
Boosting Schema Matchers

Anan Marie and Avigdor Gal

Technion – Israel Institute of Technology
32000, Israel

{sananm@cs,avigal@ie}.technion.ac.il

Abstract. Schema matching is recognized to be one of the basic op-
erations required by the process of data and schema integration, and
thus has a great impact on its outcome. We propose a new approach
to combining matchers into ensembles, called Schema Matcher Boost-
ing (SMB). This approach is based on a well-known machine learning
technique, called boosting. We present a boosting algorithm for schema
matching with a unique ensembler feature, namely the ability to choose
the matchers that participate in an ensemble. SMB introduces a new
promise for schema matcher designers. Instead of trying to design a per-
fect schema matcher that is accurate for all schema pairs, a designer
can focus on finding better than random schema matchers. We provide
a thorough comparative empirical results where we show that SMB out-
performs, on average, any individual matcher. In our experiments we
have compared SMB with more than 30 other matchers over a real world
data of 230 schemata and several ensembling approaches, including the
Meta-Learner of LSD. Our empirical analysis shows that SMB improves,
on average, over the performance of individual matchers. Moreover, SMB
is shown to be consistently dominant, far beyond any other individual
matcher. Finally, we observe that SMB performs better than the Meta-
Learner in terms of precision, recall and F-Measure.

1 Introduction

Schema matching is recognized to be one of the basic operations required by
the process of data and schema integration [18]. Due to its cognitive complexity,
schema matching has been traditionally considered to be AI-complete, performed
by human experts [12]. Over the years, a significant body of work was devoted
to the identification of schema matchers, e.g., [4, 11, 19]. The main objective
of schema matchers is to provide schema matchings that will be effective from
the user point of view, yet computationally efficient. Over the years, the main
research emphasis was on devising better and more effective matchers.

Choosing among schema matchers is far from being trivial. First, the number
of schema matchers is continuously growing, and this diversity by itself compli-
cates the choice of the most appropriate tool for a given application domain.
Second, as one would expect, empirical analysis shows that there is no (and
may never be) single dominant schema matcher that performs best, regardless
of the data model and application domain [10]. Therefore, several tools, e.g., [4,

7, 11, 15, 20] have combined different schema matchers to determine the similar-
ity between concepts. The idea is appealing since an ensemble of complementary
matchers can potentially compensate for the weaknesses of each other.

We propose a new approach to combining matchers into ensembles, called
Schema Matcher Boosting (SMB), based on a well-known machine learning tech-
nique, called boosting [24]. SMB introduces a new promise for schema matcher
designers. Instead of trying to design a perfect schema matcher, a designer can
instead focus on finding better than random schema matchers. We show in Sec-
tion 2.2 that this property is strongly tied with the monotonicity principle, as
introduced in [10]. SMB is also the first ensemble solution, to the best of our
knowledge, that can choose the appropriate matchers for the ensemble. Current
state-of-the-art focuses only on setting appropriate weights to matchers that are
predefined for an ensemble (see sections 4 and 5 for detailed discussions).

We present a comparative empirical results showing that SMB outperforms,
on average, any individual matcher. While some matchers may provide, for this
or that instance, a better matching then SMB, no matcher besides SMB performs
constantly better. In our experiments we have compared SMB with more than
30 other matchers over a real world data of 230 schemata and several ensembling
approaches, including the Meta-Learner of LSD.

The main contribution of this work is twofold. First, we introduce a new
schema matching ensembling algorithm that can both choose the best matchers
for an ensemble and set weights to the different matchers in a way that improves
significantly on their individual performance. Second, using a thorough empirical
analysis with a large data set of real-world schemata, we show a clear dominance
of SMB over other existing ensemble generators.

The rest of the paper is organized as follows. Section 2 presents the schema
matching model. Section 3 introduces SMB, a new boosting heuristic for schema
matching and discusses several variations to tackle specific characteristics of
schema matchers. We next present a comparative empirical analysis in Section 4.
We conclude with an overview of related work (Section 5) and summary (Sec-
tion 6).

2 Background and Model

Let schema S = {A1, A2, ..., An} be a finite set of attributes. Attributes can
be both simple and compound, compound attributes should not necessarily be
disjoint, etc. For example, a compound attribute may be an XSD element note
with nested elements to, from, heading, and body. For any schemata pair S and
S′, let S = S × S′ be the set of all possible attribute matchings between S and
S′. Let M (S, S′) be an n×n′ similarity matrix over S, where Mi,j represents a
degree of similarity between the i-th attribute of S and the j-th attribute of S′.
Most schema matching works define Mi,j to be a real number in (0, 1).

Let the power-set Σ = 2S be the set of all possible schema matchings between
the schema pair S and S′.1 Formally, the input to the process of schema matching
is given by two schemata S and S′ and a constraint boolean function Γ : Σ →
{0, 1}, capturing the application-specific constraints on schema matchings, e.g.,
cardinality constraints and inter-attribute matching constraints. The output of
the schema matching process is a schema matching σ ∈ ΣΓ , where ΣΓ = {σ ∈
Σ | Γ (σ) = 1} is the set of all valid schema matchings for which Γ (σ) = 1
(meaning that the matching σ can be accepted by a designer). Modeling Γ is
beyond the scope of this work.

Each schema matching σ is associated with a schema measure of similarity
Ω(σ), typically computed as a function of the participating attribute similarities
in M (S, S′). For example, a typical schema measure of similarity is computed
as the average of attribute pair similarity measures.

2.1 Schema Matchers

Schema matchers are instantiations of the schema matching process. They differ
mainly in the measures of similarity they employ, yielding different similarity
matrices. These measures can be arbitrarily complex, and may use various tech-
niques for name matching, structure matching, etc.

To illustrate our model and for completeness sake we now present a few
examples of schema matchers, representative of many other, similar matchers.
Detailed description of these matchers can be found in [11, 17]:2

Term: Term matching compares labels and names to identify syntactically sim-
ilar terms. To achieve better performance, terms are preprocessed using
several techniques originating in IR research. Term matching is based on
either complete word or string comparison. As an example, consider the
terms airline information and flight airline info, which after con-
catenating and removing white spaces become airlineinformation and
flightairlineinfo, respectively. The maximum common substring is airlineinfo,
and the similarity of the two terms is length(airlineinfo)

length(airlineinfomation) = 11
18 = 61%.

Value: Value matching utilizes domain constraints (e.g., drop lists, check boxes,
and radio buttons). It becomes valuable when comparing two terms that do
not exactly match through their labels. For example, consider attributes
Dropoff Date and Return Date. These two terms have associated value
sets {(Select),1,2,...,31} and {(Day),1,2,...,31} respectively, and thus their
content-based similarity is 31

33 = 94%, which improves significantly over their
term similarity (4(Date)

11(DropoffDate) = 36%).
Composition: A composite term is composed of other terms (either atomic or

composite). Composition can be translated into a hierarchy. This schema

1 For ease of exposition, we constrain our presentation to a matching process of two
schemata.

2 OntoBuilder algorithm description is also available online at
http://iew3.technion.ac.il/OntoBuilder/Data/10.OntoBuilder Papers/dis.pdf

matcher assigns similarity to terms, based on the similarity of their neigh-
bors. The Cupid matcher [15], for example, is based on term composition.

Precedence: The order in which data are provided in an interactive process
is important. In particular, data given at an earlier stage may restrict the
options for a later entry. For example, a car rental site may determine which
car groups are available using the information given regarding the pick-up
location and time. Therefore, once those entries are filled in, the information
is sent back to the server and the next form is brought up. Such precedence
relationships can usually be identified by the activation of a script, such as
the one associated with a SUBMIT button. Precedence relationships can be
translated into a precedence graph. The matching algorithm is based on a
technique we dub graph pivoting, as follows. When matching two terms, we
consider each of them to be a pivot within its own ontology, thus partitioning
the graph into a subgraph of all preceding terms and all succeeding terms.
By comparing preceding subgraphs and succeeding subgraphs, we determine
the confidence strength of the pivot terms. Precedence was used in [28] to
determine attribute correspondences with a holistic matcher.

Term and Value: A weighted combination of the Term and Value matchers.
Here, the input to the matcher involves similarity matrices.

Combined: A weighted combination of the Term, Value, Composition, and
Precedence matchers.

For the sake of this work, we separate matchers that are applied directly
to the application (e.g., Term) from matchers that are applied to the outcome
of other matchers (e.g., Combined). We call the former first line matchers and
the latter second line matchers. The two second line matchers introduced above
are based on weighted average of other matchers. We now introduce a few more
second line matchers that are based on constraint satisfaction.

The Maximum Weighted Bipartite Graph (MWBG) algorithm and the Stable
Marriage (SM) algorithm, both enforcing a cardinality constraint of 1 :1. In [17]
we have introduced a heuristic we dub Intersection that simply computes and
outputs the intersection set of both algorithm outputs. For comparison sake, we
also suggest Union, which includes in the output mapping any attribute mapping
that is in the output of either MWBG or SM. It is worth noting that neither
Intersection nor Union enforce 1 : 1 matching.

A variation of the SM matcher is the Dominants matcher. The matcher
chooses dominant pairs, those pairs in the similarity matrix with maximum value
both in their row and in their column. The main assumption guiding this heuris-
tic is that the dominant pairs are the most probable to be in the exact matching
since the two attributes involve in a dominant pair prefer each other most. Note
that with this heuristic not all the target attributes are mapped and that an
attribute in one schema may be mapped to more than one attribute in another
schema, whenever attribute pairs share the same similarity level.

Finally, in [16] we have introduced 2LNB, a second line matcher that uses a
Näıve Bayes classifier over matrices to determine attribute matchings. Autoplex

[2], LSD [5], iMAP [3], and sPLMap [21] also use a näıve Bayes classifier to learn
attribute mappings probabilities using instance training set.

2.2 Monotonicity

The SMB heuristic, proposed in this paper, uses similarity measures of other
matchers when computing its own similarity measures. To do so, the input to the
heuristic needs to be “meaningful.” In particular, what if the matcher provides
us with an arbitrary similarity number? In [10], monotonicity was introduced
as a justification to decision making with similarity measures. In the appendix,
we provide a brief description of monotonicity and statistical monotonicity for
completeness sake. Intuitively, a schema matcher is statistically monotonic with
respect to given two schemata if the expected similarity measure increases with
precision.

3 The SMB Heuristic

Research has shown that many schema matchers perform better than random
choice. In Section 2.2 and the appendix we have presented the monotonicity prin-
ciple and we argue that any (statistically) monotonic matcher is a weak classifier
[24]. A weak classifier is a classifier which is only slightly correlated with the true
classification and its hypotheses are at least slightly better than random choice.
The theory of weak learners has led to the introduction of a class of Boosting
algorithms (e.g., [24]). This class of algorithms can strengthen weak learners to
achieve arbitrarily high accuracy and has been shown to be effective in the con-
struction of successful classifiers. Given a set of weak classifiers, the algorithm
iterates over them while re-weighting the importance of elements in the training
set. There exist many versions of boosting to-date. In this paper we build upon
the AdaBoost algorithm [9], described in Section 3.1 for completeness sake. Ad-
aBoost is the most popular and historically most significant boosting algorithm.
Section 3.2 then introduces our new heuristic, Schema Matcher Boosting (SMB)
followed by a discussion on how to improve the training process (Section 3.3).

3.1 AdaBoost

The input to a boosting algorithm is a set of m examples where each example
(xi, yi) is a pair of an instance xi and the classification of the instance mapping,
yi. While not necessarily so, yi typically accepts a binary value in {−1,+1},
where −1 stands for an incorrect classification and +1 stands for a correct clas-
sification. Therefore, the algorithm is aimed at binary classifications. The last
input element is a hypothesis space H, a set of weak classifiers.

The algorithm works iteratively. In each iteration the input set is examined
by all weak classifiers. However, from iteration to iteration the relative weight
of examples changes. The common technique in the boosting literature, which
we follow here as well, is to place the most weight on the examples most often

Algorithm 1 Boosting

1: Input: S = {(x1, y1), . . . , (xm, ym)}, xiεX , yiε{−1,+1} and a space hypotheses
H.

2: /* initialization: */
3: D1(i) = 1/m
4: t = 1
5: repeat
6: /* training phase: */
7: Find the classifier ht : X → {−1,+1}, htεH that minimizes the error with

respect to the distribution Dt: ht = arghj
min εj .

8: if εt ≤ 0.5 then
9: Choose αtεR. αt = 1

2
ln 1−εt

εt

10: Update Dt+1(i) = Dt(i) exp(−αtyiht(xi))
Zt

where Zt is a normalization factor
11: t = t+ 1
12: end if
13: until t = T or εt > 0.5
14: /* upon arrival of a new instance: */

15: Output the final classifier: H(x) = sign(
∑min(t,T)

k=1
αkhk(x))

misclassified in preceding iterations; this has the effect of forcing the weak classi-
fiers to focus their attention on the “hardest” examples. Line 3 of the algorithm
assigns an initial equal weight to all examples (see Section 3.3 for a revision of
this initialization). Weights are updated later in line 10 (see below). An iteration
counter t is set to 1 in Line 4 and incremented in Line 11.

Line 7 applies weak classifiers in parallel, looking for the most accurate ht over
the weighted examples. The amount of error of each weak classifier is computed.
The error measure may take many forms (see discussion below) and in general
should be proportional to the probability of classifying incorrectly an example,
under the current weight distribution (Pri∼Dt

[ht (xi) 6= yi]). At round t, the
weak classifier that minimizes the error measure of the current round is chosen.

Lines 8 and 13 provide a stop condition, limiting the amount of error to be no
more than 50%. In addition, a restriction on the maximum number of iterations is
also part of a stop condition. In Line 9, the amount of change to example weights
αt is determined. In [8], it was shown that for binary classifiers, training error can
be reduced most rapidly (in a greedy way) by choosing αt as a smoothing function
over the error. Such a choice minimizes Zt =

∑m
i=1Dt(i) exp(−αtyiht(xi)). In

Line 10, the new example weights are computed for the next round (t+1), using
Zt as a normalization factor.

Lines 1-13 of Algorithm 1 serve for training the algorithm weights. These
weights are then used in Line 15 to classify a new instance x, by producing
H (x) as a weighted vote, where αk is the weight of the classifier chosen in step
k and hk (x) is the decision of the classifier of step k.

The complexity of the training phase varies, as the number of iterations is not
pre-determined and the cost of applying the weak classifiers may vary. However,
training is done offline and the cost of using it is linear in the size of H.

3.2 SMB: Schema Matcher Boosting

The Boosting algorithm is trivially simple. However, Algorithm 1 is merely a
shell, serving as a framework to many possible instantiations. What separates a
successful instantiation from a poor one is the selection of three elements, namely
the instances (xi), the hypothesis space H, and the error measure εt. We next
show the SMB heuristic as a concrete instantiation of Algorithm 1, tailor-made
to our specific problem domain of schema matching.

The example set {(xi, yi)} consist of a set attribute pairs (xi is a pair!), one
attribute from each schema, and of the classification of the instance mapping
yi. Such a pair represents an attribute matching. This approach can be easily
extended to select multiple attributes from each schema, as long as the matcher
itself can assess the similarity measure of multiple attributes. Also, to support
holistic matching, examples can be designed to be sets of attributes from multiple
schemata rather than a pair. Each instance xi can be correct (i.e., belongs to the
exact matching) or incorrect. Therefore, yi can have two possible values (+1)
(for a correct matching) and (−1) (for an incorrect matching).

Choosing the hypothesis space is more tricky. Following our model in Section
2, we first note that the input to the proposed heuristic is no longer the schemata
S and S′, but rather a similarity matrix M (S, S′) (together with Γ , the con-
straint enforcer function). Given schemata S and S′, we denote by M (S, S′)
the (possibly infinite) set of similarity matrices M (S, S′). The SMB heuristic
is a mapping SMB : M (S, S′)∗ Γ× → M (S, S′), transforming one (or more)
similarity matrices into another similarity matrix. Therefore, we define the ele-
ments of the hypothesis space to be matrices. After experimenting with several
variations, the most promising hypothesis space seems to be a set of second line
matchers (as defined in Section 2), of the type decision makers (whose output is
a binary matrix. For example, a hypothesis h in H is (Term, Dominants), where
the Dominants second line matcher is applied to the outcome of the Term first
line heuristic. Among other things, Dominants serves in enforcing the domain
constraints, as expressed by Γ . It is worth noting SMB is also a decision maker
and the outcome of SMB is a binary matrix.

Finally, we address the form of the error measure ε. A matcher can either
determine a correct attribute matching to be incorrect (false negative) or it can
determine an incorrect attribute matching to be correct (false positive). Let
At denote the total weight of the false negative examples, Ct denotes the total
weight of the false positive examples, and Bt denotes the total weight of the true
positive examples, all in round t. Typically, one would measure error in schema
matching in terms of precision and recall, translated into boosting terminology
as follows:

P (t) =
Bt

Ct +Bt
;R (t) =

Bt
At +Bt

(1)

Precision and recall may be combined in many ways, one of which is the F -
Measure, their harmonic mean:

F (t) =
2Bt

At + Ct + 2Bt
(2)

and therefore, a plausible error measure for the SMB heuristic is:

εt = 1− F (t) = 1− 2Bt
At + Ct + 2Bt

=
At + Ct

At + Ct + 2Bt
(3)

This is indeed the measure we present in this paper. It is worth noting, however,
that this is not the only measure possible. Our empirical evaluation (not shown
in this work) suggests that Eq. 3 performs better than other error measures.

Example 1. The example is taken from one of our experiments, described in
Section 4. Given the hypotheses space H as described above, and given a dataset
of size 70, the SMB heuristic performs 5 iterations: It started by creating a
dataset with equal weight for each mapping. In the first iteration, it picked
(Composition, Dominants)3 as the weak hypothesis which was the most accurate
hypothesis over the initial weight distribution (ε1 = 0.328 ⇒ α1 = 0.359). In
the second iteration, the selected hypothesis was (Precedence, Intersection) with
ε2 = 0.411 and α2 = 0.180. In the third iteration, the selected hypothesis was
(Precedence, MWBG) (ε3 = 0.42⇒ α3 = 0.161). The fourth hypothesis involved
(Term and Value, Intersection) with error ε4 = 0.46 and α4 = 0.080. The final
hypothesis was for (Term and Value, MWBG) with error ε5 = 0.49 ⇒ α5 =
0.020. In the sixth iteration no hypothesis had accuracy less than 50% so the
training phase is terminated having 5 iterations each one with its strength αt.
The outcome classification rule is a linear combination of the five weak hypothesis
with their strength as coefficients. So, given a new mapping (a, a′) to be classified,
each one of the weak classifiers contributes to the final decision by its weak
decision weighted by its strength and if the final decision was positive then the
given mapping would be classified as a correct mapping. Otherwise, it would be
classified as an incorrect one.

Let h̃max be the maximum execution time of a matcher in H and tmax

be the number of iteration performed by SMB. The training time of SMB is
O
(
h̃max · tmax

)
. Given a new schema pair, let nmax be the maximum number

of attributes in each schema. The cost of using SMB is O
(
n2

max

)
, the cost of

generating the output matrix.
Two comments avout αt: First, our choice of αt limits it to be non-negative,

since εt is restricted not to exceed 0.5 (see lines 8 and 9 of Algorithm 1). This is
one characteristic that differentiates SMB from the Meta-Learner of LSD, which
uses a least-square linear regression on the training data set. We shall elaborate
on this difference more in Section 4.2. Secondly, if a hypothesis is chosen more
than once during the training phase, its total weight in the decision making
process is the sum of all the weights αt with which it has been assigned.

3.3 Preprocessing the training dataset

Tracing the evolution of the error computed in each iteration of SMB, we ob-
serve that error increases very quickly. Recall that the error is the sum of all the
3 Description of all matchers in this example are given in Section 2.1.

weights of the incorrectly classified examples. Therefore, we hypothesize that this
phenomenon is a result of outliers, i.e., examples that are inherently ambiguous
and hard to categorize. Therefore, no matcher in the ensemble classifies them
correctly. Even with a small number of outliers, the emphasis placed on the incor-
rectly classified examples becomes detrimental to the performance of SMB. Such
examples receive increasing weights with each new iteration. Consequently, error
accumulation accelerates rather than subsides. Regardless of which classifier is
chosen, such examples will be misclassified and their weights will increase.

To avoid this phenomenon, we introduce a preprocessing phase to the train-
ing phase of SMB, in which we identify and filter outliers. These examples are
de-emphasized by eliminating them from the training set to avoid rapid error
accumulation. We remove all examples which no matcher classifies correctly.
Eliminating examples from the training set is equivalent to a presetting small
weights to outliers. Our empirical analysis has shown that the preprocessing
stage yields a significant improvement in performance.

4 Experiments

4.1 Experiment setup, data, and evaluation methodology

Experiment setup In our experiments we have used 30 matcher combinations
(recall that our hypothesis space is made of matching pairs), combining Term,
Value, Composition, Precedence, Term and Value, and Combined with MWBG,
SM, Dominants, Intersection, Union, and 2LNB. All matchers were described in
Section 2.1. All algorithms were implemented using Java 2 JDK version 1.5.0 09
environment, using an API to access OntoBuilder’s matchers and get the output
matrices. The experiments were run on a laptop with Intel Centrino Pentium m,
1.50GHz CPU, 760MB of RAM Windows XP Home edition OS.

The Term and Combined matchers were shown in [10] to be monotonic. Our
preliminary experiments show that Value was not monotonic, and is brought
here as a baseline case. To demonstrate the potency of our matchers, we have
experimented with the OAEI 2006 Directory benchmark.4 Our empirical analysis
yields that the pair (Term, MWBG), for example, achieved on average Precision
of 61%, Recall of 96%, and F-Measure of 72%, on a set of 110 randomly selected
tasks. This is better than other known results on this data set.

Data set For our experiments, we have selected 230 Web forms from different
domains, such as job hunting, Web mail, and hotel reservation. We extracted a
schema from each Web form using OntoBuilder. We have matched the Web forms
in pairs (115 pairs), where pairs were taken from the same domain, and generated
manually the exact matching for each pair.5 The schemata vary in size, from 8
4 The benchmark is publicly available at http://keg.cs.tsinghua.edu.cn/project/RiMOM/

oaei2006/oaei2006.html. Our results are based on a private evaluation of the exact
matching, since the OAEI organizers do not provide the exact matching.

5 All ontologies and exact matchings are available for download from the OntoBuilder
Web site, http://ie.technion.ac.il/OntoBuilder.

to 116 attributes with about two thirds of the schemata have between 20 and
50 attributes. They also vary in the proportion of number of attribute pairs in
the exact matching relative to the target schema.6 This proportion ranges from
12.5% to 100%; the proportion in about half of the ontologies is more than 70%,
which means that about 70% of the schema attributes can be matched. Another
dimension is the size difference between matched schemata, ranging from equal
size schemata to about 2.2 times difference between schemata. In about half of
the pairs, the difference was less than 50% of the target schema size.

We ran the six schema matchers (Term, Value, Composition, Precedence, Term
and Value, and Combined) on the 115 pairs, generating 690 matrices. These ma-
trices used the second line matchers (MWBG, SM, Dominants, Intersection, Union,
and 2LNB) to generate new matrices. 2LNB was paired only with the Combined
matcher. All in all, we have analyzed 3565 pairs of real-world schemata.

Evaluation methodology We have repeated experiments with a varying size
of training dataset. Here, we report on experiments with a training set of 60
randomly selected schema pairs and a test set of size 30 (schema pairs) was
also selected randomly from the remaining matrices. We have repeated each
experiment three times. Preprocessing to avoid outliers was applied.

To evaluate the various heuristics, we use Precision and Recall. Lower preci-
sion means more false positives, while lower recall suggests more false negatives.
To extend Precision and Recall to the case of non 1 : 1 mappings, we have
adopted a correctness criteria according to which any attribute pair that be-
longs to the exact mapping is considered to be correct, even if the complex
mapping is not fully captured.

4.2 Results and analysis
Comparative Performance Analysis We first analyze comparatively the
performance of SMB with the 31 matcher pairs. Figure 1(left) position all 32
matchers on a Precision (x-axis) vs. Recall (y-axis) scatter plot. The expected
Precision/Recall tradeoff is evident here, with no single dominating matcher.
Matchers are partitioned into two groups. To the right there are all those match-
ers that qualify as weak classifiers, which we define to be those whose F-Measure
is higher than 50%. To the left, there are 5 matchers that cannot be considered
weak matchers. In common to all 5 matcher pairs is the use of the Value matcher.
This matcher is not statistically monotonic, since it cannot differentiate between
pairs that share the same attribute domain. However, when combined with the
Term matcher, Value generally adds 1-2% to the Term matcher performance.

SMB is clearly the winner in terms of Precision, balancing Precision with
Recall. Figure 1(right) illustrates the percentage of improvement SMB provides
in terms of Precision. The x-axis represents the different matcher pairs while
the y-axis shows the percentage of improvement. It ranges from 5.4% to 66%
for weak matchers. For example, SMB improved by 39% over the pair (Term,
MWBG), illustrated earlier to have good outcomes on tough data sets (such

6 In OntoBuilder, one of the schemata is always chosen to be the target schema, the
schema against which comparison is performed.

Fig. 1. Performance Analysis

as the directory dataset of OAEI’2006). In terms of F-Measure, we observe an
improvement of 4.3-34.3% for weak matchers.

For comparison, Figure 1(left) also contains another matcher weighing tech-
nique, Average, which is discussed in details later in this section. While Average
blends in with other matchers (mainly from the (*, Dominants) set), SMB stands
out in its Precision performance, while not compromising much its Recall.

Fig. 2. Dominance Analysis

Such an improvement is nice, yet not unheard of. For example, LSD has
shown an improvement of 5-22% in Precision [5]. We defer a comparison with
LSD to later in the section, arguing here that these results are comparable.
while SMB may be better than the other individual matchers on average, how
often does it manage to outperform all other matchers? we have analyzed the
data and the results are illustrated in Figure 2. For each matcher, we record the

percentage of schema pairs, where it was not outperformed by any of the other
matchers in terms of Precision, Recall, and F-Measure. The figure provides a
comparison of all weak classifiers and SMB. SMB clearly performs the best in
terms of Precision and F-Measure. In 43% of the schema pairs, its Precision
performance was not dominated by any other matcher. The next best matcher
in this category was (Precedence, Dominants), non dominated in only 28% of
the cases.7 Similar results are observed for the F-Measure, where SMB leads
with 38%, followed by (Term&Value, Dominants) with 25%. For Recall, SMB is
non-dominated for 20% of the schema matching pairs.

Fig. 3. Relative matcher weights in SMB and individual performance

Matcher Selection We now analyze the decision making process of SMB.
Given the individual performance of each matcher, one could expect that those
matchers with the highest weight in the decision making of SMB will be those
that perform best individually. In our case, the top 4 matchers, in terms of
Precision and F-Measure are pairs in which the second line matcher is Dominants.
Figure 3 presents the relative matcher weights in SMB. The higher the weight,
the more important is the vote of a matcher regarding each attribute matching.
Only 24 out of the 31 matchers participate in the decision making of SMB.

Surprisingly, the top 4 matchers in Figure 3(left) include only one pair with
Dominants ((Composition, Dominants)). The pair (Combined, Dominants) is the
leading pair in terms of Precision when observing individual performance, yet is
not even part of the SMB decision making (!). The most important matcher for
SMB is (Term, Intersection), ranked 11-th according to the F-Measure individual
performance and 10-th according to Precision. (Precedence, SM), ranked second
for SMB, has a mediocre individual performance. Figure 3(right) is a zoomed in
version of Figure 1(left), highlighting the four top matchers of SMB.
7 Note that the sum of non-dominance percentage exceeds 100% since matchers may

reach the same level of precision for some instances, counting both to be non-
dominated for this instance.

Weight Avg. Avg. Avg.
Scheme Precision Recall F-Measure

Boosting 0.73 0.75 0.74

Meta-Learner 0.57 0.69 0.62

F-Measure 0.61 0.72 0.64

Average 0.65 0.73 0.67

Random 0.57 0.65 0.61
Table 1. Comparison of weight schemes

Our first observation is that the decision making of SMB is not linear in
the individual performance of matchers, and therefore the training process of
SMB is valuable. Secondly, we observe that SMB seeks diversity in its decision
making. It uses Term, Value (combined with Term due to its individual poor
performance), Composition, and Precedence. Given these four matchers, SMB
has no need for the Combined matcher, which provides a weighted average of the
four. This explains the absence of (Combined, Dominants).

A surprising property for SMB is its ability to choose matchers for an en-
semble. Lee et al. suggested in [13] that the tuning of an ensemble involves the
selection of “the right component to be executed.” However, to the best of our
knowledge, none of the existing algorithmic solutions offer such a selection fea-
ture. eTuner suggests a method for tuning “knobs” given an ensemble but does
not provide a method for constructing it. LSD also applies the Meta-Learner to
an existing ensemble. SMB performs its tuning sequentially. It starts by greedily
choosing those matchers that provides a correct solution to a major part of the
schema matching problem. Then, it adds matchers that can provide insights to
solving the harder problems. Those matchers that are left out will not be part of
the ensemble. In our experiments, SMB includes only 24 out of the 31 matchers.
We consider this feature as a main contribution of the proposed algorithm.

Weight Selection The outcome of SMB matcher training is a weighted average
for matcher voting. Our next set of experiments, summarized in Table 1, compare
the outcome of using SMB weights with other weighing schemes.

The first row represents the average performance of SMB, as presented above
(Figure 1). In the second row, the performance of the LSD’s Meta-Learner is
presented. Given a set of weak learners H, the Meta-Learner uses a least-square
linear regression on the training data set, minimizing the squared error

m∑
i=1

(
yi −

∑
h∈H

h (xi) · wh

)2

(4)

where yi is set to 0 if the pair xi should not be matched and 1 otherwise. h (xi)
is the decision of learner h regarding pair xi and wh are the variables on which
the linear regression is applied. The Meta-Learner cannot choose classifiers and
therefore, with 31 different learners, a huge space of possibilities exist. To al-
low a comparison using some common baseline, we have selected the top 16

matchers chosen by SMB to participate in the training of the Meta-Learner. The
remaining 8 matchers seem to have little impact on the decision making of SMB.
The most dominant learner was (Combined, Intersection), which was ranked 8-th
by SMB, demonstrating that the Meta-Learner and SMB reach different deci-
sions regarding matcher importance. For example, the learner (Term, Dominants)
(ranked 9-th by SMB) has received a negative weight. It is worth noting that
unlike SMB, the weights of the Meta-Learner can be negative as well. This has
the interesting effect of transposing the decision of a matcher.

Once the weights have been set, a set of 30 schema pairs was chosen randomly
and generated the outcome using the weights wh from the training phase. The
Meta-Learner reached a precision of 57%, a recall of 69%, and an F-Measure of
62%. Comparing with the results of SMB, we observe that SMB performs 28%
better than the Meta-Learner in terms of precision, 9% better in terms of recall
and 19% better in terms of F-Measure.

In the third line we present the results of matching 30 randomly chosen
schema pairs, where matchers are assigned a weight equivalent to their F-Measure.
For example, (Precedence, Dominants) is assigned a weight of 0.69 while (Value,
Dominants) is assigned a weight of 0.11. This weighing scheme reduces Precision
by about 20% on average, Recall by about 4% on average, and F-Measure by
about 16% on average. The performance of weighing using F-Measure is worse
(!) than those of assigning equal weights to the various matchers (fourth line of
Table 1; also presented in Figure 1(left)). SMB improves precision by 12%, recall
by 3%, and F-Measure by 11%.

The fifth row provides the average result of 3 random weight selections, each
time testing the random weight over 30 randomly selected schema pairs. SMB
improves precision by 28%, recall by 15%, and F-Measure by 21%.

To conclude, in this set of experiments, SMB is shown to dominate all other
tested weighing scheme, in terms of Precision, Recall, and F-Measure. This,
together with the ability of SMB to select matchers for an ensemble, sums up to
show SMB to be the best choice for ensemble design.

5 Related Work

25 years of schema matching research, first as part of schema integration and
then as a standalone research, are summarized in surveys [1, 22, 27] and various
online lists, e.g., OntologyMatching,8 Ziegler,9 DigiCULT,10 and SWgr.11

Machine learning has been used for schema matching in several works. Au-
toplex [2] and LSD [5] use a Näıve Bayes classifier to learn attribute mappings
probabilities using instance training set. SEMINT [14] use neural networks to

8 http://www.ontologymatching.org/
9 http://www.ifi.unizh.ch/˜pziegler/IntegrationProjects.html

10 http://www.digicult.info/pages/resources.php?t=10
11 http://www.semanticweb.gr/modules.php?name=News&

file=categories&op=newindex&catid=17

identify attribute mappings. APFEL [6] determines heuristic weights in an en-
semble and threshold levels using various machine learning techniques, namely
decision trees (e.g., C4.5), neural networks, and support vector machines. C4.5
was also used in [29], using WordNet relationships as features. sPLMap [21] use
Näıve Bayes, kNN, and KL-distance as content-based classifiers. All these works
applied machine learning directly to the schemata, while our approach uses the
outcome of other matchers for learning and improvement. In particular, the use
of boosting was never applied to schema matching, to the best of our knowledge.

Research into ensemble design include eTuner [13], LSD [5] and others (e.g.,
[16]). SMB is similar to the Meta-Learner in [5]. In both approaches a set of
matchers is selected and a weighted average of the decisions taken by these
matchers determine the matching outcome. In [5], the weights where set using a
least-square linear regression analysis while we use the boosting mechanism. The
literature shows the connection between boosting and logistic regression [26], yet
there is no evident connection to linear regression. Our empirical results show
that SMB outperforms the Meta-Learner.

6 Conclusions

In this work we have presented the Schema Matcher Boosting (SMB) heuristic
to efficiently use an ensemble of matchers. We have analyzed, both conceptually
and empirically, the properties of SMB, discussing its benefit and analyzing its
performance. SMB has the unique ability to choose from a pool of matchers.
Its decision making is based on diversity of matchers, taking their best combi-
nation. Our empirical analysis also shows that SMB provides a major increase
in Precision with no or minimal loss of Recall. SMB performance improves on
any individual matcher pair with which we have experimented and was shown
to dominate other weighing schemes, including that of LSD Meta-Learner.

In our future work, we aim at improving SMB even more. We intend to look at
existing works in boosting, involving multiclass classification (e.g., AdaBoost.M1
and AdaBoost.M2, [8]) and error-correcting output codes [25], possibly identi-
fying new ties to the schema matching problem. Another direction will be to
incorporate human knowledge, as was suggested by several schema matching
papers in the past. We shall look into works such as [23], where human judges
construct estimated probability. This approach was argued to be too hard for
expert to deal with in schema matching, so we shall look into indirect methods
for building such estimated probability functions.

References

1. C. Batini, M. Lenzerini, and S. Navathe. A comparative analysis of methodologies
for database schema integration. ACM Computing Surveys, 18(4):323–364, Dec.
1986.

2. J. Berlin and A. Motro. Autoplex: Automated discovery of content for virtual
databases. In C. Batini, F. Giunchiglia, P. Giorgini, and M. Mecella, editors, Coop-
erative Information Systems, 9th International Conference, CoopIS 2001, Trento,

Italy, September 5-7, 2001, Proceedings, volume 2172 of Lecture Notes in Computer
Science, pages 108–122. Springer, 2001.

3. R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and P. Domingos. imap: Discover-
ing complex mappings between database schemas. In Proceedings of the ACM-
SIGMOD conference on Management of Data (SIGMOD), pages 383–394, 2004.

4. H. Do and E. Rahm. COMA - a system for flexible combination of schema matching
approaches. In Proceedings of the International conference on Very Large Data
Bases (VLDB), pages 610–621, 2002.

5. A. Doan, P. Domingos, and A. Halevy. Reconciling schemas of disparate data
sources: A machine-learning approach. In W. G. Aref, editor, Proceedings of the
ACM-SIGMOD conference on Management of Data (SIGMOD), pages 509–520,
Santa Barbara, California, May 2001. ACM Press.

6. M. Ehrig, S. Staab, and Y. Sure. Bootstrapping ontology alignment methods with
apfel. In The Semantic Web - ISWC 2005, 4th International Semantic Web Con-
ference, ISWC 2005, Galway, Ireland, November 6-10, 2005, Proceedings, pages
186–200, 2005.

7. D. Embley, D. Jackman, and L. Xu. Attribute match discovery in information in-
tegration: Exploiting multiple facets of metadata. Journal of Brazilian Computing
Society, 8(2):32–43, 2002.

8. Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences, 55(1),
1997.

9. Y. Freund and R. Schapire. A short introduction to boosting, 1999.
10. A. Gal, A. Anaby-Tavor, A. Trombetta, and D. Montesi. A framework for modeling

and evaluating automatic semantic reconciliation. VLDB Journal, 14(1):50–67,
2005.

11. A. Gal, G. Modica, H. Jamil, and A. Eyal. Automatic ontology matching using
application semantics. AI Magazine, 26(1):21–32, 2005.

12. R. Hull. Managing semantic heterogeneity in databases: A theoretical perspective.
In Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS), pages 51–61. ACM Press, 1997.

13. Y. Lee, M. Sayyadian, A. Doan, and A. Rosenthal. eTuner: tuning schema matching
software using synthetic scenarios. VLDB Journal, 16(1):97–122, 2007.

14. W.-S. Li and C. Clifton. SEMINT: A tool for identifying attribute correspondences
in heterogeneous databases using neural networks. Data & Knowledge Engineering,
33(1):49–84, 2000.

15. J. Madhavan, P. Bernstein, and E. Rahm. Generic schema matching with Cupid.
In Proceedings of the International conference on Very Large Data Bases (VLDB),
pages 49–58, Rome, Italy, Sept. 2001.

16. A. Marie and A. Gal. Managing uncertainty in schema matcher ensembles. In
H. Prade and V. Subrahmanian, editors, Scalable Uncertainty Management, First
International Conference, SUM 2007, pages 60–73, Washington, DC, USA, Oct.
2007. Springer.

17. A. Marie and A. Gal. On the stable marriage of maximumweight royal couples.
In Proceedings of AAAI Workshop on Information Integration on the Web (II-
Web’07), Vancouver, BC, Canada, July 2007.

18. S. Melnik. Generic Model Management: Concepts and Algorithms. Springer-Verlag,
2004.

19. S. Melnik, E. Rahm, and P. Bernstein. Rondo: A programming platform for generic
model management. In Proceedings of the ACM-SIGMOD conference on Manage-
ment of Data (SIGMOD), pages 193–204, San Diego, California, 2003. ACM Press.

20. P. Mork, A. Rosenthal, L. Seligman, J. Korb, and K. Samuel. Integration work-
bench: Integrating schema integration tools. In Proceedings of the 22nd Interna-
tional Conference on Data Engineering Workshops, ICDE 2006, 3-7 April 2006,
Atlanta, GA, USA, page 3, 2006.

21. H. Nottelmann and U. Straccia. Information retrieval and machine learning
for probabilistic schema matching. Information Processing and Management,
43(3):552–576, 2007.

22. E. Rahm and P. Bernstein. A survey of approaches to automatic schema matching.
VLDB Journal, 10(4):334–350, 2001.

23. G. Ridgeway, D. Madigan, and T. Richardson. Boosting methodology for regression
problems. In Proceedings of the International Workshop on AI and Statistics, page
152161, 1999.

24. R. Schapire. The strength of weak learnability. Machine Learning, 5:197–227, 1990.
25. R. Schapire. Using output codes to boost multiclass learning problems. In Machine

Learning: Proceedings of the Fourteenth International Conference, page 313321,
1997.

26. R. Schapire. The boosting approach to machine learning: An overview. In MSRI
Workshop on Nonlinear Estimation and Classification, Berkeley, CA, Mar. 2001.

27. P. Shvaiko and J. Euzenat. A survey of schema-based matching approaches. Jour-
nal of Data Semantics, 4:146 – 171, Dec. 2005.

28. W. Su. Domain-based Data Integration for Web Databases. PhD thesis, Dept. of
Computer Science and Engineering, Hong Kong Univ. of Science and Technology,
Hong Kong, Dec. 2007.

29. L. Xu and D. Embley. A composite approach to automating direct and indirect
schema mappings. Information Systems, 31(8):697–886, Dec. 2006.

Monotonicity

The evaluation of schema matchings is performed with respect to an exact match-
ing, based on expert opinions. Precision and recall are used for the empirical
evaluation of performance. Assume that out of the n × n′ attribute matchings,
there are c ≤ n×n′ correct attribute matchings, with respect to the exact match-
ing. Also, let t ≤ c be the number of matchings, out of the correct matchings,
that were chosen by the matching algorithm and f ≤ n× n′ − c be the number
of incorrect such attribute matchings. Then, precision is computed to be t

t+f

and recall is computed as t
c . Clearly, higher values of both precision and recall

are desired. From now on, we shall focus on the precision measure, denoting by
p(σ) the precision of a schema matching σ.

We first create equivalence schema matching classes on 2S . Two matchings
σ′ and σ′′ belong to a class p if p(σ′) = p(σ′′) = p, where p ∈ [0, 1]. For each two
matchings σ′ and σ′′, such that p(σ′) < p(σ′′), we can compute their schema
matching level of certainty, Ω(σ′) and Ω(σ′′). We say that a matching algorithm
is monotonic if for any two such matchings p(σ′) < p(σ′′) → Ω(σ′) < Ω(σ′′).
Intuitively, a matching algorithm is monotonic if it ranks all possible schema
matchings according to their precision level.

A monotonic matching algorithm easily identifies the exact matching. Let σ∗

be the exact matching, then p(σ∗) = 1. For any other matching σ′, p(σ′) < p(σ∗).

Fig. 4. Illustration of the monotonicity principle

Therefore, if p(σ′) < p(σ∗) then from monotonicity Ω(σ′) < Ω(σ∗). All one has
to do then is to devise a method for finding a matching σ∗ that maximizes Ω.12

Figure 4 provides an illustration of the monotonicity principle using a match-
ing of a simplified version of the Web forms in “Absolute Agency” with “Adult
Singles” Web sites, both taken from the dating and matchmaking domain. Both
schemata have nine attributes, all of which are matched under the exact match-
ing. Given a set of matchings, each value on the x-axis represents a class of
schema matchings with a different precision. The z-axis represents the similarity
measure. Finally, the y-axis stands for the number of schema matchings from a
given precision class and with a given similarity measure.

Figure 4 provides two main insights. First, the similarity measures of match-
ings within each schema matching class form a “bell” shape, centered around
a specific similarity measure. Such a behavior indicates a certain level of ro-
bustness of a schema matcher, assigning close similarity measures to matchings
within each class. Second, the “tails” of the bell shapes overlap. Therefore, a
schema matching from a class of a lower precision may receive a higher similar-
ity measure than a matching from a class of a higher precision. This, of course,
contradicts the monotonicity definition. However, the first observation serves as
a motivation for a definition of a statistical monotonicity, first introduced in [10]:

Definition 1 (Statistical monotonicity). Let Σ = {σ1, σ2, ..., σm} be a set
of matchings over schemata S1 and S2 with n1 and n2 attributes, respectively,
and define n = max(n1, n2). Let Σ1, Σ2, ..., Σn+1 be subsets of Σ such that for all
1 ≤ i ≤ n+1, σ ∈ Σi iff i−1

n ≤ p (σ) < i
n . We define Mi to be a random variable,

representing the similarity measure of a randomly chosen matching from Σi. Σ is
statistically monotonic if the following inequality holds for any 1 ≤ i < j ≤ n+1:

Ω̄ (Mi) < Ω̄ (Mj) (5)

where Ω̄ (M) stands for the expected value of M .

12 In [10], where the monotonicity principle was originally introduced, it was shown
that while such a method works well for fuzzy aggregators (e.g., weighted average)
it does not work for t-norms such as min.

