
(Not) Yet Another Matcher∗

Fabien Duchateau, Remi Coletta, Zohra
Bellahsene

LIRMM, Univ. Montpellier 2
34392 Montpellier, France

firstname.name@lirmm.fr

Renée J. Miller
Univ. of Toronto

40 St. George Street
Toronto ON M5S 2E4, Canada

miller@cs.toronto.edu

ABSTRACT
Discovering correspondences between schema elements is a crucial
task for data integration. Most schema matching tools are semi-
automatic, e.g. an expert must tune some parameters (thresholds,
weights, etc.). They mainly use several methods to combine and
aggregate similarity measures. However, their quality results often
decrease when one requires to integrate a new similarity measure
or when matching particular domain schemas. This paper describes
YAM (Yet Another Matcher), which is a schema matcher factory.
Indeed, it enables the generation of a dedicated matcher fora given
schema matching scenario, according to user inputs. Our approach
is based on machine learning since schema matchers can be seen
as classifiers. Several bunches of experiments run against matchers
generated by YAM and traditional matching tools show how our
approach is able to generate the best matcher for a given scenario.
Classification: H.2. DATABASE MANAGEMENT
General Terms: ExperimentationKeywords: schema matching, data inte-
gration, matcher factory, machine learning, classifier, XML schemas.

1. INTRODUCTION
There are a plethora of schema matching tools designed to help

automate what can be a painstaking task if done manually. The
diversity of tools hints at the inherent complexity of this schema
matching problem. Different tools are designed to overcomediffer-
ent types of schema heterogeneity including differences indesign
methodologies, differences in naming conventions, and differences
in the level of specificity of schemas, among many other typesof
heterogeneity. Furthermore, different matchers may be designed to
help with very different integration tasks. Some are designed to
help in automatically matching web service interfaces for the pur-
pose of wrapping and composing web services. Others are designed
for matching large, complex legacy schemas to facilitate federated
querying. The proliferation of schema matchers and the prolifera-
tion of new (often domain-specific) similarity measures used within
these matchers has left data integration practitioners with the very
! perplexing task of trying to decide which matcher to use forthe
schemas and tasks they need to solve.

∗Supported by ANR DataRing ANR-08-VERSO-007-04

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’09, November 2–6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00.

Most schema matching tools are semi-automatic meaning thatto
perform well, an expert must tune some (matcher-specific) param-
eters (thresholds, weights, etc.) Often this tuning can be adifficult
task as the meaning of these parameters and their effect on match-
ing quality can only be seen through trial-and-error. Lee etal. [8]
have shown how important (and difficult) tuning is, and that with-
out tuning most matchers perform poorly. To overcome this, they
proposedeTuner, a supervised learning approach for tuning these
matching knobs. However, a user must still commit to one single
matcher and then tune that matcher to a specificmatching scenario,
that is, a set of training schemas with their correct correspondences.
If the user makes a poor choice of matcher to begin with, for exam-
ple, by choosing a matcher that does not consider structuralschema
similarity when this is important in the domain,eTunercannot help.
Furthermore, knowing beforehand whe! ther semantic similarity or
structural similarity or syntactic similarity (or some combination of
these) will be most important in a domain is not an easy task.

In this work, we propose YAM, which is actually not Yet An-
other Matcher. Rather YAM is the first schema matcher generator
designed to produce a tailor-made matcher. The intuition which led
to our work is as follows: the algorithms which combine similar-
ity measures provide different results according to a givenschema
matching scenario. Like previous works [2, 3, 9, 4], we also use
a supervised learning approach. The novelty of YAM is that un-
like eTuner or any other schema matcher, YAM performs learning
over a large set of matchers and a large set of similarity measures.
Over this large search space, using a small amount of training data,
YAM is able to produce a "dedicated" or tailor-made matcher.The
matchers YAM considers are classifiers (the basis of most match-
ers). YAM uses a large library of classifiers and similarity mea-
sures, and is extensible in both dimensions. In particular,new sim-
ilarity measures custom-made for n! ew domains or new integration
tasks, can easily be added to YAM.

Contributions. The main features of our approach are:

• YAM is the first schema matcher factory capable of gener-
ating a dedicated matcher for a given scenario. YAM does
more than tuning, it both selects and trains a dedicated matcher
from a large library of matchers.

• We compare the dedicated matchers produced by YAM with
two high-performing traditional matchers, COMA++ and Sim-
ilarity Flooding. We show that our dedicated matchers sig-
nificantly out perform traditional matchers when trained on
relevant matching scenarios. Even when training is done on
a matching scenario that is not relevant (to the schemas to
be matched), we show that YAMS’s dedicated matchers may
still achieve comparable quality to traditional matchers.

2. LEARNING A DEDICATED MATCHER
In this section, we describe YAM’s approach for learning a schema

matcher (which we call a dedicated matcher) for a given schema
matching scenario. Any schema matcher can be viewed as a clas-
sifier. Given the set of possible correspondences (the set ofpairs of
elements in the schemas), a matcher labels each pair as either rele-
vant or irrelevant. Of course, a matcher may use any algorithm to
compute its result – classification, clustering, an aggregation over
similarity measures, or any number of ad hoc methods including
techniques like blocking to improve its efficiency.

YAM classifiers include decision trees (J48, NBTree, etc.), ag-
gregator functions (SimpleLogistic), lazy classifiers (IBk, K* , etc.),
rules-based (NNge, JRip, etc.) and Bayes Networks.

The generation of a dedicated matcher can be split into two steps:
(i) training of matchers, and (ii) final matcher selection.

2.1 Matcher Training
YAM trains each matcher using its knowledge base of training

data. We begin our explanation with an example.
Example: Let us consider the pair(searchform, search), for

which three similarity values have been computed:AffineGap=
14.0, NeedlemanWunsch= −4.0, JaroWinkler= 0.92. From these
values, a matcher must predict if the pair is relevant or not.

To classify an element pair as relevant or not, a classifier must
be trained. YAM uses correspondences stored in a knowledge-base
(KB), i.e., YAM will use a matcher that provides the best average
results on the KB. During training, all the thresholds, weights, and
other parameters of the matcher are automatically set. Although
each matcher performs differently, we briefly sum up how they
work. First, they select the similarity measures which provides a
maximum of correctly classified correspondences. Then, thesimi-
larity measures that might solve harder cases are taken intoaccount.

Example: If training data is composed of the following expert
correspondences(* City:, City) and(State:, State), terminological
measures likeJaroWinkleror Levenshteinwill be first considered
by the machine learning algorithms. Indeed, they enable a cor-
rect classification of both pairs. Thus, if the trained matcher is an
aggregator function, it gives a heavy weight to these terminologi-
cal measures while structural or linguistic measures wouldhave a
weight equal to0. In the case of training a decision tree, termino-
logical measures are placed at the top of the tree, and othersmight
not appear or be at the bottom of the tree [4].

At the end of this step, YAM has generated a trained matcher for
each classifier in the KB.

2.2 Selecting a Dedicated Matcher
A dedicated matcher is selected according to its accuracy onthe

given training data. Thus, YAM cross-validates each matcher with
the correspondences stored in the KB. The matcher which discov-
ered most of the correspondences and the fewest irrelevant ones is
selected as the dedicated schema matcher. Note that these compu-
tations correspond to the f-measure.

3. EXPERIMENTS
In these experiments, we first measure the quality impact accord-

ing to the number of training scenarios. Our goal is to show that
the amount of training data needed to produce a high performing
matcher is not onerous. Then, we demonstrate that YAM is ableto
produce an effective dedicated matcher. Finally, we compare our
results with two matching tools that have excellent matching qual-
ity, COMA++ [1] and Similarity Flooding [10].

Scenarios. To demonstrate the effectiveness of our approach,
we used several schema matching scenarios:university from [3],

thalia benchmark [7],travel schemas1, currency andsmsweb ser-
vices2 and web forms related to different domains (hotel booking,
dating, betting, etc.) extracted by authors of [9]. For all these sce-
narios, correct (relevant) correspondences are available, either de-
signed manually or semi-automatically. We use these schemas, and
their correct correspondences as the training data for YAM.

Quality metrics. To evaluate the matching quality, we use com-
mon measures in the literature, namely precision, recall and f-measure.
Precision calculates the proportion of relevant correspondences ex-
tracted among the discovered ones. Another typical measureis re-
call which computes the proportion of relevant discovered corre-
spondences among all relevant ones. F-measure is a tradeoffbe-
tween precision and recall.

YAM architecture and prototype are described in [5]. The cur-
rent version of YAM includes20 classifiers from the Weka library3

and30 similarity measures, including all the terminological mea-
sures from the Second String project4, and some structural and se-
mantic measures. Experiments were run on a3.6 Ghz computer
with 4 Go RAM under Ubuntu7.10. We used200 runs to mini-
mize the impact of randomness during training.

3.1 Impact of the Training Scenarios
Figure 1 depicts the average f-measure of several matchers (re-

stricted to5 for clarity) as we vary the number of training sce-
narios. Note that the average f-measure has been computed over
40 randomly selected scenarios. The training scenarios vary from
10 to 50. We note that two matchers (VFI, IB1) increase their f-
measure of20% when they are generated with more training sce-
narios. This can be explained by the fact thatIB1 is an instance-
based classifier5, thus the more examples it has, the more accurate
it becomes. Similarly,VFI uses a voting system on intervals that
it builds. Voting is also appropriate when lots of training exam-
ples are supplied.NBTreeandNNgealso! increases their average
f-measure from around10% as training data is increased. On the
contrary,BayesNetachieves the same f-measure (60% to 65%) re-
gardless of the number of training scenarios. Thus, as expected,
most matchers increase their f-measure when the number of train-
ing scenarios increases. With30 training scenarios, they already
achieve an acceptable matching quality.

Note that the number of training scenarios is not a parameter
that the user must manage. Indeed, YAM automatically chooses
the number of training scenario according to the matchers that have
to be learned. We have run more than11, 500 experiment results,
from which we deduce the number of training scenarios for a given
classifier. Table 1 shows the conclusion of our empirical analysis.
For instance, when learning a schema matcher based onJ48classi-
fier, YAM ideally chooses a number of training scenarios between
20 to 30.

3.2 Comparing generated matchers
We now study which matchers were selected for different schema

matching scenarios. This study highlights the variabilityin match-
ing quality of each matcher on different scenarios, and therefore
the importance of a factory tool such as YAM for selecting among

1http://metaquerier.cs.uiuc.edu/repository
2http://www.seekda.com
3https://svn.scms.waikato.ac.nz/svn/weka
4http://secondstring.sourceforge.net
5This classifier is named instance-based since the correspondences
(included in the training scenarios) are considered as instances dur-
ing learning. Our approach does not currently use schema in-
stances.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50

f-
m

ea
su

re

number of training scenarios

VFI
BayesNet

NBTree
NNge

IB1

Figure 1: Average f-measure when varying number of training
scenarios

training scenarios Classifiers
20 and less SLog, ADT, CR
20 to 30 J48, J48graft
30 to NNge, JRip, DecTable
50 BayesNet, VP, FT
50 and more VFI, IB1, IBk, SMO, NBTree, MLP

Table 1: Number of training scenarios for each classifier

these matchers to produce an effective matcher.
We have run YAM against200 scenarios, and we measured the

number of times a given matcher is selected as the dedicated matcher.
Figure 2 depicts the number of scenarios (out of200) for which
each matcher was selected as the dedicated matcher. Notice that2
matchers,VFI andBayesNet, are selected in half of the scenarios.
These two matchers can be considered as robust as they provide
acceptable results in most scenarios in our KB. However, match-
ers likeCR or ADT, which have a very low average f-measure on
these200 scenarios (5% for CRand28% for ADT), were respec-
tively selected3 and10 times. This shows that dedicated matchers
based on these classifiers are effective, in terms of quality, for spe-
cific scenarios. Thus, they can provide benefits to some users. We
also note that aggregator functions, likeSLogor MLP, which are
commonly used by traditional matching tools, are only selected as
dedicated matchers in a few scenarios. Thus, they do not provide
optimal quality results in most schema matching scenarios.These
results support our hypothesis that schema matching tools have to
be flexible. YAM, by producing different matchers and selecting
the best one for a given scenario, fulfills this requirement.

3.3 Comparing with Other Matching Tools
We now compare YAM with two matching tools known to pro-

vide good matching quality: COMA++ and Similarity Flooding
(SF). Both matching tools are described in more detail in section 4.
To the best of our knowledge, these tools are the only ones publicly
available. As explained in the previous section, the user does not
need to choose the number of training scenarios. YAM automati-
cally adjusts this number according to the classifier which is going
to be trained.

Figures 3(a) and 3(b) depict the F-measure obtained by YAM
dedicated matcher, COMA++ and Similarity Flooding on the10

 0

 10

 20

 30

 40

 50

 60

VFI BayNet NBTree NNge IB1 ADT SLog JRip MLP VP IBk CR J48graft J48 FT SMO DecTable

N
um

be
r

of
 E

le
ct

io
n

as
 D

ed
ic

at
ed

 M
at

ch
er

Figure 2: Number of selections as dedicated matcher

scenarios. YAM obtains the highest f-measure in7 scenarios, and
reaches80% f-measure in4 scenarios. COMA++ achieves the best
f-measure forcurrencyand universityscenarios. SF obtains the
best f-measure in one scenario (travel). In addition, COMA++ is
the only tool which does not discover any correspondence forone
scenario (travel). However, we notice that YAM obtains better re-
sults on the webforms scenarios since it was trained with webforms.
With non-webforms scenarios, YAM is able to achieve acceptable
results.

These results show how our matcher factory relies on the di-
versity of classifiers. Indeed, the dedicated matchers thatit has
generated for these scenarios are based on various classifiers (VFI,
BayesNet, J48, etc.) while COMA++ and SF only rely on respec-
tively an aggregation function and a single graph propagation algo-
rithm.

YAM obtains the highest average f-measure (67%) while COMA++
and SF average f-measures are just over50%. Thus, YAM gener-
ates more robust schema matchers, specifically because theyare
based on various classifiers.

3.4 Discussion
These experiments support the idea that machine learning tech-

niques are suitable for the schema matching task. First, we have
shown that YAM has generated, for200 schema matching scenar-
ios, different dedicated matchers (i.e., based on different algorithms
such as decision trees, rules, aggregation functions, etc.). The sec-
ond experiment would tailor YAM to automatically adjust thenum-
ber of training scenarios according to the classifier to be generated.
We finally compared our approach with two other matching tools
to show that YAM outperforms them in most scenarios.

Generating all classifiers and selecting the best one is a time con-
suming process (up to several hours if the KB of training datais
large). Of course, in practice, it is the performance of the dedicated
matcher which is crucial and the matchers produced by YAM have
comparable or better time performance to other matchers (includ-
ing COMA++ and Similarity Flooding).

4. RELATED WORK
Much work has been done both in schema matching and ontol-

ogy alignment [6, 11]. However, we only describe in this section
schema matching approaches which are based on machine learning
techniques, and the tools against which we compared our approach.

In [9], the authors use theBoostingalgorithm to classify the sim-
ilarity measures, by iterating weak classifiers over the training set
while re-adjusting the importance of elements in this training set.

(a) Non-webforms scenarios (b) Webform scenarios

Figure 3: Precision, recall and f-measure achieved by the three matching tools on 10 scenarios

The main drawback deals with the Boosting machine learning tech-
nique. Although it gives acceptable results, we have noticed in
section 3 that several classifiers might give poor results with some
scenarios. Thus, only relying on one classifier is risky.

MatchPlanner approach [4] makes use of decision trees to select
the most appropriate similarity measures. This approach provides
acceptable results w.r.t other matching tools. However, the decision
trees are manually built, thus requiring an expert intervention. Be-
sides, decision trees are not always the best classifier, as shown in
section 3.

eTuner [8] aims at automatically tuning schema matching tools.
A given matching tool is applied against the set of correspondences
until an optimal parameter configuration of the matching tool is
found. Thus, eTuner strongly relies on the capabilities of the match-
ing tools. Conversely, YAM learns a dedicated matcher for a given
scenario. Besides, it is extensible in terms of similarity measures
and classifiers, thus enhancing its capabilities for efficiently han-
dling of new schema matching scenarios.

COMA/COMA++ [1] is a generic, composite matcher with very
effective matching results. The similarity of pairs of elements is
calculated linguistic and terminological measures. Then,a strategy
is applied to determine the pairs that are presented as mappings.
COMA++ supports a number of other features like merging, saving
and aggregating match results of two schemas. On the contrary, our
approach is able to learn the best combination of similaritymea-
sures instead of using the whole set.

Glue/LSD [3] is also based on machine learning techniques, with
four different learners, which exploit different information of the
instances. Then, a meta-learner, based on stacking, is applied to re-
turn a linear weighted combination of the four learners. YAMgen-
erates a dedicated matcher, based on a classifier which best com-
bines all similarity measures. On the contrary, Glue uses classifiers
on the same similarity measures. The meta-learner is a linear re-
gression function, with its drawbacks in terms of quality and exten-
sibility, as explained in [4].

Similarity Flooding [10] is a neighbour affinity matching tool.
First, it applies a terminological measure to discover initial corre-
spondences, and then feeds them to the structural matcher for prop-
agation. The weight of similarity values between two elements is
increased, if the algorithm finds some similarity between related
elements of the pair. With strongly heterogeneous labels orwith
small schemas, SF may obtain a low matching quality. But this
weak point is compensated by the time performance.

In AUTOMATCH/AUTOPLEX [2], schema elements are matched
to a dictionary (i.e., a knowledge base populated with relevant data

instances thanks to Naive Bayesian algorithm). Then, the similar-
ity values of two schema elements that match the same dictionary
attribute are summed andminimum cost maximum flowalgorithm
is applied to select the best correspondences. The major drawback
of this work is the importance of the data instances. Besides, it only
uses one similarity measure based on a dictionary.

5. CONCLUSION
In this paper, we have presented YAM, a factory of schema match-

ers. During a pre-match phase, it generates, thanks to machine
learning algorithms, a dedicated matcher for a given schemamatch-
ing scenario. Experiments have shown that the dedicated matcher
obtains acceptable results with regards to other matching tools. Be-
sides, the possibility to learn schema matchers based on different
algorithms enables to efficiently match specific scenarios.

In the future, we first plan to test more machine learning classi-
fiers. Another ongoing work consists in reducing the learning time.

6. REFERENCES
[1] D. Aumueller, H. H. Do, S. Massmann, and E. Rahm. Schema and

ontology matching with coma++. InSIGMOD Conference, Demo
paper, pages 906–908, 2005.

[2] J. Berlin and A. Motro. Database schema matching using machine
learning with feature selection. InCAiSE, 2002.

[3] A. Doan, J. Madhavan, R. Dhamankar, P. Domingos, and A. Y.
Halevy. Learning to match ontologies on the semantic web.VLDB J.,
12(4):303–319, 2003.

[4] F. Duchateau, Z. Bellahsene, and R. Coletta. A flexible approach for
planning schema matching algorithms. InOTM Conferences (1),
pages 249–264, 2008.

[5] F. Duchateau, R. Coletta, Z. Bellahsene, and R. J. Miller. Yam: a
schema matcher factory (demo). InCIKM, 2009.

[6] J. Euzenat and P. Shvaiko.Ontology matching. Springer-Verlag,
Heidelberg (DE), 2007.

[7] J. Hammer, M. Stonebraker, , and O. Topsakal. Thalia: Test harness
for the assessment of legacy information integration approaches. In
Proceedings of ICDE, pages 485–486, 2005.

[8] Y. Lee, M. Sayyadian, A. Doan, and A. Rosenthal. etuner: tuning
schema matching software using synthetic scenarios.VLDB J.,
16(1):97–122, 2007.

[9] A. Marie and A. Gal. Boosting schema matchers. InOTM
Conferences (1), pages 283–300, 2008.

[10] S. Melnik, H. G. Molina, and E. Rahm. Similarity flooding: A
versatile graph matching algorithm and its application to schema
matching. InData Engineering, pages 117–128, 2002.

[11] E. Rahm and P. A. Bernstein. A survey of approaches to automatic
schema matching.VLDB J., 10(4):334–350, 2001.

