
SeMap: A Generic Mapping Construction System

Ting Wang
College of Computing

Georgia Tech
Atlanta, USA

twang@cc.gatech.edu

Rachel Pottinger
Computer Science Department
University of British Columbia

Vancouver, Canada
rap@cs.ubc.ca

ABSTRACT

Most previous schema mapping works focus on creating map-
pings in specific data models for data transformation, fail-
ing to capture a richer set of possible relationships between
schema elements. For example, most schema matching ap-
proaches might discover that ‘TA’ in one schema equals ‘grad

TA’ in another one, even though the relationship can be
modeled more accurately by saying that ‘grad TA’ is a spe-
cialization of ‘TA’. Deepening the mapping semantics in turn
allow richer application semantics. This paper presents and
proves the effectiveness of SeMap, a system that constructs
a complex, semantically richer mapping (including ‘Has-a’,
‘Is-a’, ‘Associates’ and ‘Equivalent ’ relationship types) that
can be used across data models. We achieve this goal by: (1)
exploiting semantic evidence for possible matches; (2) find-
ing a globally optimal match assignment; (3) identifying the
relationship embedded in the selected matches. We imple-
mented our semantic matching approach within a prototype
system, SeMap, and showed its accuracy and effectiveness.

1. INTRODUCTION

1.1 Motivation
The fundamental problem in sharing data from multiple

sources is the sources’ semantic heterogeneity. The key to
overcoming the semantic heterogeneity is identifying the se-
mantic correspondences between them. Semi-automatically
creating mappings has attracted intensive research in both
the database and AI communities (e.g., [7, 5, 13, 17, 25]).
The procedure is comprised of two phases, schema matching
and mapping construction. The goal of schema matching is
to create equivalence correspondences between elements of
both schemas. The equivalence correspondences can be one-
to-one (1-to-1) matches, e.g., ‘class’ corresponds to ‘course’,
or complex matches which may contain more than one el-
ement in each schema, e.g., ‘TA’ maps to some combina-
tion of ‘grad TA’ and ‘ugrad TA’. These potential correspon-
dences are then transformed into a final mapping in map-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT’08, March 25–30, 2008, Nantes, France.
Copyright 2008 ACM 978-1-59593-926-5/08/0003 ...$5.00.

ping construction, where the identified correspondences are
built by adding specific semantic information to generate a
semantically-rich mapping. For example, one possible final
mapping for the above scenario is shown in Figure 1.

professor
faculty

ugrad TA

dept

m2

(=)

m3

(=)

m4

(=)

m1

(=)

m5

(=)instructor

m8

(=)

m6

(=)

m7

(=)

m9

(=)

grad TA

college

class

schema S

Associates

schema T

course

Associates

Is-a

Is-a

Associates

Is-a

Map S T

TA

Has-a

Has-a

Has-a Has-a

Has-a

Has-a

Is-a

Figure 1: An example of input schemas and output
mapping.

As a typical example of mapping construction, Clio [27]
uses user-interaction techniques to create SQL-style map-
pings based on an initial schema match. Such semantic
mappings are necessary to transform data. Clio, like most
previous mapping constructors, concentrates on creating ex-
ecutable relational and XML mappings; it does not capture
the richness of the relationships between elements in a data-
model-independent fashion.

Data sources on the web, however, are of many different
data models, (e.g., XML, HTML, RDF, Relational, OWL,
ASN.1). Combining them in a semantic fashion would yield
great benefits, but requires one of two solutions: (1) sepa-
rate mapping construction algorithms between each pair of
data models or (2) creating a system of general, rich relation-
ships that can map between a wide variety of data models.
The second option, creating richer, general relationships be-
tween schema elements, rather than concentrating on a spe-
cific data model, allows a better understanding of the space
of possibilities. It also allows better reuse of ideas, rather
than creating a separate algorithm for each ensuing data
model. After a mapping with such general relationships is
constructed, the transformations into a specific data model
(e.g., SQL views or XSLT) can be made, thus removing the
need of maintaining specific mappings separately. An addi-
tional application of a generic mapping is that it can create
a uniform interface between domain knowledge (ontologies)
and web interface (database schemas), which is helpful for
semantic web applications. Furthermore, it can be used for

knowledge inference when applied to an ontology domain, or
be fed into a model management system [2], which aims to
solve meta-data problems in a data model neutral fashion.

Figure 1 shows an example generic semantic mapping,
where schemas S and T represent ‘class’ and ‘course’ respec-
tively. The schemas consist of elements related by Has-a or
Is-a relationships. The generic mapping S T specifies a rich
set of semantic relationships between the elements of S and
T , e.g., ‘college’ of T ‘Has-A’ ‘dept’ of S, while ‘instructor’
of S ‘Is-A’ ‘faculty’ of T , a common set of relationships [21].
Compared with the equivalence relationships (1-to-1 or com-
plex) considered in previous literature, this relationship clas-
sification is semantically richer and more expressive.

This paper constructs such generic semantic mappings.
It relies on correspondences between the elements of both
schemas, which may be produced by current schema match-
ing techniques. Specifically, we search for a global optimal
match assignment from the pool of possible assignments,
solving conflicts among the selected matches, and identi-
fying complex relationships between the schema elements,
e.g., the ‘Has-A’ relationships in Figure 1. Constructing a
generic semantic mapping is fundamentally difficult for sev-
eral reasons:
• The number of initial correspondences to be considered

is larger than that in finding simple equivalences, since
many similar but not equivalent correspondences can po-
tentially be of Is-a, Has-a or Associates relationships;
• Identifying implicit relationships in matches is difficult,

and exacerbated by requiring data model independence.
• Many schema matching techniques stop at finding the

correspondences, but one needs to go a step further to
construct a complete mapping, i.e., finding a global opti-
mal mapping assignment.

Mapping construction, like schema matching, inherently
cannot be fully automatic. The importance of user feedback
is recognized in schema matching research [7, 26]; however,
no systematic modeling of user interaction for mapping con-
struction is available to date. One goal of our work is to limit
interaction to critical points to help focus user attention and
minimize user effort.

This paper describes a prototype system, SeMap, which
creates a generic, semantic mapping that overcomes the above
problems. We choose a graph-based representation simi-
lar to that in model management [2], which is expressive
enough to accommodate both schemas of many types and
other meta-data, such as ontologies.

Specifically, we make the following contributions:

• An architecture to semi-automatically construct generic
semantic mappings based on initial correspondences
• Effective extraction of implicit relationships from initial

matches based on various types of semantic evidence;
• A novel probabilistic framework that uniformly incorpo-

rates uncertainty and semantic constraints and expresses
match selection as a mathematical optimization problem;
• Effective modeling of user interaction to help focus user

attention and minimize user effort, by detecting critical
points where feedback is maximally useful;
• A prototype system embodying the innovations above

and a set of experiments illustrating the correctness and
effectiveness of our approach. We show that our approach
is at least as effective as previous approaches for solv-
ing the simpler problem of finding correspondences, even
though we are solving a harder problem.

The paper is organized as follows: Section 2 surveys re-
lated work. Section 3 formally defines mapping construction
and gives an overview of SeMap’s architecture. Section 4
describes our mapping construction approach in detail. Sec-
tion 5 presents the experimental analysis of our approach.
Section 6 concludes and presents future work.

2. RELATED WORK
Semi-automatically creating semantic mappings has at-

tracted intensive research in both the database (schema match-
ing and mapping construction) and AI (ontology alignment)
communities. In this section, we survey related work in three
parts: Section 2.1 surveys techniques for finding mappings
based on the relationships they find; Section 2.2 describes
techniques used in schema matching and mapping construc-
tion, and Section 2.3 discusses ontology alignment.

2.1 Relationship Classification
The relationship types created by matching techniques

can be divided into three categories: equivalent relation-
ships, set-theoretic relationships and generic relationships.

Most schema matching, mapping construction, and ontol-
ogy alignment algorithms to date aim to discover equiva-
lence relationships (e.g., [7, 5, 6, 13, 16, 18, 26]). Equiva-
lence correspondences can be a 1-to-1 match (e.g., ‘course’
= ‘class’), or a complex match (e.g., ‘name’ = concat(‘first-

name’ +‘last-name’)). Due to the complexity of creating
multi-arity (1-to-n or even n-to-m) matches, most schema
matching work to date has focused on discovering 1-to-1
equivalence correspondences between schema elements [7, 6,
13, 16, 18, 26]. iMAP [5] identifies 1-to-n correspondences
by reformulating schema matching as a search problem. To
search effectively, it employs a set of searchers, each discov-
ering specific type of equivalent relationship, e.g., the name
of one element in one schema corresponds to the concatena-
tion of that of two elements in the second schema.

While these methods return equivalent correspondences,
it is likely that the matches identified by these techniques
may be more accurately represented by both equivalent cor-
respondences and the semantically richer relationships that
SeMap finds, such as the relationship between ‘TA’ and
{‘grad TA’, ‘ugrad TA’} in Figure 1.

Set-theoretic relationship classification regards each schema
element as a set and specifies each relationship as one of
equivalence, subsumption, intersection, disjointness and in-
compatibility. Rizopoulos [23] identifies inter-set relation-
ships by bidirectionally comparing the containment of data
instances and meta-data, of different schema elements. Un-
fortunately, this approach requires that data instances asso-
ciated with the two schemas are in the same universe (i.e.,
contain the same values), which is not commonly true in
many applications, such as web data integration.

Generic relationships refer to non-equivalent relationships,
such as the Has-a and Is-a relationships in this paper. Few
works find generic relationships between schema elements.
Giunchiglia and Yatskevich [10] proposed schema-based ap-
proach, based on containment relationships of element names.
However, their approach works only for identifying Is-a re-
lationships — it cannot be generalized to any other relation-
ship type — and requires tree-structured schemas. D. Emb-
ley et al. [9] use a domain-specific ontology to find the rela-
tionships of Merge/Split and Superset/Subset . Such ontolo-
gies are usually hard to obtain in real scenarios. Our work

assumes a flexible framework: it leverages the semantic in-
formation available in most schemas (e.g., element names)
to produce fairly good results, even though additional re-
sources can be easily incorporated within to improve the
quality of results. However, SeMap can be extended to use
such ontologies to improve the quality of results.

2.2 Schema Matching Techniques
Schema matching, mapping construction, and ontology

alignment research use a plethora of techniques to semi-
automatically find semantic matches. These techniques can
be classified into rule-based and learning-based solutions [7].
Rule-based approaches [10, 16, 18] exploit schema-level in-
formation (e.g., element name, data type) to discover sim-
ilar schema elements. For example, Cupid [16] is a rule-
based matching system that categorizes elements based on
element names, data types and domains; Similarity flood-
ing [18] measures pairwise similarity by propagating simi-
larity from fixed points according to the schema structures.

As pointed out in [8], rule-based techniques have both de-
sirable features and drawbacks. On the positive side, they
are computationally efficient, assume no external semantic
resources, and thus are applicable for a large range of appli-
cations. However, since hard-coded rules cannot effectively
extract hidden semantic information from noisy raw data,
such as data instance of schema elements, these techniques
may lose valuable semantic information.

Motivated by the drawbacks of rule-based matching meth-
ods, learning-based solutions have been proposed. These
methods outperform the rule-based solutions, though with
the cost of a training phase. For example LSD [7] employs
Naive Bayes learning over data instances and also exploits
XML structure information; iMAP [5] uses the description
of elements in addition to other schema information.

In addition to schema level and data instance level infor-
mation, several types of external resources have also been
considered to improve the matching quality. For example,
assuming a domain-specific ontology is available, one tech-
nique is to first map schemas/ontologies into the ontology,
then construct the matches based on the relationships inher-
ent in that ontology [9]. Some recent works exploit similarity
with other schemas or past matching results to improve cur-
rent ones [7, 6, 16]. However, it is not always practical to
have such external resources, particularly since such these
resources must be domain-specific to be effective.

Finally, other works exist for deriving schema mapping by
assembling schema matches, with performance guarantees.
For example, [3] proposes a reduction from the assembling
problem to Independent Set. These papers also do not con-
sider generic relationships of the type that we consider.

2.3 Ontology Alignment Techniques
To the best of our knowledge, though an ontology may

have complex relationships, most previous ontology align-
ment work focuses on finding semantically equivalent con-
cepts or one specific type of relationship, e.g., Is-a in FCA-
Merge [25]. We briefly present some typical work ontology
alignment work; see [13] for a more complete survey.

OntoMorph [4] translates symbolic knowledge between dif-
ferent knowledge representations through user-provided trans-
formation rules. Prompt [19] proposed an ontology align-
ment mechanism that finds corresponding concepts by re-
fining an initial mapping (pairs of anchors) given by either

users or simple linguistic matching approaches. Prompt ’s
philosophy is similar to that of Similarity Flooding [18].
FCA-Merge [25] is an alignment technique that depends on
external resources to find Is-a relationships between con-
cepts. However, since the formal context is built upon the
generalization/specialization hierarchy of the concepts, this
approach could not be extended to other relationships, such
as Has-a. Moreover, FCA-Merge requires domain-specific
documents, which is not always feasible.

In summary, to the best of our knowledge, most previ-
ous schema matching, mapping construction, and ontology
alignment work focuses on finding one-to-one equivalence
relationships between two schemas. Little work is done in
identifying multiple types of complex relationships. In the
following sections, we present SeMap, a prototype mapping
construction system, which is designed to find generic se-
mantic correspondences.

3. PROBLEM FORMULATION
The overall goal of our schema matching and mapping

construction system, SeMap, is to identify generic semantic
mappings between two schemas. Specifically, SeMap finds
mappings where: (1) the matches may be 1-to-1, 1-to-n or
n-to-1 (2) the relationship types may be non-equivalence.

In SeMap, in addition to Equivalent relationships, we con-
sider Has-a, Is-a, and Associates (i.e., is related to in some
other fashion, e.g., “Bob” created element “foo”). Has-a and
Is-a are illustrated in Figure 1. These relationships are com-
mon across many semantic models [21], and also appear in
generic schema manipulation research [2].

An example of a generic semantic mapping is shown in
Figure 1, where two schemas represent the concept of ‘class’
/ ‘course’ in different ways. In addition to possibly contain-
ing standard equivalence relationships, the mapping con-
tains complex correspondences, such as ‘TA’ of schema S is
a generalization of ‘undergrad TA’ and ‘grad TA’ of schema
T. As well, ‘department’ of schema S is shown to be ’part of’
of the ‘college’ of schema T.

Because we are searching for a data model neutral solu-
tion, we adopt the terminology from Model Management [2],
and say that we take as input two models1. A model is a
complex design artifact, such as a relational schema, XML
schema, or an ontology [2]. A model can be represented as
a directed labeled graph (V, E). Specifically, V is the set
of nodes, each denoting an element of the schema, (e.g., at-
tributes in relational table, XML schema type definitions).
E is the set of binary, directed typed edges over V .

A mapping , MapS−T , is a formal description of the se-
mantic relationships between schemas S and T . A mapping
is itself a model consisting of a set of mapping elements E ,
and a set of relationships R on E . The elements of the two
schemas are related through mapping elements. Each map-
ping element e ∈ E is like any other element in a model. In
addition to being the origin or destination of any kind of
relationship found in a model, i.e., R, each e ∈ E can be the
origin of one or more mapping relationships, M(e, s), where
s ∈ S ∪ T , which specifies that the mapping element e is a
semantically equivalent representation of s. Therefore, for
s1, s2 ∈ S∪T s.t. there exist M(e, s1) and M(e, s2), then s1

corresponds to s2. Figure 1 shows an example of two models
with a mapping in between them.

1We use schema and model inter-changeably.

Given this rich mapping structure, generic semantic re-
lationships — not just simple correspondences — can be
expressed in in a data model independent fashion as follows:
two semantically equivalent elements are represented by one
mapping element. The relationship of two mapping ele-
ments indicates the relationship between their corresponding
schema elements. For example, in Figure 1, the mapping el-
ement m1 corresponds to the elements ‘class’ and ‘course’
representing the same concept; the relationship between m4

and m5 indicates ‘instructor’ ‘is-a’ ‘faculty’.
Given the definition of model and mapping, we are now

ready to formally define the goal of SeMap: given two mod-
els, S and T , find generic semantic relationships required to
create the mapping S T between S and T .

There may be some optional inputs to the matching pro-
cess, specifically (1) an initial mapping S T ′ which provides
an initial set of correspondences and needs to be refined by
the process; and (2) external semantic resources r used by
the matching process, e.g., domain-specific thesauri.

3.1 Semantic Resources
The semantic resources used by matching techniques can

be categorized as internal resources (Section 3.1.1), which
are contained in the input schemas or associated data in-
stances, and external resources (Section 3.1.2), which come
from outside the schemas or data instances.

3.1.1 Internal Resources

The semantic resources of the input schemas include both
element-level information, which refers to the information
stored at each schema element (e.g., element name, data
type, structure) and structure-level information, which refers
to the information contained in the relationships between
schema elements (e.g., relationship type, constraints). We
consider the following element-level information:

• Element name (label): The name (label) provides a
first layer of semantic evidence.

• Element type: Elements that contain data are usually
associated with a type. Semantically similar schema ele-
ments usually have the same or compatible data types.

• Data instances: As discussed in Section 2, data in-
stances provide valuable information that cannot be found
in schemas. For example, consider element ‘phone’ of type
String. Looking at its data instances may show that its
exact format is ‘xxx-xxx-xxxx’, which is not reflected in its
type. The distribution of data instances is also useful in
identifying similar schema elements, especially when the
element names are obscure, e.g., A1 and B2 [14].

SeMap takes advantage of each of these element-level in-
formation sources above. However, it does not require that
any of them exist, except that each element must be named.

In addition to the above element-level information, SeMap
also considers two types of structure-level information:

• Relationship Type: The type of edge between schema
elements can be leveraged. If two elements are semanti-
cally similar, elements having the same relationship with
them are likely to be semantically related.

• Constraints: Each edge can have constraints, including
(1) cardinality, and (2) key properties of elements, (e.g.,
unique, primary)

similarity
score

schemas
source candidate

matches

Mapt

lineage information

Maps

generic
mapping

domain knowledge

matcher
schema match mapping

assemblerselector

Figure 2: SeMap’s basic system architecture

3.1.2 External Resources

Previous work on matching techniques has shown that in-
ternal semantic evidence is usually insufficient for achieving
high quality matching results; some additional external re-
sources should be leveraged to improve the matching quality.

SeMap, considers two types of external resources:

• Thesaurus: SeMap uses WordNet as its thesaurus. Word-

Net organizes more than 80,000 words into sets of syn-
onyms (synsets). Synsets are organized into a hierarchy
based on their semantic relationships (e.g., “is a special-
ization of”). WordNet is considered one of the most pow-
erful tools in computational linguistics, and is used in
several matching applications [10].

• Ontology: Ontologies, especially domain-specific ontolo-
gies, are powerful tools in discovering similar elements
and identifying implicit relationships. However they are
not always obtainable.

3.2 Approach Overview
This section presents an overview of our generic match-

ing system, SeMap. SeMap takes as input two schemas, S

and T , along with optional external resources, and produces,
S T , a generic mapping between S and T .

To identify generic semantic relationships between schema
elements, SeMap must not only find correspondences, but
also extract the implicit relationship types. Figure 2 shows
SeMap’s basic architecture. The first phase, schema match-
ing (Section 3.2.1), identifies the candidate matches (cor-
respondences). Note that most previous work focuses on
finding correspondences of Equivalent relationships, while
SeMap also finds the correspondences of other relationships,
which significantly increases the difficulty. The second step,
match selection (Section 3.2.2), selects a subset of candidate
matches to form the complete mapping. This phase uses a
novel probabilistic framework that incorporates both match
uncertainty and domain constraints, and implements match
selection as a constrained optimization problem. Finally,
the third phase, mapping assembling (Section 3.2.3), deter-
mines the implicit relationship types of the selected matches.
As will be shown, although the relationship types are de-
termined in the mapping assembler, all system components
require augmentation to assist the mapping assembler in its
task. Again, to the best of our knowledge, previous work
focuses either on finding Equivalent relationships or one spe-
cific type of relationship, (i.e., Is-a), making SeMap the first
system to exploit different types of semantic information to
identify multiple generic semantic relationships.

3.2.1 Schema Matcher

The schema matcher takes two schemas as input and gen-
erates a set of initial matches showing the correspondence
between the elements of the schemas, i.e., it constructs the

input to the mapping construction problem. For each ini-
tial match, it also produces its similarity score indicating
its uncertainty and lineage information recording how it is
identified. This lineage information is required to identify
generic semantic relationships in the mapping assembler.

The schema matcher consists of a set of base matchers,
as in many composite approaches (see [20] for a survey).
A base matcher looks at some aspect of the model/schema
and generates a series of candidate matches. Each candidate
match shows a 1-to-1 or 1-to-n correspondence of schema
elements. SeMap currently includes a label matcher, sense
matcher, type matcher, structure matcher and data instance
matcher as its base matchers. Additionally, SeMap’s flexible
architecture makes it easy to include other base matchers.

The generic semantic match may be either 1-to-1 or 1-
to-n (i.e., one source element corresponds to multiple tar-
get elements). However, since the focus of our work is to
identify the relationship between schema elements, rather
than finding the exact transformation rules, we consider 1-
to-n matches as n 1-to-1 matches, which significantly sim-
plifies the searching complexity. More detailed discussion of
schema matcher is described in Section 4.1.

3.2.2 Match Selector

The match selector is responsible for assigning each schema
element to a match and outputs the best match assignments,
Maps and Mapt, for the elements of S and T respectively.
For example, as shown in Figure 1, Maps may be: ‘class’
: ‘course’, ‘professor’ : ‘faculty’, ‘dept’ : ‘college’, ‘instructor’
: ‘faculty’, and ‘TA’ : ‘grad TA’, while Mapt may consist
of: ‘course’ : ‘class’, ‘college’ : ‘dept’, ‘ugrad TA’ : ‘TA’, ‘grad

TA’ : ‘TA’ and ‘faculty’ : ‘professor’. These two mappings are
then merged to form the final mapping as shown in Figure 1.

The match selector searches for the best global assign-
ments from the set of candidate matches.

The functionality of the match selector is similar to the
constraint handler described in iMAP [7], which applies a
set of domain constraints to select a subset of candidate
matches. However, we propose a novel statistical model to
incorporate both match uncertainty and domain constraints
in the same framework, and express the match selection as
a constrained optimization problem, for which an effective
solution is available.

User interaction can greatly improve prediction accuracy.
SeMap applies active learning to identify the points in select-
ing the matches where user interaction is maximally useful,
so that user effort can be significantly reduced. Section 4.2.2
describes the match selector in greater detail.

3.2.3 Mapping Assembler

The mapping assembler combines Maps and Mapt, iden-
tifies the relationships embedded in the selected matches,
and assembles them into a generic semantic mapping that
includes richer semantic relationships. For example, in our
ongoing example, consulting the lineage information that
‘TA’ is a substring of that of ‘grad TA’, results in identifying
the elements as being in an Is-a relationship.

The mapping assembler combines the best match assign-
ments Maps and Mapt to form a final mapping. Then for
each match in the final mapping, the mapping assembler ex-
tracts related semantic evidence from lineage information to
identify the implicit relationship type. A detailed discussion
of the mapping assembler is described in Section 4.3.

4. SEMAP SYSTEM
In this section, we present the technical details of our

schema matching and mapping construction system, SeMap.
As shown in Section 3, the overall architecture of SeMap con-
sists of three main parts, the schema matcher (Section 4.1),
the match selector (Section 4.2), and the mapping assembler
(Section 4.3), which are responsible for finding correspon-
dences (candidate matches), selecting a subset of candidate
matches to form a mapping, and identifying the implicit re-
lationships respectively. To illustrate how SeMap produces
generic semantic matches, we show the matching process of
the example in Figure 1.

4.1 Schema Matcher
Previous research shows that effective schema matching

requires a combination of base techniques (e.g., linguistic
matching and structure matching) [20]. Hence SeMap uses
a composite approach to detect potential correspondences.

4.1.1 Base Matchers

The components of a schema matcher are a set of pre-
existing matchers that exploit available information, and a
framework — such as COMA [6] and iMAP [5] — to incor-
porate them. Discovering initial matches can be modeled
as a search using the base matchers, each of which exploits
a meaningful subset of the space [5]. Base matchers can
be classified as either element-level matchers, or structure-
level matchers. The former computes mapping elements be-
tween individual nodes, and the latter computes mapping
elements between subgraphs. Since the base matchers are
not SeMap’s focus, we only briefly describe the matchers
that SeMap uses and refer the reader to [20, 17, 10] for
more thorough treatment. The selection of this specific set
is based the semantic evidence available in most types of
schemas. The base matchers that are considered in SeMap
include:

• sense matcher: The sense matcher populates the tokens
of each element with their senses (atomic meanings of a
word or expression) in WordNet. An element’s senses are
the union of the senses of all its tokens. By comparing
their senses, one can evaluate the similarity of the cor-
responding elements. Since SeMap lacks external knowl-
edge of the context, it considers all senses of a word.
• label matcher: The label-based matcher finds semanti-

cally related elements by evaluating the syntactic similar-
ity of their labels (names). SeMap applies a standard set
of techniques to improve label matching, which includes
case normalization, soundex elimination (e.g., ’4U’ and
’for you’), tokenization, and stopword elimination.
• type matcher: The type of schema elements carries the

information of data type (e.g, string), value domains (e.g.,
range of [1, 12]), and key characteristics (e.g., unique).
The type matcher determines the similarity of schema
elements based on such semantic information.
• data instance matcher: Instances contain valuable in-

formation on frequency and other data characteristics,
e.g., phone numbers have similar formats. Specifically,
SeMap considers the data’s format and distribution.
• structure matcher: SeMap’s structure matcher is Sim-

ilarity Flooding [18]. Based on an initial mapping gener-
ated by other techniques, similarity flooding propagates
the similarity of mapped elements to adjacent ones which
have similar relationship to the mapped elements.

preprocessing

WordNet

label

matcher

sense

matcher

type

matcher

structure

matcher

layer

co
m
b
in
atio
n
 lay
er

sense

type

label

Initial

sim

Final

sim

lineage info

...

Element-level

 matcher layer

Figure 3: SeMap’s schema matcher architecture con-
sists of three layers: base matchers, a combination
layer and a structure matcher.

4.1.2 Similarity Score and Lineage Information

In addition to the set of initial matches (correspondences),
the schema matcher also provides the following information:
(1) similarity score. Each candidate match m is associated
with a similarity score Sim(m) ∈ [0, 1], indicating the belief
about its uncertainty, with 1 meaning perfectly certain; (2)
lineage information. For each initial match, SeMap records
the flow of information, such as assumptions and domain
knowledge. From this lineage information, SeMap traces
how this match is generated. The mapping assembler (Sec-
tion 4.3) uses the lineage information to discover the generic
relationships that other schema matchers do not find.

Similarity evaluation has been discussed in previous work [7,
5, 6]. SeMap’s lineage information recording is similar in
spirit to the explanation module in [5], which provides expla-
nations for user questions posed on the generated matches,
such as explaining existing match, absent match, or match
ranking. However SeMap uses this information to distin-
guish different semantic relationships as described in the
following sections.

4.1.3 Schema Matcher Architecture

As in previous approaches, SeMap combines the base match-
ers to improve matching quality. The schema matcher archi-
tecture is illustrated in Figure 3. It consists of three major
layers: element-level matchers, a combination layer and a
structure-level matcher, along with a preprocessing step.

The combination phase integrates the similarity scores
produced by the element-level matchers to form a unified
score. The combination scheme can vary, as long as the final
result is well normalized, i.e., in the range of [0, 1]. SeMap
follows a simple linear combination scheme. Each element-
level matcher em is associated with a weight wem, and the
similarity score Simem produced by em is damped by wem

when computing the unified score. Formally, the similarity
score Sim =

∑
em

wemSimem, where
∑

em
wem = 1. The

weight parameters must be tuned in order to achieve the
optimal result, which is not the focus of this paper. For an
automatic learning approach, see [24].

The unified similarity scores generated in the second phase
are fed into the structure-level matcher as an initial map-
ping. The structure matching is then performed to produce
the final similarity score for each pair of elements.

4.2 Match Selector
The match selector is the second major part of SeMap’s

architecture (Figure 2), and is application specific in our cur-
rent implementation. Given the pool of initial matches and
associated similarity scores, the match selector searches for

a global optimal match assignment that satisfies a set of do-
main constraints, e.g., in the case of Figure 1, the user may
specify that each class has only one instructor. The con-
straints are specified manually for each application, based
on users’ domain knowledge. In the current implementa-
tion, we only consider the cardinality constraints, e.g., the
restriction on the number of elements an element can be
matched with.

It also contains a user interaction module which exploits
user feedback to improve the mapping quality. In this sec-
tion, we introduce a novel probabilistic framework that al-
lows SeMap to uniformly express the match uncertainty and
domain constraints. Match selection can then be trans-
formed as an optimization problem (Section 4.2.2). Within
this framework, we reduce the need of user interaction and
focus user attention by identifying critical points where user
feedback is maximally helpful (Section 4.2.3).

Most prior works studied 1-to-1 correspondences. They
either first apply constraints to narrow the pool of possible
mappings, and then transform match selection to a stable
marriage problem [18], or assume that the initial matches are
mutually independent, and seek a trade-off between uncer-
tainty and constraint satisfaction [7]. Discovering semantic
relationships requires considering more complex matches, so
the match selector must be more complex.

Next we present a novel probabilistic framework incor-
porating both the similarity scores and the semantic con-
straints. This allows us in turn to model match selection as
an optimization problem. Additionally, this framework re-
duces the need for user interaction and focuses user attention
by identifying critical points where user feedback is maxi-
mally helpful. Section 4.2.1 introduces the representation
of this probabilistic framework; Section 4.2.2 discusses the
match selection problem and its solution within this frame-
work, and Section 4.2.3 presents the user interaction scheme.

4.2.1 Representation

This section shows how to incorporate match uncertainty
and semantic constraints in a probabilistic framework. Our
representation is inspired by [15], which proposes using a
probabilistic model to express this uncertainty. We extend
this framework to support domain constraints. Hence our
work contributes to schema matching in addition to mapping
construction.

Formally, each schema element e is associated with a set
of initial matchesMe, and can be assigned to a match m ∈
Me. The probability of assigning e to match m∗ ∈Me is de-

fined as P (e← m∗) = Sim(m∗)∑
m∈Me

Sim(m)
, where Sim(m) is the

similarity score of match m provided by the schema matcher.
Intuitively, this represents the preference for matches with
low uncertainty. It is easy to verify that this model is well
normalized:

∑
m∈Me

P (e← m) = 1.
Each mapping consists of a set of matches, some of which

may violate the user-specified domain constraints. Specifi-
cally, we associate each constraint c with a penalty function
Πc(M), which counts the number of violations of c in the
assignment M. Each constraint c is also assigned a weight
αc, a user-defined metric of the strictness of constraint. In
our current implementation, αc is set to 1 (i.e., strict) by de-
fault. The weights can be hard coded or learned from known
mappings [16]. Given a set of constraints C, the probability
of a set of elements E taking match assignment M (where

ei ∈ E is assigned to mi ∈M) is defined as:

P (E ←M|C) =
1

Z
[
∏

ei∈E

P (ei ← mi)]
(
∑

c∈C −αcΠc(M)) (1)

where Z is a normalization constant, in order to guaran-
tee that P (E ← M|C) ∈ [0, 1].2 In this equation, the to-
tal likelihood of the match assignment for E is captured in∏

ei∈E
P (ei ← mi), while the exponential part represents

the penalty of violating the constraints. The more con-
straints that are violated, the lower the probability is.

4.2.2 Bidirectional search

Since the joint probability of the selected matches mea-
sures the uncertainty of the mapping, for a set of schema
elements, E , and constraints, C, match selection amounts
to finding the match assignment, M, that maximizes the
probability P (E ←M|C).

It is infeasible to consider all possible combinations from
the domain of E to find the optimal match assignment. For
example if each e ∈ E is associated with k initial matches,
one potentially has to consider |E|k combinations. It is
highly likely that E comprises a series of disjoint subset
E1, E2, . . ., which are mutually independent. For example,
SeMap considers the source and target schemas as the bi-
partitions of a bipartite graph, where vertices are linked by
matches. Vertices that are connected belong to the same
subset, which can divide the graph into disjoint subsets.
Hence we optimize these independent parts separately, that
is maxM P (E ←M|C) ≡ maxM1,M2,...

∏
i
P (Ei ←Mi|C)

However, it is possible that Ei ∈ E can still be quite large,
requiring more efficient solutions, including several effec-
tive graphical model optimization algorithms proposed in
the machine learning community [12], e.g., graph-cuts, and
heuristic searching methods, e.g., A∗. SeMap applies the
A∗ [11] to this optimization problem.

The discussion above focuses on match selection for an ar-
bitrary set of elements E . In the context of complex match,
which is necessary to find semantic relationships, the per-
spectives from source and target schemas could be signif-
icantly different. For example, in Figure 1, starting from
Schema T , one may discover that ‘grad TA’ is a special-
ization of ‘TA’, but miss that ‘TA’ consists of both ‘grad

TA’ and ‘ugrad TA’. This necessitates matching elements for
both source and target elements simultaneously, i.e., a “bi-
directional” perspective.

To simplify the problem, SeMap distinguishes the per-
spectives of source and target schemas, i.e., treat the match
selection for source and target elements separately. Thus,
instead of searching the best matches for source elements Es

or target elements Et separately, as in previous work, e.g.,
iMAP [5], SeMap runs the optimization algorithms for both
source elements Es and target elements Et, i.e., bidirectional
search. The result of the bidirectional search are two sets of
matches Maps and Mapt. An example of Maps and Mapt

is shown in Figure 4. Maps and Mapt are then be merged
to form a final complete mapping (Section 4.3). For the pos-
sible conflicts in Maps and Mapt, the one with higher simi-
larity score and less constraints violation is selected. Details
of the merging process are given in (Section 4.3).

4.2.3 Modeling user interaction

2Formally, Z =
∑

M

∏
ei∈E

P (ei ← mi)
(
∑

c∈C −αcΠc(M))

ugrad TA

grad TA

professor

facultyinstructor instructor

faculty

grad TA

schema T

TA

TA

schema Sschema S schema T

Figure 4: Partial match assignments from the per-
spectives of source and target schemas respectively.

Capturing user feedback is crucial for improving map-
ping quality, particularly for the more complex matches that
SeMap considers. Though user feedback is used in error cor-
rection and mapping refinement [27], modeling user interac-
tion is under-studied. This section shows how we extended
SeMap’s probabilistic framework to model user interaction.

The key to modeling user interaction is identifying points
where feedback is maximally helpful, so that user workload
is minimized. We present an active learning solution to sim-
ulating the effect of a user’s selection of a candidate match
for schema elements. This is an extension of the approach
in [26], where active learning is applied to learning the opti-
mal parameters in matching web interfaces. In SeMap, ele-
ments are ranked based on their potential information value;
user feedback is asked for those with the highest values.

A natural measurement of information value is entropy.
Intuitively, entropy measures randomness or uncertainty. The
higher the uncertainty, the larger the entropy value. For-
mally, for a variable x with distribution P (x), its entropy
H(x) is defined as −

∑
x

P (x) log P (x). In match selection,
the goal is to have a single (possibly empty) match assign-
ment for each schema element. For example, in Figure 4,
the assignment for TA in schema S is {gradTA, ugradTA}.
The higher the uncertainty of the selection, the higher the
entropy. However, this does not consider an assignment’s in-
fluence on match assignment of other schema elements. This
deficiency of entropy leads to another metric, mutual infor-
mation for variables x and y is: I(x, y) = H(x) − H(x|y) =
H(y) − H(y|x) In our scenario, consider the assignment of
two elements e and e′ as two variables; the mutual informa-
tion I(e, e′) indicates the reduction of the uncertainty of the
assignment of e given the assignment of e′. For example,
in Figure 1, since the assignments of professor and instructor

affect each other significantly, it can be expected that they
have a high mutual information value.

Hence SeMap seeks the element having the maximum mu-
tual information with other elements, i.e., the one whose
match assignment will best identify matches for others. For-
mally, SeMap seeks the most informative element e that
maximizes

∑
e′∈E

I(e, e′). The joint probability of P (e, e′|C)
can be calculated according to Equation 1, which will yield
the most informative element.

Once the most informative element, e, has been selected,
it should be disambiguated by the user. This is the key ten-
ant of active learning: the system should prompt the user to
disambiguate cases where the user’s input will provide the
most information to the system. Once the user’s selection
for e is obtained, the assignment needs to be updated accord-
ingly. Based on the new belief about e, the joint probability
of variables is updated accordingly. Note that only the joint
probability of the subset of E involving e needs to be up-

dated. The interaction process repeats until a satisfactory
threshold is reached. The effectiveness of this user interac-
tion modeling is empirically proved in our experiments: for
most datasets, providing correct match assignment for only
15-20% of elements led to an globally optimal assignment.

4.3 Mapping Assembler
The bidirectional search (Section 4.2.2) produces two sets

of matches Maps and Mapt, representing the correspon-
dences from the perspectives of source and target schemas
respectively. The next, and final, phase of SeMap is the
mapping assembler. In the mapping assembler, Maps and
Mapt are combined to form a final generic semantic map-
ping. Specifically, this process selects an optimal set of
matches from both mappings (Section 4.3.1); identifies the
relationship implicit in the selected matches (Section 4.3.2);
and assembles these matches together to form a final, generic
semantic mapping (Section 4.3.3).

4.3.1 Combining Maps and Mapt

By using our novel bidirectional search to create Maps

and Mapt, we have considerably narrowed the search space
to be examined in determining semantic relationships (such
as the ones in Figure 1). To merge Maps and Mapt to form
a final mapping, we present a heuristic approach, which our
preliminary tests have shown to work effectively in practice.

Let M denote the union of Maps and Mapt. For each
match m ∈M, the reward, R(m) of including m in the final

mapping is Sim(m)(
∑

c∈C

∑
m′∈M

−αcΠc(m,m′))where Sim(m)
is the similarity score of match m provided by the schema
matcher, and αcΠc(m, m′) is the penalty of including both
matches m and m′, which indicates the conflict between m

and m′. Intuitively, this reward function takes account of
the similarity score of the match, the constraints it violates
together, and other matches in M. SeMap then selects a
subset of matches with the highest ranking and filters those
matches with reward R(m) lower than certain threshold ǫ.

4.3.2 Identifying relationships

One key step of SeMap is identifying the relationship im-
plicit in the selected matches in order to create generic se-
mantic relationships. To the best of our knowledge, there is
little prior work on this problem. SeMap uses a novel rule-
based method to identify the implicit relationships. Because
matches are identified by competing semantic evidence, a
uniform solution is hard to obtain. Instead, for each type of
semantic evidence, we define specific rules to extract the em-
bedded generic relationship. In what follows, we show how
to use semantic evidence to identify the four specific rela-
tionships, Equivalent , Has-a, Is-a and Associates, where the
first three relationships have the obvious meanings, and As-
sociates means that the elements are related in some weaker
fashion (e.g., “Bob” created element “foo”).

We classify the semantic evidence into four categories,
schema-level , semantic-level , instance-level , and ontology.
We describe each category in more detail below.

Schema-level evidence includes label, type, and structure
information. Generally speaking, schema-level information
alone is insufficient to determine the embedded generic re-
lationship. However, it provides support for the results
claimed by other semantic evidence. SeMap uses the lineage
information about why a match was selected (Section 4.1.2)
in the following heuristic rules:

• Label. Elements in an Equivalent relationship may have
similar names; Elements in Is-a or Has-a relationships
tend to have labels with prefix/suffix relationships; For
example, given that ‘grad-TA’ has a suffix of ‘TA’, ‘grad-

TA’ is likely to be a part or a specification of ‘TA’

• Type. Two elements with Equivalent or Is-a relationships
probably share a data type. If one element has a data
type as a subcomponent of that of the other, it is likely
that they have a Has-a relationship

• Structure. The hierarchical structure usually embeds the
part-of (Has-a) relationship, for example, the non-leaf
node ‘time’ may have leaf-nodes ‘day’, ‘mon’ and ‘year’.
While two elements with Is-a or Equivalent relationships
tend not have such structure (one non-leaf, one leaf)

Semantic-level evidence is captured by the lineage infor-
mation produced by the sense matcher. SeMap infers the
embedded semantic relationships for two elements X and Y

as follows:

• If X and Y share an identical sense, it is highly likely
that they are semantically similar or equivalent;

• If any senses of X act as the hypernym of Y (i.e., X is a
(kind of) Y) then they may be in an Is-a relationship;

• If a sense of X is a hyponym of Y (i.e., X is a (kind of)
Y), the two elements are likely in an Is-a relationship;

• If any senses X appear as the holonym or meronym Y

(i.e., X is a part of Y or Y is a part of X), they may be
in a Has-a relationship;

For example, in Figure 1, the element ‘professor’ has a hyper-
nym of ‘faculty member’, while ‘department’ has an meronym
of ‘academic institution’, which is a sense of ‘college’.

Instances (i.e., data) give entity-level clues about the rela-
tionship between schema elements. Hence instance-level ev-
idence usually precisely characterizes the content of schema
elements. By studying the similarity of the data instances
of schema elements, SeMap discovers relationships that are
difficult to identify on the schema-level:

• If two elements have a similar data distribution, they are
likely to be Equivalent ;

• If the instance of one element x subsumes that of another
element y, it is likely that x Has-a y as its member;

• If the instances of x and y intersect, it is possible that x

Associates with y.

A domain-specific ontology provides alternative represen-
tations of concepts in the domain, and their possible rela-
tionships. If available, SeMap will use this great source of
relationship information. However, if a domain-specific on-
tology is not available, SeMap can function without it. To
combine the possibly conflicting results suggested by various
semantic evidence, SeMap associates each kind of evidence
with a weight, and a unified conclusion is obtained by lin-
early combining the results. Specifically SeMap considers
ontology > instance > sense > schema information.

For example, in Figure 1, for the match of ‘professor’ and
‘faculty’, the sense evidence suggests Is-a relationship, the
type evidence indicates Equivalent or Is-a equally, and the
label and structure evidence provide no advice. Assuming
the four types of evidence have weights 0.4, 0.3, 0.2 and 0.1
respectively, the voting result correctly identifies the match
‘professor’:‘faculty’ as an Is-a relationship.

schema T schema S

ma

(=) aa

(=)

(=)

(=)

b

b1

b2

mb

mb1

mb2Is-a

Is-a

Figure 5: Mapping assembling for different match
types Each 1-to-1 equivalence match corresponds to
one mapping element, while each element of a com-
plex match is associated with one mapping element.

4.3.3 Mapping Assembling

Finally, given the semantic relationships in Section 4.3.2,
SeMap must create the final mapping. In order to ensure
that the final mapping meets the specifications in the prob-
lem definition (Section 3), we apply the following rules to
create mapping elements: (1) one mapping element is suffi-
cient to represent a 1-to-1 equivalent match in the mapping
and (2) one mapping element is created for each element
of the match in a 1-to-1 non-equivalent match or complex
match. Figure 5 illustrates both cases. While it is possible
to identify the relationships between the mapping elements
belonging to different matches in order to form a more com-
plete mapping, it is beyond the scope of this paper.

5. EXPERIMENTAL ANALYSIS
To evaluate the effectiveness of our schema matching and

mapping construction system, we applied SeMap to several
real-world domains. The experiments were performed with
two main goals:

• To evaluate SeMap’s matching accuracy, including both
the correspondences measured in most previous schema
matching systems, and the detected relationship types.

• To measure the relative contribution of different system
components to the result. Specifically, we measured the
performance gain from (1) different base matchers (2) the
match selector, including user interaction.

Section 5.1 describes the experimental settings, including
(1) the dataset used in experiments; (2) the expert map-
pings; (3) the metrics to evaluate matching results and (4)
the experimental methodology. Section 5.2.1 presents the
evaluation of matching accuracy. Section 5.2.2 shows the
contribution of each system component to the final results.

5.1 Experimental Setting

5.1.1 Data Set

We evaluated SeMap on both synthetic and real datasets.
The synthetic dataset is a version of the example shown in
Figure 1 that has been expanded to cover more concepts.
The real-life datasets are from two domains: Real Estate
(i.e., houses for sale) and Course Information (i.e., courses
at different universities). Each of the domains contains two
data sets, which we refer to as “Real Estate 1” and “Real
Estate 2” and “Course Info 1” and “Course Info 2”. All real
datasets are imported from the Illinois Semantic Integration
Archive [1]. The real-life datasets are associated with data

domain schema # leaf/ # rels. depth
non-leaf

Homeseekers 25/3 27 3
Real Estate Texas 31/3 33 3

Yahoo 23/2 24 3
Reed 12/3 14 3

Course Info Rice 11/4 14 4
UWM 15/4 18 4

Synthetic course 5 /1 5 2
class 5/1 5 2

Table 1: Characteristics of the input schemas.

relationship
domain schema S/T EQ. Is-a Has-a total

Real Estate Homeseekers/ 18 6 12 36
Texas

Homeseekers/ 20 0 11 31
Yahoo

Course Info Reed/U of WA 11 0 7 18
Reed/WSU 18 1 8 27

Synthetic course/class 2 4 3 9

Table 2: Characteristics of the expert mappings.

instances, which we exploited in addition to schema-level
information. For the synthetic dataset we evaluated our
approach on schema-level information only.

Since the real-life schemas are XML DTDs, we converted
them into our model representation, leaving the structure
and terms the same. The only change was that since each
edge in the model representation has a relationship type, but
there were no typed edges in the DTDs, we set all the DTD
relationships as Has-a by default. The synthetic dataset
was natively in the model format, and thus validates how
the system would perform without this preprocessing.

5.1.2 Expert Mappings

In preparing the real-life datasets, we picked three schemas
from each which had complex structure, and among which
complex relationships can exist. The characteristics of these
schemas — after the preprocessing described above to spec-
ify the relationship types within the input schemas — are
shown in Table 1, including the number of elements (leaf
and non-leaf), the number of relationships, and the maxi-
mum depth of the tree.

For each pair of schemas in the same domain, we created
an expert mapping to judge SeMap’s results against. Sev-
eral domains (Course Info 1 and Real Estate 2) included
expert mappings, though without the semantically richer
correspondence types. To avoid bias, we based our expert
mappings on these existing expert mappings. The expert
mappings’ characteristics are shown in Table 2, including
the total number of matches, the number of matches of each
specific relationship type, and the percentage of elements in-
volved in the mapping for both source and target schemas.
The expert mappings contained no Associates relationships.

5.1.3 Evaluation Metrics

As in most previous schema matching work, we evaluated
our approach via three metrics: recall, precision, and F-
measure [22]. Precision P (P = #detected

#result
) represents the

percentage of correctly identified matches over all matches
identified by the system; Recall R (R = #detected

#mapping
) is the

percentage of correctly identified matches over all the matches
in the given expert mapping. Recall and precision are in-
versely related, hence it is desirable to have one measure-
ment to incorporate both recall and precision. F-measure F

(F = 2PR
P+R

) equally weighs recall R and precision P .
As discussed above, SeMap finds both correspondences

and implicit relationships. A correct match thus means (1)
the correspondence is correct, and (2) the relationship is
the same as in the expert mapping. So we measured the
matching accuracy in two ways: (1) the total number of
correct correspondences detected; (2) the number of correct
matches for each type of relationships.

5.1.4 Experimental Methodology

For each domain, we performed three sets of experiments.
We first evaluated SeMap’s matching accuracy. We then
evaluated the relative contribution of each component and
user interaction to the final mapping. This allowed us to
tune the weights of SeMap’s label, type, and sense match-
ers. We found that the system was moderately sensitive to
these parameters (Section 4.1.3), and list automatically tun-
ing these parameters as future work. The specific settings
for different datasets are as follows: (1) For the Real Es-
tate dataset, the parameters are set as λl = 0.3, λt = 0.5,
and λs = 0.2, reflecting that in the Real Estate dataset, the
name, type and sense are all important to identifying the
implicit relationship, however due to a number of abbrevi-
ations, e.g., ‘ac’ for ‘air conditioner’, the type information is
especially important to finding the hidden correspondences;
(2) For the Course Info dataset, λl = 0.4, λt = 0.4, and
λs = 0.2 — the name and type convey equally significant
semantic information, and the sense carries less importance
weight due to a small quantity of synonyms, hyponyms, etc.
in this dataset; (3) For the synthetic dataset, λl = 0.4, λt =
0.3, and λs = 0.3.

5.2 Experimental Results
We now present SeMap’s performance on synthetic and

real datasets. We first consider SeMap without any user in-
teraction. We show the overall matching accuracy and then
analyze the contribution from different types of semantic
evidence. Finally we measure the performance gain from in-
corporating user interaction into the match selector phase.

5.2.1 Matching Accuracy

Figure 6 shows SeMap’s accuracy. As discussed above,
we measured both the accuracy of identified matches and
identified relationships, and did not use any user interac-
tion to improve results. The five bars (from left to right)
show the matching accuracy for the three relationship types
Equivalent , Has-a, and Is-a (correct match and correct re-
lationship), accuracy across all relationship types (correct
match and correct relationship), and total percent of cor-
rect matches (ignoring the relationship type) respectively.

The results show that SeMap achieved a high average
matching accuracy not only in detecting the correct cor-
respondences (total number of correct matches), but also in
detecting the implicit relationships. Taking F-measure as an
example, the percentage of correct correspondences ranges
from 69% to 100%. Averaging across all experiments, the
accuracy of detected relationships is 79%, 69% and 64% for

0

20

40

60

80

100

Real Estate 1 Real Estate 2 Synthetic Course Info 1 Course Info 2

R
e

c
a

ll
 (

%
)

Equivalent
Is-a
Has-a
All
Correspondences

0

20

40

60

80

100

Real Estate 1 Real Estate 2 Synthetic Course Info 1 Course Info 2

P
re

c
is

io
n

 (
%

)

0

20

40

60

80

100

Real Estate 1 Real Estate 2 Synthetic Course Info 1 Course Info 2

F
-m

e
a

s
u

re

Figure 6: The recall, precision and F-measure for
Equivalent, Has-a, Is-a relationships, all relation-
ships, and correspondences for SeMap’s matching
accuracy.

Equivalent , Has-a, and Is-a respectively, and 70% overall.
The accuracy of correspondences detected is comparable to
the results claimed in iMAP [5] (On Real Estate: 77-100%
for 1-to-1 matches and 50-86% for 1-to-n matches), and that
produced by [9] (on Real Estate and Course Info: 73% re-
call and 67% precision without a domain ontology, and 94%
recall and 90% precision with a domain ontology — SeMap
did not use a domain ontology, so these results are com-
parable). Thus, the schema match compares well to other
results, even considering that SeMap only states a result is
correct if the relationship type is correct as well, and hence
is solving a more difficult problem.

Looking at these results in further detail shows that the
matching accuracy highly depends on the domain. For ex-
ample, for the two Real Estate datasets, SeMap has roughly
the same overall accuracy as is the Course Info datasets.
However for specific relationship types, some differences ex-
ist: for Real Estate, SeMap performs better in identifying
Equivalent relationships in Real Estate 1, but worse for Has-
a relationships. While for Course Info datasets, SeMap has
higher accuracy in finding Has-a relationships in Course Info
1, but lower accuracy for Is-a relationships. This is caused
by the different characteristics of the schemas. For example,
the two schemas of Real Estate 1 have a more similar repre-
sentation of the same concepts than that of Real Estate 2,
thus it is easier for SeMap to detect Equivalent relationships
in the first dataset. However, SeMap has quite low precision
(about 40% for Real Estate 1 and 20% for Course Info 2) in
identifying Has-a relationships.

Figure 7 provides a more detailed analysis of the composi-
tion of the matches identified by SeMap, i.e., of the matches
identified as each relationship type, how many are (1) cor-
rect correspondence and correct relationship (2) correct cor-
respondence but incorrect relationship (3) incorrect corre-
spondence (non-match). In both Real Estate 1 and Course
Info 2, incorrect correspondences are the main cause of the
low precision in identifying Has-a relationship matches. The
accuracy of SeMap after barring incorrect correspondences

composition
schemas relship. EQ. Is-a Has-a non-match

Real Equivalent 13 0 0 4
Estate 1 Is-a 0 2 0 0

Has-a 4 2 8 7
Real Equivalent 9 0 0 3

Estate 2 Is-a 0 5 0 3
Has-a 3 0 7 4

Synthetic Equivalent 2 1 0 0
Is-a 0 1 0 0

Has-a 0 0 4 0
Course Equivalent 11 1 0 1
Info 1 Is-a 0 2 0 0

Has-a 0 0 0 0
Course Equivalent 12 0 0 0
Info 2 Is-a 0 4 0 1

Has-a 0 0 1 4

Figure 7: Error analysis of the resulting mappings.

0

20

40

60

80

100

Real Estate 1 Real Estate 2 Synthetic Course Info 1 Course Info 2

P
re

c
is

io
n

 (
%

)

Equivalent

Is-A

Has-A

Figure 8: Precision for Equivalent, Has-a and Is-a

relationships after pruning incorrect matches.

is shown in Figure 8, where the precision reaches near 100%
in most datasets. Since the synthetic dataset is very small,
SeMap’s low precision in this case corresponds to only one
misclassified match. With more powerful schema matching
techniques or domain knowledge, the number of incorrect
matches can be significantly reduced, but that is outside the
scope of this paper.

On average SeMap has higher accuracy in identifying Is-
a relationships than Has-a relationships. This is because
the thesaurus employed in SeMap (WordNet) returns com-
prehensive information of meronym/holonym relationships
between two words. The accuracy of identifying Has-a re-
lationships can improved by (1) pruning senses in using the
thesaurus and (2) lowering the weight of the sense matcher;
however this may affect finding other types of relationships.
Both of these are future work, particularly understanding
the interaction of the parameters.
5.2.2 Component Contribution

Next we studied the relative contribution of different types
of semantic evidence. Specifically, we tested element label
(name), element type and element sense, which are avail-
able in most schemas. In each test, we left out one type of
semantic evidence and used the remaining two.

The two plots of Figure 9 show the F-measure of identi-
fied matches (correspondences) and identified relationships
respectively. In almost all cases, each type of semantic evi-
dence contributes to the overall performance. The exception
is Real Estate 2, where the F-measure of relationships iden-
tified by a complete system is worse than that by a system
without type evidence. This is because semantic evidence
can conflict in determining the implicit relationships, again
pointing to needing careful parameter tuning.
5.2.3 Incorporating User Feedback

0

20

40

60

80

100

Real Estate 1 Real Estate 2 Synthetic Course Info 1 Course Info 2

%
 I

d
e

n
ti
fi
e

d
 M

a
tc

h
e

s

SeMap w/o label
SeMap w/o type
SeMap w/o sense
complete SeMap

0

20

40

60

80

100

Real Estate 1 Real Estate 2 Synthetic Course Info 1 Course Info 2%
 I

d
e
n
ti
fi
e
d
 R

e
la

ti
o
n
s
h
ip

s

Figure 9: Relative contribution of different types
of semantic evidence to the matching results of
SeMap. The two plots (from up to down) show the
F-measure of identified matches (correspondences)
and identified relationships respectively.

We also studied the performance gain by incorporating
user feedback (Section 4.2.3). Each candidate match is as-
sociated with an uncertainty estimate, based on its similarity
score and domain constraints. At each iteration, the schema
element whose candidate matches have the largest mutual
entropy with other elements is selected, and the user is asked
to provide the correct match assignment for this element.
The procedure repeats until a threshold is reached.

We measured the number of correct matches required to
be provided by the user before a perfect set of matches is
reached. Note that we only tested on the accuracy of identi-
fying the correspondences, but not extracting the implicit
relationships. The F-measure of correct correspondences
versus the amount of user interaction needed (percentage of
expert matches provided over the total number of matches)
is shown in Figure 10 (the synthetic dataset is skipped, since
100% correct correspondences is reached without any user
interaction). In Real Estate 1, Real Estate 2 and Course Info
2, F-measure reaches its maximum value when about 20%
of expert matches is provided. Over Course Info 1, about
10% of expert matches lead to a perfect set of matches. This
result suggests that SeMap can effectively incorporate user
interaction; it needs only a few equality constraints provided
by users to achieve high-accuracy matches. Since F-measure
incorporates both precision and recall, it is not always pos-
sible to achieve 100% recall, due to the limit of the current
matching techniques that SeMap takes as input.

6. CONCLUSIONS AND FUTURE WORK
In this paper we presented an approach of identifying

generic, semantic relationships between the elements of two
models (e.g., database schemas, ontologies, web interfaces)
based on initial match information provided by current schema
matching techniques. Our main contributions include (1)
we point out the importance of the problem of identify-
ing generic semantic relationships between schema elements;
(2) we designed an architecture for semi-automatically con-
structing generic semantic mappings based on initial corre-
spondence information; (3) we created a novel probabilistic
framework that transforms match selection to a well-defined
mathematical optimization problem; (4) we effectively mod-
eled user interaction to minimize user effort by detecting

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100
Provided Matches (%)

F
-m

e
a

s
u

re
 (

%
)

Real Estate 1

Real Estate 2

Course Info 1

Course Info 2

Figure 10: F-measure of correct correspondences vs.
percentage of expert matches provided over the total
number of matches.

critical points where feedback is maximally useful; (5) we
proposed an effective solution to extracting relationship im-
plicit in matches based on various types of semantic evi-
dence; (6) we implemented a prototype system embodying
the innovations above and a set of experiments to illustrate
the effectiveness of our approach.

We envision several future directions. The first is to in-
corporate our system into a model management system [2],
and explore the new possibility in meta-data management
brought by generic, semantically rich mappings. Second, we
would like to enhance our current prototype by adding in
more matching techniques, and considering more types of se-
mantic evidence. Third, more domain constraints (e.g., fre-
quency, contiguity, nesting [7]) should be added to enhance
SeMap’s match selector. Another direction would be to de-
couple the schema matching from the discovery of generic
relationships — this would allow base matchers to be added
without changing the heuristics, but would require modify-
ing the semantic evidence used to identify the relationships.
Finally, in judging which relationship is best represented
by the input correspondences, SeMap takes into account
additional information (e.g., lineage information) that the
matchers themselves do not consider. As a result of this, if
SeMap is unable to suggest an appropriate relationship, it
may indicate that the input correspondence is wrong. One
future direction is to redirect such concerns to improve the
quality of the input match.

7. REFERENCES

[1] Illinois semantic integration archive.
http://pages.cs.wisc.edu/˜anhai/wisc-si-archive/,
2007.

[2] P. Bernstein. Applying model management to classical
meta data problems. In CIDR, 2003.

[3] P. Bohannon, W. Fan, M. Flaster, and P. Narayan.
Information preserving xml schema embedding. In
VLDB, 2005.

[4] H. Chalupsky. Ontomorph: A translation system for
symbolic knowledge. In KR, 2000.

[5] R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and
P. Domingos. iMAP: discovering complex semantic
matches between database schemas. In SIGMOD,
2004.

[6] H. Do and E. Rahm. Coma - a system for flexible
combination of schema matching approaches. In
VLDB, 2002.

[7] A. Doan, P. Domingos, and A. Halevy. Reconciling
schemas of disparate data sources: a machine-learning
approach. In SIGMOD, 2001.

[8] A. Doan and A. Halevy. Semantic integration research
in the database community: A brief survey. AI
Magazine, 26(1):83–94, 2005.

[9] D. Embley, L. Xu, and Y. Ding. Automatic direct and
indirect schema mapping: experiences and lessons
learned. SIGMOD Record, 33(4):14–19, 2004.

[10] F. Giunchiglia and M. Yatskevich. Semantic matching.
Knowledge Engineering Review, 18(3):265–280, 2004.

[11] P. Hart, N. Nilsson, and B. Raphael. A formal basis
for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and
Cybernetics (SSC), pages 100–108, 1968.

[12] F. Jensen. Bayesian Networks and Decision Graphs.
Springer-Verlag, 2001.

[13] Y. Kalfoglou and M. Schorlemmer. Ontology mapping:
the state of the art. Knowledge Engineering Review,
18(1):1–31, 2003.

[14] J. Kang and J. Naughton. On schema matching with
opaque column names and data values. In SIGMOD,
2003.

[15] J. Madhavan. Learning mappings between models of
data. http://citeseer.ist.psu.edu/636517.html, 1999.

[16] J. Madhavan, P. Bernstein, and E. Rahm. Generic
schema matching with cupid. In VLDB, 2001.

[17] A. Maedche, B. Motik, N. Silva, and R. Volz. Mafra -
a mapping framework for distributed ontologies. In
Knowledge Engineering and Knowledge Management
Ontologies and the Semantic Web, 2002.

[18] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity
flooding: A versatile graph matching algorithm and its
application to schema matching. In ICDE, 2002.

[19] N. Noy and M. Musen. Prompt: Algorithm and tool
for automated ontology merging and alignment. In
AAAI, 2000.

[20] E. Rahm and P. Bernstein. A survey of approaches to
automatic schema matching. VLDB Journal,
10(4):334–350, 2001.

[21] X. Renguo, T. Dillon, J. Rahayu, E. Chang, and
N. Gorla. An indexing structure for aggregation
relationship in oodb. In DEXA, 2000.

[22] C. Van Rijsbergen. Information Retrieval, 2nd edition.
1979.

[23] N. Rizopoulos. Automatic discovery of semantic
relationships between schema elements. In
International Conference on Enterprise Information
Systems, 2004.

[24] M. Sayyadian, Y. Lee, A. Doan, and A. Rosenthal.
Tuning schema matching software using synthetic
scenarios. In VLDB, 2005.

[25] G. Stumme and A. Maedche. FCA-MERGE:
Bottom-up merging of ontologies. In IJCAI.

[26] W. Wu, C. Yu, A. Doan, and W. Meng. An interactive
clustering-based approach to integrating source query
interfaces on the deep web. In SIGMOD, 2004.

[27] L. Yan, R. Miller, L. Haas, and R. Fagin. Data-driven
understanding and refinement of schema mappings. In
SIGMOD, 2001.

