
Discovering and Maintaining Links
on the Web of Data

Julius Volz1, Christian Bizer2, Martin Gaedke1, and Georgi Kobilarov2

1 Chemnitz University of Technology
Distributed and Self-Organizing Systems Group

Straße der Nationen 62, 09107 Chemnitz, Germany
volz@hrz.tu-chemnitz.de

gaedke@cs.tu-chemnitz.de

2 Freie Universität Berlin
Web-based Systems Group

Garystr. 21, 14195 Berlin, Germany
chris@bizer.de

georgi.kobilarov@fu-berlin.de

Abstract. The Web of Data is built upon two simple ideas: Employ the
RDF data model to publish structured data on the Web and to create
explicit data links between entities within different data sources. This pa-
per presents the Silk – Linking Framework, a toolkit for discovering and
maintaining data links between Web data sources. Silk consists of three
components: 1. A link discovery engine, which computes links between
data sources based on a declarative specification of the conditions that
entities must fulfill in order to be interlinked; 2. A tool for evaluating the
generated data links in order to fine-tune the linking specification; 3. A
protocol for maintaining data links between continuously changing data
sources. The protocol allows data sources to exchange both linksets as
well as detailed change information and enables continuous link recom-
putation. The interplay of all the components is demonstrated within a
life science use case.

Key words: Linked data, web of data, link discovery, link maintenance,
record linkage, duplicate detection

1 Introduction

The central idea of Linked Data is to extend the Web with a data commons
by creating typed links between data from different data sources [1, 2]. Techni-
cally, the term Linked Data refers to a set of best practices for publishing and
connecting structured data on the Web in a way that data is machine-readable,
its meaning is explicitly defined, it is linked to other external datasets, and can
in turn be linked to from external datasets. The data links that connect data
sources take the form of RDF triples, where the subject of the triple is a URI

2 Discovering and Maintaining Links on the Web of Data

reference in the namespace of one dataset, while the object is a URI reference
in the other [2, 3].

The most visible example of adoption and application of Linked Data has
been the Linking Open Data (LOD) project3, a grassroots community effort to
bootstrap the Web of Data by interlinking open-license datasets. Out of the 6.7
billion RDF triples that are served as of July 2009 by participants of the project,
approximately 148 million are RDF links between datasets4.

As Linked Data sources often provide information about large numbers of
entities, it is common practice to use automated or semi-automated methods
to generate RDF links. In various domains, there are generally accepted nam-
ing schemata, such as ISBN and ISSN numbers, ISIN identifiers, EAN and
EPC product codes. If both datasets already support one of these identification
schemata, the implicit relationship between entities in the datasets can easily
be made explicit as RDF links. This approach has been used to generate links
between various data sources in the LOD cloud. If no shared naming schema
exists, RDF links are often generated by computing the similarity of entities
within both datasets using a combination of different property-level similarity
metrics.

While there are more and more tools available for publishing Linked Data on
the Web [3], there is still a lack of tools that support data publishers in setting
RDF links to other data sources, as well as tools that help data publishers to
maintain RDF links over time as data sources change. The Silk – Linking Frame-
work contributes to filling this gap. Silk consists of three components: 1. A link
discovery engine, which computes links between data sources based on shared
identifiers and/or object similarity; 2. A tool for evaluating the generated RDF
links in order to fine-tune the linking specification; 3. A protocol for maintaining
RDF links between continuously changing data sources.

Using the declarative Silk - Link Specification Language (Silk-LSL), data
publishers can specify which types of RDF links should be discovered between
data sources as well as which conditions data items must fulfill in order to
be interlinked. These link conditions can apply different similarity metrics to
multiple properties of an entity or related entities which are addressed using a
path-based selector language. The resulting similarity scores can be weighted
and combined using various similarity aggregation functions. Silk accesses data
sources via the SPARQL protocol and can thus be used to discover links between
local or remote data sources.

The main features of the Silk link discovery engine are:

• it supports the generation of owl:sameAs links as well as other types of RDF
links.
• it provides a flexible, declarative language for specifying link conditions.
• it can be employed in distributed environments without having to replicate

datasets locally.
3 http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
4 http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/

DataSets/LinkStatistics

Discovering and Maintaining Links on the Web of Data 3

• it can be used in situations where terms from different vocabularies are mixed
and where no consistent RDFS or OWL schemata exist.

• it implements various caching, indexing and entity preselection methods to
increase performance and reduce network load.

Datasets change and are extended over time. In order to keep links between
two data sources current and to avoid dead links, new RDF links should be con-
tinuously generated as entities are added to the target dataset and invalidated
RDF links should be removed. For this task, we propose the Web of Data – Link
Maintenance Protocol (WOD-LMP). The protocol automates the communica-
tion between two cooperating Web data sources: The link source and the link
target, where the link source is a Web data source that publishes RDF links
pointing at data published by the target data source. The protocol supports:

• notifying the target data source that the link source has published a set of
links pointing at the target source. This allows the target to track incoming
links and decide whether it wants to set back-links.

• the link source to request a list of changes from the target source. Based
on the changes, the link source can recompute existing links and generate
additional links pointing at new resources.

• the link source to monitor resources in the target dataset by subscribing to
be informed about changes that occur to these resources.

This paper is structured as follows: Section 2 gives an overview of the Silk –
Link Specification Language along a concrete usage example. In Section 3, we
present the Silk user interface to evaluate generated links. We describe the Web
of Data – Link Maintenance Protocol in Section 4 and give an overview of the
implementation of the Silk framework in Section 5. Section 6 reviews related
work.

2 Link Specification Language

The Silk – Link Specification Language (Silk-LSL) is used to express heuristics
for deciding whether a semantic relationship exists between two entities. The
language is also used to specify the access parameters for the involved data
sources, and to configure the caching, indexing and preselection features of the
framework. Link conditions can use different aggregation functions to combine
similarity scores. These aggregation functions as well as the implemented sim-
ilarity metrics and value transformation functions were chosen by abstracting
from the link heuristics that were used to establish links between data sources
in the LOD cloud.

Figure 1 contains a complete Silk-LSL link specification. In this particular
use case, we want to discover owl:sameAs links between the URIs that are used
by DBpedia [4], a data source publishing information extracted from Wikipedia,
and by the Linked Data version of DrugBank [5], a pharmaceutical database, to
identify medical drugs. In line 22 of the link specification, we thus configure the
<LinkType> to be owl:sameAs.

4 Discovering and Maintaining Links on the Web of Data

01 <Silk>
02 <DataSource id="dbpedia">
03 <EndpointURI>http://dbpedia.org/sparql</EndpointURI>
04 <Graph>http://dbpedia.org</Graph>
05 <DoCache>1</DoCache>
06 <PageSize>1000</PageSize>
07 </DataSource>
08 <DataSource id="drugbank">
09 <EndpointURI>http://www4.wiwiss.fu-berlin.de/drugbank/sparql</EndpointURI>
10 </DataSource>
11 <Metric id="jaroSets">
12 <Param name="item1" />
13 <Param name="item2" />
14 <AVG>
15 <Compare metric="jaroWinklerSimilarity">
16 <Param name="str1" path="?item1" />
17 <Param name="str2" path="?item2" />
18 </Compare>
19 </AVG>
20 </Metric>
21 <Interlink id="drugs">
22 <LinkType>owl:sameAs</LinkType>
23 <SourceDataset dataSource="dbpedia" var="a">
24 <RestrictTo>
25 ?a rdf:type dbpedia:Drug
26 </RestrictTo>
27 </SourceDataset>
28 <TargetDataset dataSource="drugbank" var="b">
29 <RestrictTo>
30 ?b rdf:type drugbank:drugs
31 </RestrictTo>
32 </TargetDataset>
33 <LinkCondition>
34 <AVG>
35 <MAX weight="1">
36 <Compare metric="maxSimilarityInSets">
37 <Param name="set1" path="?a/rdfs:label" />
38 <Param name="set2" path="?b/rdfs:label" />
39 <Param name="submetric" value="jaroSets" />
40 </Compare>
41 <Compare metric="maxSimilarityInSets" optional="1">
42 <Param name="set1" path="?a/rdfs:label" />
43 <Param name="set2" path="?b/drugbank:synonym" />
44 <Param name="submetric" value="jaroSets" />
45 </Compare>
46 <Compare metric="maxSimilarityInSets" optional="1">
47 <Param name="set1" path="?a/rdfs:label" />
48 <Param name="set2" path="?b/drugbank:genericName" />
49 <Param name="submetric" value="jaroSets" />
50 </Compare>
51 </MAX>
52 <MAX optional="1" weight="5">
53 <Compare metric="stringEquality" optional="1">
54 <Param name="str1">
55 <Transform function="concat">
56 <Param name="str1" path="?a/dbpedia:atcprefix" />
57 <Param name="str2" path="?a/dbpedia:atcsuffix" />
58 </Transform>
59 </Param>
60 <Param name="str2" path="?b/drugbank:atcCode" />
61 </Compare>
62 <Compare metric="stringEquality" optional="1">
63 <Param name="str1" path="?a/dbpedia:casNumberLink" />
64 <Param name="str2" path="?b/drugbank:casRegistryNumber" />
65 </Compare>
66 <Compare metric="stringEquality" optional="1">
67 <Param name="str1" path="?a/dbpedia:pubchem" />
68 <Param name="str2" path="?b/drugbank:pubchemCompoundId" />
69 </Compare>
70 </MAX>
71 <Compare metric="numSimilarity" optional="1" weight="2">
72 <Param name="num1" path="?a/dbpedia:molecularweight" />
73 <Param name="num2" path="?b/drugbank:molecularWeightAverage" />
74 </Compare>
75 </AVG>
76 </LinkCondition>
77 <Thresholds accept="0.9" verify="0.7" />
78 <Limit max="1" method="metric_value" />
79 <Output acceptedLinks="drug_accepted_links.n3"
80 verifyLinks="drug_verify_links.n3" format="n3" mode="truncate" />
81 </Interlink>
82 </Silk>

Fig. 1. Example: Interlinking drugs in DBpedia and DrugBank

Discovering and Maintaining Links on the Web of Data 5

2.1 Data Access

For accessing the source and target data sources, we first specify access parame-
ters for the DBpedia and DrugBank SPARQL endpoints using the <DataSource>
directive. The only mandatory data source parameter is the SPARQL endpoint
URI. Besides this, it is possible to define other data source access options, such
as the graph name and to enable in-memory caching of SPARQL query results.
In order to restrict the query load on remote SPARQL endpoints, it is possible
to set a delay between subsequent queries using the <Pause> parameter, spec-
ifying the delay time in milliseconds. For working against SPARQL endpoints
that restrict result sets to a certain size, Silk uses a paging mechanism. The
maximal result size is configured using the <PageSize> parameter. The paging
mechanism is implemented using SPARQL LIMIT and OFFSET queries. Lines 2 to
7 in Figure 1 show how the access parameters for the DBpedia data source are
set to select only resources from the named graph http://dbpedia.org, enable
caching and limit the page size to 1,000 results per query.

The configured data sources are later referenced in the <SourceDataset>
and <TargetDataset> clauses of the link specification. Since we only want to
match drugs, we restrict the sets of examined resources to instances of the
classes dbpedia:Drug and drugbank:drugs in the respective datasets by sup-
plying SPARQL conditions within the <RestrictTo> directives in lines 25 and
30. These statements may contain any valid SPARQL expressions that would
usually be found in the WHERE clause of a SPARQL query.

2.2 Link Conditions

The <LinkCondition> section is the heart of a Silk link specification and defines
how similarity metrics are combined in order to calculate a total similarity value
for a pair of entities. For comparing property values or sets of entities, Silk
provides a number of built-in similarity metrics. Table 1 gives an overview of
these metrics. The implemented metrics include string, numeric, date, URI, and
set comparison methods as well as a taxonomic matcher that calculates the
semantic distance between two concepts within a concept hierarchy using the
distance metric proposed by Zhong et al. in [8]. Each metric in Silk evaluates
to a similarity value between 0 or 1, with higher values indicating a greater
similarity.

These similarity metrics may be combined using the following aggregation
functions:

• AVG – weighted average
• MAX – choose the highest value
• MIN – choose the lowest value
• EUCLID – Euclidian distance metric
• PRODUCT – weighted product

To take into account the varying importance of different properties, the
metrics grouped inside the AVG, EUCLID and PRODUCT operators may be

6 Discovering and Maintaining Links on the Web of Data

Table 1. Available similarity metrics in Silk

jaroSimilarity String similarity based on Jaro distance metric[6]

jaroWinklerSimilarity String similarity based on Jaro-Winkler metric[7]

qGramSimilarity String similarity based on q-grams

stringEquality Returns 1 when strings are equal, 0 otherwise

numSimilarity Percentual numeric similarity

dateSimilarity Similarity between two date values

uriEquality Returns 1 if two URIs are equal, 0 otherwise

taxonomicSimilarity Metric based on the taxonomic distance of two concepts

maxSimilarityInSet Returns the highest encountered similarity of comparing
a single item to all items in a set

setSimilarity Similarity between two sets of items

weighted individually, with higher weighted metrics having a greater influence
on the aggregated result.

In the <LinkCondition> section of the example (lines 33 to 76), we compute
similarity values for the the labels, PubChem IDs5, CAS registry numbers6, ATC
codes7 and molecular weights between datasets and calculate a weighted average
of these values.

Most metrics are configured to be optional since the presence of the re-
spective RDF property values they refer to is not always guaranteed. In cases
where alternating properties refer to an equivalent feature (such as rdfs:label,
drugbank:synonym and drugbank:genericName), we choose to perform com-
parisons for both properties and select the best evaluation by using the <MAX>
aggregation operator. The <MAX> operator is also used to choose the maximum
value of the comparisons between any of the exact drug identifiers. Weighting of
results is used within the metrics comparing these exact values (line 52), with
the metric weight raised to 5, as well as within the molecular weight comparison
using a weighting factor of 2.

Lines 11 to 20 demonstrate how a user-defined metric is specified. User-
defined metrics may be used like built-in metrics. In the example, the defined
jaroSets metric is used as a submetric for the maxSimilarityInSets eval-
uations in lines 36-50 for the pairwise comparison of elements of the com-
pared sets. In this case, the user-defined metric is mainly a wrapper around
a jaroWinklerSimilarity call to achieve type-compatibility with the set com-
parison interface.

Property values are often represented differently across datasets and thus
need to be normalized before being compared. For handling this task, it is pos-
sible to apply data transformation functions to parameter values before passing
them to a similarity metric. The available transformation functions are shown in
Table 2. In the drug linking example, a drug’s ATC code in the DBpedia dataset

5 http://pubchem.ncbi.nlm.nih.gov/
6 http://www.cas.org/expertise/cascontent/registry/regsys.html
7 http://www.who.int/classifications/atcddd/en/

Discovering and Maintaining Links on the Web of Data 7

is split into a prefix and a suffix part, while it is stored in a single property on
the DrugBank side. Hence, we use the concat transformation function to con-
catenate the code’s prefix and suffix parts on the DBpedia side before comparing
it to the single-property code in DrugBank (lines 55 to 58).

Table 2. Available transformation functions in Silk

removeBlanks Remove whitespace from string

removeSpecialChars Remove special characters from string

lowerCase Convert a string to lower case

upperCase Convert a string to upper case

concat Concatenate two strings

stem Apply word stemming to a string

alphaReduce Strip all non-alphabetic characters from a string

numReduce Strip all non-numeric characters from a string

replace Replace all occurrences of a string with a replacement

regexReplace Replace all occurences of a regex with a replacement

stripURIPrefix Strip the URI prefix from a string

translateWithDictionary Translate string using a provided CSV dictionary file

After specifying the link condition, we finally specify within the <Thresholds>
clause that resource pairs with a similarity score above 0.9 are to be interlinked,
whereas pairs between 0.7 and 0.9 should be written to a separate output file
in order to be reviewed by an expert. The <Limit> clause is used to limit the
number of outgoing links from a particular entity within the source dataset. If
several candidate links exist, only the highest evaluated one is chosen and writ-
ten to the output files as specified by the <Output> directive. In this example,
we permit only one outgoing owl:sameAs link from each resource.

Discovered links can be outputted either as simple RDF triples and/or in
reified form together with their creation date, confidence score and the URI
identifying the employed interlinking heuristic.

2.3 Silk Selector Language

Especially for discovering semantic relationships other than entity equality, a
flexible way for selecting sets of resources or literals in the RDF graph around
a particular resource is needed. Silk addresses this requirement by offering a
simple RDF path selector language for providing parameter values to similarity
metrics and transformation functions. A Silk selector language path starts with
a variable referring to an RDF resource and may then use several path operators
to navigate the graph surrounding this resource. To simply access a particular
property of a resource, the forward operator (/) may be used. For example, the
path ”?drug/rdfs:label” would select the set of label values associated with a
drug referred to by the ?drug variable.

8 Discovering and Maintaining Links on the Web of Data

Sometimes, we need to navigate backwards along a property edge. For ex-
ample, drugs in DrugBank contain a drugbank:target property pointing to the
drug’s target molecule. However, there exists no explicit reverse property like
drugbank:drug in the drug target’s resource. So if a path begins with a drug
target and we need to select all of the drugs that apply to it, we may use the
backward operator (\) to navigate property edges in reverse. Navigating back-
wards along the property drugbank:target would select the applicable drugs.

The filter operator ([]) can be used to restrict selected resources to match a
certain predicate. To select only drugs amongst the ones applicable to a target
molecule which have been marked as approved, we could for instance use the RDF
path ”?target\drugbank:target[drugbank:drugType drugType:approved]”.
The filter operator also supports numeric comparisons. For example, to select
drugs with a molecular weight above 200, the path ”?target\drugbank:target
[drugbank:molecularWeightAverage > 200]” can be used.

2.4 Pre-Matching

To compare all pairs of entities of a source dataset S and a target dataset T would
result in an unsatisfactory runtime complexity of O(|S| · |T |). Even after using
SPARQL restrictions to select suitable subsets of each dataset, the required time
and network load to perform all pair comparisons might prove to be impractical
in many cases. To avoid this problem, we need a way to quickly find a limited
set of target entities that are likely to match a given source entity. Silk provides
this by offering rough index pre-matching.

When using pre-matching, all target resources are indexed by the values of
one or more specified properties (most commonly, their labels) before any de-
tailed comparisons are performed. During the subsequent resource comparison
phase, the previously generated index is used to look up potential matches for
a given source resource. This lookup uses the BM258 weighting scheme for the
ranking of search results and additionally supports spelling corrections of indi-
vidual words of a query. Only a limited number of target resources found in this
lookup is then considered as candidates for a detailed comparison.

An example of such a pre-matching specification that could be applied to our
drug linking example is presented in Figure 2. This directive instructs Silk to in-
dex the drugs in the target dataset by their rdfs:label and drugbank:synonym
property values. When performing comparisons, the rdfs:label of a source re-
source is used as a search term into the generated indexes and only the first ten
target hits found in each index are considered as link candidates for detailed
comparisons.

If we neglect a slight index insertion and search time dependency on the
target dataset size, we now achieve a runtime complexity of O(|S|+ |T |), making
it feasible to interlink even large datasets under practical time constraints. Note
however that this pre-matching may come at the cost of missing some links

8 http://xapian.org/docs/bm25.html

Discovering and Maintaining Links on the Web of Data 9

<PreMatchingDefinition sourcePath="?a/rdfs:label" hitLimit="10">

<Index targetPath="?b/rdfs:label" />

<Index targetPath="?b/drugbank:synonym" />

</PreMatchingDefinition>

Fig. 2. Pre-Matching

during discovery, since it is not guaranteed that a pre-matching lookup will
always find all matching target resources.

3 Evaluating Links

In real-world settings, data is often not as clean and complete as we would wish it
to be. For instance, two data sources might both support the same identification
schema, like EAN, ISBN or ISIN numbers, but due to a large number of missing
values, it is nevertheless necessary to use similarity computations in addition to
identifier matching to generate links. Such data quality problems are usually not
known in advance but discovered when a data publisher tries to compute links
pointing to a target data source. Therefore, finding a good linking heuristic is
usually an iterative process. In order to support users with this task, Silk provides
a Web interface for evaluating the correctness and completeness of generated
links. Based on this evaluation, users can fine-tune their linking specification,
for example by changing weights or applying different metrics or aggregation
functions.

3.1 Resource Comparison

The resource comparison component of the Silk web interface allows the user to
quickly evaluate links according to the currently loaded linking specification. A
screenshot of this interface is shown in Figure 3.

The user first enters a set of RDF links into the box at the top of the screen.
Silk then recomputes these links and displays the resulting similarity scores for
each link in an overview table. For further examination, a drill-down view of a
specific pair comparison can be shown by clicking on one of the table rows. This
drill-down shows in a tree-like fashion the exact parameterizations and evalua-
tions of all submetrics and aggregations employed. This information allows the
user to spot parts of the similarity evaluation which did not behave as expected.

An example drill-down of a comparison between the DrugBank and DBpedia
resources describing the drug Lorazepam is shown in Figure 4. As evident from
the illustration, the two drug entries are matched successfully with a high total
similarity score although several subcomparisons return infavorable results. For
example, the comparison of the DBpedia resource’s label with the synonyms
on the DrugBank side finds only a similarity of 0.867. However, since perfectly
matching labels exist on both sides, the <MAX> operator grouping these name-
related property comparisons evaluates to a total similarity value of 1. Similarly,

10 Discovering and Maintaining Links on the Web of Data

Fig. 3. Comparing resource pairs with the Silk web interface

due to a dataset error, the section aggregating exact numeric drug identifiers
contains a similarity value of 0 for the CAS registry numbers. This erroneously
low value is corrected by the availability of other exactly matching identifiers in
a <MAX> aggregation.

3.2 Evaluation against a Reference Linkset

A methodology that proved useful for optimizing link specifications is to man-
ually create a small reference linkset and then optimize the Silk linking specifi-
cation to produce these reference links, before Silk is run against the complete
target data source. Once such a reference linkset is available, the Silk web in-
terface provides a linkset evaluation component which allows the comparison of
generated linksets to the reference set. This component is shown in Figure 5.

Silk displays which links are missing from the generated set as well as which
resource pairs were interlinked erroneously. To give an overall indication about
the linkset quality, Silk also computes statistical measures pertaining to com-
pleteness and correctness of the generated links. A Precision value indicates the
correctness of generated links, while a Recall value measures the completeness
of discovered links. Finally, the F1-measure calculates the weighted harmonic
mean of both, providing an overall-quality measure of the linkset.

3.3 Improving the DBpedia/DrugBank Link Specification

We compared 3,134 drugs in DBpedia with 4,772 drugs in DrugBank. As a
result of applying the linking specification shown in Figure 1, Silk discovered

Discovering and Maintaining Links on the Web of Data 11

Fig. 4. Detailed drill-down into a resource pair comparison

1,227 confident links above the threshold of 0.9 and found 32 more links above
the threshold of 0.7. To evaluate the quality of the retrieved links, we created a
reference linkset pertaining to 50 drugs selected randomly from DrugBank and
found 38 manually researched links to DBpedia. We then ran Silk a second time
to find only links from these 50 selected DrugBank resources to DBpedia and
compared both the generated and the reference linkset.

The evaluation revealed 4 missing links and one incorrectly discovered link.
This corresponded to a Precision of 0.97, a Recall of 0.89 and an F1-measure of
0.93. To better understand why certain links are missing and why one link was
incorrect, we then compared their source and target resources via the resource
comparison web interface. One link was missed because of radically differing
molecular weights in both datasets. Three other missing links were not discov-
ered due to the fact that their CAS registry numbers did not match while at the
same time no other exact identifiers were present. Finally, one link was discov-
ered incorrectly since the resource labels were very similar and no other relevant
property values were present in the datasets. In a subsequent tuning of the link
specification, we mitigated the effect of a single mismatching exact identifier by
lowering the weight for the surrounding aggregation to 3 and setting a default
value of 0.85 for the IDs in the same <MAX> aggregation in case the correspond-
ing RDF properties were not available. This lowered the negative effect of a
single incorrect identifier while preserving a high rating in this <MAX> aggrega-
tion whenever a matching value is found. After this improvement, only 2 links

12 Discovering and Maintaining Links on the Web of Data

Fig. 5. Evaluating linksets with the Silk web interface

were missing, which means that we now reached a Recall value of 0.95 and an
F1-measure of 0.96.

4 Web of Data – Link Maintenance Protocol

Changes or additions in either of the interlinked datasets can invalidate existing
links or imply the need to generate new ones. With the Web of Data – Link
Maintenance Protocol (WOD-LMP), we propose a solution to this problem.

The WOD-LMP protocol automates the communication between two coop-
erating Web data sources. It assumes two basic roles: Link source and link target,
where the link source is a Web data source that publishes RDF links pointing
at data published by the target data source. The protocol covers the following
three use cases:

4.1 Link Transfer to Target

In the simplest use case, a link source wants to send a set of RDF links to the
target data source so that the target may keep track of incoming links and can
decide whether it wants to set back-links. Afterwards, the source wants to keep
the target informed about subsequent updates (i.e. additions and deletions) to
the transferred links. To achieve the transfer of the initial set of links and of
subsequently generated ones, a Link Notification message is sent to the target
data source. This notification includes the generated links along with the URL
of the WOD-LMP protocol endpoint at the source side. Single deletion of links

Discovering and Maintaining Links on the Web of Data 13

by the source is communicated to the target in a Link Deletion Notification
message, which in turn contains the link triples to be deleted.

4.2 Request of Target Change List

In this use case, the source data source asks the target to supply a list of all
changes that have occurred to RDF resources in a target dataset within a spe-
cific time period. The source may then use the provided change information for
periodic link recomputation. The protocol also provides requesting only addi-
tions, updates or deletions of resources. WOD-LMP uses incremental sequence
numbers to identify resource changes. The changes are requested by the remote
data source by sending a Get Changes message, which contains both the desired
change sequence number range as well as the desired change type filter options.
The target replies to this with a Change Notification, which lists the requested
changes together with their corresponding sequence numbers and change types.
If no upper sequence number is supplied, the target sends all changes to the
latest change.

This case of selective link recomputation requires periodic polling of the
remote data source by the source but has the advantage of working without
maintaining a persistent relationship between the linked data sources.

4.3 Subscription of Target Changes

The protocol also supports fine-grained link recomputation by monitoring the
resources in the target dataset that were used to compute links. As illustrated
in Figure 6, the source informs the target dataset via a Link Notification mes-
sage about a group of generated links and for each transferred link, supplies the
URIs of the resources in the target dataset that were used to compute the link.
The target saves this information and monitors the resources. If one of them
changes or is deleted, the target notifies the source about these changes by send-
ing a Change Notification message. The source may then use this information
to recompute affected links and possibly delete invalidated ones. In this case, it
notifies the target about deleted links with a Link Deletion Notification, which
cancels the subscription of resources relevant to these links.

The implementation of the WOD-LMP protocol is based on SOAP. The com-
plete specification of the protocol is available at http://www4.wiwiss.fu-berlin.
de/bizer/silk/wodlmp/.

The WOD-LMP protocol is used to maintain the links between DBpedia and
DrugBank. Links generated on the DrugBank side are sent and integrated into
DBpedia, while DBpedia notifies the DrugBank Silk instance about changes to
subscribed resources. This synchronization will become especially important as
DBpedia will start to utilize the Wikipedia live update stream to continuously
extract data from changed Wikipedia pages. Thus, DBpedia resources will be
continuously updated to match Wikipedia, while at the same time the DrugBank
Silk instance will be able to maintain and recompute links to DBpedia.

14 Discovering and Maintaining Links on the Web of Data

target : TargetDataset

: linkDeletionNotification(links : LinkList)

source : SourceDataset

: changeNotification(targetSeqNum : int, changes : ChangeList)

: linkNotification(endpointUri : string, links : LinkList)

Fig. 6. Subscribing to resource changes in the target data source

5 Implementation

Silk is written in Python and is run from the command line. When generating
linksets, Silk is started as a batch process. It runs as a daemon when serving
the web interface or WOD-LMP protocol endpoints. The framework may be
downloaded from Google Code9 under the terms of the BSD license. For calcu-
lating string similarities, a library from Febrl10, the Freely Extensible Biomedical
Record Linkage Toolkit, is used, while Silk’s pre-matching features are achieved
using the search engine library Xapian11. The web interface was realized with
the Werkzeug12 toolkit, while the link maintenance protocol endpoints use the
free soaplib13 library for the exchange of SOAP messages.

6 Related Work

There is a large body of related work on record linkage [7] and duplicate detection
[9] within the database community as well as on ontology matching [10] in the
knowledge representation community. Silk builds on this work by implementing
similarity metrics and aggregation functions that proved successful within other
scenarios. What distinguishes Silk from this work is its focus on the Linked Data
scenario where different types of semantic links should be discovered between
Web data sources that often mix terms from different vocabularies and where
no consistent RDFS or OWL schemata spanning the data sources exist.

Related work that also focuses on Linked Data includes Raimond et al. [11]
who propose a link discovery algorithm that takes into account both the simi-
larities of web resources and of their neighbors. The algorithm is implemented
within the GNAT tool and has been evaluated for interlinking music-related
9 http://silk.googlecode.com

10 http://sourceforge.net/projects/febrl
11 http://xapian.org
12 http://werkzeug.pocoo.org
13 http://trac.optio.webfactional.com/

Discovering and Maintaining Links on the Web of Data 15

datasets. In [12], Hassanzadeh et al. describe a framework for the discovery of
semantic links over relational data which also introduces a declarative language
for specifying link conditions. Their framework is meant to be used together with
relational database to RDF wrappers like D2R Server or Virtuoso RDF Views.
Differences between LinQL and Silk-LSL are the underlying data model and
Silk’s ability to more flexibly combine metrics through aggregation functions. A
framework that deals with instance coreferencing as part of the larger process
of fusing Web data is the KnoFuss Architecture proposed in [13]. In contrast to
Silk, KnoFuss assumes that instance data is represented according to consistent
OWL ontologies.

Furthermore, approaches to track changes and updates in Linked Data sources
include PingtheSemanticWeb14, a central registry for Web of Data documents
which offers XML-RPC and REST APIs to notify the service about new or
changed documents. A further approach to making change information available
is proposed by Auer et al. and implemented in Triplify[14]. Similar to the second
WOD-LMP use case, change information is requested on a peer-to-peer basis in-
stead of being aggregated into a central registry, such as PingtheSemanticWeb.
This approach is also implemented by DSNotify[15], which runs as an add-on to
a local data source and uses indexes to track resource changes. DSNotify sup-
ports the active notification of subscribers as well as providing change data on
demand. It further uses heuristics to determine the cause of a resource change
and whether a deleted link target has become available under a different URI.

7 Conclusion

We presented the Silk framework, a flexible tool for discovering links between en-
tities within different Web data sources. The Silk-LSL link specification language
was introduced and its applicability was demonstrated within a life science use
case. We then proposed the WOD-LMP protocol for synchronizing and main-
taining links between continuously changing Linked Data sources.

Future work on Silk will focus on the following areas: We will implement
further similarity metrics to support a broader range of linking use cases. To as-
sist users in writing Silk-LSL specifications, machine learning techniques could
be employed to adjust weightings or optimize the structure of the matching
specification. Finally, we will evaluate the suitability of Silk for detecting dupli-
cate entities within local datasets instead of using it to discover links between
disparate RDF data sources.

The value of the Web of Data rises and falls with the amount and the quality
of links between data sources. We hope that Silk and other similar tools will
help to strengthen the linkage between data sources and therefore contribute to
the overall utility of the network.

The complete Silk – LSL language specification, WoD Link Maintenance
Protocol specification and further Silk usage examples are found on the Silk
project website at http://www4.wiwiss.fu-berlin.de/bizer/silk/.
14 http://pingthesemanticweb.com

16 Discovering and Maintaining Links on the Web of Data

References

1. Berners-Lee, T.: Linked Data - Design Issues.
http://www.w3.org/DesignIssues/LinkedData.html

2. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story So Far. Journal on
Semantic Web and Information Systems (in press), 2009.

3. Bizer, C., Cyganiak, R., Heath, T.: How to publish Linked Data on the Web.
http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial/

4. Bizer, C., et al.: DBpedia - A Crystallization Point for the Web of
Data. Journal of Web Semantics: Sci. Serv. Agents World Wide Web,
doi:10.1016/j.websem.2009.07.002, 2009.

5. Jentzsch, A., et al.: Enabling Tailored Therapeutics with Linked Data. In: Proceed-
ings of the 2nd Workshop about Linked Data on the Web, 2009.

6. Jaro, M.: Advances in Record-linkage Methodology as Applied to the 1985 Census
of Tampa, Florida. Journal of the American Statistical Society, 84(406):414-420,
1989.

7. Winkler, W.: Overview of Record Linkage and Current Research Directions. Bureau
of the Census - Research Report Series, 2006.

8. Zhong, J., et al.: Conceptual Graph Matching for Semantic Search. The 2002 Inter-
national Conference on Computational Science, 2002.

9. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate Record Detection: A
Survey. IEEE Transactions on Knowledge and Data Engineering, 19(1):1-16, 2007.

10. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg, 2007.
11. Raimond, Y., Sutton, C., Sandler, M.: Automatic Interlinking of Music Datasets

on the Semantic Web. In: Proceedings of the 1st Workshop about Linked Data on
the Web, 2008.

12. Hassanzadeh, O., et al.: Semantic Link Discovery Over Relational Data. Proceed-
ings of the 18th ACM Conference on Information and Knowledge Management,
2009.

13. Nikolov, A., et al.: Integration of Semantically Annotated Data by the KnoFuss Ar-
chitecture. In: 16th International Conference on Knowledge Engineering and Knowl-
edge Management, 265-274, 2008.

14. Auer, S., et al.: Triplify – Light-Weight Linked Data Publication from Relational
Databases. In: Proceedings of the 18th International World Wide Web Conference,
2009.

15. Haslhofer, B., Popitsch, N.: DSNotify – Detecting and Fixing Broken Links in
Linked Data Sets. In: Proceedings of 8th International Workshop on Web Semantics,
2009.

