search should be done
only on linked elements or on all elements. The search is
incremental, in that it shows the results after each keystroke
in the type-in box. The multi-select mechanism is used to
automatically show all the relevant information for the
search hits. Figure 9 shows the results of an all-elements
search for the string “ssn” in the destination schema.

 Figure 9. Search for “ssn” in destination schema.

Automatic Parental Tree View Collapse
To display the most appropriate results of an incremental
search, we want to show only the nodes in the searched
schema that have search hits or have descendants with
search hits. All other nodes should be collapsed. This is
inspired by the Polyarchy visualization [11], which also
shows only the information relevant to the query. To
implement this required changing the basic behavior of the
TreeView control, to support automated collapsing of un-
marked nodes.

Figure 7. Close-up of coalesced nodes with tooltip.

 5

Interactive Scrollbar Highlighting
Notice that the scrollbars in Figure 10 have tick marks.
These represent all of the search hits in the entire schema.
The scrollbar highlighting was inspired by similar search
results scrollbar highlighting in the DateLens [6] calendar
visualization. The difference here is that the scrollbar’s
highlighted tick marks are interactive. If you hover over
one, a tooltip will describe the element. If you click on one,
an animated scroll will bring the desired element to the
center of the tree view, or as near to the center as possible.

Figure 10. Search type-in box and scrollbar highlights.

The tick marks are color-coded. Blue marks represent
elements that are selected. Red marks represent search hits
that are not currently selected. After a search, all of the tick
marks will be blue because they are multi-selected. Each
time the user types the Enter key, the system will (single)
select the next search hit. Shift-Enter will (single) select
the previous search hit. This gives the user a way to see all
search hits simultaneously (the default) or to sequence
through individual search hits. When sequencing through
individual search hits, one of the ticks will be blue and the
others will be red. Figure 10 is showing the default.

Figure 11. Close-up of bent link.

Bendable Links
When highlighting a path between schema elements,
occasionally a link will pass directly behind a functoid.
When this happens, it becomes visually ambiguous; the
user cannot be sure if the link connects to the functoid or
not. In addition, the link may obscure an existing link to
the functoid. To avoid these problems, we detect this case

and visually bend the link around the functoid. Figure 5
shows an example of this, where a link has been bent below
a functoid. Figure 11 shows a close-up of the same link.
Since we know which functoid to avoid, drawing a bent
link is done simply by drawing an arc with a control point
either directly above or below the functoid being avoided.

Focus on Linked Elements
Like the original BizTalk Schema Mapper, our Schema
Mapper visualization collapses tree view nodes that have no
linked elements as descendants. To complete this visual
behavior, we augment the TreeView interactive behavior to
match the focus on linked elements. In particular, the use
of the up/down arrow keys to advance to the previous/next
element has been modified to advance to the previous/next
linked element. If the user holds down the Shift key while
typing the up/down arrow key, the original behavior is
performed.

USER STUDY
In order to test the usability and usefulness of the
redesigned Schema Mapper visualization, we built a fully
functioning prototype of the tool in a manner that allowed
us to systematically turn on and off particular features.
This provided us with the ability to incrementally
investigate the influence of each in comparison to the
baseline version of how the Schema Mapper works in the
original BizTalk mapper. Therefore, our baseline Schema
Mapper visualization was simply the existing user interface,
with one critical addition. All four versions of the mapper
that we tested included a search capability for both the
source and destination schema tree controls. This was also
true for the baseline condition (feature set A), shown in
Figure 3. The second condition in our study (feature set B)
included highlight propagation, as described earlier (see
Figure 4). The third condition (feature set C) involved a
version of the mapper that included these features, but also
added the three auto-scrolling mechanisms described earlier
(auto-scroll map, auto-scroll columns, and auto-scroll
schemas), as shown in Figure 5. The final condition in our
study (feature set D) used a version of the mapper that
included all of these features and in addition provided
sibling coalescence and search result tick marks to visualize
search hits in the scrollbar (Figure 6).

So, the study was a four-way within-subjects design of
various incremental improvements to the Schema Mapper
visualization. To control for order effects, the order in
which participants experienced each of the versions of the
mapper was counterbalanced using a partial Latin Square
design (partial because only 8 participants were run through
the study, so all orders could not be tested; however, the
squares were balanced).

Participants
Eight very experienced BizTalk users were recruited for
participation. From an analysis of a background
questionnaire, the participants had an average of 21 years of

 6

computer experience, over four years of experience using
BizTalk, on average, and were 38.4 years old, on average
(ranging from 28 to 49 years old).

Tasks
Six tasks involving finding elements in the source and
target schema maps, their related functoids and their
connections were devised. An effort was made to keep the
tasks isomorphic so that the participants experienced
similar tasks as they viewed each version of the mapper.
To ensure that no one task set was accidentally more
difficult than the rest, however, we rotated the task set
through the visualizations. Two of the task sets are shown
in Table 1 by way of example. The map that was used for
the experiment was typical of the kinds of maps created in
large corporate organizations, and came from a BizTalk
customer. Figures 3-11 were created with the map used in
the study. The aspect ratio of the window used for the
study, as shown in those figures, was chosen to require
scrolling of both schemas and the map for these tasks. This
essentially simulates the behavior required for a more
traditional aspect ratio on larger schemas and a larger map.
All sessions were run with a single participant and lasted
around one hour. Participants received lunch/dinner
coupons for the local cafeteria for their participation.

RESULTS

Task Times
A 4 (mapper feature sets A-D) x 6 (tasks) Analysis of
Variance (ANOVA) with repeated measures was carried
out on the task time data, both with and without a log

transformation of the task times (log transformations are
utilized to reduce the heavy skewing in response time data
in order to better adhere to the assumptions of ANOVA).
The pattern of significant results observed for both tests
was the same, so the results from the logged data will be
presented. A significant main effect was obtained for the
mapper feature set used, F(3,21)=45.1, p<.001, and the task,
F(5,35)=9.01, p<.001. In addition, a significant interaction
between the mapper feature sets and tasks was obtained,
F(15,105)=2.3, p<.001.

Task T imes for Each Feature Set

0

10

20

30

40

50

60

Feature Set

A
ve

ra
ge

 T
as

k
Ti

m
e

(S
ec

on
ds

)

BizTalk + Search

Plus Link Highlighting

Plus Alignment

Plus Sibling
Coalescence, Search
Ticks

Figure 12. Average task times for each of the four feature sets

for the Schema Mapper visualization.

Post-hoc analyses (with Bonferroni corrections for multiple
tests) showed that feature set A (the original Schema
Mapper plus search) was significantly slower than each of
the other feature sets at the p=.05 level. In addition, feature

Table 1. Two of the task sets used in the study.

 7

set B (adding highlight propagation) was significantly
slower than feature set D (all features including sibling
coalescence) at the p=.05 level. No other differences were
observed between the features sets, with sets C (highlight
propagation and auto-alignment) and D not significantly
different from each other. These results are shown in
Figure 12.

Interaction between feature set and tasks reveals that certain
tasks were harder than others (in particular tasks 3 and 5),
and that some tasks (e.g., 1-4) were especially difficult
when using the original Schema Mapper, feature set A. The
average task time by trial data is shown in Figure 13.

Task T imes by Feature Set and Trial

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6

Trial #

A
ve

ra
ge

 T
as

k
Ti

m
e

(S
ec

on
ds

) BizTalk

Plus Link Highlighting

Plus Alignment

Plus Sibling
Coalescence, Search
Ticks

Figure 13. Average task times by feature set and task (trial).

Note that tasks 3 and 5 were most difficult, with tasks 1-4
being especially difficult when using feature set A, the original

Schema Mapper.

Satisfaction Data
A user satisfaction questionnaire was completed by
participants at the end of the study session. To improve
methodological rigor, some of the statements were asked in
a favorable way toward the mappers tested, and some were
phrased in a negative manner. Responses were collected
using a 7-point Likert scale with 1=Disagree (or Low) and
7=Agree (or High). In order to improve readability and to
analyze the data using a single ANOVA, questions which
required a lower response to reflect positive satisfaction
were flipped (e.g., if the user rated a question with a 1,
meaning the highest possible value, it was flipped to a 7)
prior to analysis.

A 4 (mapper feature sets A-D) x 10 (questionnaire
question) repeated measures ANOVA was performed on
the users’ ratings. A significant main effect for mapper
feature set was observed, F(3,21)=26.1, p<.001, as was a
significant main effect for questionnaire item, F(9,63)=4.6,
p<.001. A significant interaction was also obtained,
F(27,189)=3.1, p<.001. Post-hoc analyses utilizing
Bonferroni adjustments for multiple tests revealed that
mapper feature set A was rated significantly lower than
each of the other feature sets, but there were no other
significant differences between feature sets B-D in terms of
their satisfaction ratings. The overall average ratings for

each feature set are shown in Figure 14. The interaction by
questionnaire item simply underlines the fact that some of
the questionnaire items were more sensitive to the user
interface manipulations used in this study than were others.
All of the satisfaction data is included in Table 2.

Average User Satisfaction Ratings

0

1

2

3

4

5

6

7

1

Mapper Feature Set

A
ve

ra
ge

 R
at

in
g

(1
=L

ow
,

7=
H

ig
h)

BizTalk+Search

Plus Highlighting

Plus Alignment

Plus Sibling
Coalescence and
Search Ticks

Figure 14. Average user satisfaction ratings for the four

mapper feature sets studied.

Usability Issues
We did observe some usability issues, which we intend to
improve in future designs. For example, even with the
enhancements, some users would still not see a second
source link to a functoid or target element because they had
to scroll the map, or because there were so many links.
They wanted a "functoid overview" (e.g., a right-click on
the map to get an overview that is navigable). In addition,
some users were confused as to why a previous selection
was still highlighted in the hierarchical tree control after
they performed a search. Users were a little confused about
the difference between the red and blue search result ticks.
One user who figured it out thought that if "fuzzy search" is
allowed, as he called it, it should be an option that the user
sets specifically. He thought the default should be string
search starting from the beginning of the node name. This
user also claimed that users typically know node names
very well. One user did not like the fact that functoids were
grayed out. He wanted all functoids to remain fully
rendered. Several users requested a search feature that
searched through functoid scripts for keywords.
Alternatively, they requested a filter on functoid types.
Two users asked for a numeric count to appear next to the
search box so they did not have to count the ticks or the
highlights in the search results. Some users did not
understand that when "links" was turned off during search,
it meant searching both linked and unlinked items. A few
users thought it was only searching through unlinked items,
thinking the checkbox was a toggle.

Overall, however, the participants overwhelmingly
preferred the new feature sets over the existing Schema
Mapper, and they preferred the version of the mapper with
all the features (set D, including sibling coalescence and the
search result ticks in the scrollbar) over all the others
unanimously.

 8

Table 2. Average user satisfaction ratings for the 4 versions of the mapper (1=negative, 7=positive).
Higher ratings indicate higher satisfaction for all questions.

DISCUSSION
A usability study, run with expert BizTalk users,
systematically investigated various feature additions to the
Schema Mapper visualization. Study results revealed a
significant time advantage for each of the new feature sets
over the existing user interface. In addition, user
satisfaction ratings corroborated those performance results,
with the new feature sets receiving significantly higher
ratings than the original Schema Mapper. Comments from
study participants assured us that our tasks had very high
ecological validity, and that they hoped these new features
will be made available. Finally, usability issues were
observed that should be addressed in future designs.

IMPLEMENTATION DETAILS
Many of the techniques introduced in this paper could
become part of a new TreeView control and be put to use in
a variety of other contexts. These new features include
multiple selection, animated scrolling, centering, coalesced
tree nodes, and incremental search with interactive scrollbar
highlighting.

These techniques were implemented on top of the current
Windows TreeView control in C# using the .Net
framework. In order to abstract these features, new classes
(AnimTreeView and AnimTreeNode) were introduced to
replace the standard TreeView and TreeNode classes. Since
some features are logically associated with the mapper
application rather than the tree control, a MapTreeView
class was introduced as a specialization of AnimTreeView.
For example, the rendering of the link from a schema
element name to the boundary of the map is done in the

OnTreeNodePostPaint method of the MapTreeView class.
Highlighting of schema elements is also done in this
method. This method is invoked in one of two ways. If
coalesced tree nodes are totally disabled, the standard
TreeView rendering takes place and the NMCustomDraw
interface is used to get control after the TreeView control
paints a node. However, coalesced tree node support
requires a totally different rendering of the tree because
vertical placement of the nodes is different and ellipses are
added. In this case, the style of the control is set for user
painting (UserPaint & AllPaintingInWmPaint) and mouse
control (UserMouse). The entire tree is rendered in the
OnPaint method and OnTreeNodePostPaint is invoked after
the node is rendered.

Centering and animated scrolling is accomplished with a 50
millisecond timer which uses SetScrollPos to adjust the
position of the vertical scrollbar, and therefore the part of
the tree that is rendered. In addition, a WM_VSCROLL
message is sent to adjust the scroll thumb size and position.

Interactive scrollbar highlighting was the most challenging
to implement because the standard TreeView uses a private
implementation of scrollbars, hence specializing the
standard scrollbar class was not an option. To get around
this problem, we used a transparent forms panel which we
call an SBOverlay, and placed it on top of the vertical
scrollbar. Any time the TreeView changes size (e.g., when
the window size is changed), the corresponding SBOverlay
size and position is updated so that it always fits directly on
top of the vertical scrollbar. The scrollbar highlighting
marks are drawn in the SBOverlay OnPaint method. The
other problem is that the TreeView’s scrollbar gets re-

 9

rendered at various times. To catch re-render events, we
monitor the WndProc message stream for WM_HSCROLL,
WM_VSCROLL, WM_NCMOUSELEAVE, and
MC_NCMOUSEMOVE messages and update the scrollbar
overlay at those times. This works for all cases except that
there is some flicker in the overlay while the scrollbar
thumb is being dragged. Obviously, a new implementation
of the TreeView control could solve that problem.

FUTURE DIRECTIONS
The visualization work reported here has focused on non-
editing scenarios. To enable these new features to work in
an editing environment, the coalesced tree view must be
enhanced so that if a coalesced node is a drag and drop
target, it will temporarily un-coalesce. It should re-coalesce
if the drop target changes and coalescence should be re-
evaluated if a new link is created to an element that had
been coalesced.

CONCLUSION
Mapping between two schemas is an increasingly common
business need and current techniques for visually defining
mappings between schemas do not scale well. A significant
contribution of this paper is that we have described a series
of visualization improvements that enable practical use of
much larger schemas and maps. The new techniques were
inspired by several existing information visualization
techniques. We have demonstrated the usefulness, usability,
and effectiveness of these new techniques with a user study,
and identified directions for future work.

Finally, this work can easily be generalized for a wide
variety of applications. About half of the techniques
described here involve improvements to the Windows
TreeView control, which is used in hundreds of existing
applications. The other half involves autoscrolling and
highlighting techniques which could be applied across a
wide set of interfaces and visualizations.

ACKNOWLEDGMENTS
We thank Bongshin Lee, Patrick Baudisch, Greg Smith,
Brian Meyers, Prasad Sripathi Panditharadhya, Alvaro
Miranda, Tan Bao Nguyen, Tatyana Yakushev, Uday
Bhaskara and A.S. Sivakumar for feedback on design
issues. We thank Kaivalya Hanswadkar for help in
recruiting participants for the user study. We thank the user
study participants for their thoughtful suggestions.

REFERENCES
1. ActiveState Visual XSLT.

http://www.activestate.com/Products/Visual_XSLT.

2. Altova XML-to-XML Mappings.
http://www.altova.com/features_xml2xml_mapforce.ht
ml

3. BizTalk Schema Mapper.
http://msdn.microsoft.com/library/en-
us/introduction/htm/ebiz_intro_story_jgtg.asp

4. BEA WebLogic Workshop.
http://www.bea.com/framework.jsp?CNT=demos.htm&
FP=/content/products/workshop/learn

5. Cape Clear XSLT Mapper.
http://www.capescience.com/education/tutorials/index.s
html#cc5

6. Bederson, B, Clamage, A., Czerwinski, M., &
Robertson, G., DateLens: A fisheye calendar interface
for PDAs. In ACM Transactions on Computer-Human
Interface, ACM Press (2004), 11, 1, 90-119.

7. Extensible Markup Language (XML).
http://www.w3.org/XML

8. Kay, M., XSLT Programmer’s Reference. Wrox Press
Ltd., Birmingham, UK, 2000.

9. Lau, C., Developing XML web services with websphere
studio application developer. In IBM Systems Journal,
July 2002.

10. Lee, B. & Bederson, B., Favorite folders: a
configurable, scalable file browser. Demo paper in UIST
2003 Conference Supplement, 2003.

11.Robertson, G., Cameron, K., Czerwinski, M., &
Robbins, D., Animated visualization of multiple
intersecting hierarchies. In Journal of Information
Visualization, Palgrave (2002), 1, 1, 50-65.

12.Robertson, G., Mackinlay, J., & Card, S. Cone Trees:
Animated 3D visualizations of hierarchical information.
In Proceedings of CHI’91, ACM Press (1991), 189-194.

13.Shneiderman, B., Dynamic queries for visual
information seeking, IEEE Software, 11, 6 (1994).

14.Sonic Software Integration Workshop.
http://www.sonicsoftware.com/products/docs/integratio
n_workbench_0604.pdf

15.Stylus Studio XSLT Mapper.
http://www.stylusstudio.com/xslt_mapper.html.

16.TibCo BusinessWorks.
http://www.tibco.com/resources/software/business_integ
ration/bw_scrn_pop.html

17.Windows TreeView Control.
http://msdn.microsoft.com/library/en-
us/cpref/html/frlrfsystemwindowsformstreeviewclasstop
ic.asp

