
Schemr: a Schema Search Engine for Information
Integration

Kuang Chen
kuangc@eecs.berkeley.edu

University of California, Berkeley

Jayant Madhavan
jayant@google.com

Google, Inc.

Alon Halevy
halevy@google.com

Google, Inc.

1. INTRODUCTION
Schemr is a schema search engine, and provides users the

ability to search for and visualize schemas stored in a meta-
data repository. Users may search by keywords and by ex-
ample – using schema fragments as query terms. Schemr
uses a novel search algorithm, based on a combination of
text search and schema matching techniques, as well as a
structurally-aware scoring metric. Schemr presents search
results in a GUI that allows users to explore which elements
match and how well they do. The GUI supports interac-
tions, including panning, zooming, layout and drilling-in.
We demonstrate schema search and visualization, introduce
Schemr as a new component of the information integration
toolbox, and discuss its benefits in several applications.

Motivation
Traditionally, the problem of information integration has
been framed to assume the existence of relevant schemas.
A recently proposed taxonomy for integrating information
integration tools [2] omits the challenge of finding relevant
schemas and data sources. Existing tools for information in-
tegration assume the existence of source and target schemas,
and tackle the problem of schema matching as its first ob-
jective. We propose that information integration must start
earlier in the information life-cycle, at schema creation time.
Schema search functionality provides examples, and enables
reuse of schemas when schemas are created and changed. It
provides a conduit to the wisdom of crowds and past expe-
rience, and improves data ecosystems by nurturing schema
compatibility, and consequently, information integration.

Schema search can help overcome the high barrier-to-entry
to existing information integration solutions. Current so-
lutions are costly and require both data management and
subject-matter expertise. Even if software cost were not
an issue, high consulting fees make information integration
inaccessible to many organizations. Schemr addresses this
problem by enabling data administrators to rely on each
others’ solutions and expertise by sharing schemas. Small
organizations, such as non-profit and grass-roots efforts op-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGMOD ’09 Providence, RI, USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

entity : tb_result tuberculosis

assay_id : id result : string result : string date : datetimepatient_id : int

Figure 1: Query graph of a table and a keyword

erating in low-resource settings, particularly benefit because
they are more willing to share information.

We ground our work in the challenges and use cases of
two such organizations, a nature conservation non-profit,
and a large HIV/AIDS treatment program in East Africa.
We found that data management in these organizations take
place in an ad-hoc manner, and with ad-hoc tools. Data
administrators face a vicious cycle: they are overloaded with
requests to manually curate data that should be produced by
automated processes. Thus, having no time to tackle major
system improvements, they create stop-gap solutions. These
data administrators said that they would gladly collaborate
with others to share schemas and advice, but are hindered by
the high-maintenance cost of the stop-gap solutions. They
need tools that provide an immediate productivity gain. For
these organizations, sharing designs through schema search
can provide this bootstrap path, which starts with better
data modeling, and leads to better integrated information.

Contributions
• Search algorithm - Schemr’s search algorithm combines

techniques from document search and schema matching,
and employs a holistic tightness-of-fit measure to find
and rank schemas according to a query’s semantic intent.

• Visualizations - Schemr visualizes search results in sev-
eral views, allowing users to compare multiple results
and drill-in to explore a schema with visually encoded
similarity measures.

• Open source tool - Schemr is part of an open-source infor-
mation integration framework, which any organization
may use and extend for free.

Example Scenario
We present an example schema search scenario: A rural
health clinic wants to persist the results of a new tubercu-
losis assay. The database administrator (DBA) begins by
designing a new table to store the results. She is unsure of
the best way to model the new table, and wants to search
for related schemas and data examples. She wants to search
existing data models by using the keyword “tuberculosis”

1

(A) (B)

Figure 2: (A) A multiple-results view of search results for a keyword + schema fragment query (B) On
drill-in to a search result, the detailed view is visually encoded with match quality metrics

to find schemas relating to the term, and use a partially
designed schema to specify results that include elements se-
mantically equivalent to ones she has already designed.

In Schemr, the user uploads the DDL or XSD of the un-
finished schema, and adds keywords to formulate the query.
Schemr parses the input, and creates a query graph (Fig-
ure 1). Schemr returns a ranked list of n results, presented
in a matrix of preview windows. The user can interact with
the results or asks for the next n schemas. On drill-in to a
particular schema, Schemr creates a detailed view with vi-
sual encodings of similarity. Figure 2 shows an example of
Schemr’s visualizations.

2. SYSTEM DESIGN

Algorithm
Schemr’s search algorithm (Figure 3) consists of three phases.
The query parser first creates a query-graph from the key-
word terms and schema fragments given by user input. In
the first phase – Candidate Extraction – Schemr flattens the
query-graph into a list of keywords, and quickly retrieves
the top candidate schemas from a scalable document index.
In the second phase – Schema Matching – Schemr evalu-
ates the top candidate schemas with schema matching tech-
niques [1, 4], scoring the semantic similarity between candi-
date schema and the query-graph elements. This provides
the accuracy necessary for the third phase – Tightness-of-
fit Measurement– in which Schemr computes a total score
based on the tightness-of-fit among matching elements.

Candidate Extraction: The input query-graph Q is a for-
est of trees representing of schema fragments and keywords,
like in Figure 1. The example shows that Q can represent
several graphs, where a keyword is represented as a graph
of one item. The query-graph abstraction captures multiple
query formats (relational and xml). The system contains a
document index of the schema corpus, which we build of-
fline. The document index provides a fast and scalable filter
for relevant candidate schemas. We create a list of keywords
by flattening the query graph Q to query the document in-

Candidate

Extraction

Schema Matching

Tightness-of-fit

Measurement

Results

Visualization

Query

Construction

query graph

similarity scores

Figure 3: Schema search algorithm data flow

dex. To preserve recall, the document search algorithm need
not match all search terms. Candidate extraction produces
the top n schemas for the next phase.

Schema Matching: The top candidate schemas are eval-
uated against the query-graph using a collection of match-
ers. For instance, the name matcher normalizes terms and
computes n-gram overlap; The context matcher builds a set
of terms from neighboring elements, and tries to capture
matches when neighboring-element sets are similar to each
other [4]. Each matcher produces a similarity score that is
combined, with weights, into a total-similarity-score.

Tightness-of-fit Measurement: Schemr’s task, in this
phase, diverges from the traditional aim of schema match-
ing: rather than generating mappings between elements, we
use the total-similarity-scores to create an overall score that
captures the semantic intent of schema search. Our princi-
ple here is to measure the tightness-of-fit by minimizing the
distance between relevant elements in a result-schema. The
intuition behind our distance measure is as follows: if two
result-schema elements are in the same entity, no penalty. If
they are in the same entity neighborhood (transitive closure
on foreign key), then a small penalty applies. If they are in
unrelated entities, then a larger penalty applies.

Result-schema elements M , have similarity scores S, and
a penalty P . The tightness of fit score is

P

M
(S · P). How-

ever, there are many valid configurations of P . We want P∗

2

Application Server

Schema
Repository

Search Client

Schema
Web Service

Text
Indexer

Search
Service

Match
Engine

GUI

Figure 4: Schemr system architecture diagram

that minimizes the total penalty for a result schema. Thus,
arg maxP

P

M
(S · P) gives the overall tightness-of-fit score

which determines the final search results.

Architecture and Implementation
Schemr’s architecture (Figure 4) features a client GUI for
entering search terms and reviewing search results. The GUI
processes search terms and calls the Search Service. On the
Schemr server, an offline Lucene [7] Text Indexer flattens
schemas from the Schema Repository to build a document
index. Schemr builds on the open-source repository and
Search Service create by the Galaxy project [3]. Online, the
index filters for candidate schemas, and sends results to the
client for matching and ranking in the Match Engine. The
GUI visualizes the results with encoded quality cues.

Schemr is implemented as an Eclipse Rich Client Platform
(RCP) application, and integrates with the Eclipse Data
Tools Platform(DTP) [8] project; as such, Schemr is avail-
able as open-source software [9].

Visualizations
Schemr visualizes result schemas in an interactive GUI, sup-
porting operations like panning, zooming, auto-layout, and
drilling-in. Schemr features two views (Figure 2): the multiple-
results view is a matrix of n results, constituting a result

page. For each result page, Schemr runs the Schema Match-
ing and Tightness-of-fit algorithms on demand. The schema-
visualization view details a particular schema: its similarity
matrix is encoded as color and size, in a force-directed lay-
out. To ensure Schemr scales to extremely large schemas, we
plan to employ schema-mapping visualization techniques [5],
including schema summarization [6].

Applications
Schemr is a part of an open-source information integration
framework, OpenII [10]. As a module of OpenII, other
framework components enable new schema search applica-
tions and scenarios, magnifying Schemr’s benefit. For ex-
ample, integrating Schemr with schema import and export
functionality gives users motivation to build metadata repos-
itories. As well, integrating Schemr’s search functionality
with a codebook that contains data types like units, date/time,
and geographic location, would encourage a deeper stan-
dardization of data types alongside schema search results.
With an OpenII community of users searching the reposi-
tory, collaboration functionality that provides usage statis-

tics and comments on schemas, would improve schema search
results. Finally, integrating Schemr with a schema editor
would allow for a new model development process, in which
search results are iteratively used to augment a schema. In
this process, we can also capture implicit semantic map-
pings between schema elements, information on schema re-
use, and the provenance of new schema entities.

3. DEMONSTRATION SCENARIO
We will demonstrate Schemr’s search capabilities over a

repository of both relational and semi-structured schemas,
small and large, spanning many domains. The data set is
a significant collection of public schemas collected by the
structured-data research group at Google

Users are able to construct searches that involve key-
words, schema fragments or both. They can also choose
from provided examples. Optionally, they may choose to
see intermediate results, such as the query-graph, candidate
schemas, raw similarity scores, and tightness-of-fit scores. In
the Schemr GUI, users may explore results in an interactive
visualization. First, results will be rendered as a matrix of
many small schema trees. Next, the user may drill-in and
interactively explore the quality of a single schema result.

4. SUMMARY
Schemr demonstrates an effective approach to schema search

and visualization. It uses a novel combination of docu-
ment based filtering, schema matching, and semantics- and
structure-aware scoring. Schemr will be deployed as a stan-
dalone tool for organizations to search and share schemas,
facilitating the schema design process and paving the way
for information integration. As well, Schemr will be a mod-
ule of the OpenII framework, and improve accessibility and
benefit of many information integration applications.

Acknowledgments
We would like to thank Kristin Barker, Tyson Condie, Peter
Mork, Arnie Rosenthal, Len Seligman and Chris Wolf.

5. REFERENCES
[1] A. Doan, P. Domingos, and A. Halevy. Learning to

match the schemas of data sources: A multistrategy
approach. Machine Learning, 50(3), 2003.

[2] P. Mork, A. Rosenthal, J. Korb, and K. Samuel.
Integration workbench: Integrating schema integration
tools. In ICDEW, 2006.

[3] P. Mork, L. Seligman, M. Morse, A. Rosenthal,
C. Wolf, and J. Hoyt. Galaxy: Encouraging data
sharing among sources with schema variants. In To
appear in: ICDE, 2009.

[4] E. Rahm and P. A. Bernstein. A survey of approaches
to automatic schema matching. The VLDB Journal,
10(4), 2001.

[5] G. G. Robertson, M. P. Czerwinski, and J. E.
Churchill. Visualization of mappings between schemas.
In CHI, 2005.

[6] C. Yu and H. V. Jagadish. Schema summarization. In
VLDB, 2006.

[7] Lucene. http://lucene.apache.org.
[8] Eclipse data tools platform (dtp) project.

http://www.eclipse.org/datatools.
[9] OpenII Google Code Project.

http://code.google.com/p/openii.
[10] OpenII Project. http://sites.google.com/site/

openinformationintegration.

3

