
Exploring Schema Repositories with Schemr

Kuang Chen and Akshay Kannan
University of California, Berkeley
kuangc@cs.berkeley.edu,
akannan@cs.berkeley.edu

Jayant Madhavan and Alon Halevy
Google, Inc.

jayant@google.com,
halevy@google.com

ABSTRACT

Schemr is a search engine for users to search for and

visualize schemas in a metadata repository. Users may

search by keywords and by example, using schema frag-

ments as query terms. Schemr uses a novel search algo-

rithm, based on a combination of text search and schema

matching techniques, coupled with a structurally-aware

scoring metric. Schemr presents search results in a GUI

that allows users to explore which elements match and

how well they do. The GUI supports interactions, in-

cluding panning, zooming, layout and drilling-in. This

paper introduces Schemr as a new component of the in-

formation integration toolbox and discusses its benefits

in several applications.

1. INTRODUCTION

All around the world, groups of small organi-
zations want to share structured data with each
other. For instance, consider the Nature Conser-
vancy’s1 efforts in rallying small conservation or-
ganizations to contribute environmental monitoring
data. As another example, consider a rural health
system in sub-Saharan Africa, consisting of commu-
nity health workers, low-resource health clinics, and
district-, regional-, and national-level ministries of
health. Unlike typical data integration scenarios,
where the goal is to provide uniform access to mul-
tiple existing data sets, here organizations are more
willing to share information right from the begin-
ning. In particular, a database designer working
on a new schema is likely to consult and explore
existing schemata, given access to them. What is
needed is a tool for schema search and visualization
to guide the initial database design.
This paper describes Schemr, a tool for locating,

exploring, and reusing relevant schemas (or schema
fragments) in large schema collections. Schemr lever-
ages the past experience of a collaborative commu-
nity and the algorithmic techniques from existing

1The Nature Conservancy http://www.nature.org

information integration tools to lower the data shar-
ing barrier-to-entry and nurture schema compatibil-
ity – simplifying the task of information integration
during schema design. Beyond the example sce-
narios described above, a schema search tool is a
valuable tool to navigate any dataspace of hetero-
geneous information [4].
Schemr’s search algorithm combines schema match-

ing and text search techniques with a structurally-
aware scoring metric. Designers can use keywords
or existing schema fragments as search terms. Re-
sults are returned in an environment that allows
users to visually explore and compare matching schemata.
Specifically, we make the following contributions:

• Schema search algorithm - Schemr’s search al-
gorithm combines techniques from document
search and schema matching, and employs a
holistic tightness-of-fit measure to find and rank
schemas according to a query’s semantic in-
tent.

• Visualizations of results - Schemr visualizes
search results in an interactive web applica-
tion, allowing users to compare multiple re-
sults and drill-in to explore a schema with vi-
sually encoded similarity measures.

• Open source software component - Schemr is
part of the OpenII open-source information in-
tegration framework [8], which any organiza-
tion may use and extend for free.

A demonstration of Schemr was first presented at
SIGMOD 2009 [2].

Example Scenario

We ground our motivation through discussion and
observation of two such organizations, mentioned
above: the Nature Conservancy and a large HIV/AIDS
treatment program in Tanzania. We found that
data management in these organizations takes place

in an ad-hoc manner, with ad-hoc tools. Data ad-
ministrators face a vicious cycle: they are over-
loaded with requests to manually curate data that
should be produced by automated processes. Thus,
having no time to tackle major system improve-
ments, they create stopgap solutions. These data
administrators say that they would gladly collabo-
rate with others to share schemas and advice, but
are hindered by the high-maintenance cost of the
stopgap solutions. They need tools that provide an
immediate productivity gain. For these organiza-
tions, sharing designs through schema search can
provide this bootstrap path, which starts with bet-
ter data modeling and leads to better integrated
information.
In such a setting, the database administrator be-

gins by designing a new table. She is unsure of the
best way to model the table, and wants to search
for related schemas and data examples. She opens
Schemr in her web browser and has the option to
specify either a simple keyword search and/or a par-
tially designed schema fragment. In this case, let us
suppose that she performs a search for existing data
models by using the keywords patient, height,

gender, diagnosis. Additionally, she specifies a
partially designed schema to specify results that in-
clude elements semantically equivalent to ones she
has already designed. A partially designed schema
can be specified by uploading a DDL (Data Defini-
tion Language) or XSD (XML Schema Definition).
Upon executing this query, the designer is pre-

sented with several relevant schemata to explore in
further depth. The results can come from a variety
of sources: reference schemata within the organi-
zation, shared schemata from partnering organiza-
tions, or public sources.
Internally, Schemr parses the input schema and

creates a query graph (Figure 1) out of it, on which
the similarity functions are computed. Schemr re-
turns a ranked list of n results, presented in a tabu-
lar format, including columns for name, score, matches,
entities, attributes, and description. The user can
interact with the results by clicking on a particu-
lar entry to visualize its schema elements, or ask
for the next n schemas. On drill-in to a particular
schema, Schemr creates a detailed graph structure
with visual encodings of similarity. Figure 2 shows
an example of Schemr’s visualizations.

2. SCHEMR OVERVIEW

In this section, we first describe Schemr’s search
algorithm, and then describe our implementation.

entity : tb_result

tuberculosis

assay_id

result result

date

patient_id

A: schema fragment

B: keyword

Figure 1: An example query graph consisting
of both (A) a schema fragment and (B) a
keyword

Candidate

Extraction

Schema Matching

Tightness5of5fit

Measurement

Results

Visualization

Query

Construction

query graph

similarity scores

Figure 3: Schema search algorithm data flow

Algorithm

Schemr’s search algorithm (Figure 3) consists of
three phases. Prior to executing a search, the query
parser creates a query-graph from the keyword terms
and schema fragments given by user input. In the
first phase, Candidate Extraction, Schemr flattens
the query-graph into a list of keywords and quickly
retrieves the top candidate schemas from a scal-
able document index. In the second phase, Schema

Matching, Schemr evaluates the top candidate schemas
with an ensemble of schema matchers [3, 6], scoring
the semantic similarity between candidate schema
and the query-graph elements. In the third phase,
Schemr computes a final score by weighing similar-
ity scores with a Tightness-of-fit Measurement.

Candidate Extraction

The input query-graph Q is a forest of trees consist-
ing of schema fragments and keywords, as shown in
Figure 1. The example illustrates that Q can rep-
resent several graphs, where each keyword is rep-
resented as a graph of one item. The query-graph
abstraction can capture multiple query formats, in-
cluding relational and XML.
The system contains a document index of the

schema corpus, which we build offline. Each schema

patient, height,

gender, diagnosis

5

1

2

3

4

Description: The organism’s
health status on a particular
date
Type: Attribute
Matched: true
Score: 0.5
Matched Object: diagnosis

5

1 CREATE TABLE patients (

 name text,

 age int,

 height int

);

2

3

4

Figure 2: Search results for a keyword + schema fragment query. (1) Search keywords (2) DDL
schema fragment specified as part of query (3) Tabular view of search results allows sorting
and comparison (4) Schema visualizations allow side-by-side schema comparison. Node color
corresponds to schema element types (e.g. entity or attribute). Visualization types include
hierarchical tree-view and radial view (shown). Nodes can be collapsed and expanded to allow
drill-in on particular schema elements in greater detail.

in the index is represented as a document, for which
we store a title, a summary, an ID, and a flattened
representation of each element in the schema. Our
inverted index stores a term dictionary of frequency
data, proximity data, and normalization factors,
providing a fast and scalable filter for relevant can-
didate schemas.
When searching the index online, we first create

a list of keywords by flattening the query graph Q

and performing keyword matching on the document
index. We use a variant of standard TF/IDF to ob-
tain an initial coarse-grain matching. To preserve
recall, the candidate extraction algorithm need not
match all search terms; rather, match scores are
computed independently for each search term and
summed to produce a coarse-grain score for return-
ing the top n candidate results. A coordination fac-
tor, defined as the number of terms matched divided
by the number of terms in the query, is multiplied
into the coarse-grain score in order to reward results
which match the most terms in the original query.

Schema Matching

The top candidate schemas are evaluated against
the query-graph and ranked using an ensemble of
fine-grained matchers. We summarize two matchers
we found to be most useful, but note that other
matchers may be used as well.
A name matcher normalizes terms and computes

n-gram overlap between query terms and terms in
the indexed schemas. Each schema element in the
query is parsed into a set of all possible n-grams,
ranging in length from one character to the length
of the word. Each n-gram is then ranked against
each element of the candidate schemas to compute a
final match score. We found this matcher to be par-
ticularly helpful for properly ranking schemas con-
taining abbreviated terms, alternate grammatical
forms, and delimiter characters not in the original
query.
A context matcher builds a set of terms from

neighboring elements, and tries to capture matches
when neighboring-element sets are similar to each
other [6].
Each matcher produces a similarity matrix be-

tween query graph elements and schema elements.
Each (query element, schema element) pair has a
corresponding value which describes the match qual-
ity – a value between 0 and 1, For every candi-
date schema, the similarity matrices of the different
matchers are combined into a single matrix contain-
ing total similarity scores. We combine the scores
from each matcher with a weighting scheme, which
is initially uniform. As Schemr is utilized in prac-

entity: caseentity: doctor entity: patient

heightgendergender patientdoctor

Figure 4: An example schema showing only
matched schema elements

tice, we can record search histories to create a train-
ing set of search-term to schema-fragment matches.
With such a training set, we may then determine an
appropriate weighting scheme. For instance, Mad-
havan et al use a “meta-learner” to compute a lo-
gistic regression over a training set of schemas [5].

Tightness-of-fit Measurement

Schemr’s task, in this phase, diverges from the tra-
ditional aim of schema matching: rather than gen-
erating mappings between elements, we use the sim-
ilarity matrix of total similarity scores to create an
overall score that captures the semantic intent of
schema search. Our principle here is to measure the
tightness-of-fit by minimizing the distance between
relevant elements in a result schema.
We begin by selecting the maximum value of each

schema element’s entry in the matrix as the final
match score for that element. Next, we apply penal-
ties to the scores of the schema elements based on
a relative distance measure and take the average of
the scores to arrive at a final score for the entire
schema.
The intuition behind our distance measure is as

follows. For elements ei and ej ∈ E:

• If they are in the same entity, no penalty.

• If they are in the same entity neighborhood
(transitive closure on foreign key), then a small
penalty applies.

• If they are in unrelated entities, then a larger
penalty applies.

There can be many configurations by which a
set of query-graph elements match a set of result
schema elements. Each such configuration consists
of penalties on elements computed with respect to
a particular anchor entity. Given an anchor entity,
the scores of elements in other entities are penalized
by their distances to the anchor and averaged. This
calculation is repeated for all possible anchor enti-
ties, and the maximum of all calculations is selected
as the final match score for the schema.
Continuing with our original health clinic exam-

ple, consider the following simplified candidate schema

Application Server

Schema
Repository

Schema
Service

Text
Indexer

Search
Service

Match
Engine

Search
Client

Figure 5: Schemr system architecture dia-
gram

of matched elements in Figure 4. First, case is se-
lected as an initial anchor entity. No penalty is ap-
plied to the scores of the case.doctor, case.patient

schema elements, because they reside in the same
entity as the anchor, whereas a small transitive clo-
sure penalty is applied to the scores of patient.height,
patient.gender, doctor.gender. Finally, the pe-
nalized scores of the schema elements are averaged
to produce a score for the case anchor. Next, patient
is selected as an anchor entity. No penalty is applied
to patient.height, patient.gender, the small tran-
sitive closure penalty is applied to the elements in
the case entity, and a larger penalty is applied to
the elements in the unrelated doctor entity. Fi-
nally, this calculation is repeated with doctor as
the final anchor entity, and the maximum value of
the three anchored calculations is returned as the
final match score of the schema.
For a set of similarity scores S, each choice of an-

chor element A results in penalties P . A tightness-
of-fit score t can be computed by t =

∑
(S ·P). We

are interested in the configuration which maximizes
the tightness-of-fit score:

tmax = argmax
A

∑
(S · PA).

We use this total score to rank the final search re-
sults.

Architecture and Implementation

Schemr’s architecture (Figure 5) features a web-
based GUI for entering search terms and graphically
reviewing search results. The GUI processes a set
of search terms and delivers them as a request to
the Search Service.
On the Schemr server, we use the open-source

schema repository Yggdrasil [8]. At scheduled in-
tervals, an offline Lucene [11] Text Indexer flattens
schemas from the Schema Repository to construct

or update the document index.
When a request is received by the server, the

query is initially flattened into a collection of key-
words and used to filter candidate schemas from the
document index. These candidate schemas are next
passed to theMatch Engine, where fine-grained match-
ers are used to compute a final relevance score for
ranking the candidate schemas. This list of candi-
date schemas, along with their corresponding score,
is finally sent as an XML response to the client.
When the user clicks on a search result to view

the visualization, another request containing the
schema ID is sent to the server. The server per-
forms a lookup of this ID in the schema reposi-
tory and returns a graphical representation of the
schema to the client as a GraphML[10] response,
which is parsed and displayed on the front-end.

Visualizations

Schemr visualizes result schemas in an interactive
GUI, supporting panning, zooming, auto-layout, and
drilling-in. Our client is implemented using Adobe
Flex and the Flare visualization toolkit. Using Flash
ensures cross-browser compatibility without any ad-
ditional browser-handling code. All search requests
and visualizations are dynamically retrieved using
asynchronous HTTP requests.
Schemr’s user interface features two panels (Fig-

ure 2). The left-side search panel allows users to
supply a query in the form of a keyword search
or a DDL/XSD schema fragment and lists ranked
search results in a tabular format. The right-side
results panel provides a workspace for users to ex-
plore graph visualizations of schemas. In graph vi-
sualizations, element nodes are encoded by color,
and multiple graphs can freely be compared side-
by-side and explored in further depth. Clicking on a
graph node displays detailed information about the
schema element in a toolbox, and double-clicking
on a graph node re-centers the layout of the graph
such that the new node is in the center. We allow
for multiple graph layouts, including a hierarchical
tree layout and a radial layout. To ensure Schemr
scales to very large schemas, we cap the displayed
graph depth to 3. To drill in on a particular branch
at a greater depth, users can simply double click on
a node to view its descendants in further detail. To
ensure Schemr scales to very large schemas, we plan
to employ schema visualization and summarization
techniques, such as those proposed in [7, 9].

Applications

Schemr’s search capabilities have been tested on a
repository of over 30,000 public schemas, both rela-

tional and semi-structured, small and large, span-
ning many domains. These schemas came a collec-
tion of 10 million HTML tables [1], and were filtered
by removing schemas containing non-alphabetical
characters, schemas that only appeared once on the
web, and trivial schemas with three or less elements.
We plan to make Schemr available as a part of

an open-source information integration framework,
OpenII [8]. As a module of OpenII, other frame-
work components enable new schema search appli-
cations and scenarios, magnifying Schemr’s benefit.
For example, integrating Schemr with schema im-
port and export functionality gives users motivation
to build metadata repositories. As well, integrating
Schemr’s search functionality with a codebook that
contains data types like units, date/time, and ge-
ographic location, would encourage a deeper stan-
dardization of data types alongside schema search
results. With an OpenII community of users search-
ing the repository, collaboration functionality that
provides usage statistics and comments on schemas
would improve schema search results. Finally, inte-
grating Schemr with a schema editor would allow for
a new model development process, in which search
results are iteratively used to augment a schema. In
this process, we can also capture implicit semantic
mappings between schema elements, information on
schema re-use, and the provenance of new schema
entities.

3. SUMMARY

Schemr demonstrates an effective approach to schema
search and visualization. It uses a novel combi-
nation of document based filtering, schema match-
ing, semantics, and structure-aware scoring to effi-
ciently search and visualize large schema reposito-
ries. Schemr can be internally deployed as a stan-
dalone tool for organizations to search and share
schemas, facilitating the schema design process and
paving the way for information integration. Addi-
tionally, Schemr will play a role as a module of the
OpenII framework, serving to improve the accessi-
bility and benefit of many information integration
applications.
Schemr can also be deployed as a publicly avail-

able web service. To facilitate finding quality schemas
in a large public repository, we plan to incorporate
collaborative functionality such as mechanisms for
users to leave ratings and comments on schemas.
Through these comments, users can suggest improve-
ments or additions that can be made to schemas.
Ultimately, we hope that this will evolve into a gen-
eral repository for storing multi-purpose schemas to
meet the community’s needs. In a sense, we are hop-

ing to democratize development of standards and
consequently improve the quality of schemas in the
data ecosystem.

Acknowledgments

We are grateful to Peter Mork, Arnie Rosenthal,
Len Seligman and Chris Wolf who provided invalu-
able advice and the Yggdrasil schema repository.
We would like to thank Kristin Barker, Harr Chen,
Tyson Condie, Joe Hellerstein, Neal Lesh, Jamie
Lockwood, Tapan Parikh and Sanjay Unni.

4. REFERENCES

[1] M. Cafarella, A. Halevy, D. Wang, E. Wu,
and Y. Zhang. Webtables: Exploring the
power of tables on the web. Proceedings of the

VLDB Endowment, 1(1):538–549, 2008.
[2] K. Chen, J. Madhavan, and A. Halevy.

Exploring schema repositories with schemr. In
Proceedings SIGMOD, pages 1095–1098.
ACM, 2009.

[3] A. Doan, P. Domingos, and A. Halevy.
Learning to match the schemas of data
sources: A multistrategy approach. Machine

Learning, 50(3), 2003.
[4] M. Franklin, A. Halevy, and D. Maier. From

databases to dataspaces: a new abstraction
for information management. ACM Sigmod

Record, 34(4):27–33, 2005.
[5] J. Madhavan, P. Bernstein, A. Doan, and

A. Halevy. Corpus-based schema matching. In
Proceedings of ICDE, pages 57–68. IEEE,
2005.

[6] E. Rahm and P. A. Bernstein. A survey of
approaches to automatic schema matching.
The VLDB Journal, 10(4), 2001.

[7] G. G. Robertson, M. P. Czerwinski, and J. E.
Churchill. Visualization of mappings between
schemas. In Proceedings SIGCHI conference

on Human factors in computing systems,
2005.

[8] L. Seligman, P. Mork, A. Halevy, K. Smith,
M. Carey, K. Chen, D. Burdick, C. Wolf,
J. Madhavan, and A. Kannan. Openii: An
open source information integration toolkit.
In Proceedings of SIGMOD, 2010.

[9] C. Yu and H. V. Jagadish. Schema
summarization. In Proceedings VLDB, 2006.

[10] Graphml file format.
http://graphml.graphdrawing.org.

[11] Lucene. http://lucene.apache.org.

