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ABSTRACT
The Internet has enabled the creation of a growing num-
ber of large-scale knowledge bases in a variety of domains
containing complementary information. Tools for automat-
ically aligning these knowledge bases would make it possi-
ble to unify many sources of structured knowledge and an-
swer complex queries. However, the efficient alignment of
large-scale knowledge bases still poses a considerable chal-
lenge. Here, we present Simple Greedy Matching (SiGMa),
a simple algorithm for aligning knowledge bases with mil-
lions of entities and facts. SiGMa is an iterative propaga-
tion algorithm which leverages both the structural informa-
tion from the relationship graph as well as flexible similarity
measures between entity properties in a greedy local search,
thus making it scalable. Despite its greedy nature, our ex-
periments indicate that SiGMa can efficiently match some
of the world’s largest knowledge bases with high accuracy.
We provide additional experiments on benchmark datasets
which demonstrate that SiGMa can outperform state-of-the-
art approaches both in accuracy and efficiency.

1. INTRODUCTION
In the last decade, a growing number of large-scale knowl-

edge bases have been created online. Examples of domains
include music, movies, publications and biological data1. As
these knowledge bases sometimes contain both overlapping
and complementary information, there has been growing in-
terest in attempting to merge them by aligning their com-
mon elements. This alignment could have important uses
for information retrieval and question answering. For ex-
ample, one could be interested in finding a scientist with
expertise on certain related protein functions – information
which could be obtained by aligning a biological database
with a publication one. Unfortunately, this task is challeng-

1Such as MusicBrainz, IMDb, DBLP and UnitProt.
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ing to automate as different knowledge bases generally use
different terms to represent their entities, and the space of
possible matchings grows exponentially with the number of
entities.

A significant amount of research has been done in this area
– particularly under the umbrella term of ontology match-
ing [7, 16, 12]. An ontology is a formal collection of world
knowledge and can take different structured representations.
In this paper, we will use the term knowledge base to empha-
size that we assume very little structure about the ontology
(to be specified in Section 2). Despite the large body of lit-
erature in this area, most of the work on ontology matching
has been demonstrated only on fairly small datasets of the
order of a few hundred entities. In particular, Shvaiko and
Euzenat [26] identified large-scale evaluation as one of the
ten challenges for the field of ontology matching.

In this paper, we consider the problem of aligning the in-
stances in large knowledge bases, of the order of millions of
entities and facts, where aligning means automatically iden-
tifying corresponding entities and interlinking them. Our
starting point was the challenging task of aligning the movie
database IMDb to the Wikipedia-based YAGO [27], as an-
other step towards the Semantic Web vision of interlinking
different sources of knowledge which is exemplified by the
Linking Open Data Initiative2 [4]. Initial attempts to match
IMDb entities to YAGO entities by naively exploiting string
and neighborhood information failed, and so we designed
SiGMa (Simple Greedy Matching), a scalable greedy iterative
algorithm which is able to exploit previous matching deci-
sions as well as the relationship graph information between
entities.

The design decisions behind SiGMa were both to be able to
take advantage of the combinatorial structure of the match-
ing problem (by contrast with traditional scalable database
record linkage approaches which make more independent de-
cisions) as well as to focus on a simple approach which could
be scalable. SiGMa works in two stages: it first starts with
a small seed matching assumed to be of good quality. Then
the algorithm incrementally augments the matching by us-
ing both structural information and properties of entities
such as their string representation to define a modular score
function. Some key aspects of the algorithm are that (1) it
uses the current matching to obtain structural information,
thereby harnessing information from previous decisions; (2)

2http://linkeddata.org/
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it proposes candidate matches in a local manner, from the
structural information; and (3) it makes greedy decisions,
enabling a scalable implementation. A surprising result is
that we obtained accurate large-scale matchings in our ex-
periments despite the greediness of the algorithm.

Contributions. The contributions of the present work
are the following:

1. We present SiGMa, a knowledge base alignment algo-
rithm which can handle millions of entities. The al-
gorithm is easily extensible with tailored scoring func-
tions to incorporate domain knowledge and has a sim-
ple implementation.3 It also provides a natural trade-
off between precision and recall, as well as between
computation and recall.

2. In the context of testing the algorithm, we constructed
two large-scale partially labeled knowledge base align-
ment datasets with hundreds of thousands of ground
truth mappings. We expect these to be a useful re-
source for the research community to develop and eval-
uate new knowledge base alignment algorithms.

3. We provide a detailed experimental comparison illus-
trating how SiGMa improves over the state-of-the-art.
SiGMa is able to align knowledge bases with millions
of entities with over 98% precision and 90% F-measure
in less than two hours (a 50x speed-up over [28]). On
standard benchmark datasets, SiGMa obtains solutions
with higher F-measure than the best previously pub-
lished results.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the knowledge base alignment problem with
a real-world example as motivation for our assumptions. We
describe the algorithm SiGMa in Section 3. We evaluate it
on benchmark and on real-world datasets in Section 4, and
situate it in the context of related work in Section 5.

2. ALIGNING LARGE-SCALE
KNOWLEDGE BASES

2.1 Motivating example: YAGO and IMDb

Consider merging the information in the following two
knowledge bases:

1. YAGO [27], a large semantic knowledge base derived
from English Wikipedia, WordNet and GeoNames.

2. IMDb, a large popular online database that stores in-
formation about movies.

The information in YAGO is available as a long list of triples
(called facts) that we formalize as 〈e, r, e′〉, which means
that the directed relationship r holds from entity e to en-
tity e′, such as 〈John Travolta,ActedIn,Grease〉. The infor-
mation from IMDb was originally available as several files
which we merged into a similar list of triples. We call these
two databases knowledge bases to emphasize that we are
not assuming a richer representation, such as RDFS [30],
which would distinguish between classes and instances for
example. In the language of ontology matching, our setup is
the less studied instance matching problem, as pointed out
by Castano et al. [6], for which the goal is to match concrete
instantiations of concepts such as specific actors and specific

3The code (in Python) and datasets can be downloaded from
http://mlg.eng.cam.ac.uk/slacoste/sigma.

movies rather than the general actor or movie class. YAGO
comes with an RDFS representation, but not IMDb; there-
fore we focus on methods that do not assume or require a
class structure or rich hierarchy in order to find a one-to-one
matching of instances between YAGO and IMDb. We how-
ever assume that the relations between the two knowledge
bases can be manually aligned, which is straightforward for
these types of knowledge bases (e.g. column 1 and 3 of Ta-
ble 2).

Relationships vs. properties. In this work, we decided
to exploit the powerful assumption that the alignment is in-
jective (1–1) – as we will see in our experiments, this covers
most of the cases for the YAGO-IMDb setup, as well as other
datasets. Given our 1–1 assumption, we need to distinguish
between two types of objects present in the list of triples: en-
tities vs. literals. By our definition, the entities are the only
objects that we try to align – they are objects like specific
actors or movies which have a clear identity. The literals, on
the other hand, correspond to a value related to an entity
through a special kind of relationship that we call property.
The defining characteristic of literals is that it would not
make sense to try to align them between the two knowl-
edge bases in a 1–1 fashion – examples are numerical values,
dates, strings, etc. We use the literals to define a similarity
score between entities of the two knowledge bases. For exam-
ple, the YAGO triple 〈m1, wasCreatedOnDate, 1999-12-11〉
forms an entity-property-literal triple. Figure 1 provides a
concrete example of information within the two knowledge
bases that we will keep re-using in this paper. Table 2 gives
the properties and relationships for our large-scale datasets.
We now define formally the problem that we address.

Definition: A knowledge base KB is a tuple
(E ,L,R,P,FR,FP ) where E , L, R and P are sets of entities,
literals, relationships and properties respectively; FR ⊆ E ×
R×E is a set of relationship-facts whereas FP ⊆ E×P×L is
a set of property-facts (both can be represented as a simple
list of triples). To simplify the notation, we assume that all
inverse relations are also present in FR – that is, if 〈e, r, e′〉
is in FR, we also have 〈e′, r−1, e〉 in FR, effectively doubling
the number of possible relations in the KB.4

Problem: one-to-one alignment of instances be-
tween two knowledge bases. Given two knowledge bases
KB1 andKB2 as well as a partial mapping between their cor-
responding relationships and properties, we want to output
a 1–1 partial mapping m from E1 to E2 which represents the
semantically equivalent entities in the two knowledge bases
(by partial mapping, we mean that the domain of m does
not have to be the whole of E1).

2.2 Possible approaches
Standard approaches for the ontology matching problem,

such as RiMOM [20], could be used to align small knowledge
bases. However, they do not scale to millions of entities as
needed for our task given that they usually consider all pairs
of entities, suffering from a quadratic scaling cost. On the
other hand, the related problem of identifying duplicate en-
tities known as record linkage or duplicate detection in the
database field, and co-reference resolution in the natural
language processing field, do have scalable solutions using
indexing techniques [8, 13], though these do not typically

4This allows us to look at only one standard direction of
facts and cover all possibilities – see for example how it is
used in the definition of compatible-neigbhors in (3).

http://www.mpi-inf.mpg.de/yago-naga/yago/downloads.html
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Figure 1: Example of neighborhood to match in
YAGO and IMDb. Even though entities i and j have no
words in common, the fact that several of their respective
neighbors are matched together is a strong signal that i and
j should be matched together. This is a real example from
the dataset used in the experiments and SiGMa was able to
correctly match all these pairs (i and j are actually the same
movie despite their different stored titles in each KB).

exploit the 1–1 matching combinatorial structure present
in our task, reducing their accuracy. A notable exception
is the work on collective entity resolution by Bhattacharya
and Getoor [3], solved using a greedy agglomerative clus-
tering algorithm. The algorithm SiGMa that we present in
Section 3 can actually be seen as an efficient specialization
of their work to the task of knowledge base alignment.

Another approach to alignment arises from the word align-
ment problem in natural language processing [23], which has
been formulated as a maximum weighted bipartite matching
problem [29] (thus exploiting the 1–1 matching structure). It
also has been formulated as a quadratic assignment problem
in [17], which encourages neighbor entities in one graph to
align to neighbor entities in the other graph, thus enabling
alignment decisions to depend on each other — see the cap-
tion of Figure 1 for an example of this in our setup. The
quadratic assignment formulation [19], which can be solved
as an integer linear program, is NP-hard in general though,
and these approaches were only used to align at most one
hundred entities. In the algorithm SiGMa that we propose,
we are interested in exploiting both the 1–1 matching con-
straint, as well as building on previous decisions, like these
word alignment approaches, but in a scalable manner which
would handle millions of entities. SiGMa does this by greed-
ily optimizing the quadratic assignment objective, as we de-
scribe in Section 3.1. Finally, Suchanek et al. [28] recently
proposed an ontology matching approach called PARIS that
they have succeeded to apply on the alignment of YAGO to
IMDb as well, though the scalability of their approach is not
as clear, as we explain in Section 5. We provide a detailed
comparison with PARIS in the experiments section.

3. THE SIGMA ALGORITHM
3.1 Greedy optimization of a quadratic assign-

ment objective
The SiGMa algorithm can be seen as the greedy opti-

mization of an objective function which globally scores the
suitability of a particular matching m for a pair of given
KBs. This objective function uses two sources of informa-
tion useful to choose matches: a similarity function between
pairs of entities defined from their properties; and a graph

neighborhood contribution making use of neighbor pairs be-
ing matched (see Figure 1 for a motivation). Let us en-
code the matching m : E1 → E2 by a matrix y with en-
tries indexed by the entities in each KB, with yij = 1 if
m(i) = j, meaning that i ∈ E1 is matched to j ∈ E2, and
yij = 0 otherwise. The space of possible 1–1 partial map-
pings is thus represented by the following set of binary ma-
trices: M .

= {y ∈ {0, 1}E1×E2 :
∑

l yil ≤ 1 ∀i ∈ E1 and∑
k ykj ≤ 1 ∀j ∈ E2}. We define the following quadratic

objective function which globally scores the suitability of a
matching y:

obj(y)
.
=

∑
(i,j)∈E1×E2

yij [(1− α)sij + αgij(y)] ,

where gij(y)
.
=

∑
(k,l)∈Nij

ykl wij,kl.
(1)

The objective contains linear coefficients sij which encode
a similarity between entity i and j, as well as quadratic
coefficients wij,kl which control the algorithm’s tendency to
match i with j given that k was matched to l5. Nij is a local
neighborhood around (i, j) that we define later and which
depends on the graph information from the KBs – gij(y)
is basically counting (in a weighted fashion) the number of
matched pairs (k, l) which are in the neighborhood of i and
j. α ∈ [0, 1] is a tradeoff parameter between the linear and
quadratic contributions. Our approach is motivated by the
maximization problem:

max
y

obj(y) s.t. y ∈M, ‖y‖1 ≤ R, (2)

where the norm ‖y‖1
.
=
∑

ij yij represents the number
of elements matched and R is an unknown upper-bound
which represents the size of the best partial mapping which
can be made from KB1 to KB2. We note that if the co-
efficients are all positive (as will be the case in our for-
mulation – we are only encoding similarities and not re-
pulsions between entities), then the maximizer y∗ satisfies
‖y∗‖1 = R. Problem (2) is thus related to one of the varia-
tions of the quadratic assignment problems, a well-known
NP-complete problem in operational research [19]. Even
though one could approximate the solution to the combi-
natorial optimization (2) using a linear program relaxation
(see Lacoste-Julien et al. [17]), the number of variables is
quadratic in the number of entities, and so is obviously not
scalable. Our approach is instead to greedily optimize (2) by
adding the match element yij = 1 at each iteration which in-
creases the objective the most and selected amongst a small
set of possibilities. In other words, the high-level operational
definition of the SiGMa algorithm is as follows:

1. Start with an initial good quality partial match y0.

2. At each iteration t, augment the previous matching
with a new matched pair by setting yij = 1 for the
(i, j) which maximally increases obj, chosen amongst
a small set St of reasonable candidates which preserve
the feasibility of the new matching.

3. Stop when the bound ‖y‖1 = R is reached (and never
undo previous decisions).

Having outlined the general framework, in the remainder
of this section we describe methods for choosing the similar-

5In the rest of this paper, we use the convention that i and
k are always entities in KB1; whereas j and l are in KB2. e
could be in either KB.



ity coefficients sij and wij,kl so that they guide the algorithm
towards good matchings (Section 3.3), the choice of neigh-
bors, Nij , the choice of a candidate set St, and the stopping
criterion, R. These choices influence both the speed and
accuracy of the algorithm.

Compatible-neighbors. Nij should be chosen so as to
respect the graph structure defined by the KB facts. Its
contribution in the objective crucially encodes the fact that
a neighbor k of i being matched to a ‘compatible’ neighbor l
of j should encourage i to be matched to j — see the caption
of Figure 1 for an example. Here, compatibility means that
they are related by the same relationship (they have the
same color in Figure 1). Formally, we define:

Nij = compatible-neighbors(i, j)
.
=

{ (k, l) : 〈i, r, k〉 is in FR1 and 〈j, s, l〉 is in FR2

and relationship r is matched to s}. (3)

Note that a property of this neighborhood is that (k, l) ∈ Nij

iff (i, j) ∈ Nkl, as we have that the relationship r is matched
to s iff r−1 is matched to s−1 as well. This means that
the increase in the objective obtained by adding (i, j) to
the current matching y defines the following context depen-
dent similarity score function which is used to pick the next
matched pair in the step 2 of the algorithm:

score(i, j; y) = (1− α)sij + α δgij(y)

where δgij(y)
.
=

∑
(k,l)∈Nij

ykl (wij,kl + wkl,ij). (4)

Information propagation on the graph. The compati-
ble-neighbors concept that we just defined is one of the
most crucial characteristics of SiGMa. It allows the infor-
mation of a new matched pair to propagate amongst its
neighbors. It also defines a powerful heuristic to suggest
new candidate pairs to include in a small set St of matches
to choose from: after matching i to j, SiGMa adds all the
pairs (k, l) from compatible-neighbors(i, j) as new candi-
dates. This yields a fire propagation analogy for the algo-
rithm: starting from an initial matching (fire) – it starts to
match their neighbors, letting the fire propagate through the
graph. If the graph in each KB is well-connected in a simi-
lar fashion, it can visit most nodes this way. This heuristic
enables SiGMa to avoid the potential quadratic number of
pairs to consider by only focussing its attention on the neigh-
borhoods of current matches. In the language of the record
linkage literature [9], this amounts to an iterative blocking
technique.

Stopping criterion. R is implicitly chosen by the fol-
lowing heuristic motivated from standard optimization al-
gorithms: SiGMa terminates when the variation in the ob-
jective value, score(i, j; y), of the latest added match (i, j)
falls below a threshold (or the queue becomes empty). The
threshold in effect controls the precision / recall tradeoff of
the algorithm. By ensuring that the sij and gij(y) terms are
normalized between 0 and 1, we can standardize the scale
of the threshold for different score functions. In our ex-
periments, a threshold of 0.25 is observed to correlate well
with a point at which the F-measure stops increasing and
the precision is significantly decreasing on a wide variety of
datasets.

3.2 Algorithm and implementation
We present the pseudo-code for SiGMa in Table 1. We

1: Initialize matching m = m0.
2: Initialize priority queue S of suggested candidate pairs

as S0 ∪
(⋃

(i,j)∈mNij

)
– the compatible-neigbhors of

pairs in m, with score(i, j;m) as their key.
3: while priority queue S is not empty do
4: Extract 〈score, i, j〉 from queue S
5: if score ≤ threshold then stop
6: if i or j is already matched to some entity then
7: skip them and continue loop
8: else
9: Set m(i) = j.

{We update candidate lists and scores:}
10: for (k, l) in Nij and not already matched do
11: Add 〈score(k, l;m), k, l〉 to queue S.

Table 1: SiGMa algorithm.

now elaborate on the algorithm design as well as its imple-
mentation aspects. We note that the score defined in (4) to
greedily select the next matched pair is composed of a static
term sij , which does not depend on the evolving matching
y, and a dynamic term δgij(y), which depends on y, though
only through the local neighborhood Nij . We call the δgij
component of the score function the graph contribution – its
local dependence means that it can be updated efficiently
after a new match has been added. We explain in more de-
tails the choice of similarity measures for these components
in Section 3.3.

Initial match structure m0. The algorithm can take
any initial matching seed assumed of good quality. In our
current implementation, this is done by looking for entities
with the same string representation (with minimal standard-
ization such as removing capitalization and punctuation)
with an unambiguous 1–1 match – that is, we do not include
an exact matched pair when more than two entities have this
same string representation, thereby increasing precision.

Increasing score function with local dependence.
The score function has a component sij which is static (fixed
at the beginning of the algorithm) from the properties of en-
tities such as their string representation, and a component
δgij(y) which is dynamic, looking at how many neighbors are
correctly matched. The dynamic part can actually only in-
crease when new neighbors are matched, and only the scores
of neighbors can change when a new pair is matched.

Optional static list of candidates S0. Optionally, we
can initialize S with a static list S0 which only needs to be
scored once as any score update will come from neighbors
already covered by step 11 of the algorithm. S0 has the pur-
pose to increase the possible exploration of the graph when
another strong source of information (which is not from the
graph) can be used, and corresponds to the standard blocking
or indexing heuristics in record linkage [8]. In our implemen-
tation, we use an inverted index built on words to efficiently
suggest entities which have at least two words in common in
their string representation as potential candidates; but more
powerful indexing heuristics could also be used.

Data-structures. We use a binary heap for the priority
queue implementation—insertions are thus O(logn) where
n is the size of the queue. Because the score function can
only increase as we add new matches, we do not need to
keep track of stale nodes in the priority queue in order to
update their scores, yielding a significant speed-up.



3.3 Score functions
An important factor for any matching algorithm is the

similarity function between pairs of elements to match. De-
signing good similarity functions has been the focus of much
of the literature on record linkage, entity resolution, etc., and
because SiGMa uses the score function in a modular fashion,
SiGMa is free to use most of them for the term sij as long
as they can be computed efficiently. We provide in this sec-
tion our implementation choices (which were motivated by
simplicity), but we note that the algorithm can easily han-
dle more powerful similarity measures. The generic score
function used by SiGMa was given in (4). In the current
implementation, the static part sij is defined through the
properties of entities only. The graph part δgij(y) depends
on the relationships between entities (as this is what deter-
mines the graph), as well as the previous matching y. We
also make sure that sij and gij stay normalized so that the
score of different pairs are on the same scale.

3.3.1 Static similarity measure
The static property similarity measure is further decom-

posed in two parts: we single out a contribution coming from
the string representation property of entities (as it is such
a strong signal for our datasets), and we consider the other
properties together in a second term:

sij = (1− β)string(i, j) + βprop(i, j), (5)

where β ∈ [0, 1] is a tradeoff coefficient between the two
contributions set to 0.25 during the experiments.

String similarity measure. For the string similarity
measure, we primarily consider the number of words that
two strings have in common, albeit weighted by their in-
formation content. In order to handle the varying lengths
of strings, we use the Jaccard similarity coefficient between
the sets of words, with a smoothing term. To capture the
information that some words are more informative than oth-
ers, we use the IDF (inverse-document-frequency) weight for
each word in a weighted Jaccard measure, a commonly used
feature in information retrieval. The weight for word v in
KBo is wo

v
.
= log10 |Eo|/|Eo

v |, where Eo
v
.
= {e ∈ Eo : e has

word v in its string representation}. Combining these ele-
ments, we get the following string similarity measure:

string(i, j) =

∑
v∈(Wi∩Wj)

(w1
v + w2

v)

smoothing +
∑

v∈Wi

w1
v +

∑
v′∈Wj

w2
v′
, (6)

where We is the set of words in the string representation of
entity e and smoothing is the scalar smoothing constant (we
try different values in the experiments). While this measure
is robust to word re-ordering, it is not robust to variations
of spelling for words. This problem could be addressed by
using more involved string similarity measures as described
in [10], though our current implementation only uses (6) for
simplicity. We also explore the effect of different scoring
functions in our experiments in Section 4.5.

Property similarity measure. We recall that we as-
sume that the user provided a partial matching between
properties of both databases. This enables us to use them
in a property similarity measure. In order to elegantly han-
dle missing values of properties, varying number of property
values present, etc., we also use a smoothed weighted Jac-
card similarity measure between the sets of properties. The

detailed formulation is given in Appendix A of the longer
technical report [18] for completeness, but we note that it
can make use of a similarity measure between literals such
a normalized distance on numbers (for dates, years etc.) or
a string-edit distance on strings.

3.3.2 Dynamic graph similarity measure
We now introduce the part of the score function which en-

ables SiGMa to build on previous decisions and exploit the
relationship graph information. We need to determine wij,kl,
the weight of the contribution of a neighboring matched pair
(k, l) for the score of the candidate pair (i, j). The gen-
eral idea of the graph score function is to count the num-
ber of compatible neighbors which are currently matched
together for a pair of candidates (this is the gij(y) contribu-
tion in (1)). Going back at the example in Figure 1, there
were three compatible matched pairs shown in the neighbor-
hood of i and j. We would like to normalize this count by
dividing by the number of possible neighbors, and we would
possibly want to weight each neighbor differently. We again
use a smoothed weighted Jaccard measure to summarize this
information, averaging the contribution from each KB. This
can be obtained by defining wij,kl = γiwik + γjwjl, where
γi and γj are normalization factors specific to i and j in
each database and wik is the weight of the contribution of
k to i in KB1 (and similarly for wjl in KB2). The graph
contribution thus becomes:

gij(y) =
∑

(k,l)∈Nij

ykl(γiwik + γjwjl). (7)

So let Ni be the set of neighbors of entity i in KB1, i.e.
Ni

.
= {k : ∃r s.t. (i, r, k) ∈ FR1} (and similarly for Nj).

Then, remembering that
∑

k ykl ≤ 1 for a valid partial
matching y ∈ M, the following normalizations γi and γj
yields the average of two smoothed weighted Jaccard mea-
sures for gij(y):

γi
.
=

1

2

1 +
∑
k∈Ni

wik

−1

γj
.
=

1

2

1 +
∑
l∈Nj

wjl

−1

(8)

We thus have gij(y) ≤ 1 for y ∈M, keeping the contribution
of each possible matched pair (i, j) on the same scale in obj
in (1).

The graph part of the score in (4) then takes the form:

δgij(y) =
∑

(k,l)∈Nij

ykl (γiwik + γjwjl + γkwki + γlwlj). (9)

The summation over the first two terms yields gij(y) and so
is bounded by 1, but the summation over the last two terms
could be greater than 1 in the case that (i, j) is filling a
‘hole’ in the graph (thus increasing the contribution of many
neighbors (k, l) in obj in (1)). Finally, we use unit weight for
wik. See Section 4.5 and Appendix B of the longer technical
report [18] for alternatives (which did not perform better in
experiments).

4. EXPERIMENTS

4.1 Setup
We made a prototype implementation of SiGMa in Python6

and compared its performance on benchmark datasets as
6The code and datasets can be downloaded from
http://mlg.eng.cam.ac.uk/slacoste/sigma.

http://mlg.eng.cam.ac.uk/slacoste/sigma


well as on large-scale knowledge bases. All experiments were
run on a cluster node Hexacore Intel Xeon E5650 2.66GHz
with 46GB of RAM running Linux. Each knowledge base
is represented as two text files containing a list of triples of
relationships-facts and property-facts. The input to SiGMa
is a pair of such KBs as well as a partial mapping between
the relationships and properties of each KB which is used
in the computation of the score in (4), and the definition of
compatible-neighbors (3). The output of SiGMa is a list
of matched pairs (e1, e2) with their score information and
the iteration number at which they were added to the so-
lution. We evaluate the final alignment (after reaching the
stopping threshold) by comparing it to a ground truth using
the standard metrics of precision, recall and F-measure on
the number of entities with ground truth correctly matched.
The benchmark datasets are available together with corre-
sponding ground truth data; for the large-scale knowledge
bases, we built their ground truth using web url information
as described in Section 4.2.

We found reasonable values for the parameters of SiGMa
by exploring its performance on the YAGO to IMDb pair
(the methodology is described in Section 4.5), and then kept
them fixed for all the other experimental comparisons (Sec-
tion 4.3 and 4.4). This reflects the situation where one would
like to apply SiGMa to a new dataset without ground truth
or to minimize parameter adaptation. The standard pa-
rameters that we used in these experiments are given in
Appendix D of [18] for reproducibility.

4.2 Datasets
Our experiments were done both on several large-scale

datasets and on some standard benchmark datasets from the
ontology alignment evaluation initiative (OAEI) (Table 3).
We describe these datasets below.

Large-scale datasets. As mentioned throughout this
paper so far, we used the dataset pair YAGO-IMDb as the
main motivating example for developing and testing SiGMa.
We also test SiGMa on the pair Freebase-IMDb, for which
we could obtain a sizable ground truth. We describe here
their construction. Both YAGO and Freebase are available
as lists of triples from their respective websites.7 IMDb, on
the other hand, is given as a list of text files.8 There are
different files for different categories, e.g.: actors, produc-
ers, etc. We use these categories to construct a list of triples
containing facts about movies and people. Because SiGMa
ignores relationships and properties that are not matched
between the KBs, we could reduce the size of YAGO and
Freebase by keeping only those facts for which their rela-
tionship had a 1–1 mapping with IMDb as presented in Ta-
ble 2, and the entities appearing in these facts. To facilitate
the comparison of SiGMa with PARIS, the authors of PARIS
kindly provided us their own version of IMDb that we refer
from now on as IMDb PARIS — this version has actually
a richer structure in terms of properties. We also kept in
YAGO the relationships and properties which were aligned
with those of IMDb PARIS (Table 2). Table 3 presents the
number of unique entities and relationship-facts included in
the relevant reduced datasets. We constructed the ground
truth for YAGO-IMDb by scraping the relevant Wikipedia

7YAGO2 core was downloaded from: http://www.mpi-
inf.mpg.de/yago-naga/yago/downloads.html and Freebase from:
http://wiki.freebase.com/wiki/Data dumps.
8http://www.imdb.com/interfaces#plain

YAGO IMDb PARIS IMDb Freebase
Relations

actedIn actedIn actedIn actedIn
directed directorOf directed directed
produced producerOf produced produced
created writerOf composed

wasBornIn bornIn
diedIn deceasedIn

capitalOf locatedIn
Properties

hasLabel hasLabel hasLabel hasLabel
wasCreatedOnDate hasProductionYear initialReleaseDate

wasBornOnDate bornOn
diedOnDate deceasedOn

hasGivenName firstName
hasFamilyName lastName

hasGender gender
hasHeight hasHeight

Table 2: Manually aligned movie related relation-
ships and properties in large-scale KBs.

Dataset #facts #entities
YAGO 442k 1.4M

IMDb PARIS 20.9M 4.8M
IMDb 9.3M 3.1M

Freebase 1.5M 474k

(a) Large-scale datasets

Dataset #facts #entities
DBLP 2.5M 1.6M
Rexa 12.6k 14.7k

person11 500 1000
person12 500 1000

restaurant1 113 339
restaurant2 752 2256

(b) Benchmark datasets

Table 3: Datasets statistics

pages of entities to extract their link to the corresponding
IMDb page, which often appears in the ‘external links’ sec-
tion. We then obtained the entity name by scraping the
corresponding IMDb page and matched it to our constructed
database by using string matching (and some manual clean-
ing). We obtained 54k ground truth pairs this way. We
used a similar process for Freebase-IMDb by accessing the
IMDb urls which were actually stored in the database. This
yielded 293k pairs, probably one of the largest knowledge
base alignment ground truth sets to date.

Benchmark datasets. We also tested SiGMa on three
benchmark dataset pairs provided by the ontology align-
ment evaluation initiative (OAEI), which allowed us to com-
pare the performance of SiGMa to some previously published
methods [20, 15]. From the OAEI 2009 edition,9 we use the
Rexa-DBLP instance matching benchmark from the domain
of scientific publications. Rexa contains publications and
authors as entities extracted from the search results of the
Rexa search server. DBLP is a version of the DBLP dataset
listing publications from the computer science domain. The
pair has one matched relationship, author, as well several
matched properties such as year, volume, journal name,
pages, etc. Our goal was to align publications and authors.
The other two datasets come from the Person-Restaurants
(PR) task from the OAEI 2010 edition,10 containing data
about people and restaurants. In particular, there are per-
son11-person12 pairs where the second entity is a copy of
the first with one property field corrupted, and restaurant1-
restaurants2 pairs coming from two different online databases
that were manually aligned. All datasets were downloaded
from the corresponding OAEI webpages, with dataset sizes
given in Table 3.

4.3 Exp. 1: Large-scale alignment
In this experiment, we test the performance of SiGMa

on the three pairs of large-scale KBs and compare it with

9http://oaei.ontologymatching.org/2009/instances/
10http://oaei.ontologymatching.org/2010/im/index.html

http://www.mpi-inf.mpg.de/yago-naga/yago/downloads.html
http://www.mpi-inf.mpg.de/yago-naga/yago/downloads.html
http://wiki.freebase.com/wiki/Data_dumps
http://www.imdb.com/interfaces#plain
http://oaei.ontologymatching.org/2009/instances/
http://oaei.ontologymatching.org/2010/im/index.html


Dataset System Prec Rec F GT size # pred. Time

Freebase-IMdb
SiGMa 99 95 97

255k
366k 90 min

Exact-string 99 70 82 244k 1 min

YAGO-IMDb
SiGMa 98 93 95

54k
188k 50 min

Exact-string 99 57 72 162k 1 min

YAGO-IMDb PARIS
(new ground truth)

SiGMa 98 96 97 237k 70 min
PARIS 97 96 97 57k 702k 3100 min
Exact-string 99 56 72 202k 1 min

YAGO-IMDb PARIS
(ground truth from [28])

SiGMa 98 84 91 237k 70 min
PARIS 94 90 92 11k 702k 3100 min
Exact-string 99 61 75 202k 1 min

Table 4: Exp. 1: Results (precision, recall, F-
measure) on large-scale datasets for SiGMa in com-
parison to a simple exact-matching phase on strings
as well as PARIS [28]. The ‘GT Size’ column gives the
number entities with ground truth information. Time is
total running time, including loading the dataset (quoted
from [28] for PARIS).

PARIS [28], which is described in more details in the re-
lated work Section 5. We also compare SiGMa and PARIS
with the simple baseline of doing the unambiguous exact
string matching step described in Section 3.2 which is used
to obtain an initial match m0 (called Exact-string). Table 4
presents the results. Despite its simple greedy nature which
never goes back to correct a mistake, SiGMa obtains an im-
pressive F-measure above 90% for all datasets, significantly
improving over the Exact-string baseline. We tried running
PARIS [28] on a smaller subset of YAGO-IMDb, using the
code available from its author’s website. It did not com-
plete its first iteration after a week of computation and so we
halted it (we did not have the SSD drive which seems crucial
to reasonable running times). The results for PARIS in Ta-
ble 4 are thus computed using the prediction files provided to
us by its authors on the YAGO-IMDb PARIS dataset. In or-
der to better relate the YAGO-IMDb PARIS results with the
YAGO-IMDb ones, we also constructed a larger ground truth
reference on YAGO-IMDb PARIS by using the same process
as described in Section 4.2. On both ground truth evalua-
tions, SiGMa obtains a similar F-measure as PARIS, but in
50x less time. On the other hand, we note that PARIS is
solving the more general problem of instances and schema
alignment, and was not provided any manual alignment be-
tween relationships. The large difference of recall between
PARIS and SiGMa on the ground truth from [28] can be ex-
plained by the fact that more than a third of its entities
had no neighbor; whereas the process used to construct the
new larger ground truth included only entities participating
in movie facts and thus having at least one neighbor. The
recall of SiGMa actually increases for entities with increas-
ing number of neighbors (going from 68% for entities in the
ground truth from [28] with 0 neighbor to 97% for entities
with 5+ neighbors).

About 2% of the predicted matched pairs from SiGMa on
YAGO-IMDb have no word in common and thus zero string
similarity – difficult pairs to match without any graph in-
formation. Examples of these pairs came from spelling vari-
ations of names, movie titles in different languages, foreign
characters in names which are not handled uniformly or mul-
tiple titles for movies (such as the ‘Blood In, Blood Out’
example of Figure 1).

Error analysis. Examining the few errors made by SiGMa,
we observed the following types of matching errors: 1) er-
rors in the ground truth (either coming from the scraping
scheme used; or from Wikipedia (YAGO) which had incor-
rect information); 2) having multiple very similar entities
(e.g. mistaking the ‘making of’ of the movie vs. the movie

Dataset System Prec Rec F GT size
Person SiGMa 100 100 100

500
PARIS 100 100 100

Restaurant SiGMa-linear 100 100 100

89
SiGMa 98 96 97
PARIS 95 88 91
Exact-string 100 75 86

Rexa-DBLP SiGMa 97 90 94

1464
SiGMa-linear 96 86 91
Exact-string 98 81 89
RiMOM 80 72 76

Table 5: Exp. 2: Results on the benchmark
datasets for SiGMa, compared with PARIS [28] and
RiMOM [20]. SiGMa-linear and Exact-string are also
included on the interesting datasets as further com-
parison points.

itself); 3) pair of entities which shared exactly the same
neighbors (e.g. two different movies with exactly the same
actors) but without other discriminating information. Fi-
nally, we note that going through the predictions of SiGMa
that had a low property score revealed a significant num-
ber of errors in the databases (e.g. wildly inconsistent birth
dates for people), indicating that SiGMa could be used to
highlight data inconsistencies between databases.

4.4 Exp. 2: Benchmark comparisons
In this experiment, we test the performance of SiGMa on

the three benchmark datasets and compare them with the
best published results so far that we are aware of: PARIS [28]
for the Person-Restaurants datasets (which compared favor-
ably over ObjectCoref [15]); and RiMoM [20] for Rexa-DBPL.
Table 5 presents the results. We also include the results
for Exact-string as a simple baseline as well as SiGMa-linear,
which is the SiGMa algorithm without using the graph infor-
mation at all,11 to give an idea of how important the graph
information is in these cases.

Interestingly, SiGMa significantly improved the previous
results without needing any parameter tweaking. The Person-
Restaurants datasets did not have a rich relationship struc-
ture to exploit: each entity (a person or a restaurant) was
linked to exactly one another in a 1–1 bipartite fashion (their
address). This is perhaps why SiGMa-linear is surprisingly
able to perfectly match both these datasets.

The Rexa-DBLP dataset has a more interesting relation-
ship structure which is not just 1–1: papers have multiple
authors and authors have written multiple papers, enabling
the fire propagation algorithm to explore more possibilities.
However, it appears that a purely string based algorithm can
already do quite well on this dataset — Exact-string obtains
a 89% F-measure, already significantly improving the previ-
ously best published results (RiMOM at 76% F-measure),
thus nuancing the difficulty of this standard benchmark.
SiGMa-linear improves this to 91%, and finally using the
graph structure helps to improve this to 94%. This bench-
mark which has a medium size also highlights the nice scal-
ability of SiGMa: despite using the interpreted language
Python, our implementation runs in less than 10 minutes
on this dataset, which can be compared to RiMOM taking
36 hours on a 8-core server in 2009.

11SiGMa-linear is not using the graph score component (α is
set to 0) and is only using the inverted index S0 to suggest
candidates – not the neighbors in Nij .
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Figure 2: Exp. 3: Precision/Recall curves for SiGMa
on YAGO-IMDb with different scoring configurations.
The filled circles indicate the maximum F-measure position
on each curve, with the corresponding diamond giving the
F-measure value at this recall point.

4.5 Parameter experiments
In this section, we explore the role of different configura-

tions for SiGMa on the YAGO-IMDb pair, as well as deter-
mine which parameters to use for the other experiments. We
recall that SiGMa with the final parameters yields a 95% F-
measure on this dataset (second section of Table 4). Experi-
ments 5 and 6 which explore the optimal weighting schemes
as well as the correct stopping threshold are described for
completeness in Appendix E of [18].

4.5.1 Exp. 3: Score components
In this experiment, we explore the importance of each

part of the score function by running SiGMa with some parts
turned off (which can be done by setting the α and β trade-
offs to 0 or 1). The resulting precision / recall curves are
plotted in Figure 2. By comparing SiGMa with SiGMa-linear,
we see that including the graph information moves the F-
measure from a bit below 85% to over 95%, a significant
gain, indicating that the graph structure is more important
on this challenging dataset than the easier OAEI benchmark
datasets and it was crucial to exploit it.

4.5.2 Exp. 4: Matching seed
In this experiment, we tested how important the size of

the matching seed m0 is for the performance of SiGMa. We
report the following notable results. We ran SiGMa with no
exact seed matching at all: we initialized it with a random
exact match pair and let it explore the graph greedily (with
the inverted index still making suggestions). This obtained
an even better score than the standard setup: 99% of preci-
sion, 94% recall and 96% F-measure, demonstrating that a
good initial seed is actually not needed for this setup. If we
do not use the inverted index S0 but initialize SiGMa with
the top 5% of the exact match sorted by their score in the
context of the whole exact match, the performance drops a
little, but SiGMa is still able to explore a large part of the
graph: it obtains 99% / 87% / 92% of precision/recall/F-

measure, illustrating the power of the graph information for
this dataset.

5. RELATED WORK
We contrast here SiGMa with the work already mentioned

in Section 2.2 and provide further links. In the ontology
matching literature, the only approach which was applied
to datasets of the size that we considered in this paper is
the recently proposed PARIS [28], which solves the more
general problem of matching instances, relationships and
classes. The PARIS framework defines a normalized score
between pairs of instances to match representing how likely
they should be matched,12 and which depends on the match-
ing scores of their compatible neighbors. The final scores are
obtained by first initializing (and fixing) the scores on pairs
of literals, and then propagating the updates through the
relationship graph using a fixed point iteration, yielding an
analogous fire propagation of information as SiGMa, though
it works with soft [0-1]-valued assignment whereas SiGMa
works with hard {0,1}-valued ones. The authors handle the
scalability issue of maintaining scores for all pairs by using
a sparse representation with various pruning heuristics (in
particular, keeping only the maximal assignment for each en-
tity at each step, thus making the same 1–1 assumption that
we did). An advantage of PARIS over SiGMa is that it is able
to include property values in its neighborhood graph (it uses
soft-assignments between them) whereas SiGMa only uses re-
lationships given that a 1–1 matching of property values is
not appropriate. We conjecture that this could explain the
higher recall that PARIS obtained on entities which had no
relationship neighbors on the YAGO-PARIS IMDB dataset.
On the other hand, PARIS was limited to use a 0-1 simi-
larity measure between property values for the large-scale
experiments in [28], as it is unclear how one could apply
the same sparsity optimization in a scalable fashion with
more involved similarity measures (such as the IDF one that
SiGMa is using). The use of a 0-1 similarity measure on
strings could explain the lower performance of PARIS on
the Restaurants dataset in comparison to SiGMa. We stress
that SiGMa is able in contrast to use sophisticated similarity
measures in a scalable fashion, had a 50x speed improvement
over PARIS on the large-scale datasets and yields a signifi-
cantly simpler implementation.

The SiGMa algorithm is related to the collective entity res-
olution approach of Bhattacharya and Getoor [3], which pro-
posed a greedy agglomerative clustering algorithm to cluster
entities based on previous decisions. Their approach could
handle constraints on the clustering, including a 1–1 match-
ing constraint in theory, though it was not implemented. We
think a contribution of our work is to demonstrate the effec-
tiveness of using the 1–1 matching constraint for knowledge
base alignment. Some scalable solutions for collective entity
resolution were proposed recently [1, 25], though they did
not implement a 1–1 matching constraint, and their imple-
mentation can be a complex software engineering endeavor
in contrast to the simplicity of our approach.

The idea to propagate information on a relationship graph
has been used in several other approaches for ontology match-
ing [14, 21], though none were scalable for the size of knowl-
edge bases that we considered. An analogous ‘fire prop-

12The authors call these ‘marginal probabilities’ as they were
motivated from probabilistic arguments, but these do not
sum to one.



agation’ algorithm has been used to align social network
graphs in [22], though with a very different objective func-
tion (they define weights in each graphs and want to align
edges which have similar weights). The heuristic of prop-
agating information on a relationship graph is related to
a well-known heuristic for solving Constraint Satisfaction
Problems known as constraint propagation [2]. Ehrig and
Staab [11] mentioned several heuristics to reduce the number
of candidates to consider in ontology alignment, including a
similar one to compatible-neighbors, though they tested
their approach only on a few hundred instances. Finally, we
mention that Peralta [24] aligned the movie database Movie-
Lens to IMDb through a combination of steps of manual
cleaning with some automation. SiGMa could be considered
as an alternative which does not require manual intervention
apart from specifying the score function to use.

Böhm et al. have recently proposed a similar algorithm to
SiGMA called LINDA [5], independently to our prior techni-
cal report [18]. LINDA is also an iterative greedy algorithm
for a quadratic assignment objective applied to instance
matching, but with slightly different scoring functions. We
think that their work complements ours: they have demon-
strated how to scale a SiGMa-like algorithm to billions of
triples using the MapReduce framework. On the other hand,
we provide a significantly simpler implementation for single
machines with experiments demonstrating that higher ac-
curacy can be achieved (they reported only 80% F-measure
on the Restaurants dataset, as well as 66% sampled preci-
sion for their large-scale experiments, whereas the sampled
precision we measured was actually always above 90%).

6. CONCLUSION
We have presented SiGMa, a simple and scalable algo-

rithm for the alignment of large-scale knowledge bases. De-
spite making greedy decisions and never backtracking to cor-
rect decisions, SiGMa obtained a higher F-measure than the
previously best published results on the OAEI benchmark
datasets, and matched the performance of the more involved
algorithm PARIS while being 50x faster on large-scale knowl-
edge bases of millions of entities. Our experiments indicate
that SiGMa can obtain good performance over a range of
datasets with the same parameter setting. On the other
hand, SiGMa is easily extensible to more powerful scoring
functions between entities, as long as they can be efficiently
computed.

Some apparent limitations of SiGMa are a) that it can-
not correct previous mistakes and b) cannot handle align-
ments other than 1–1. Addressing these in a scalable fash-
ion which preserves high accuracy are open questions for
future work. We note though that the non-corrective nature
of the algorithm didn’t seem to be an issue in our experi-
ments. Moreover, pre-processing each knowledge base with
a de-duplication method can help make the 1–1 assumption,
which is a powerful feature to exploit in an alignment al-
gorithm, more reasonable. Another interesting direction for
future work would be to use machine learning methods to
learn the parameters of more powerful scoring function. In
particular, the ‘learning to rank’ model seems suitable to
learn a score function which would rank the correctly la-
beled matched pairs above the other ones. The current level
of performance of SiGMa already makes it suitable though
as a powerful generic alignment tool for knowledge bases and
hence takes us closer to the vision of Linked Open Data and
the Semantic Web.
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