
On the Complexity of Deriving Schema Mappings
from Database Instances

Pierre Senellart∗
INRIA Saclay – Île-de-France

& Université Paris-Sud
Orsay, France

pierre@senellart.com

Georg Gottlob†
Computing Laboratory

& Man Institute of Quantitative Finance
University of Oxford, United Kingdom

Georg.Gottlob@comlab.ox.ac.uk

ABSTRACT
We introduce a theoretical framework for discovering rela-
tionships between two database instances over distinct and
unknown schemata. This framework is grounded in the context
of data exchange. We formalize the problem of understanding
the relationship between two instances as that of obtaining a
schema mapping so that a minimum repair of this mapping
provides a perfect description of the target instance given
the source instance. We show that this definition yields “in-
tuitive” results when applied on database instances derived
from each other by basic operations. We study the complexity
of decision problems related to this optimality notion in the
context of different logical languages and show that, even in
very restricted cases, the problem is of high complexity.

Categories and Subject Descriptors
F.2.0 [Analysis of Algorithms and Problem Complex-
ity]: General; H.2.5 [Database Management]: Heteroge-
neous Databases

General Terms
Languages, Theory

Keywords
Schema mapping, instance, complexity, match, data exchange

1. INTRODUCTION

Main Problem Addressed. This paper deals with the au-
tomatic discovery of relational schema mappings based on

∗Partially supported by the ANR project WebContent.
†Georg Gottlob’s work was supported by EPSRC grant
EP/E010865/1 “Schema Mappings and Automated Services
for Data Integration and Exchange”. Gottlob also gratefully
acknowledges a Royal Society Wolfson Research Merit Award,
which allowed him to host Pierre Senellart.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’08, June 9–12, 2008, Vancouver, BC, Canada.
Copyright 2008 ACM 978-1-60558-108-8/08/06 ...$5.00.

existing data. In particular, we deal with the following main
problem, and with closely related questions. Given a rela-
tional schema S, called the source schema, and a differently
structured target schema T, and given an instance I of S,
and an instance J of T, where we assume that J consists
of an adequate “translation” of I to fit the target schema T,
find an optimal translation function, i.e., a schema mapping
that maps instances of S to instances of T, taking I to J .
This main problem actually consists of two important sub-
problems: (i) determining an appropriate formal framework
in which schema mappings can be expressed and that allow
one to numerically assess the quality of a schema mapping,
and (ii) understanding the computational fundamentals of the
automatic synthesis of schema mappings in that framework,
in particular, complexity issues and algorithms. We do not
provide a direct algorithm for deriving schema mappings from
database instances, but we discuss a theoretical framework
and complexity analysis that can be a first step toward it.

Importance of the Problem. Schema mapping discovery has
been recognized as an issue of central relevance in various
application and research contexts, for example, in the area
of data exchange [7, 15], data integration [18], metadata
management [3], and data extraction from the hidden Web,
in particular, automated wrapper generation.

Schemata and dependencies, in a data exchange context,
form metadata that need to be managed in a systematic
and formal way. Bernstein argues in [3] for the definition,
in such a setting, of operators on this metadata. Thus, [9]
and [8] respectively propose ways to define the composition
and inverse operators on schema mappings. Another operator
of importance, which is actually closely related to the research
proposed in the present paper, is the match operator [3]:
given two schemata and instances of these schemata, how
to derive an appropriate set of dependencies between these
schemata. More precisely, given two relational databases
schemata S and T and instances I and J of these schemata,
the problem is to find a schema mapping, that is, a finite set
Σ of formulas in a given language L, such that (I, J) |= Σ,
or such that (I, J) approximates in some sense a model of Σ.
This problem is related to the techniques used for automatic
schema matching. Current methods of automated schema
mapping generation, such as those described in [20], heavily
rely on semantic meta-information about the schemata (names
of concepts and relations, concrete data types, etc.). However,
in many practical contexts such semantic meta-information is
either not available or would require too much or too expensive
human interaction. In those cases, the mere values of I and J

constitutes the only information from which a mapping ought
to be constructed. This important case, which has been barely
studied, is addressed in the present paper.

In automated wrapper generation (e.g., from Web sources),
the absence of suitable meta-information is a similar problem.
Let us take a concrete example, namely that of extracting
information from research publications databases on the Web.
Consider for instance the list of publications by J. D. Ullman
provided by DBLP1 and Google Scholar2. A structural in-
formation extraction wrapper such as RoadRunner [5] can
be applied on both pages (or set of pages obtained by fol-
lowing the Next links) to obtain relational data from these
pages, without any metadata. The set of papers presented
by both sources is not exactly the same, their organization
is different (for instance, grouping by dates in DBLP), some
data is present in some source and not in the other (page
numbers in DBLP, direct links to electronic versions of articles
in Google Scholar), but both sources essentially present infor-
mation about the same data. Using the mutual redundancy of
these sources to detect the most appropriate schema mapping
between them would enable us to wrap from one format of
output to another. If the structure of one source is known,
then this schema mapping would give us the core structure of
the other one, in a fully automatic way.

Results. After stating in Section 2 some relevant definitions,
in Section 3 of this paper, we present a novel formal framework
for defining and studying the automatic discovery of schema
mappings. In this framework, schema mappings are—not
surprisingly—expressed as source-to-target tuple generating
dependencies (tgds). It is well known that tgds are suited for
this task. However, we also introduce a cost function, that
tells us how well a tgd does its job of translating the given
source instance I into the given target instance J . This cost
function takes into account (i) the size of the tgd, (ii) the
number of repairs that have to be applied to the tgd in order
for it to be valid and to perfectly explain all facts of J .

Of course, defining a cost function may be seen as a some-
what arbitrary choice. However, in Section 4, we give formal
evidence of the appropriateness of the cost function, showing
that it enjoys nice properties when I and J are derived from
each other with elementary relational operations.

We study in Section 5 the computational complexity of the
relevant problems. In particular, we show that computing
the cost of a schema mapping lies at the third level of the
polynomial hierarchy, while either fullness or acyclicity con-
ditions reduce this complexity by one level. The problem is
thus NP-complete for full acyclic tgds, and it remains NP-
complete even in a very simple case where there is only one
relation of arity 3 in the source schema, and one relation of
arity 1 in the target schema. To see that, we use a lemma on
the complexity of the Vertex-Cover problem in r-partite
r-uniform hypergraphs, which is interesting in itself. Due to
space constraints, most proofs are omitted.

We finally discuss in Section 6 an extension and variants of
this approach. We show in particular how the cost definition
can be extended to a schema mapping expressed as an arbitrary
first-order formula and discuss the complexity of the relevant
problems. We also examine other choices for the cost function,

1http://www.informatik.uni-trier.de/~ley/db/indices/
a-tree/u/Ullman:Jeffrey_D=.html
2http://scholar.google.com/scholar?q=author%3A%22jd+
ullman%22

which may seem simpler at first and closer to the existing
notion of repair of a database in the literature [1], but which
are not appropriate to our context since they do not share the
same “niceness” properties established in Section 4.

Related Work. We are not aware of any work with the same
focus on a theoretical and systematic analysis of the complexity
of deriving a schema mapping, although, in spirit, the problem
that we deal with here is similar to the one that inductive
logic programming (ILP) [17] aims to solve. An approach to
the complexity of ILP is presented in [12]; the main differences
with the work discussed here is the use of negative examples,
the existence of a background knowledge, and the restriction
to Horn clauses instead of arbitrary tgds.

The notion of repair appears in the context of inconsistent
databases [1] (with respect to some integrity constraint). In
this work, consistent query answers are defined as the com-
mon answers to a query on minimal repairs of the database.
Repairs use the addition or deletion of tuples to the database,
something close to what is discussed in Section 6 and that
we show inappropriate to our context. Besides, the focus is
different: Arenas et al. suppose the integrity constraint fixed,
while we are looking for an optimal schema mapping without
any a priori.

2. PRELIMINARIES
We assume some countably infinite sets C of constants

(denoted a, b, 0, 1, etc.) and V of variables (denoted x, y, z,
etc.). We use the notation x to represent a vector of variables
x1 . . . xn. Constants appearing in formulas are here identified,
as usual, with the domain elements they are interpreted by.

A (relational) schema is a finite set of pairs (R,n) where
R is a relation name and n > 1 the arity of the relation.
An instance I of a relational schema S consists, for every
(R,n) ∈ S, of a finite relation over Cn. We occasionally
denote RI the interpretation of the relation name R in the
instance I (if |S| = 1, we shall make the confusion RI=I).
In the following, we assume that the schemata are implicitly
given whenever we are given an instance.

A language L is a subset of the set of formulas of first-
order logic with equality and constants, and without function
symbols (with its usual semantics). Given a language L, a
schema mapping in L is a finite set of formulas in L. We
are particularly interested in the following languages, given
instances I, J with schemata S, T:

Relational calculus. Lrc is the set of first-order formulas
without constants, with relations symbols in S ∪T.

Source-to-target tuple-generating dependencies.
Ltgd ⊂ Lrc is the set of formulas of the form

∀x ϕ(x)→ ∃y ψ(x,y)

where: (i) ϕ(x) is a (possibly empty) conjunction of
positive relation atoms, with relation symbols in S;
(ii) ψ(x,y) is a conjunction of positive relation atoms,
with relation symbols in T; (iii) all variables of x appear
in ϕ(x).

Acyclic tgds. Lacyc ⊂ Ltgd is the set of tgds such that the
hypergraph of the relations on the left hand-side is
acyclic [2], as well as the hypergraph of the relations on
the right hand-side, considering only existentially quanti-
fied variables. More precisely, let ∀x ϕ(x)→ ∃y ψ(x,y)

be a tgd, and let (N,E) (respectively, (N ′, E′)) be the
hypergraph whose vertices are the variables of x (respec-
tively, y) and whose edges are the relation atoms of ϕ(x)
(respectively, the relation atoms of ψ(x,y) where at least
one variable of y appears). The tgd is said to be acyclic3

if there are two forests F and F ′ (called the join forests)
with each hyperedge of E (respectively, of E′) a node
of F (respectively, of F ′), such that for all nodes n ∈ N
(respectively, n ∈ N ′), the subgraph of F (respectively,
of F ′) induced by the edges of E (respectively, of E′)
that contain n is connected. Other equivalent definitions
of acyclic hypergraphs are given in [2].

Full tgds. Lfull ⊂ Ltgd is the set of tgds without an exis-
tential qualifier on the right-hand side, that is, of the
form

∀x ϕ(x)→ ψ(x).

Acyclic full tgds. Lfacyc = Lacyc ∩ Lfull is the set of full
tgds such that the hypergraph of the relations on the
left hand-side is acyclic.

We focus here on source-to-target tuple-generating depen-
dencies (either arbitrary or with one of the restrictions men-
tioned above). Arbitrary tgds (and, in a lesser way, full tgds)
have been at the basis of most works4 in the data exchange
setting [7, 15]. As we shall see in Section 5, acyclic full tgds
have nice complexity results. We show in Section 6 how this
work can be extended to arbitrary formulas of the relational
calculus.

3. COST AND OPTIMALITY OF A TGD
We first introduce the two basic notions of validity and

explanation that are at the basis of our framework.

Definition 1. A schema mapping Σ is valid with respect to
a pair of instances (I, J) if (I, J) |= Σ.

Definition 2. A (ground) fact in a schema S is a tuple
R(c1 . . . cn) where c1 . . . cn ∈ C and R is a relation of S with
arity n.

A schema mapping Σ explains a ground fact f in the target
schema with respect to a source instance I if, for all instances
K of the target schema such that (I,K) |= Σ, f ∈ K.

A schema mapping fully explains a target instance J with
respect to a source instance I if it explains all facts of J with
respect to I.

We have quite an asymmetric point of view about the pair
of instances here; we do not require a full explanation of I by
the facts of J , for instance. This asymmetry is quite common
in the context of data exchange. For source-to-target tgds,
note that Σ fully explains J with respect to I if and only if J
is included in the result of the chase [7] of I by Σ.

Example 3. Let us consider the following database instances
I and J , on schemata {(R, 1)} and {(R′, 2)}.

3Note that this notion of acyclicity is not related to the notion
of weakly acyclic set of tgds that has been much studied in
the context of data exchange [7, 15].
4The other important class of dependencies, namely equality
generating dependencies, is less appropriate to this context.

R R′

a
b
c
d

a a
b b
c a
d d
g h

We can imagine a number of schema mappings that more
or less express the relation between I and J :

Σ0 = ∅
Σ1 =

˘
∀x R(x)→ R′(x, x)

¯
Σ2 =

˘
∀x R(x)→ ∃y R′(x, y)

¯
Σ3 =

˘
∀x∀y R(x) ∧R(y)→ R′(x, y)

¯
Σ4 =

˘
∃x∃y R′(x, y)

¯
Actually, any combination of these schema mappings may also
be of interest.

Σ0 and Σ4 seem pretty poor, here, as they fail to explain
any facts of J , while there seems to be a definite relation
(albeit with some noise) between I and J . Σ3 explains most of
the facts of J , but is far from being valid, since it also explains
a large number of incorrect facts such as R′(a, b) or R′(b, d).
Σ1 and Σ2 are more interesting. Σ1 explains 3 facts of J ,
but also incorrectly predicts R′(c, c). Σ2 fails to explain any
facts of J , but explain most of them at least partially, in the
sense that they are explained by a fact with an existentially
quantified variable (a skolem); in addition, it is valid with
respect to (I, J). Neither Σ1 or Σ2 explains the last fact of J .

As there seems to be some noise in the operation that
produced J from I, it is hard to say with certainty which
schema mapping is optimal here, in the sense that it reflects
most closely the relation between I and J . At any rate,
however, Σ1 and Σ2 seem far better candidates than the other
ones.

To define in a formal way our notion of optimality of a
schema mapping, the basic idea is to get the simultaneous
optimal for all three factors of interest (validity, explanation
of the target instance, conciseness) by minimizing the size of:
the original formula, plus all the local corrections that have
to be done for the formula to be valid and to fully explain
the target instance. This is close in spirit to the notion of
Kolmogorov complexity and Kolmogorov optimal [19] (though
we do not consider a Turing-complete language for expressing
either the formula or the corrections, but much more limited
languages).

Definition 4. Given a schema mapping of tgds Σ ⊂ Ltgd

and a pair of instances (I, J), we define the set of repairs
of Σ with respect to (I, J), denoted repairs(I,J) (Σ), as a set

of finite sets of formulas, such that Σ′ ∈ repairs(I,J) (Σ) if it
can be obtained from Σ by a finite sequence of the following
operations:

• Adding to the left-hand side of a tgd θ of Σ, with θ of
the form ∀x ϕ(x)→ ∃y ψ(x,y), a conjunction τ(x) of
the form:

V
i xiαici where αi are either = or 6=, xi are

variables from x and ci are constants.

• Adding to the right-hand side of a tgd θ of Σ, with θ as
above, a formula τ ′(x,y) of the form:^

i

 ^
j

xij = c′ij

!
→ yi = ci

!

where xij are variables from x, yi variables from y, and
c′ij and ci constants.

• Adding to Σ a ground fact R(c1 . . . cn) where R is a
relation of the target schema of arity n, and c1 . . . cn are
constants.

The language of repairs L∗ of a language L is the language
consisting of all formulas which can be obtained from formulas
of L with these operations (along with all ground facts over
the target schema).

In a repair of a tgd ∀x ϕ(x) ∧ τ(x)→ ∃yψ(x,y) ∧ τ ′(x,y),
the term τ(x) is responsible for correcting cases when the tgd
is not valid, by adding additional constraints on the universal
quantifier, whereas τ ′(x,y) specifies the right-hand side of J ,
by giving the explicit value of each existentially quantified
variable, in terms of the universally quantified variables.

An interesting property of repairs is that they are reversible:
Because all operations add constants to a language where
constants do not exist, it is possible to compute (in linear
time) the original schema mapping from a repair. Indeed,
constants are only used for repairing formulas; in other words,
we consider that the relations that we need to find between
the source and target instances are to be expressed with
constant-free formulas, in order to abstract them as much
as possible. Clearly, this is a simplifying assumption that
could be lifted in future works. Note that this extension is not
straightforward, however: It is not clear how to distinguish
between constants which are rightfully part of the optimal
schema mapping description and constants which are just used
to correct some noise or missing data.

The notion of size of a schema mapping is easily defined
as follows; we could also use a more classical definition in
function of the number of symbols of a formula, without much
difference in the theory.

Definition 5. The size of a first-order formula ϕ ∈ L∗,
denoted size(ϕ) is computed as follows:

• The size of ϕ is the number of occurrences of variables
and constants in ϕ (we stress that each variable and
constant is counted as many times as it occurs in ϕ);
occurrences of variables as arguments of quantifiers do
not count.

• If ϕ is a ground fact R(c1 . . . cn), then the size of ϕ is
computed as if ϕ were the formula

∃x1 . . .∃xn R(x1 . . . xn) ∧ x1 = c1 ∧ · · · ∧ xn = cn.

Therefore, size(ϕ) = 3n.

The size of a schema mapping is the sum of the size of its
elements.

The refinement on ground facts is performed so that such
facts are not “too cheap”: the cost of R(c1 . . . cn) is the same
as that of the corresponding repair of ∃x1 . . .∃xn R(x1 . . . xn),
as will be illustrated in Example 8. This is not a major
assumption, however, and it does not impact the results of
this paper in a significant way. We are now ready to define the
cost of a schema mapping, in terms of the size of its repairs:

Definition 6. The cost of a schema mapping Σ, with respect
to a pair of instances (I, J), is defined by:

cost(I,J) (Σ) = min
Σ′∈repairs(I,J)(Σ)

Σ′ valid and fully explains J

size(Σ′).

Note that cost(I,J) (Σ) may not be defined if the minimizing
set is empty.

A schema mapping Σ ⊂ L is optimal in the language L,
with respect to a pair of instances (I, J), if:

cost(I,J) (Σ) = min
Σ′⊂L

Σ′ finite

cost(I,J)

`
Σ′
´

.

It is indeed possible that cost(I,J) (Σ) is not defined. This
is for instance the case for T = {(R′, 1)}, Σ = {∃x R′(x)}
and J = ∅. However, this case is easily recognizable; in other
cases we have a linear bound on the cost of a schema mapping:

Proposition 7. There is a linear-time algorithm to check
whether the cost of a schema mapping in Ltgd is defined with
respect to a pair of instances. If it is defined, the cost is
bounded by a linear function of the size of the data and the
schema mapping itself.

This linear bound is interesting, since we can imagine to
use local search algorithms to find the tgd with minimum cost,
as soon as we are able to compute in an efficient way the cost
of a tgd. We shall see in Section 5, unfortunately, that even
for a very restricted language, computing the cost of a tgd is
NP-complete.

Example 8. Let us go back to the instances and schema
mapping of Example 3, compute their respective cost, and see
which one is optimal.

cost(I,J) (Σ0) = 3 · 2 |J | = 30

cost(I,J) (Σ1) = 3 + 2 + 3 · 2 · 2 = 17

cost(I,J) (Σ2) = 3 + 4 · 4 + 3 · 2 = 25

cost(I,J) (Σ3) = 4 + 4 + 3 · 2 · 4 = 32

cost(I,J) (Σ4) = 2 + 4 + 3 · 2 · 4 = 30

It appears here that Σ1 is the best of these schema mappings
(and it can be shown that it is indeed optimal). As expected,
Σ2 is the second best.

The fact that Σ4 has the same cost as Σ0 is no coincidence,
this is due to the choice we made for the cost of a ground fact.

At least on this simple example, our measure of cost seems
reasonable. We will further justify it in Section 4.

The following decision problems arise naturally once given
this notion of optimality. Each of them is defined for a given
language L, and we shall investigate their complexity in Sec-
tion 5.

Validity. Given instances I, J , and a schema mapping
Σ ⊂ L∗, is Σ valid with respect to (I, J)?

Explanation. Given instances I, J , and a schema map-
ping Σ ⊂ L∗, does Σ fully explain J with respect to I?

Zero-Repair. Given instances I, J , and a schema mapping
Σ ⊂ L∗, is cost(I,J) (Σ) equal to size(Σ)?

Cost. Given instances I, J , a schema mapping Σ ⊂ L and
an integer K > 0, is cost(I,J) (Σ) less than or equal
to K?

Existence-Cost. Given instances I, J and an integer
K > 0, does there exist a schema mapping Σ ⊂ L such
that cost(I,J) (Σ) is less than or equal to K?

Optimality. Given instances I, J , and a schema mapping
Σ ⊂ L, is it true that Σ is optimal with respect to (I, J)?

Note that Validity, Explanation and Zero-Repair all
consider formulas of the language of repairs L∗. This is an
important point that will be used in Proposition 10 to derive
relationships between the six decision problems above.

4. JUSTIFICATION
In this section, we justify the definitions of the previous

section by observing that, when instances I and J are derived
from each other by elementary operators of the relational
algebra, the optimal schema mapping, in Ltgd, is the one that
“naturally” describes this operator.

Let r, r′ be instances of relations. We consider the following
elementary operators of the relational algebra:

Projection. πi(r) denotes the projection of r along its ith
attribute.

Selection. σϕ(r), where ϕ is a conjunction of equalities and
negated equalities between an attribute of r and a con-
stant, denotes the selection of r according to ϕ. Note
that we allow neither identities between attributes of r
(this is the role of the join operation), nor disjunctions
(they may be expressed using a combination of selection
and union).

Union. r ∪ r′ is the union of r and r′.

Intersection. r ∩ r′ is the intersection of r and r′.

Product. r × r′ is the cross product of r and r′.

Join. r 1ϕ r
′ is the join of r and r′ according to ϕ, where ϕ

is an equality between an attribute of r and an attribute
of r′; ϕ is omitted when the context makes it clear.

The relationship between a database instance I and the
instance J obtained from I using one of these operators can
often be (partially) expressed in a natural way by a tgd or
a set of tgds, where I is the source instance and J the tar-
get instance (and similarly when the source instance is ex-
pressed as the result of applying some operator to the target
instance). For instance ∀x R1(x) ∧ R2(x) → R′(x) is nat-
urally associated with the intersection operator. The only
case when the relationship between I and J has no natural
expression as a tgd is for the reciprocal of the union opera-
tor: If I = RJ1 ∪RJ2 , the natural formula for describing this
relation is ∀x R(x) → R1(x) ∨ R2(x), which is not a tgd
since we do not allow disjunction. In some cases, as tgds are
not powerful enough to express the relationship, or as some
information is lost, the correspondence is only partial. For
instance, ∀x R(x) → R′(x) is the most natural tgd for the
operation J = σϕ(I), but the tgd does not fully describe the
selection.

We now state that, using the notion of optimality of a
schema mapping with respect to a pair of instances described
in the previous section, and with some simple restrictions on
the considered instances, the optimal schema mapping for a
pair of instances obtained from each other with an operator
of the relational algebra is precisely the schema mapping that
is naturally associated with the operator. This justifies the
choice of this notion of optimality, at least in these elementary
contexts. We shall see in Section 6 other choices for the cost
function, that might seem more natural at first, but that fail
to satisfy the same property. For brevity’s sake, we state this
result in an informal way and illustrate it on the example of
the join operator.

Theorem 9 (Informally stated). For any elementary operator
γ of the relational algebra, the tgd naturally associated with
this operator (when it exists) is optimal with respect to (I, γ(I))
(or (γ(J), J), depending on the considered case), if some basic
assumptions are fulfilled: the instances are not of trivial size
and there is no simpler relation between attributes than the
one described by the operator.

Let us see what this means, and prove this result, for the
join operator. Suppose J = RI1 1 RI2 (with R1 and R2 two
binary relation symbols), and let us add the basic assumptions
that π1(J) 6= π2(J), π1(J) 6= π3(J), π2(J) 6= π3(J). We have:

cost(I,J)

`˘
∀x∀y∀z R1(x, y) ∧R2(y, z)→ R′(x, y, z)

¯´
= 7

since this tgd is valid and explains all facts of J . The cost
of the empty schema mapping, 9 |J |, is greater since J is not
empty. The only remaining relevant schema mappings with
lesser size (of 5) have a single relation symbol R1 or R2 on the
left-hand-side. But this means that they either predict two
identical columns in J (this is incorrect, and has to be fixed
in a repair of the schema mapping, whose additional cost is
at least 2), or use an existential quantifier on the right-hand
size, which also has to be repaired.

Now consider the case where I = R′1
J

1 R′2
J
, and let us

suppose all three attributes πi(I) disjoint.

cost(I,J)

`˘
∀x∀y∀z R(x, y, z)→ R′1(x, y) ∧R′2(y, z)

¯´
= 7 + 6

˛̨̨n
(x, y) ∈ R′1

J | ∀z (y, z) /∈ R′2
J
o˛̨̨

+ 6
˛̨̨n

(y, z) ∈ R′2
J | ∀x (x, y) /∈ R′1

J
o˛̨̨

.

cost(I,J) (∅) = 6 |J | is greater than that as soon as I is not
empty. As we assumed all three attributes of I disjoint, we
can eliminate a number of schema mappings that do not
produce any correct facts. The only remaining ones only
have R′1(w1, w2) or R′2(w2, w3) terms on the right-hand size
with those three variables either existentially quantified or
appearing, respectively in the first, second or third position
of a R(w1, w2, w3) atom on the left-hand side. None of these
schema mappings can explain the facts that the schema map-
ping above does not explain, and existential quantifiers have
to be accounted for in repairs.

These results could also be extended to the cases where
we have relations of greater arity, but we would then require
strong constraints, as the one we imposed for reciprocal join
(that all attributes are disjoint), so as not to have any “hidden”
relation between the different attributes. A weaker assumption
that could be made is to use a notion of Kolmogorov random-
ness [19]: A database instance selected at random cannot have
a description of length lower than its size, thanks to a simple
counting argument. We can use such random instances to get
a contradiction when we obtain a schema mapping that uses
hidden relations between attributes of relations in the instance
to have a lower cost than the natural schema mapping.

5. COMPLEXITY STUDY
We now proceed to a study of the computational complexity

of the different problems identified in Section 3, for the different
subsets of Ltgd that we presented in Section 2. We focus here
on combined complexity (when K and Σ are part of the input
to the problem in addition to I and J), since we are precisely

reasoning about the schema mappings themselves. We first
describe general relationships between the different problems,
before giving complexity results for Ltgd, Lfull, Lfacyc and
Lacyc, in that order (it might seem natural to analyze Lacyc

before Lfacyc but the proofs for the latter are slightly simpler,
and will help to understand notions needed for the former).
Cost and Existence-Cost will be discussed separately. We
present at the end of the section data complexity results.

General Complexity Results. As the complexity of the dif-
ferent decision problems depends on the particular language
considered, we add to the problem name a subscript identi-
fying the considered language (say, Optimalitytgd for the
Optimality problem in Ltgd).

We have the following elementary relationships between
these problems, that can be used to derive complexity results
for one problem from complexity results for another one.

Proposition 10. For any language L:
1. Zero-Repair = Validity ∩ Explanation.
2. There is a polynomial-time reduction of Validity to

Zero-Repair.
3. There is a polynomial-time reduction of Zero-Repair

to Cost.
4. Given an algorithm A for the Zero-Repair problem,

and a polynomial-time algorithm for determining if a
formula is in L, there are non-deterministic algorithms
for Cost and Existence-Cost that run by using once
the algorithm A, with an additional polynomial time
cost.

5. Given an algorithm A for Cost, and a polynomial-time
algorithm for determining if a formula is in L, there
is a non-deterministic algorithm for the complement of
Optimality that runs by using a logarithmic number
of times the algorithm A, with an additional polynomial
time cost.

6. If L ⊆ L′, for any problem among Validity, Explana-
tion, Zero-Repair and Cost, there is a constant-time
reduction from the problem in L to the problem in L′.

Note that for all languages considered here, there is a linear-
time algorithm for determining if a formula is in this language;
this is obvious for all except for Lacyc and Lfacyc, and an algo-
rithm from [21] gives a linear-time algorithm for the acyclicity
of hypergraphs.

In the next sections, we shall investigate in detail the com-
plexity of the different problems in each of the identified
subsets of Ltgd, starting from Ltgd itself. A summary of all
combined complexity results proved in the following, along
with their direct consequences, is shown in Table 1.

Combined Complexity for TGDs. Let us first investigate
the combined complexity of Validity and Explanation in
Ltgd.

Proposition 11.
1. Validitytgd is ΠP

2 -complete.
2. Explanationtgd is in NP.

Combined Complexity for Full TGDs. We now consider
the language of full tgds, Lfull.

Proposition 12.
1. Validityfull is coNP-complete;
2. Explanationfull and Zero-Repairfull are NP-hard.

Combined Complexity for Full Acyclic TGDs. We now
look at the complexity of the same problems for Lfacyc. We
shall need additional notions on acyclic joins from [2, 22]. Note
first that an acyclic full tgd ∀x ϕ(x)→ ψ(x) that describes
the relation between a pair of instances (I, J) can be seen, in
the relational algebra, as a project-join expression over the
source instance, πψ(1ϕ(I)), ϕ expressing the join (which is, by
hypothesis, acyclic) and ψ expressing the projection. Adding
repaired formulas, of the form ∀x (ϕ(x) ∧ τ(x)) → ψ(x),
means adding an additional selection: πψ(στ (1ϕ(I))).

A full reducer of a join expression is a program which re-
moves some tuples to the relations to be joined (by performing
semi-joins) so that each relation can then be retrieved as a
projection of the full join. Such a full reducer always exists in
acyclic databases and can be obtained in polynomial time [4].
The full reducer itself runs in polynomial time. Finally, note
that a join tree of an acyclic join can be obtained in linear
time [21].

[22] proposes then Algorithm 1 for computing the result to
a project-join expression on an acyclic database, that we reuse
with slight modifications in our next proposition.

Algorithm 1 Result to a project-join expression on an acyclic
database (after [22])

Input: An acyclic join expression ϕ, a project expression ψ,
an instance I.
Output: πψ(1ϕ(I)).
(a) Compute a full reducer of the relation instances, and apply

it.
(b) Compute a join tree T of the acyclic expression. Each node

of the tree initially contains the corresponding reduced
relation instance.

(c) For each subtree of T with root r, compute recursively for
each child r′ of r the join of r with r′, and project to the
union of the variables appearing in ψ and the common
variables of r and r′. Remove r′ and replace node r with
this result.

An important property of this algorithm is that, at all time,
the size of the relation stored in node r of T is bounded
by the original (reduced) size of r times the size of the final
output. This means in particular that this algorithm computes
in polynomial time the result to the project-join expression.
Actually, the same algorithm can be applied when repaired
formulas are considered, since the only selection performed is
a conjunction of constraints (equality and negated equality)
on a given variable: These selections can be pushed inside the
join.

Proposition 13. Validityfacyc and Explanationfacyc are
in PTIME.

Zero-Repair is then tractable in Lfacyc. One might hope
that this tractability extends to Cost. Unfortunately, we now
show the NP-hardness of Costfacyc, even for a very simple
schema mapping. For this purpose, we shall first need a
quite general result on the minimal size of a vertex cover in a
r-partite r-uniform hypergraph (for r > 3).

A hypergraph is r-partite if the set of vertices can be de-
composed into an r-partition, such that no two vertices of
the same partitioning subset are in a same hyperedge. It is
r-uniform if all hyperedges have a cardinality of r. A vertex
cover of a hypergraph is a subset X of the set of vertices, such
that for every hyperedge e, at least one of the elements of

Table 1: Combined complexity results

Ltgd Lfull Lacyc Lfacyc

Validity ΠP
2 -complete coNP-complete coNP-complete PTIME

Explanation NP-complete NP-complete NP-complete PTIME

Zero-Repair ΠP
2 -complete DP, (co)NP-hard DP, (co)NP-hard PTIME

Cost ΣP
3 , ΠP

2 -hard ΣP
2 , (co)NP-hard ΣP

2 , (co)NP-hard NP-complete

Existence-Cost ΣP
3 , NP-hard ΣP

2 , NP-hard ΣP
2 , NP-hard NP-complete

Optimality ΠP
4 , (co)NP-hard ΠP

3 , (co)NP-hard ΠP
3 , (co)NP-hard ΠP

2 , (co)NP-hard

e is in X. In regular graphs, Vertex-Cover (determining
whether there is a vertex cover of size 6 K) is one of the
most known and useful NP-complete problems [11]. This
obviously implies that Vertex-Cover is NP-hard in general
hypergraphs. Note that a 2-partite 2-uniform hypergraph is
just a bipartite graph, and Vertex-Cover in bipartite graphs
is PTIME, thanks to Kőnig’s theorem [6, 16] which states
that the maximal number of matchings in a bipartite graph is
the mimimum size of a vertex cover.

Lemma 14. The problem of, given an r-partite r-uniform
hypergraph H and a constant K, determining whether there
exists a vertex cover in H of size less than or equal to K is
NP-complete for r > 3.

Proof. This problem is clearly in NP: Just guess a set of
vertices of size less than or equal to K and check in polynomial
time whether it is a vertex cover. For the hardness part, we
prove the case r = 3; there is an obvious reduction from this
case to the same problem for other values of r. We use a
reduction from 3SAT.

Note that this result appears in [14], but the reduction
presented there is not exhaustive (in particular, nothing is
said about interdependencies between clauses, or the fact that
the hypergraph is tripartite) and it is not clear whether the
proof was indeed led to completion. We use here a proof
inspired by the proof that 3-Dimensional-Matching is NP-
hard in [11].

Let ϕ =
Vn
i=1 ci be an instance of 3SAT, where the ci are

3-clauses over some set x of variables. We build a tripartite
3-uniform hypergraph H = (V,E) (with vertex partition V =
V1∪V2∪V3) in the following way (see Figure 1 for an illustration
when ϕ = ¬z ∨ x ∨ y). For each variable x ∈ x, we add 12
nodes and 6 hyperedges to H. 6 out of the 12 nodes are
anonymous nodes which only appear in one hyperedge; they
are denoted by •. The other nodes are denoted x1, x2, x3, x̄1,
x̄2, x̄3. Intuitively, all xi’s are in a minimum covering if and
only if a valuation satisfying ϕ maps xi to true (similarly with
the x̄i’s and false). For each i, xi and x̄i belong to Vi. The
so-called local hyperedges are shown in Table 2. Then, for each
clause ci, we add a single global hyperedge which contains the
vertices corresponding to the variables appearing in ci, while
taking into account their position in the clause and whether
they are negated. For instance, if ci = ¬z ∨ x ∨ y, we add
a hyperedge (z̄1, x2, y3). This ensures that the hypergraph
remains tripartite.

This reduction is polynomial. Let m be the cardinality
of x. We now show that ϕ is satisfiable if and only if there
is a vertex cover in H of size less than or equal to 3m (or,
equivalently, if there is a minimum vertex cover of size less
than or equal to 3m).

Table 2: Local edges used in the proof of Lemma 14

V1 V2 V3

x1 • x̄3

• x2 x̄3

x̄1 x2 •
x̄1 • x3

• x̄2 x3

x1 x̄2 •

Suppose first that ϕ is satisfiable, and let ν be a valuation
of x which satisfies ϕ. Let us consider the following set S of
vertices of H: For each x ∈ x, we add to S, x1, x2 and x3

if ν(x) is true, x̄1, x̄2 and x̄3 otherwise. S is of cardinality
3m. Observe that S covers all local hyperedges and, since ν
satisfies ϕ, all global hyperedges.

Suppose now that there is a minimum vertex cover S of
size less than or equal to 3m. Since anonymous vertices only
appear in a single hyperedge, we can always assume that S
does not contain any anonymous vertex (they can always be
replaced by another vertex of the hyperedge). Let Si be, for
each 1 6 i 6 m, the subset of Si containing only the vertices
corresponding to the ith variable of x. It is easy to see that
|Si| > 3 for all i, for all local hyperedges to be covered, which
means that |Si| = 3 since |

S
Si| 6 3m. Si forms a vertex

cover of the local sub-hypergraph corresponding to the ith
variable of x (let us call it x) and must cover the hyperedges
of this sub-hypergraph. But there are only two vertex covers
of this sub-hypergraph of cardinality 3: Either Si contains all
xk’s, or it contains all x̄k’s. We consider the valuation ν of
the variables in x which maps x to true in the first case, to
false in the second. Then, since S is a vertex cover of H, ν
satisfies all the clauses of ϕ.

We now use this lemma to prove the NP-hardness of
Costfacyc.

Proposition 15. Costfacyc is NP-hard.

Proof. We consider the case where we only allow negated
equalities x 6= c, and no equalities x = c, on the left-hand side
of repairs of tgds, with x a universally quantified variable, as
the proof is clearer. Because of space constraints, discussion
of the changes that have to be made in the general case is
omitted.

We reduce the vertex cover problem in tripartite 3-uniform
hypergraphs to Costfacyc. Let H be a tripartite 3-uniform
hypergraph. We consider the following instance of Costfacyc:

• S = {(R, 3)} and RI is the representation ofH as a three-
column table, where each row corresponds to an edge,

• •

•

••

•

x1

x̄1

x2

x̄2

x3

x̄3

• •

•

••

•

y1

ȳ1

y2

ȳ2

y3

ȳ3

••

•

• •

•

z1

z̄1

z2

z̄2

z3

z̄3

Figure 1: Example tripartite hypergraph corresponding to the 3SAT instance ¬z ∨ x ∨ y

and each column to one of the sets of the tripartition of
H;

• T = {(R′, 1)} and J = ∅;

• Σ = {∀x1∀x2∀x3 R(x1, x2, x3)→ R′(x1)} (this is obvi-
ously an acyclic tgd).

As J = ∅, any schema mapping fully explains J . This also
means that the only repairs of Σ to be considered are the ones
that add a “xi 6= ci” term to the left-hand side of the single
element of Σ. A repair of Σ has to “cancel” somehow with
these additions each tuple of RI . In other words, the cost of Σ
is size(Σ) + 2r, where r is the minimal number of conjuncts in
a formula of the form

V
xi 6= ci, such that this formula is false

for all tuples of RI . Such a formula expresses a vertex cover
in H, and H has a vertex cover of size less than or equal to K
if and only if cost(I,J) (Σ) 6 size(Σ) + 2K, which concludes
the proof in this case.

It is an open issue whether Cost is in PTIME for the very
restricted case when the schema mapping consists of a single
full tgd with a single binary relation symbol appearing once
in the left-hand side.

Combined Complexity for Acyclic TGDs. The last subset
of Ltgd that we consider here is Lacyc.

Proposition 16.
1. Validityacyc is coNP-complete.
2. Explanationacyc and Zero-Repairacyc are both NP-

hard.
3. Explanationacyc is in PTIME if, for all existentially

quantified variables y and for all constants c, there is at
most one term y = c appearing in each formula of the
schema mapping. This is in particular the case if the
schema mapping is a subset of Lacyc instead of L∗acyc.

Note that we use for both hardness results the repairs
themselves to encode the instance of a NP-hard problem:
Although the tgd itself is acyclic, its repairs are not. We could
probably get polynomial algorithms for the same problems if
we impose some acyclicity condition to repairs of a formula;
this, however, would weaken our notion of optimality.

Table 3: Data complexity results

Ltgd, Lfull, Lacyc, Lfacyc

Validity PTIME
Explanation PTIME
Zero-Repair PTIME
Cost (K fixed) PTIME
Cost (Σ fixed) NP, NP-hard for some Σ
Existence-Cost PTIME
Optimality ΠP

2 , (co)NP-hard for some Σ

Combined Complexity of Existence-Cost and Optimal-
ity. With the help of Lemma 14, we show the intractability
of Existence-Cost and Optimality, in all considered lan-
guages:

Proposition 17. Existence-Cost (respectively, Optimal-
ity) is NP-hard (respectively, both NP-hard and coNP-hard)
in all the following languages: Ltgd, Lfull, Lacyc, Lfacyc.

Data Complexity. As far as data complexity is concerned,
the situation is simpler, since we do not have any difference
in complexity for all four subsets of Ltgd. The results are
presented summarized in Table 3.

Proposition 18.
1. If Σ is fixed, Validityrc is in PTIME.
2. If Σ is fixed, Explanationtgd is in PTIME.
3. If K is fixed, Costtgd and Existence-Costtgd are in

PTIME.
4. For some fixed value of Σ, Costfacyc is NP-hard.
5. For some fixed value of Σ, the problems Optimalityfacyc

and Optimalitytgd are NP-hard and coNP-hard.

6. EXTENSION AND VARIANTS
We study in this section some extensions of our optimality

notion to (i) formulas of the full relational calculus; (ii) other
apparently simpler functions of cost.

Extension to the Relational Calculus. We can extend the
definitions of Section 3 to the language Lrc of relational calcu-
lus, by the following adaptation of the notion of repair.

A repair of a schema mapping Σ ⊂ Lrc is a set of for-
mulas obtained from Σ by a finite sequence of the following
operations:

• Replacing in a formula of Σ a sub-formula ∀x ϕ(x,y)
(we also assume that ϕ does not start with a ∀ symbol,
and that the sub-formula is not preceded by a ∀ symbol)
by ∀x τ(x, z)→ ϕ(x,y) where z is the set of variables
free in ϕ and τ is a boolean formula over terms w = c
of the following form:

^
i

 ^
j

zij = c′ij

!
→ xiαici

!

with zij variables from z, xi variables from x, αi either
= or 6=, and c′ij and ci constants.

• Replacing in a formula of Σ a sub-formula ∃x ψ(x,y)
(we also assume that ψ does not start with a ∃ symbol,
and that the sub-formula is not preceded by a ∃ symbol)
by ∃x ψ(x,y) ∧ τ ′(x, z) where z is the set of variables
free in ψ and τ ′ is a boolean formula over terms w = c
of the following form:

^
i

 ^
j

zij = c′ij

!
→ xi = ci

!

with zij variables from z, xi variables from x, and c′ij
and ci constants.

• Adding to Σ a ground fact R(c1 . . . cn) with R a relation
of the target schema of arity n, and c1 . . . cn constants.

We can check that this definition amounts to the same as
Definition 4 if we restrict ourselves to Ltgd. We can then use
the same definitions of the size and cost of a formula, and
consider the same decision problems. We have the following
complexity results:

Proposition 19.
1. Validityrc is PSPACE-complete;
2. Explanationrc is co-recursively enumerable;
3. Explanationrc and Zero-Repairrc are not recursive.

Interestingly, the computability of Optimalityrc remains
open. It seems to be a “harder” problem than Zero-Repairrc,
but as there is no simple reduction between them, we cannot
even be sure that Optimalityrc is not recursive. We do
not even know whether it is recursively enumerable or co-
recursively enumerable (but Costrc and Existence-Costrc

are both co-recursively enumerable because of the co-recursive
enumerability of Zero-Repairrc).

Note that a related problem is studied in [10], where it
is shown that determining whether there exists a schema
mapping Lrc (without repairs) that is valid and explain all facts
of the target instance is coNP and co-graph-isomorphism-
hard. In the case of L∗rc, such a mapping obviously always
exists since one can enumerate all ground facts of the target
instance.

Variants of the Cost Function. The definition of repairs
and cost that we presented in Section 3 may appear, at first,
unnecessarily complicated. We argued in Section 4 for a justi-
fication of this notion by showing that it has nice properties
with respect to instances that are derived from each other with
elementary operations of the relational algebra. We consider
in this section two alternative definitions of cost and optimal-
ity of a schema mapping with respect to database instances,
and show that neither, although simpler and perhaps more
intuitive, present the same properties and are thus adapted
to our context.

We keep our notions of validity of a schema mapping, of
full explanation of a database instance by a schema mapping,
and of size of a schema mapping, and we want to consider
alternative ways to characterize the cost of a given schema
mapping. The first idea is to assign as the cost of a schema
mapping the minimal number of tuples that have to be added
or removed to the target instance J for the schema mapping
to become valid and to fully explain J . (Each tuple may
also be weighted by its arity, to get something closer to our
original cost definition.) Thus, the cost of the empty schema
mapping corresponds to the size of the target instance, as
before, while the cost of a schema mapping that fully explains
the target instance but also incorrectly explains some tuples
is the (possibly weighted) number of such tuples. This sounds
like a reasonable definition, but it presents an important
problem: We lose the linear bound on the cost of a schema
mapping in the size of the data and the schema mapping itself.
Indeed, consider the following schema mapping, for a given n,
where R is a source relation of arity 1 and R′ a target relation
of arity n:˘

∀x1 . . .∀xn R(x1) ∧ · · · ∧R(xn)→ R′(x1, . . . , xn)
¯

.

If J is empty, the cost of this schema mapping according to
the definition given in this paragraph is |I|n (or n |I|n if we
weight with the arity of the relations), which is exponential in
the size of the schema mapping. This combinatorial explosion
discourages all hopes of getting an optimal schema mapping
by local search techniques. Besides, all the problems that we
describe for the variant that we consider next also arise here.

An alternate definition of cost, close to the previous one
but for which we still have a linear bound on the cost of a
mapping is the following: The cost of a schema mapping Σ is
the minimal number of tuples to add or remove from the source
and target instances I and J so that Σ becomes valid and fully
explains J . As before, we assume that we weight tuples by
their arity; we could also choose to add an arbitrary constant
weight to operations on J with respect to operations on I, or
to deletion with respect to addition of tuples, without much
difference. The linear bound is clear since we can just remove
all tuples of I and of J for Σ to be valid and to fully explain
J . However, there is still a fundamental problem with this
definition, which can be seen by looking back at Section 4. We
showed there that, for elementary operations of the relational
algebra, the definition of optimality of Section 3 yielded the
same as the intuitive tgds expressing these operations. This is
not true any more here, however, in particular in the presence
of selections and projections. For projections, this is due to
the fact that a schema mapping that predicts existentially
quantified tuples has a higher cost than the same schema
mapping where these existentially quantified relation atoms
are removed. We exhibit next a concrete example of database
instances that illustrate the problem with selections.

Example 20. Let us consider instances I and J of the fol-
lowing schemata: S = {(P, 2)} and T = {(P ′, 1)}, where: I
contains a list of titles of publications (as first attribute) along
with their kind: article , book , report , etc.; J contains a
list of book titles. Let us assume that J and I contain the
same book titles. In other words, J = π1(σ2=book (I)). It is
quite natural to expect Σ = {∀x∀y P (x, y)→ P ′(x)} as the
“optimal” schema mapping in the language of tgds for these
database instances, and indeed, cost(I,J) (Σ) = 5 is minimal
as soon as J is large enough and there is no hidden relation
between the second attribute of I and J . Now, observe that
with the variant proposed in the preceding paragraph, the
cost will be: 3 + min (2 · (|I| − |J |), |J |) , which is, in all cases
when there are more publications of another kind than book

(a common situation), greater than the cost of the empty
schema mapping, which is then the optimal schema mapping
for these instances.

Then, although our definition of optimality is a bit complex,
it is much more adapted to the addressed problem than these
simpler definitions, since it can capture such things as the
worth of an existentially quantified relation atom, or the
possibility of limiting the scope of a tgd with a simple selection.

7. CONCLUSION
We discussed a theoretical framework that addresses the

problem of finding a schema mapping optimal with respect
to a pair of database instances, based solely on the structure
and occurrences of constants in the instances. We showed
that this problem is both NP-hard and coNP-hard even for a
very restricted language, namely full acyclic tuple-generating
dependencies. This is not unexpected, since it is well known
that such learning problems have high complexity even in
very simple cases (see, for instance, [12] for ILP). Such a
study is still useful since (i) it provides a formal framework
for the discovery of schema mappings; (ii) complexity lower
bounds are useful to detect the source of the complexity;
(iii) complexity upper bounds often give practical algorithms.

There are a number of open theoretical issues, especially
on the computability and precise complexity of Optimality,
but the most obvious direction for future work would be to
connect such a theoretical framework with practical heuristics
and approximation algorithm; in particular, the relation to in-
ductive logic programming has to be explored. We believe that
this is an especially important problem, and that discovering
and understanding hidden relations in data is one of the most
fundamental tasks of artificial intelligence. Other problems
of interest would be to improve our complexity upper bounds
by generalizing the notion of acyclicity to that of bounded
hypertree width [13], and to look at the same problems when
some fixed set of preconditions on instances is given.

8. ACKNOWLEDGMENTS
We would like to thank Serge Abiteboul and Yann Ollivier

for their input and feedback about this work.

9. REFERENCES
[1] M. Arenas, L. Bertossi, and J. Chomicki. Consistent

query answers in inconsistent databases. In Proc. PODS,
Philadelphia, United States, May 1999.

[2] C. Beeri, R. Fagin, D. Maier, A. Mendelzon, J. Ullman,
and M. Yannakakis. Properties of acyclic database
schemes. In Proc. STOC, Milwaukee, USA, May 1981.

[3] P. Bernstein. Applying model management to classical
meta data. In Proc. CIDR, Asilomar, USA, Jan. 2003.

[4] P. A. Bernstein and D.-M. W. Chiu. Using semi-joins to
solve relational queries. Journal of the ACM,
28(1):25–40, 1981.

[5] V. Crescenzi, G. Mecca, and P. Merialdo. Roadrunner:
Towards automatic data extraction from large Web sites.
In Proc. VLDB, Roma, Italy, Sept. 2001.

[6] R. Diestel. Graph Theory. Springer, New York, USA,
2005.

[7] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data
exchange: Semantics and query answering. In Proc.
ICDT, Siena, Italy, Jan. 2003.

[8] R. Fagin, P. G. Kolaitis, L. Popa, and W. C. Tan.
Quasi-inverses of schema mapping. In Proc. PODS,
Beijing, China, June 2007.

[9] R. Fagin, P. G. Kolaitis, W.-C. Tan, and L. Popa.
Composing schema mappings: Second-order
dependencies to the rescue. In Proc. PODS, Paris,
France, June 2004.

[10] G. H. L. Fletcher. On the data mapping problem. PhD
thesis, Indiana University, 2007.

[11] M. R. Garey and D. S. Johnson. Computers And
Intractability. A Guide to the Theory of
NP-completeness. W. H. Freeman, New York, USA,
1979.

[12] G. Gottlob, N. Leone, and F. Scarcello. On the
complexity of some inductive logic programming
problems. In Proc. ILP, Prag, Czech Republic, Sept.
1997.

[13] G. Gottlob, N. Leone, and F. Scarcello. Hypertree
decompositions and tractable queries. In Proc. PODS,
Philadelphia, United States, May 1999.

[14] L. Ilie, R. Solis-Oba, and S. Yu. Reducing the size of
NFAs by using equivalences and preorders. In
Combinatorial Pattern Matching, Jeju Island, South
Korea, June 2002.

[15] P. G. Kolaitis. Schema mappings, data exchange, and
metadata management. In Proc. PODS, Baltimore,
Maryland, June 2005.

[16] D. Kőnig. Theorie der endlichen und unendlichen
Graphen. Akademische Verlagsgesellschaft, Leipzig,
Germany, 1936.

[17] N. Lavrač and S. Džeroski. Inductive Logic
Programming: Techniques and Applications. Ellis
Horwood, New York, USA, 1994.

[18] M. Lenzerini. Data integration: a theoretical perspective.
In Proc. PODS, Madison, USA, June 2002.

[19] M. Li and P. Vitányi. An Introduction to Kolmogorov
Complexity and Its Applications. Springer, New York,
USA, second edition, 1997.

[20] E. Rahm and P. A. Bernstein. A survey of approaches to
automatic schema matching. VLDB Journal,
10(4):334–350, 2001.

[21] R. E. Tarjan and M. Yannakakis. Simple linear-time
algorithms to test chordality of graphs, test acyclicity of
hypergraphs, and selectively reduce acyclic hypergraphs.
SIAM Journal on Computing, 13(3):566–579, 1984.

[22] M. Yannakakis. Algorithms for acyclic database schemes.
In Proc. VLDB, Cannes, France, Sept. 1981.

