

DISI ‐ Via Sommarive 14 ‐ 38123 Povo ‐ Trento (Italy)
http://www.disi.unitn.it

S-MATCH: AN OPEN SOURCE
FRAMEWORK FOR MATCHING
LIGHTWEIGHT ONTOLOGIES

Fausto Giunchiglia, Aliaksandr Autayeu and
Juan Pane

June 2010

Technical Report # DISI-10-043

Also: published on Semantic Web, IOS Press, 2011

S-Match: an open source framework

for matching lightweight ontologies

Fausto Giunchiglia Aliaksandr Autayeu Juan Pane

Abstract

Achieving automatic interoperability among systems with diverse data
structures and languages expressing different viewpoints is a goal that
has been difficult to accomplish. This paper describes S-Match, an open
source semantic matching framework that tackles the semantic interoper-
ability problem by transforming several data structures such as business
catalogs, web directories, conceptual models and web services descriptions
into lightweight ontologies and establishing semantic correspondences be-
tween them. The framework is the first open source semantic matching
project that includes three different algorithms tailored for specific do-
mains and provides an extensible API for developing new algorithms, in-
cluding possibility to plug-in specific background knowledge according to
the characteristics of each application domain.

1 Introduction

Interoperability among different viewpoints and languages which use different
terminology and where knowledge can be expressed in diverse forms is a diffi-
cult problem. With the advent of the Web and the consequential information
explosion, the problem seems to be emphasized. People face these concrete
problems when retrieving, disambiguating and integrating information coming
from a wide variety of sources. Many of these sources of information can be rep-
resented using lightweight ontologies, which provide the formal representation
upon which it is possible to reason automatically about hierarchical structures
such as classifications, database schemas, business catalogs, and file system di-
rectories, among others.

Semantic matching constitutes a fundamental technique which applies in
many areas such as resource discovery, data integration, data migration, query
translation, peer to peer networks, agent communication, schema and ontology
merging. Semantic matching is a type of ontology matching technique that relies
on semantic information encoded in lightweight ontologies to identify nodes that
are semantically related. It operates on graph-like structures and has been
proposed as a valid solution to the semantic heterogeneity problem, namely
managing the diversity in knowledge [1].

1

S-Match1 is an open source semantic matching framework that provides sev-
eral semantic matching algorithms and facilities for the development of new ones.
It includes components for transforming tree-like structures into lightweight on-
tologies, where each node label in the tree is translated into propositional de-
scription logic (DL) formula, which univocally codifies the meaning of the node.

S-Match contains the implementation of the basic semantic matching, the
minimal semantic matching, and the structure preserving semantic matching
(SPSM) algorithms. The basic semantic matching algorithm is a general pur-
pose matching algorithm, very customizable and suitable for many applications.
Minimal semantic matching algorithm exploits additional knowledge encoded in
the structure of the input and is capable of producing minimal mapping and
maximal mapping. SPSM is a type of semantic matching producing a similar-
ity score and a mapping preserving structural properties: (i) one-to-one corre-
spondences between semantically related nodes; (ii) functions are matched to
functions and variables to variables.

The key contributions of the S-Match framework are:

i) working open source implementation of semantic matching algorithms;

ii) several interfaces ranging from easy to use Graphical User Interface (GUI)
and Command Line Interface (CLI) to Application Program Interface (API).
They suit different purposes varying from running a quick and easy exper-
iment to embedding S-Match in other projects;

iii) the implementation of three different versions of semantic matching algo-
rithms, each suitable for different purposes, and the flexibility for integrat-
ing new algorithms and linguistic oracles tailored of other domains;

iv) an open architecture extensible to work with different data formats with a
ready-to-run implementation of the basic formats.

The rest of the paper is organized as follows: Section 2 introduces lightweight
ontologies and enumerates several data structures that can be transformed into
them; Section 3 gives an overview of the semantic matching algorithm and
the different versions that are supported by S-Match; Section 4 presents the
general architecture of the framework and the macro-level components; Section 5
gives an introduction to different interfaces available in the framework. Finally,
Section 6 provides a summary of the open source project hosting the open source
framework.

2 Lightweight ontologies

Classification structures such as taxonomies, business catalogs2, web directo-
ries3 and user directories in the file system, among others, are perhaps the most

1http://s-match.org/
2unspsc.org, eclass-online.com
3dmoz.org, dir.yahoo.com

2

Figure 1: Two example course catalogs to be matched

natural tools used by humans to organize information content. The informa-
tion is hierarchically arranged under topic nodes moving from general ones to
more specific ones as we go deeper in the hierarchy. This attitude is known in
Knowledge Organization as the get-specific principle [2].

The information in the classification is normally described using natural
language labels (see Figure 1), which has proven to be very effective in manual
tasks (for example, for manual indexing and manually navigating the tree).
However, these natural language labels present limitations when one tries to
automate reasoning over them, for instance for automatic indexing, search and
semantic matching or when dealing with multiple languages.

Translating the classifications containing natural language labels into their
formal counterpart, i.e., lightweight ontologies, is a fundamental step toward
being able to automatically work with them. Following the approach described
in [2] and exploiting dedicated Natural Language Processing (NLP) techniques
tuned to short phrases [3], each node label can be translated into an unambigu-
ous formal expression, i.e., into a propositional Description Logic (DL) expres-
sion. As a result, lightweight ontologies, or formal classifications, are tree-like
structures where each node label is a language-independent propositional DL
formula codifying the meaning of the node. Taking into account its context
(namely the path from the root node), each node formula is subsumed by the
formula of the node above [4]. As a consequence, the backbone structure of
a lightweight ontology is represented by subsumption relations between nodes,
i.e., “the extension of a concept of a child node is a subset of the extension of
the concept of the parent node” [5].

Giunchiglia et al. show in [6], [4] and [7] how lightweight ontologies can
be used to automate important tasks, in particular to favor interoperability
among different knowledge organization systems. For example, [6] shows how
data and conceptual models such as database schemes, object oriented schemes,
XML schemes and concept hierarchies can be converted into graph-like struc-
tures that can be used as input of the Semantic Matching. In [7] it has been
demonstrated how lightweight ontologies can also be used for representing web
services and therefore automate the web service composition task. This shows

3

that Lightweight Ontologies, while being simple structures, are powerful enough
to encode several types of models ranging from data and classification models
to service descriptions, reducing the complexity of the semantic interoperability
problem (in many cases) to that of matching two lightweight ontologies.

3 Semantic matching

Semantic matching is a type of ontology matching [8] technique that relies on
semantic information encoded in lightweight ontologies [2] to identify nodes that
are semantically related. A considerable amount of research has been done in
this field, which can be seen in extensive surveys [8, 9, 10], papers, to cite a few
[11, 12], and in systems, such as Falcon4, COMA++5, Similarity Flooding6,
HMatch7 and others.

S-Match algorithm is an example of semantic matching operator. Given any
two graph-like structures, like classifications, database or XML schemas and
ontologies, matching is an operator that identifies those nodes in the two struc-
tures which semantically correspond to one another. For example, applied to
file systems it can identify that a folder labeled “car” is semantically equivalent
to another folder “automobile” because they are synonyms in English. This in-
formation can be taken from a background knowledge, e.g., a linguistic resource
such as WordNet [13].

Figure 1 shows two University course catalogs. This is a typical example of
data integration where we need to match these course catalogs in case of a trans-
fer of a student from one University to another, where the receiving university
has to decide which courses to recognize from the former University. There are
different ways the set of mapping elements can be returned, according to the
specifics of the problem where the semantic matching approach is being applied.
The following sub-sections introduce different versions of the semantic match-
ing algorithm while Section 4.8 provides more details on how these versions are
implemented in S-Match.

3.1 The basic algorithm

The basic semantic matching algorithm was introduced in [6] and later extended
in [1]. The key intuition of Semantic Matching is to find semantic relations, in
the form of equivalence (=), less general (v), more general (w) and disjoint-
ness (⊥), between the meanings (concepts) that the nodes of the lightweight
ontologies represent, and not only the labels [1]. This is done using a four steps
approach, namely:

• Step 1 : Compute the concepts of label, CLs;

4xobjects.seu.edu.cn/project/falcon/
5dbs.uni-leipzig.de/Research/coma.html
6www-db.stanford.edu/~melnik/mm/sfa/
7islab.dico.unimi.it/hmatch/

4

• Step 2 : Compute the concepts at node, CN s;

• Step 3 : Compute relations between the concepts of label;

• Step 4 : Compute relations between the concepts at node;

In the first step, the natural language labels of the nodes are analyzed with
the aid of a linguistic oracle (e.g., WordNet) in order to extract the intended
meaning. The intended meaning is a complex concept, made of atomic concepts,
which roughly correspond to individual words. The output of this step is a
language independent Description Logic (DL) formula that encodes the meaning
of the label. The main objective of this step is to unequivocally encode the
intended meaning of the label, thus eliminating possible ambiguities introduced
by the natural language such as, but not only, homonyms and synonyms. If we
consider the example in Figure 1, we need to disambiguate the word “History”.
This is a trivial task for a human, which would know that “History” is being
used in the sense of humanistic discipline as opposed to the past times sense, but
this task has proven to be difficult to automate. As SENSEVAL competitions
show, this problem is noted for particularly difficult to beat simple baseline
approaches. For example, a 4% improvement over a baseline is considered good
[14].

In the second step, we compute the meaning of the node considering its
position in the tree, namely, the path of the particular node to the root. For
example, in the node “History” of Figure 1 by having computed the CL in the
previous step, we know exactly which “History” we are referring to. In this
step we restrict the extension of the concept to that of only “Courses” about
“History”, and not everything about “History”.

During the third step, we compute the relations between the concepts of
label of two input trees. This is done with the aid of two kinds of element level
matchers: semantic and syntactic. Semantic element level matchers rely on
linguistic oracles to find semantic correspondences between the concepts of label.
For example, it would discover that the concepts for “car” and “automobile” are
synonyms. Instead, syntactic element level matchers, such as N-Gram and Edit
Distance are used if no semantic relation could be found by the semantic element
level matcher. The output of this step is a matrix of relations between all atomic
concepts encountered in the nodes of both lightweight ontologies given as inputs.
This constitutes the theory and axioms which will be used in the following step
(see [1] for complete details).

In the fourth step, we compute the semantic relations (=,w,v,⊥) between
the concepts at node (CN s). By relying on the axioms built on the previous
step, the problem is reformulated as a propositional satisfiability (SAT) problem
between each pair of nodes of the two input lightweight ontologies. This problem
is then solved by a sound and complete SAT engine.

Steps 1 and 2 need to be done only once (preferably off-line) for each input
tree. Then, each time the tree needs to be matched, these steps can be skipped
and the resulting lightweight ontologies can be used directly. Steps 3 and 4 can

5

Figure 2: Result of the basic semantic matching algorithm.

only be done at runtime, since they require both input lightweight ontologies in
order to compute the mapping elements.

The output of the Semantic Matching is a set of mapping elements in the
form 〈N i

1, N
j
2 , R〉, namely a set of semantic correspondences between the nodes

in the two lightweight ontologies given as input. Where N i
1 is the i-th node

of the first lightweight ontology, N j
2 is the j-th node of the second lightweight

ontology, and R is a semantic relation in (=,w,v,⊥). Figure 2 shows a graphical
representation of a set of mapping elements.

3.2 Minimal Semantic Matching

Considering the hierarchical nature of inputs (the lightweight ontologies) and
taking into account the subsumption relation existing between the set-theoretic
interpretations of input labels [4], we outline here the Minimal Semantic Match-
ing algorithm. This algorithm exploits the above mentioned properties of the
inputs to reduce matching time, the algorithm dependency on the background
knowledge and to output the minimal set of possible mapping elements. The
minimality property is especially desirable if the output mapping is to be further
processed by humans.

The minimal set of possible mapping elements between two Lightweight On-
tologies is such that:

i) all the (redundant) mapping elements can be computed from the minimal
set,

ii) none of the mapping elements can be dropped without loosing property i).

This minimal set of possible mapping elements always exists and it is unique
[4]. Another important property of the minimal mappings algorithm is that
it is possible to compute the maximum set of mapping elements based on the
minimal mappings set. This computation can be done by inferring all redundant
mapping elements from the minimal set [4], therefore, significantly reducing the
number of node matching operations to be performed (see step four of the basic

6

Figure 3: Result of the minimal semantic matching algorithm.

algorithm in Section 3.1), which otherwise consume considerable time for solving
the propositional satisfiable (SAT) problems.

A graphical representation of the minimal mappings set can be seen in Fig-
ure 3. Note how the set of mappings is drastically reduced in comparison to
the set of mappings returned by the “default” semantic matcher and shown in
Figure 2. This reduced set is more human-readable and in general corresponds
to what a person expects to see as the result of the semantic matcher.

If we analyze the mappings in Figure 2 for the “Courses” root node in the
left tree, we can see that “Courses” is equal to “Course” (the root node of the
right tree), but is more general than all the children nodes of the “Course” root
node. By comparing these mappings to the mapping in Figure 3 (only the =
relation between the roots) we can see how the minimal version collapses all
the other mapping elements, because they can be inferred from the equivalence
relation. In general, if two nodes are semantically equal, all the children nodes
will be more specific compared to the parent (see [4] for the theoretical basis).

3.3 Structure Preserving Semantic Matching (SPSM)

In many cases it is desirable to match structurally identical elements of both
the source and the target parts of the input. This is specially the case when
comparing signatures of functions such as web service descriptions or APIs or
database schemas. Structure Preserving Semantic Matching (SPSM) [7] is a
variant of the basic semantic matching algorithm. SPSM can be useful for
facilitating the process of automatic web services composition, returning a set
of possible mappings between the functions and their parameters.

SPSM computes the set of mapping elements preserving the following struc-
tural properties of the inputs:

i) only one mapping element per node is returned. This is required in order
to match only one parameter (or function) in the first input tree, to only
one parameter (or function) in the second input tree.

ii) leaf nodes are matched to leaf nodes and internal nodes are matched to

7

Figure 4: Result of Structure Preserving Semantic Matching (SPSM).

internal nodes. The rationale behind this property is that a leaf node
represents a parameter of a function, and an internal node corresponds to a
function. This way a parameter which contains a value will not be confused
with a function.

Figure 4 shows the output of SPSM when matching two simple database
schemas, consisting of one table each: table “auto” with columns “brand”,
“name” and “color” on the left and table “car” with columns “year”, “brand”
and “colour” on the right. Observing the results of SPSM in this example we
can see that the set of structural properties is preserved:

i) The root node “auto” in the left tree has only one mapping to the node
“car” in the right tree on the same level, that is, root.

ii) The leaf node “brand” in the left tree is mapped to the leaf node “brand”
in the right tree, and similarly with the leaf node “color” in the left tree
and the node “colour” in the right tree - the leaf node is mapped to the
node on the same level, that is, to a leaf node.

4 The Framework

4.1 Algorithms

Currently S-Match contains implementations of the basic semantic matching
algorithm [1], as well as minimal semantic matching algorithm [4] and structure
preserving semantic matching algorithm [7]. The basic algorithm is a general
purpose matching algorithm, very customizable and suitable for many applica-
tions. The minimal semantic matching algorithm produces minimal and max-
imal mapping elements sets. The minimal set is well suited for manual evalu-
ations, as it contains “compressed” information and saves experts’ time. The
maximum mapping elements set contains all possible links and is well suited for
consumption by applications which are not aware of semantics of lightweight
ontologies. The structure preserving semantic matching (SPSM) algorithm is

8

an algorithm well suited for matching API and database schemas. It matches
the inputs distinguishing between structural elements such as functions and
variables.

4.2 Architecture

S-Match is developed to have a modular architecture that allows easy extension
and plug-in of ad-hoc components for specific tasks. Figure 5 shows the main
components of the S-Match architecture, and a reference to the four steps of
the Semantic Matching algorithm outlined in Section 3.

4.3 Loaders

The Loaders package contains loaders from various formats. This component
loads the files containing the tree-like structures from tab-indented formats and
XML formats. The provided IContextLoader interface allows extra loaders
to be added for formats such as RDF and OWL, which alternatively can be
accessed using S-Match-AlignAPI integration.

4.4 Preprocessors

The Preprocessors package contains components, providing translation of nat-
ural language metadata, such as classification labels, ontology class names and
library subject headings into lightweight ontologies. These components use lin-
guistic information provided by the components from the Oracles package to
extract atomic concepts from labels of node. They also use the knowledge of the
language, such as peculiarities of the syntax of subject headings or features of
the structure of classification labels to construct complex concepts out of atomic
ones. These components output the concepts of label (CLs).

4.5 Classifiers

The Classifiers package constructs the concepts at node (CN s) using the in-
formation stored in the tree plus the concepts of the labels of each node. The
output of this step is a set of DL formulas representing the concepts of each
node. These formulas represent the Lightweight Ontology (see Section 2) for
the input trees.

4.6 Oracles

The Oracles package provides access to linguistic knowledge and background
knowledge. This component contains linguistic oracles, which provide access to
linguistic knowledge, such as base forms and senses and sense matchers, which
find relations between word senses handed out by linguistic oracle. On one
hand, linguistic knowledge (e.g. the knowledge one needs to translate natural
language into propositional description logics) and background knowledge (e.g.

9

Figure 5: S-Match architecture

10

Table 1: S-Match element level matchers

Type Name

Sense-based WordnetMatcher, WNHierarchy
String-based Prefix, Suffix, EditDistance, NGram
Gloss-based WNGloss, WNExtendedGLoss

the knowledge one needs to match “car” to “automobile” or to know that “ap-
ple” is less general than “fruit”) are separate and can be provided by different
components. On the other hand, in practice, they are often provided by a single
component handling out of a dictionary, such as WordNet [13], base forms as
well as word senses and relations between those senses.

4.7 Deciders

The Deciders package provides access to sound and complete satisfiability rea-
soners, as well as other logic-related services, such as conversion of an arbitrary
logical formula into its conjunctive normal form. The services of the package
are used by classifiers during the construction of the concepts at node and by
the structure level matchers during the matching process.

4.8 Matchers

The Matchers package is organized as two sub packages, one for the Element
level matchers, and one for the Structure level matchers.

The Element level matchers are used to compute the relations between the
labels of node (the third step of the Semantic Matching algorithm). The pack-
age is divided in two sub-packages, one for semantic matchers, which use the
linguistic Oracles to compute semantic relations between concepts, and the syn-
tactic matchers which are used if no semantic relation could be extracted by the
semantic matcher. Currently S-Match includes Wordnet-based syntactic gloss
matchers, and a set of eight string-based matchers (see Table 1).

The Structure level matchers in Figure 5 are used to compute semantic
relations between the concepts of node. For this purpose, after transforming
the problem into a propositional satisfiability (SAT) problem, they rely on the
Deciders package that provides sound and complete SAT engines. The output
of this step is a set of mapping elements that contains semantic relation between
the nodes. The core parts of matching algorithms are implemented by structure
level matchers.

The DefaultTreeMatcher implements the basic semantic matching algo-
rithm by matching two trees in a very simple manner. It takes all nodes of the
source tree and sequentially matches them to all nodes of the target tree.

The OptimizedStageTreeMatcher implements the minimal semantic match-
ing algorithm by splitting the matching task into four steps, according to the
relations and the partial order between them. First, it walks simultaneously

11

two trees and searches for disjoint relation between the nodes. If found, the
subtrees of the two nodes in question could be skipped. Then it repeats the
operation searching for less and more generality, skipping appropriate subtrees
in case a relation is found. Finally, it searches for the presence of both less and
more general relations between the same nodes and establishes an equivalence
relation between them instead.

Alternatively, the minimal mapping can be obtained from a normal mapping
by using a minimal filter, as explained in the Section 4.9.

The SPSMTreeMatcher uses the results of the DefaultTreeMatcher to build-
ing a graph to compute the minimal number of edit distance required to trans-
form one lightweight ontology into the other. This number of operations is then
used to compute a semantic similarity score as defined in [7]. Once the score
is computed, the resulting mapping elements that comply with the structural
properties presented in Section 3.3 is computed by applying the SPSM filter, as
explained in the Section 4.9.

4.9 Filters

The Filters package provides components which filter the mapping. For exam-
ple, the RedundantMappingFilterEQ filters what can be considered redundant
mappings between nodes [4] to return a minimal set of mapping results (for
example, to be shown in a User Interface). The SPSMMappingFilter filters a
normal mapping into a mapping where the structure is preserved. This package
also contains implementation of the utility filters such RandomSampleMapping-

Filter which obtains a random sample from the mapping, for example, for
evaluation, or RetainRelationsMappingFilter, which retains only the rela-
tions of interest from a complete mapping.

4.10 Renderers

Finally, the output step is concerned with the formatting of the mapping el-
ements to be suitable for each particular case. The Renderers package takes
care of saving the results (and the computed Lightweight Ontology) in the ap-
propriate format for future use. Currently, the Lightweight Ontology can be
saved in an XML format, which can be loaded by the Loaders package, to avoid
repeating the first two steps more than once. The set of mapping elements can
currently be saved in plain text file (see Section 5.4 for more details).

5 The interfaces

S-Match provides 3 different interfaces for executing the matching algorithms,
managing the inputs, the outputs and configuring the framework. These inter-
faces are:

1. Java API: useful for extending the functionality of the framework by,
for example, implementing specific Loaders and Renderers, replacing the

12

. . .
1: IMatchManager mm = MatchManager.getInstance();
2: Properties config = new Properties();
3: config.load(new FileInputStream(”s-match-Tab2XML.properties”));
4: mm.setProperties(config);
5: IContext s = mm.loadContext(”../test-data/cw/c.txt”);
6: IContext t = mm.loadContext(”../test-data/cw/w.txt”);
7: mm.offline(s);
8: mm.offline(t);
9: IContextMapping<INode> result = mm.online(s, t);
10: mm.renderMapping(result, ”../test-data/cw/result.txt”);
. . .

Figure 6: S-Match API example.

linguistic Oracles and implementing specific element and structure level
Matchers.

2. Command Line Interface: useful for managing S-Match as a configurable
black box algorithm, which parameters can be fine tuned via command
line parameters and configuration files.

3. Graphical User Interface: useful for testing purposes where human experts
need to quickly assess the resulting mapping elements.

5.1 Java API

The Java API provided by S-Match can be particularly useful for extending the
basic matchers to include, for example, geospatial matchers (to check that a
street is part of a city) or temporal matchers (to check that December 31st is
equal to New Year’s eve). Many commonly used S-Match services are exposed
via the IMatchManager interface. The MatchManager class is an implementation
of this interface and can be used as shown in Figure 6.

Once the MatchManager is instantiated (line 1), the following step is to load
the configuration file (lines 2-4). Once the framework is configured, the source
and target trees need to be loaded (lines 5-6) and converted into lightweight on-
tologies by preprocessing them (lines 7-8) before matching (line 9). Finally, the
mappings can be rendered into an output file (line 10). The example code shown
in Figure 6 is included in the open source distribution as SMatchAPIDemo 8.

5.2 Command line interface

S-Match command line interface provides facilities for configuring the framework
by specifying several components such as the configuration files, commands to
run and their arguments and options. Currently the following commands are
available in the S-Match CLI:

• offline: transforms the input tree-like structures into lightweight on-
tologies by performing the offline preprocessing (first and second steps of

8demos/smatchapi/SMatchAPIDemo.java

13

Section 3.1) and rendering the results for future reuse. This is useful for
transforming the trees only once, and then avoiding this overhead each
subsequent time the same tree needs to be matched.

• online: computes the mapping elements (third and fourth steps of Sec-
tion 3.1) between lightweight ontologies and writes the results into an
output file. This performs the online and output steps of Figure 5. The
command is decoupled from the previous offline step in order to avoid
preprocessing overheads and allowing better performance when running
experiments.

• filter: filters the mapping elements by loading a specific mapping ele-
ment set, filtering it and then saving it into an output file. This can be
used to further process the results from a particular version of semantic
matching algorithm (Section 3). For example, to expand the minimal set
of mapping elements into a maximum set by computing the redundant
mapping elements.

• convert: transforms between I/O formats by using different implementa-
tions of Loaders and Renderers. This is useful, for example, to transform
tab-indented trees into AlignAPI format and vice versa.

• wntoflat: converts the WordNet dictionary into internal binary format.
This format can then be loaded into memory to speed up element level
matching process.

Each of these commands can be customized by specifying a properties file
which configures the components and the run-time environment. When this
property file is not specified, a default configuration file9 available in the open
source distribution is used. Furthermore, a tuple of ¡property key,value¿ can be
specified multiple times in the command line overriding the loaded value from
the properties file. This is particularly useful at times when one or two out of
many options in the configuration file need to be changed, for example, when
conducting a series of experiments where several threshold values need to be
tested.

5.3 Graphical User Interface

S-Match can also be used with a simple Graphical User Interface (GUI). Figure 7
shows the GUI with two example course catalogs and the resulting Minimal
Mapping loaded. The set of mapping elements computed by the framework can
be easily analyzed by a human using the GUI in Figure 7 in contrast to the set
of mapping elements rendered as output using any format as shown in Figure 9.

9../conf/s-match.properties

14

Figure 7: S-Match GUI with course catalogs and a mapping loaded

Courses
College of Arsta and Sciences

Earth and Athmosferic Science
History

Latin America History
America History
Ancient European History

Computer Science

Figure 8: Example input in tab-indented format.

5.4 I/O formats

S-Match provides generic interfaces for dealing with the input and output of
tree-like structures, Lightweight Ontologies and mapping elements. While cur-
rently implementing a set of Loaders and Renderers, the framework can be
easily extended by implementing the IContextLoader and IContextRenderer

interfaces.
The Loaders package includes the implementation of loaders for the tree-like

structures and mapping elements. Currently, S-Match supports loading tree-like
structures in tab indented format. Figure 8 shows an example tree from Figure 1
in tab indented format.

Given that steps 1 and 2 need to be performed only once per tree, S-Match
also provides the facilities (in the Renderers package) for saving the resulting

15

\Courses = \Course
\Courses\College of Arts and Sciences = \Course\College of Arts and Sciences
. . .
\Courses\College of Arts and Sciences\History = \Course\College of Arts and Sciences\History
. . .
\Courses\College of Arts and Sciences\History\Latin America History ¡ \Course\College of Arts and
Sciences\History\History of Americas
. . .

Figure 9: Example output in the plain text format.

lightweight ontology from the second step in XML format. Consequently, one
can load the Lightweight Ontology directly from the XML file (using the Loaders
package) and save time and resources that are critical for testing purposes and
when working with big Lightweight Ontologies.

Current Renderers and Loaders for the mappings elements consists of the
implementation of a plain text file format, containing one line per mapping
element in the form 〈N i

1→R→N j
2 , 〉. Where N i

1 is the path from the root to
the particular node in one tree, → is a tab character, R is the semantic relation
in (= equivalence, > more general, < less general, ! disjointness) and N j

2 is the
path from the root to the node in the second tree. Figure 9 shows an extract (4
out of 43) from the set of mapping elements shown in Figure 2.

S-Match integration into the Alignment API (AlignAPI)10 allows S-Match
users to access more input and output formats and allows AlignAPI users to use
S-Match matching capabilities. AlignAPI is being widely used for benchmarking
purposes for the last 6 years in the Ontology Alignment Evaluation Initiative
(OAEI)11.

6 The open source distribution

S-Match12 is the open source implementation of the Semantic Matching frame-
work outlined in Section 3 and defined and evaluated in [1] at the date of writing
this paper, and it has been released under GNU Library or Lesser General Pub-
lic License (LGPL). S-Match provides implementations of the basic semantic
matching algorithm [1], the minimal semantic matching algorithm [4], and the
Structure Preserving Semantic Matching (SPSM) [7]. It provides necessary im-
plementation for transforming tree-like structures, such as Classifications, Web
and file system directories and Web services descriptions, among others, into
Lightweight Ontologies (see Section 2). It also provides a Graphical User Inter-
face for selecting the inputs, running the matching and visualizing the results,
as well as the command line API (Section 5). It provides a Java library13 that
enables other projects to exploit semantic matching capabilities.

10http://alignapi.gforge.inria.fr/
11http://oaei.ontologymatching.org/
12http://s-match.org/
13s-match.jar

16

The latest version of S-Match can be found at the download page14 of the
site and the complete documentation including the “Getting started” guide, the
manual, the publications and the presentations can be found at the documen-
tation page15.

The datasets used for testing the performance of the framework have also
been released. The TaxMe2 [15] dataset with annotations and reference mapping
elements can be found at the datasets page16. This dataset has been used
since 2005 in the yearly Directory Track of the Ontology Alignment Evaluation
Initiative (see [16, 17] for latest editions) associated with the ISWC Ontology
Matching Workshop, where it has shown over the past years to be robust with a
good discrimination ability, i.e., different sets of correspondences are still hard
to find for different systems. For example, S-Match achieves precision, recall
and f-measure of 46%, 30% and 36% respectively, and compares well with 8
other tested systems [15].

7 Conclusion

This paper presents S-Match, an open source semantic matching framework.
S-Match includes the implementation of three versions of semantic matching
algorithms, designed for different application domains. The framework allows
new algorithms and background knowledge to be included when specific match-
ers or linguistic information is required. The graphical user interface allows
users to easily interpret the results, while the programmatic API provides great
flexibility for exploiting the matching algorithms from other systems.

We have outlined how lightweight ontologies, while being simple and intuitive
structures, can be used to hold many knowledge organization systems. This
shows that S-Match, while being designed to work with lightweight ontologies, is
of much importance because it covers a great number of information structures.

We are currently working on making more datasets available and extending
the programmatic API to include a web service layer that can be used to execute
matching online at the S-Match project site or as enterprise semantic matching
services. We are also working on enriching the supported input formats by
including other standards such as the Ontology Alignment API, among others.

References

[1] Fausto Giunchiglia, Mikalai Yatskevich, and Pavel Shvaiko. Semantic
matching: Algorithms and implementation. In Journal on Data Seman-
tics IX, pages 1–38. 2007.

14http://s-match.org/download.html
15http://s-match.org/documentation.html
16http://s-match.org/datasets.html

17

[2] Fausto Giunchiglia, Maurizio Marchese, and Ilya Zaihrayeu. Encoding clas-
sifications into lightweight ontologies. In Journal on Data Semantics VIII,
pages 57–81. 2007.

[3] Ilya Zaihrayeu, Lei Sun, Fausto Giunchiglia, Wei Pan, Qi Ju, Mingmin Chi,
and Xuanjing Huang. From web directories to ontologies: Natural language
processing challenges. In The Semantic Web, pages 623–636. 2007.

[4] Fausto Giunchiglia, Vincenzo Maltese, and Aliaksandr Autayeu. Comput-
ing minimal mappings. In Proceedings of the 4th Workshop on Ontology
matching at ISWC. 2009.

[5] Fausto Giunchiglia and Ilya Zaihrayeu. Encyclopedia of Database Systems,
chapter Lightweight Ontologies. Springer, June 2009.

[6] Fausto Giunchiglia and Pavel Shvaiko. Semantic matching. Knowl. Eng.
Rev., 18(3):265–280, 2003.

[7] Fausto Giunchiglia, Fiona McNeill, Mikalai Yatskevich, Juan Pane, Paolo
Besana, and Pavel Shvaiko. Approximate structure-preserving semantic
matching. In Proceedings of the OTM 2008 Confederated International
Conferences. ODBASE 2008, pages 1217–1234, Moterrey, Mexico, 2008.
Springer-Verlag.

[8] Jrme Euzenat and Pavel Shvaiko. Ontology Matching. Springer-Verlag New
York, Inc., 2007.

[9] Pavel Shvaiko and Jérôme Euzenat. Ten challenges for ontology matching.
In Robert Meersman and Zahir Tari, editors, OTM Conferences (2), volume
5332 of Lecture Notes in Computer Science, pages 1164–1182. Springer,
2008.

[10] Namyoun Choi, Il-Yeol Song, and Hyoil Han. A survey on ontology map-
ping. SIGMOD Record, 35(3):34–41, 2006.

[11] David Aumueller, Hong Hai Do, Sabine Massmann, and Erhard Rahm.
Schema and ontology matching with COMA++. In Fatma Özcan, editor,
SIGMOD Conference, pages 906–908. ACM, 2005.

[12] Wei Hu and Yuzhong Qu. Falcon-AO: A practical ontology matching sys-
tem. J. Web Sem., 6(3):237–239, 2008.

[13] George A. Miller. WordNet: a lexical database for english. Communications
of the ACM, 38(11):39–41, 1995.

[14] Rada Mihalcea and Andras Csomai. SenseLearner: Word Sense Disam-
biguation for All Words in Unrestricted Text. In 43rd Annual Meeting of
the Association for Computational Linguistics, Proceedings of the Confer-
ence, 25–30 June 2005, University of Michigan, USA. The Association for
Computational Linguistics, 2005.

18

[15] Fausto Giunchiglia, Mikalai Yatskevich, Paolo Avesani, and Pavel Shvaiko.
A large dataset for the evaluation of ontology matching systems. The
Knowledge Engineering Review Journal, 24:137–157, 2008.

[16] Caterina Caracciolo, Jérôme Euzenat, Laura Hollink, Ryutaro Ichise, An-
toine Isaac, Véronique Malaisé, Christian Meilicke, Juan Pane, Pavel
Shvaiko, Heiner Stuckenschmidt, Ondrej Sváb-Zamazal, and Vojtech
Svátek. Results of the ontology alignment evaluation initiative 2008. In
Pavel Shvaiko, Jrme Euzenat, Fausto Giunchiglia, and Heiner Stucken-
schmidt, editors, Proceedings of the 3rd ISWC international workshop on
Ontology Matching, Karlsruhe (DE), 2008.

[17] Jrme Euzenat, Alfio Ferrara, Laura Hollink, Antoine Isaac, Cliff Joslyn,
Vronique Malais, Christian Meilicke, Andriy Nikolov, Juan Pane, Marta
Sabou, Franois Scharffe, Pavel Shvaiko, Vassilis Spiliopoulos, Heiner Stuck-
enschmidt, Ondrej Svb-Zamazal, Vojtech Svtek, Cssia Trojahn dos Santos,
George Vouros, and Shenghui Wang. Results of the ontology alignment eval-
uation initiative 2009. In Pavel Shvaiko, Jrme Euzenat, Fausto Giunchiglia,
Heiner Stuckenschmidt, Natasha Noy, and Arnon Rosenthal, editors, In
Proc. 4th International Workshop on Ontology Matching (OM-2009), col-
located with ISWC-2009, pages 73–126, Fairfax (VA US), 2009.

19

