
Managing Uncertainty in Schema Matcher
Ensembles

Anan Marie and Avigdor Gal

Technion – Israel Institute of Technology
{sananm@cs,avigal@ie}.technion.ac.il

Abstract. Schema matching is the task of matching between concepts
describing the meaning of data in various heterogeneous, distributed data
sources. With many heuristics to choose from, several tools have enabled
the use of schema matcher ensembles, combining principles by which
different schema matchers judge the similarity between concepts. In this
work, we investigate means of estimating the uncertainty involved in
schema matching and harnessing it to improve an ensemble outcome.
We propose a model for schema matching, based on simple probabilistic
principles. We then propose the use of machine learning in determining
the best mapping and discuss its pros and cons. Finally, we provide a
thorough empirical analysis, using both real-world and synthetic data,
to test the proposed technique. We conclude that the proposed heuristic
performs well, given an accurate modeling of uncertainty in matcher
decision making.

1 Introduction

Schema matching is the task of matching between concepts describing the mean-
ing of data in various heterogeneous, distributed data sources. It is recognized
to be one of the basic operations required by the process of data and schema
integration [21], and thus has a great impact on its outcome.

Research into schema matching has been going on for more than 25 years
now (see surveys such as [25] and various online lists, e.g., OntologyMatching,1)
first as part of a broader effort of schema integration and then as a standalone re-
search. Due to its cognitive complexity, schema matching has been traditionally
considered to be AI-complete, performed by human experts [15]. The move from
manual to semi-automatic schema matching has been justified in the literature
using arguments of scalability (especially for matching between large schemata
[14]) and by the need to speed-up the matching process. Researchers also argue
for moving to fully-automatic (that is, unsupervised) schema matching in set-
tings where a human expert is absent from the decision process. In particular,
such situations characterize numerous emerging applications triggered by the
vision of the Semantic Web and machine-understandable Web resources [26]. In
these applications, schema matching is no longer a preliminary task to the data
integration effort, but rather ad-hoc and incremental.
1 http://www.ontologymatching.org/

The AI-complete nature of the problem dictates that semi-automatic and
automatic algorithms for schema matching will be of heuristic nature at best.
Over the years, a significant body of work was devoted to the identification
of schema matchers, heuristics for schema matching. Examples of algorithmic
tools providing means for schema matching include COMA [6] and OntoBuilder
[13], to name but a couple. The main objective of schema matchers is to pro-
vide schema mappings that will be effective from the user point of view, yet
computationally efficient (or at least not disastrously expensive). Such research
has evolved in different research communities, including databases, information
retrieval, information sciences, data semantics, and others.

Although these tools comprise a significant step towards fulfilling the vi-
sion of automated schema matching, it has become obvious that the consumer
of schema matchers must accept a degree of imperfection in their performance
[4, 12]. A prime reason for this is the enormous ambiguity and heterogeneity of
data description concepts: It is unrealistic to expect a single schema matcher to
identify the correct mapping for any possible concept in a set. This argument
has also been validated empirically [12]. Another (and probably no less crucial)
reason is that “the syntactic representation of schemas and data do not com-
pletely convey the semantics of different databases” [22]; i.e., the description of
a concept in a schema can be semantically misleading. [2] went even further, ar-
guing philosophically that even if two schemata fully agree on the semantics and
the language is rich enough, schemata may still not convey the same meaning,
due to some hidden semantics, beyond the scope of the schemata. Therefore, [18]
argues that “[w]hen no accurate mapping exists, the issue becomes choosing the
best mapping from the viable ones.”

Choosing a heuristic that can stand up to this challenge is far from being triv-
ial. The number of schema matchers is continuously growing, and this diversity
by itself complicates the choice of the most appropriate tool for a given applica-
tion domain. In fact, due to effectively unlimited heterogeneity and ambiguity of
data description, it seems unavoidable that optimal mappings for many pairs of
schemata will be considered as “best mappings” by none of the existing schema
matchers. Striving to increase robustness in the face of the biases and short-
comings of individual matchers, several tools have enabled the use of schema
matcher ensembles,2 combining principles by which different schema matchers
judge the similarity between concepts. The idea is appealing since an ensemble of
complementary matchers can potentially compensate for the weaknesses of each
other. Indeed, several studies report on encouraging results when using schema
matcher ensembles (e.g., see [6, 19, 8]).

In this work, we investigate means of estimating the uncertainty involved
in schema matching and harnessing it to improve an ensemble outcome. We
propose a model for schema matching, based on simple probabilistic principles.
We then propose the use of machine learning in determining the best mapping
and discuss its pros and cons. Finally, we provide a thorough empirical analysis,
using both real-world and synthetic data, to test the proposed technique.

2 The term ensemble is borrowed from [14, 8].

The specific contribution of this work are as follows:

– On a conceptual level, we provide a new model for schema matching, ex-
plaining the process uncertainty using simple probabilistic terms.

– We propose a new schema matching heuristic for combining existing schema
matchers. The heuristic utilizes a näıve Bayes classifier, a known machine
learning technique. While näıve Bayes classifiers were introduced before in
the schema matching research, this technique was never applied to schema
matcher ensembles.

– We present a thorough empirical analysis of the model and the heuristic,
using a large data set of 230 real-world schemata as well as synthetic data.
Our comparative analysis shows that the proposed heuristic performs well,
given an accurate modeling of uncertainty in matcher decision making.

The rest of the paper is organized as follows. Section 2 presents the schema
matching model. Section 3 introduces the new heuristic, followed by a compar-
ative empirical analysis in Section 4. We conclude with an overview of related
work (Section 5) and future research directions (Section 6).

2 Model

Let schema S = {A1, A2, ..., An} be a finite set of some attributes. We set no
particular limitations on the notion of schema attributes; attributes can be both
simple and compound, compound attributes should not necessarily be disjoint,
etc. For any schemata pair S and S′, let S = S × S′ be the set of all possible
attribute mappings between S and S′. Let M (S, S′) be an n × n′ similarity
matrix over S, where Mi,j represents a degree of similarity between the i-th
attribute of S and the j-th attribute of S′. The majority of works in the schema
matching literature define Mi,j to be a real number in (0, 1). M (S, S′) is a binary
similarity matrix if for all 1 ≤ i ≤ n and 1 ≤ j ≤ n′, Mi,j ∈ {0, 1}.

Schema matchers are instantiations of the schema matching process. Schema
matchers differ in the way they encode the application semantics into M . Some
matchers (e.g., [27]) assume similar attributes are more likely to have similar
names. Other matchers (e.g., [19]) assume similar attributes share similar do-
mains. Others yet (e.g., [3]) take instance similarity as an indication to attribute
similarity.

Let Σ be a set of possible schema mappings, where a schema mapping σ ∈ Σ
is a set of attribute mappings, σ ⊆ S. Definition 1 defines the output of a schema
matching process in terms of matrix satisfiability.

Definition 1 (Matrix Satisfaction). Let M (S, S′) be an n × n′ similarity
matrix over S and let σ be a set of schema mappings. A schema mapping σ ∈ Σ
is said to satisfy M (S, S′) (denoted σ |= M (S, S′)) if

(
Ai, A

′
j

)
∈ σ → Mi,j > 0.

σ ∈ Σ is said to maximally satisfy M (S, S′) if σ |= M (S, S′) and for each
σ′ ∈ Σ such that σ′ |= M (S, S′), σ′ ⊂ σ.

Fig. 1. Illustration of Matcher Behavior

We can therefore define the output of a schema matching process to be a
similarity matrix M (S, S′) and derive the output schema mapping to be σ ∈ Σ
that maximally satisfies M (S, S′). Handling constraints such as 1 : 1 cardinality
constraints can be done by matrix manipulation, a topic which is beyond the
scope of this paper.

When encoding the application semantic in a similarity matrix, a matcher
would be inclined to put a value of 0 for each pair it conceives not to match,
and a similarity measure higher than 0 (and probably closer to 1) for those
attribute matches that are conceived to be correct. This tendency, however, is
masked by “noise,” whose sources are rooted in missing and uncertain informa-
tion. Therefore, instead of expecting a binary similarity matrix, with a 0 score
for all incorrect attribute mappings and a unit score for all correct attribute
mappings, we would expect the values in a similarity matrix to form two proba-
bility distributions over [0, 1], one for incorrect attribute mappings (with higher
density around 0), and another for correct mappings.

Figure 1 provides an empirical validation for our hypothesis, based on more
than 106,000 attribute mappings of 115 ontology pairs.3 Figure 1(a) shows a
distribution with a higher density around 0 that represents the similarity values
that were assigned to incorrect attribute mappings by an OntoBuilder algorithm
dubbed Precedence [13]. Figure 1(b) reflects a set of normalized similarity values
of correct attribute mappings. Normalization was achieved by dividing all simi-
larity values in a matrix by the highest value in that matrix. Figure 1 illustrates

3 Detailed description of the data set we have used is given in Section 4.2.

that for this data set our hypothesis indeed stands and matchers indeed choose
similarity values using two different distributions. Figure 1(c) and Figure 1(d)
were generated using a beta distribution. According to [24]: “[t]he beta distribu-
tion can be used to model a random phenomenon whose set of possible values
is in some finite interval [c, d]—which by letting c denote the origin and taking
d− c as a unit measurement can be transformed into the interval [0, 1].” A beta
distribution has two tuning parameters, a and b. To receive a density function
that is skewed to the left (as in the case of false attribute mappings, Figure 1(c))
we require that b > a. For right skewed density functions (as in the case of true
attribute mappings, Figure 1(d)) one needs to set a > b. Based on the training
data, and using a confidence level of 95% (α = 0.05), the a value of the distri-
bution of incorrect values is 2.3010 with a confidence interval of [2.2827, 2.3192].
We also have b = 13.1242 with a confidence interval [13.0413, 13.2072]. The
confidence levels of the distribution of the correct attribute mappings are less
concentrated. We have a = 0.6071 with a confidence interval of [0.4871, 0.7270]
and b = 0.1739 with a confidence interval of [0.1680, 0.1798].

Consider a set of m schema matcher outputs
{
M (1), . . . ,M (m)

}
between two

schemata S and S′. M
(l)
i,j is the degree of similarity that matcher l associates with

mapping the i-th attribute of S to the j-th attribute of S′. A schema matching
ensemble is a set of schema matchers. An ensemble aggregates the similarities
assigned by individual matchers to reason about the resulting aggregated ranking
of alternative mappings. Such an aggregation can be modeled in various ways,
one of which is presented next.

3 Näıve Bayes Heuristic

In this section we present a new heuristic for schema matching, using our schema
matching model, presented in Section 2. Recall that the values in a similarity
matrix are assumed to form two probability distributions over [0, 1], one for
incorrect attribute mappings and another for correct mappings (see Figure 1).
The näıve Bayes heuristic attempts, given a similarity degree, to use Bayes
theorem to classify an attribute mapping to one of the two groups. The näıve
Bayes method is a simple probabilistic classifier that applies Bayes theorem
under a strong (näıve) independence assumptions.

Given an attribute mapping (Ai, Aj) and an ensemble of matchers’ output{
M (1),M (2), ...,M (m)

}
, a feature vector of (Ai, Aj) is defined to be

〈
M

(1)
i,j ,M

(2)
i,j , ...,M

(m)
i,j

〉
,

where M
(l)
i,j is the (i, j) similarity value of M (l). Let F be an m dimension feature

space. We would like to predict the most likely target value (v = +1 or v = −1),
based on the observed data sample. +1 stands for a correct mapping while −1
stands for an incorrect mapping. Formally, our target function is

fc : F → {+1,−1} (1)

The Bayesian approach to classifying a new instance (attribute mapping in our
case) is to assign the most probable target value, vMAP , given the attribute

values
〈
M

(1)
i,j ,M

(2)
i,j , ...,M

(m)
i,j

〉
that describe the instance:

vMAP = argmaxvj∈{+1,−1}P
{

vj |M (1)
i,j ,M

(2)
i,j , ...,M

(m)
i,j

}
(2)

Eq. 2, together with Bayes theorem and under the simplifying assumption that
the similarity values are conditionally independent given the target value, is used
to specify the target value output of the näıve Bayes classifier vNB to be:

vNB = argmaxvj∈{+1,−1}P {vj}
m∏

l=1

P
{

M
(l)
i,j |vj

}
(3)

P {vj} is estimated by counting the frequency with which each target value

vj ∈ {+1,−1} occurs in the training dataset. P
{

M
(l)
i,j |vj

}
, the probability to

observe a mapping with similarity degree equal to M
(l)
i,j given that the mapping is

correct/incorrect is taken from the estimated distribution of correct and incorrect
mappings, as suggested in Section 2.

Example 1. To illustrate the näıve Bayes heuristic, consider a näıve Bayes classi-
fier with two matchers (a bivariate instance space). Each mapping is represented
by a vector of length 2, consisting of the similarity values of the Precedence
and Graph matchers. Figure 1 provides an illustration of the two Precedence
matcher distributions used by the classifier and Table 1 (Section 4.2) provides
the tuning parameters for the distributions. The number of training negative
mappings is Nneg = 104387 and the number of positive training mappings
is Npos = 1706. Consider a new mapping pair with a similarity value vector−→µ = 〈µprec, µgraph〉 = 〈0.5, 0.6〉 and assume that the maximum values in the
Precedence and Graph similarity matrices are maxprec

µ = 0.6 and maxgraph
µ = 0.8,

respectively. The probability of the mapping to be negative, given the vector of
similarity measures −→µ = 〈0.5, 0.6〉 is

P (neg|−→µ) =
Nneg

Nneg + Npos
· Pα

prec
neg ,β

prec
neg

(µprec) · Pα
graph
neg ,β

graph
neg

(µgraph) (4)

=
104387

104387 + 1706
· 0.0097 · 0.0034 = 3.2449e − 005 (5)

where Pαprec
neg ,βprec

neg
and Pαgraph

neg ,βgraph
neg

are the density functions of the beta distri-
butions of the Precedence and Graph matchers, respectively. To evaluate the
probability of the given mapping to be positive, one needs to first normal-
ize the values in −→µ yielding a vector −→µ ′ = 〈µ′prec, µ

′
graph〉 = 〈 0.5

0.6 , 0.6
0.8 〉, fol-

lowed by calculating Npos

Nneg+Npos
·Pαprec

pos ,βprec
pos

(µ′prec) ·Pαgraph
pos ,βgraph

pos
(µ′graph), yield-

ing P (pos|〈0.83, 0.75〉) = 0.0057. Therefore, the näıve Bayes heuristic will deter-
mine this mapping to be positive.

The time complexity of the näıve Bayes heuristic is O(n2), since each entry
in the matrix requires a constant number of computations. As a final comment,
it is worth noting that the näıve Bayes heuristic no longer guarantees, in an by
itself, a 1 : 1 cardinality constraint. To enforce this requirements, a constraint
enforcer [16], such as an algorithm for solving Maximum Weight Bipartite Graph
problem, should be applied to the resulting binary matrix of the heuristic.

4 Experiments

We now present an empirical evaluation of our heuristic. We report in details
on our experimental setup (Section 4.1), the data that was used (Section 4.2),
and the evaluation methodology (Section 4.3). We then present in Section 4.4
the experiment results and provide an empirical analysis of these results.

4.1 Experiment setup

In our experiments we have used three matchers, briefly discussed below. De-
tailed description of these matchers can be found in [13]:

Term: Term matching compare attribute names to identify syntactically simi-
lar terms. To achieve better performance, terms are preprocessed using sev-
eral techniques originating in IR research. Term matching is based on either
complete word or string comparison.

Composition: A composite term is composed of other terms (either atomic
or composite). Composition can be translated into a hierarchy. Similarity is
determined based on the similarity of their neighbors.

Precedence: In any interactive process, the order in which data are provided
may be important. In particular, data given at an earlier stage may restrict
the availability of options for a later entry. When matching two terms, we
consider each of them to be a pivot within its own schema, thus partitioning
the graph into subgraphs of all preceding terms and all succeeding terms.
By comparing preceding subgraphs and succeeding subgraphs, we determine
the confidence strength of the pivot terms.

The näıve Bayes heuristic uses each of the three matchers as input to its
feature vector. The Näıve Bayes heuristic was implemented using Java 2 JDK
version 1.5.0 09 environment, using an API to access OntoBuilder’s matchers
and get the output matrices.

We have also experimented with each of the three matchers and a weighted
linear combination of them into a combined matcher. This combination also
included a fourth matcher, called Value, which uses the domain of attributes
as evidence to their similarity. The combined matcher is clearly dependent on
the other matchers and therefore violates the näıve Bayes heuristic assumption.
The experiments were run on a laptop with Intel Centrino Pentium m, 1.50GHz
CPU, 760MB of RAM Windows XP Home edition OS.

4.2 Data

For our experiments, we have selected 230 Web forms from different domains,
such as dating and matchmaking, job hunting, Web mail, hotel reservation, news,
and cosmetics. We extracted each Web form ontology (containing the schema
and composition and precedence ontological relationships) using OntoBuilder.
We have matched the Web forms in pairs (115 pairs), where pairs were taken

from the same domain, and generated the exact mapping for each pair.4 The
ontologies vary in size and the proportion of number of attribute pairs in the
exact mapping relative to the target ontology. Another dimension is the size
difference between matched ontologies.

We ran the four matchers and generated 460 matrices. For each such matrix,
we have applied an algorithm for solving Maximum Weight Bipartite Graph
problem, to generate a 1 : 1 schema mapping, as a baseline comparison.

Matcher αpos βpos αneg βneg

Term 0.2430 0.0831 0.2951 4.6765

Graph 0.4655 0.1466 0.8360 9.1653

Precedence 0.6071 0.1739 2.3010 13.1242

Combined 0.6406 0.2040 2.6452 16.3139
Table 1. Beta parameters

In addition, we have generated 100 synthetic schema pairs. For each pair S
and S′ we have uniformly selected its schema sizes from the range [30, 60]. As an
exact mapping we selected a set of n mapping pairs, where n takes one of three
possible values, n1 = min (|S| , |S′|), n2 = 0.5n1, and n3 = 2n1. For n1 we have
enforced a 1 : 1 cardinality constraint. n2 represents a situation in which not
all attributes can be mapped and n3 represents a matching that is not of 1 : 1
cardinality. Then, using the beta distributions learned from the training data for
each of the four matchers we have created, for each schema pair, four synthetic
matrices, one per a matcher using a beta generator class cern.jet.random.Beta
distributed with colt.jar jar file. The entries of a matrix use (αpos, βpos) and
(αneg, βneg) parameters (See Table 1) for the beta distribution of the positive
mapping measures and the negative mapping measures, respectively.

4.3 Evaluation methodology

We use two main evaluation metrics, namely Precision and Recall. Precision
is computed as the ratio of correct element mappings, with respect to some
exact mapping, out of the total number of element mappings suggested by the
heuristic. Recall is computed as the ratio of correct element mappings, out of
the total number of element mappings in the exact mapping. Both Recall and
Precision are measured on a [0, 1] scale. An optimal schema matching results in
both Precision and Recall equal to 1. Lower precision means more false positives,
while lower recall suggests more false negatives. To extend Precision and Recall to
the case of non 1 : 1 mappings, we have adopted a correctness criteria according
to which any attribute pair that belongs to the exact mapping is considered to
be correct, even if the complex mapping is not fully captured. This method aims
at compensating the matchers for the 1 : 1 cardinality enforcement.
4 All ontologies and exact mappings are available for download from the OntoBuilder

Web site, http://ie.technion.ac.il/OntoBuilder).

It is worth noting that our test was conducted on a wide range of real-world
schemata. Such a real world challenge was tried at the 2006 OAEI ontology
matching evaluation [10] with average performance of 39.25% Precision, 40.40%
Recall, and 39.82% F-Measure.5

4.4 Results and analysis

We are now ready to present our results and empirical analysis. We present a
comparative analysis of the proposed heuristic with existing heuristics, using the
full data set. We then analyze two obstacles in successfully using the heuristic
and describe two additional experiments, aimed at evaluating the impact of each
such obstacle on the heuristic performance.

Comparative Performance Analysis In our first experiment we provide a
comparative analysis of the performance of the näıve Bayes heuristic with four
heuristics that enforce a mapping cardinality of 1 : 1. Figure 2 illustrates the
results. The x axis represents the four different data sets, with Precision on the
y axis in Figure 2(left) and Recall in Figure 2(right).

Fig. 2. Comparative Performance Analysis

In terms of Precision, the näıve Bayes heuristic outperforms all other heuris-
tics. For the real data set, this improvement in Precision comes at the cost of
Recall. This disadvantage disappears in the simulated data, where the näıve
Bayes heuristic dominates other heuristics, even for the simulated data with n1,
where the 1 : 1 cardinality constraint holds (although not enforced for the pro-
posed heuristic). For this case, the Graph heuristic comes in very close behind.

Two main reasons may explain this behavior. First, the näıve assumption
of independence does not hold in our case, since OntoBuilder heuristics are all
heavily based on syntactic comparisons. Second, it is possible that the training
data set, based on which the beta distributions are determined, does not serve

5 See http://keg.cs.tsinghua.edu.cn/project/RiMOM/oaei2006/main.html for details.

Fig. 3. Illustration of Matcher Behavior after Outlier Elimination

as a good estimator for the matchers decision making. We shall now investigate
these hypotheses in more depth.

Cleaning the Data In this experiment we have eliminated from the real-
world data set some of the matrices that have a high percentage of outliers. In
statistics, an outlier is an observation that is numerically distant from the rest of
the data. Outliers in our matrices involve correct attribute mappings with very
low similarity measures and incorrect attribute mappings with relatively high
similarity measures. To compute (either positive or negative) outliers, we define
Q1 and Q3 to be first and third quartiles, respectively, over all the similarity
measures of the positive (negative) mappings, and IQR to be the interquartile
range Q3−Q1. An outlier is a mapping that its similarity measure µ < Q1−1.5 ·
IQR or µ > Q3+1.5 ·IQR. We have ranked all the Combined heuristic matrices
in a decreasing order of outlier numbers and chose the top 51 schema pairs (153
matrices), based on which we have regenerated the beta distributions for all
heuristics. Figure 3 presents the beta distribution of the Preference heuristic
for the new data set. Compared with Figure 1, we see that the distribution of
normalized values of correct attribute mappings remain stable. The distribution
of incorrect attribute mappings is tighter here, yielding lower variance. As a
result, we expect less false negatives and increasing Recall. The confidence levels
of the new distributions reveal a slightly different story. Again, we are looking
at a confidence level of α = 0.05. For the incorrect attribute mappings we have
a = 3.3045 with a confidence interval of [3.2680, 3.3409] and b = 26.8633 with
a confidence interval of [26.5499, 27.1768]. For correct attribute mappings, a =

0.5831 with a confidence interval of [0.4076, 0.7586] and b = 0.2 with a confidence
interval of [0.191, 0.209]. For all parameters, we observe an increased confidence
interval, suggesting a possibly higher rate in probability estimation.

Matcher Change in Precision Change in Recall

Term −8.13% −5.97%

Graph −8.97% −8.88%

Precedence −7.15% −6.37%

Combined −8.76% −9.06%

NB −4.28% 1.93%
Table 2. Change of Precision and Recall between Data Sets

Table 2 summarizes the changes in Precision and Recall between the full
data set and the reduced one. The results show that indeed Recall was increased
for the näıve Bayes heuristic. It comes at the cost of Precision, indicating an
increase in the number of false positives in parallel. A somewhat surprising result
was that all other matchers performed worse on the reduced set. In any event,
these changes were not extremely big, which leads us to hypothesize that the
näıve Bayes heuristic performance in both data sets was impaired by the invalid
assumption of matcher independence.

Simulating Matcher Independence To test the performance of the näıve
Bayes heuristic in a setting of matcher independence, we have used the syn-
thetic matrices. In this synthetic data sets, while all values in each matrix were
generated using the same distribution, a specific attribute pair is assigned a value
by a matcher independently of other matchers.

A comparison of the performance of the näıve Bayes heuristic with the same
three heuristics we have used before are given in Figure 2 above. We observe
that Precision improves for all matchers, when using the synthetic data and
keeping the 1 : 1 cardinality constraints. This is most likely due to the way
the matrices are generated. The amount of improvement depends on the beta
distribution parameters of each matcher. For example, the Term matcher has a
weaker distinction between correct and incorrect mappings, yielding less accurate
prediction. This may also explain the reduced Recall for the Term matcher, while
all other matchers increase their Recall measure.

The näıve Bayes heuristic dominates the other matchers for all synthetic
data, indicating that indeed the matcher independence assumption serves as
an obstacle to better performance. Another interesting observation involves the
ability of the näıve Bayes heuristic to manage non 1 : 1 mappings. The other
four matchers show a sharp decline in Precision for n2, since about half of their
attribute mappings are bound to be incorrect. For n3 we see an increase in
Precision, since the range of possibilities of mapping correctly has significantly
increased. For Recall, we see deterioration with the n3 data set, due to the

inability of these matchers to choose attributes that violate the 1 : 1 cardinality
constraint. We note that the näıve Bayes heuristic maintains an almost perfect
Precision and Recall for all three synthetic data sets, which means, among other
things, that the specific method for measuring Precision and Recall for the n2

and n3 data sets could not affect the true effectiveness of the heuristic.

5 Related Work

In this section we focus on two specific aspects that are most relevant to this
work, namely uncertainty management in schema matching and the use of ma-
chine learning in schema matching.

5.1 Uncertainty Management

Attempts to provide clear semantics to schema matching involves model theory
for schema mappings [1, 18, 2]. In [1] mappings were represented using schema
morphisms in categories. Roughly speaking, a category is a collection of schemata
and their inter-schema mappings, represented as a morphisms. A morphism can
be composed in an associative manner. Morphisms are designed so that they
preserve integrity constraints among schemata. The work in [18] provides explicit
semantics to mappings, using models and satisfiability. [2] provides a formal
model of schema matching for topic hierarchies, rooted directed trees, where
a node has a “meaning,” generated using some ontology. A schema matcher
(schema matching method in the authors own terminology) is a function from a
mapping to a boolean variable. The limitations in this line of models, with respect
to uncertainty modeling was presented in [18, 2] and discussed in Section 1.

The research described in [12] proposes a model that represents uncertainty
(as a measure of imprecision) in the matching process outcome. In [11], building
on the results of [12], the current “best mapping” approach was extended into
one that considers top-K mappings as an uncertainty management tool. In this
work, we propose a model for estimating the level of uncertainty in matcher
decision making and offer a heuristic to harness uncertainty and improve on
existing matching methods.

5.2 Machine Learning and Schema Matching

Machine learning has been used for schema matching in several works. Autoplex
[3], LSD [7], and iMAP [5] use a näıve Bayes classifier to learn attribute map-
pings probabilities using instance training set. SEMINT [17] use neural networks
to identify attribute mappings. APFEL [9] determine heuristic weights in an en-
semble and threshold levels using various machine learning techniques, namely
decision trees in general and C4.5 in particular, neural networks, and support
vector machines. C4.5 was also used in [28], using WordNet relationships as fea-
tures. sPLMap [23] use näıve Bayes, kNN, and KL-distance as content-based
classifiers. All these works applied machine learning directly to the schemata,
while our approach is to apply it to the similarity matrix outcome.

6 Conclusions

In this work we have presented a heuristic for schema matching, based on a prob-
abilistic model of matchers and a well-known machine learning classifier. We have
empirically analyzed the properties of the näıve Bayes heuristic using both real
world and synthetic data. Our empirical analysis shows that the proposed heuris-
tic performs well, given an accurate modeling of uncertainty in matcher decision
making. We have also discussed the current limitations of the heuristic, and in
particular its näıve assumption regarding matcher independence. Therefore, fu-
ture research involves fine tuning the similarity measure distribution estimation.
We will also look into more advanced methods (e.g., discriminant analysis [20])
that do away with the independence assumption of the näıve Bayes classifier.

References

[1] S. Alagic and P. Bernstein. A model theory for generic schema management.
In Database Programming Languages, 8th International Workshop, DBPL 2001,
Frascati, Italy, September 8-10, 2001, pages 228–246, 2001.

[2] M. Benerecetti, P. Bouquet, and S. Zanobini. Soundness of schema matching
methods. In Proceedings of ESWC 2005, pages 211–225, 2005.

[3] J. Berlin and A. Motro. Autoplex: Automated discovery of content for virtual
databases. In C. Batini, F. Giunchiglia, P. Giorgini, and M. Mecella, editors, Coop-
erative Information Systems, 9th International Conference, CoopIS 2001, Trento,
Italy, September 5-7, 2001, Proceedings, volume 2172 of Lecture Notes in Computer
Science, pages 108–122. Springer, 2001.

[4] P. Cudré-Mauroux et al. Viewpoints on emergent semantics. Journal on Data
Semantics, 6:1–27, 2006.

[5] R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and P. Domingos. imap: Discover-
ing complex mappings between database schemas. In Proceedings of the ACM-
SIGMOD conference on Management of Data (SIGMOD), pages 383–394, 2004.

[6] H. Do and E. Rahm. COMA - a system for flexible combination of schema match-
ing approaches. In Proceedings of the International conference on Very Large Data
Bases (VLDB), pages 610–621, 2002.

[7] A. Doan, P. Domingos, and A. Halevy. Reconciling schemas of disparate data
sources: A machine-learning approach. In W. G. Aref, editor, Proceedings of the
ACM-SIGMOD conference on Management of Data (SIGMOD), pages 509–520,
Santa Barbara, California, May 2001. ACM Press.

[8] C. Domshlak, A. Gal, and H. Roitman. Rank aggregation for automatic schema
matching. IEEE Transactions on Knowledge and Data Engineering (TKDE),
19(4):538–553, 2007.

[9] M. Ehrig, S. Staab, and Y. Sure. Bootstrapping ontology alignment methods with
apfel. In The Semantic Web - ISWC 2005, 4th International Semantic Web Con-
ference, ISWC 2005, Galway, Ireland, November 6-10, 2005, Proceedings, pages
186–200, 2005.

[10] J. Euzenat, M. Mochol, O. Svab, V. Svatek, P. Shvaiko, H. Stuckenschmidt, W. van
Hage, and M. Yatskevich. Introduction to the ontology alignment evaluation 2006.
In Proceedings of Ontology Matching 2006 Workshop at ISWC’06, 2006.

[11] A. Gal. Managing uncertainty in schema matching with top-k schema mappings.
Journal of Data Semantics, 6:90–114, 2006.

[12] A. Gal, A. Anaby-Tavor, A. Trombetta, and D. Montesi. A framework for modeling
and evaluating automatic semantic reconciliation. VLDB Journal, 14(1):50–67,
2005.

[13] A. Gal, G. Modica, H. Jamil, and A. Eyal. Automatic ontology matching using
application semantics. AI Magazine, 26(1):21–32, 2005.

[14] B. He and K.-C. Chang. Making holistic schema matching robust: an ensemble
approach. In Proceedings of the Eleventh ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Chicago, Illinois, USA, August 21-24,
2005, pages 429–438, 2005.

[15] R. Hull. Managing semantic heterogeneity in databases: A theoretical perspective.
In Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS), pages 51–61. ACM Press, 1997.

[16] Y. Lee, M. Sayyadian, A. Doan, and A. Rosenthal. eTuner: tuning schema match-
ing software using synthetic scenarios. VLDB Journal, 16(1):97–122, 2007.

[17] W.-S. Li and C. Clifton. SEMINT: A tool for identifying attribute correspon-
dences in heterogeneous databases using neural networks. Data & Knowledge
Engineering, 33(1):49–84, 2000.

[18] J. Madhavan, P. Bernstein, P. Domingos, and A. Halevy. Representing and rea-
soning about mappings between domain models. In Proceedings of the Eighteenth
National Conference on Artificial Intelligence and Fourteenth Conference on In-
novative Applications of Artificial Intelligence (AAAI/IAAI), pages 80–86, 2002.

[19] J. Madhavan, P. Bernstein, and E. Rahm. Generic schema matching with Cupid.
In Proceedings of the International conference on Very Large Data Bases (VLDB),
pages 49–58, Rome, Italy, Sept. 2001.

[20] G. Marcoulides and S. Hershberger. Multivariate Statistical Methods. Lawrence
Erlbaum Associates, 1997.

[21] S. Melnik. Generic Model Management: Concepts and Algorithms. Springer-
Verlag, 2004.

[22] R. Miller, L. Haas, and M. Hernández. Schema mapping as query discovery. In
A. E. Abbadi, M. Brodie, S. Chakravarthy, U. Dayal, N. Kamel, G. Schlageter,
and K.-Y. Whang, editors, Proceedings of the International conference on Very
Large Data Bases (VLDB), pages 77–88. Morgan Kaufmann, 2000.

[23] H. Nottelmann and U. Straccia. Information retrieval and machine learning
for probabilistic schema matching. Information Processing and Management,
43(3):552–576, 2007.

[24] S. Ross. A First Course in Probability. Prentice Hall, 5 edition, 1997.
[25] P. Shvaiko and J. Euzenat. A survey of schema-based matching approaches. Jour-

nal of Data Semantics, 4:146 – 171, Dec. 2005.
[26] B. Srivastava and J. Koehler. Web service composition - Current solutions and

open problems. In Workshop on Planning for Web Services (ICAPS-03), Trento,
Italy, 2003.

[27] W. Su, J. Wang, and F. Lochovsky. Aholistic schema matching for web query
interfaces. In Advances in Database Technology - EDBT 2006, 10th International
Conference on Extending Database Technology, Munich, Germany, March 26-31,
2006, Proceedings, pages 77–94, 2006.

[28] L. Xu and D. Embley. A composite approach to automating direct and indirect
schema mappings. Information Systems, 31(8):697–886, Dec. 2006.

