(Not) Yet Another Matcher-

Fabien Duchateau, Remi Coletta, Zohra
Bellahsene
LIRMM, Univ. Montpellier 2
34392 Montpellier, France

firsthame.name@lirmm.fr

ABSTRACT

Discovering correspondences between schema elementsisial ¢
task for data integration. Most schema matching tools ang-se
automatic, e.g. an expert must tune some parameters (thissh
weights, etc.). They mainly use several methods to comhide a
aggregate similarity measures. However, their qualitylte®ften
decrease when one requires to integrate a new similaritpunea
or when matching particular domain schemas. This paperitesc

YAM (Yet Another Matcher), which is a schema matcher factory

Indeed, it enables the generation of a dedicated matchardiven
schema matching scenario, according to user inputs. Ouoagip

is based on machine learning since schema matchers canrbe see

as classifiers. Several bunches of experiments run agaiishers

generated by YAM and traditional matching tools show how our

approach is able to generate the best matcher for a givearscen
Classification: H.2. DATABASE MANAGEMENT

General Terms: ExperimentatiorKeywords: schema matching, data inte-
gration, matcher factory, machine learning, classifier,X&¢hemas.

1. INTRODUCTION

Renée J. Miller
Univ. of Toronto
40 St. George Street
Toronto ON M5S 2E4, Canada
miller@cs.toronto.edu

Most schema matching tools are semi-automatic meaningahat
perform well, an expert must tune some (matcher-specifigrpa
eters (thresholds, weights, etc.) Often this tuning can théiault
task as the meaning of these parameters and their effect whma
ing quality can only be seen through trial-and-error. Leale{8]
have shown how important (and difficult) tuning is, and thahw
out tuning most matchers perform poorly. To overcome thisyt
proposedeTuner a supervised learning approach for tuning these
matching knobs. However, a user must still commit to onelging
matcher and then tune that matcher to a spegifitching scenaripo
that is, a set of training schemas with their correct cowadpnces.

If the user makes a poor choice of matcher to begin with, famex
ple, by choosing a matcher that does not consider structcngma
similarity when this is important in the doma#iTunercannot help.
Furthermore, knowing beforehand whe! ther semantic siitylar
structural similarity or syntactic similarity (or some cbimation of
these) will be most important in a domain is not an easy task.

In this work, we propose YAM, which is actually not Yet An-
other Matcher. Rather YAM is the first schema matcher geaerat
designed to produce a tailor-made matcher. The intuiticicived

There are a plethora of schema matching tools designedpo hel to our work is as follows: the algorithms which combine samil
automate what can be a painstaking task if done manually. The ity measures provide different results according to a gserema

diversity of tools hints at the inherent complexity of thishema
matching problem. Different tools are designed to overcdifier-
ent types of schema heterogeneity including differencegesign
methodologies, differences in naming conventions, arfdrdifices
in the level of specificity of schemas, among many other tyges
heterogeneity. Furthermore, different matchers may bigyded to
help with very different integration tasks. Some are desigto
help in automatically matching web service interfaces fier pur-
pose of wrapping and composing web services. Others argrasbi
for matching large, complex legacy schemas to facilitatiefated
querying. The proliferation of schema matchers and thefprat
tion of new (often domain-specific) similarity measuresdusihin
these matchers has left data integration practitioneis thi very
! perplexing task of trying to decide which matcher to usetfar
schemas and tasks they need to solve.

*Supported by ANR DataRing ANR-08-VERSO-007-04

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providaticbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

CIKM’09, November 2—-6, 2009, Hong Kong, China.

Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00.

matching scenario. Like previous works [2, 3, 9, 4], we alse u
a supervised learning approach. The novelty of YAM is that un
like eTuner or any other schema matcher, YAM performs |eayni
over a large set of matchers and a large set of similarity oreas
Over this large search space, using a small amount of tcadats,
YAM is able to produce a "dedicated" or tailor-made matchée
matchers YAM considers are classifiers (the basis of mosthmat
ers). YAM uses a large library of classifiers and similaritgan
sures, and is extensible in both dimensions. In particakw, sim-
ilarity measures custom-made for n! ew domains or new iategr
tasks, can easily be added to YAM.

Contributions. The main features of our approach are:

e YAM is the first schema matcher factory capable of gener-
ating a dedicated matcher for a given scenario. YAM does
more than tuning, it both selects and trains a dedicatedhaatc
from a large library of matchers.

e We compare the dedicated matchers produced by YAM with
two high-performing traditional matchers, COMA and Sim-
ilarity Flooding. We show that our dedicated matchers sig-
nificantly out perform traditional matchers when trained on
relevant matching scenarios. Even when training is done on
a matching scenario that is not relevant (to the schemas to
be matched), we show that YAMS’s dedicated matchers may
still achieve comparable quality to traditional matchers.

2. LEARNING A DEDICATED MATCHER

In this section, we describe YAM's approach for learninglzesna

thalia benchmark [7]travel schema currency andsmsweb ser-
viceg and web forms related to different domaifmtel booking

matcher (which we call a dedicated matcher) for a given sehem dating betting etc.) extracted by authors of [9]. For all these sce-
matching scenario. Any schema matcher can be viewed as-a clasNarios, correct (relevant) correspondences are avajlaftter de-

sifier. Given the set of possible correspondences (the geticef of
elements in the schemas), a matcher labels each pair asreitie

vantor irrelevant Of course, a matcher may use any algorithm to

compute its result — classification, clustering, an agdregaver
similarity measures, or any number of ad hoc methods inetudi
techniques like blocking to improve its efficiency.

YAM classifiers include decision treed48 NBTree etc.), ag-
gregator functionsSimpleLogistiy, lazy classifiersiBk, K*, etc.),
rules-basedNge JRip, etc.) and Bayes Networks.

The generation of a dedicated matcher can be splitinto teysst
(i) training of matchers, and (ii) final matcher selection.

2.1 Matcher Training

signed manually or semi-automatically. We use these schieama
their correct correspondences as the training data for YAM.

Quality metrics. To evaluate the matching quality, we use com-
mon measures in the literature, namely precision, recdlf-aneasure.
Precision calculates the proportion of relevant corredpanes ex-
tracted among the discovered ones. Another typical medsuee
call which computes the proportion of relevant discoverede:
spondences among all relevant ones. F-measure is a trdmeoff
tween precision and recall.

YAM architecture and prototype are described in [5]. The cur-
rent version of YAM includeg0 classifiers from the Weka libraty

YAM trains each matcher using its knowledge base of training and30 similarity measures, including all the terminological mea

data. We begin our explanation with an example.

Example: Let us consider the paisearchform, search)for
which three similarity values have been computédfineGap=
14.0, NeedlemanWunsch —4.0, JaroWinkler= 0.92. From these
values, a matcher must predict if the pair is relevant or not.

To classify an element pair as relevant or not, a classifiestmu

be trained. YAM uses correspondences stored in a knowlbdge-
(KB), i.e., YAM will use a matcher that provides the best age
results on the KB. During training, all the thresholds, viiég and
other parameters of the matcher are automatically set.0lgh

sures from the Second String profe@nd some structural and se-
mantic measures. Experiments were run ah@Ghz computer
with 4 Go RAM under Ubuntur.10. We used200 runs to mini-
mize the impact of randomness during training.

3.1 Impact of the Training Scenarios

Figure 1 depicts the average f-measure of several matcleers (
stricted to5 for clarity) as we vary the number of training sce-

narios. Note that the average f-measure has been compuged ov

40 randomly selected scenarios. The training scenarios vany f

each matcher performs differently, we briefly sum up how they 10 to 50. We note that two matcher¥Fl, IB1) increase their f-

work. First, they select the similarity measures which jes a
maximum of correctly classified correspondences. Thensithe
larity measures that might solve harder cases are takeadotunt.

Example: If training data is composed of the following expert

correspondence City:, City) and(State:, State)terminological
measures likdaroWinkleror Levenshteirwill be first considered

measure 020% when they are generated with more training sce-
narios. This can be explained by the fact tHait is an instance-

based classifiér thus the more examples it has, the more accurate

it becomes. SimilarlyVFI uses a voting system on intervals that
it builds. Voting is also appropriate when lots of trainingam-
ples are suppliedNBTreeandNNgealso! increases their average

by the machine learning algorithms. Indeed, they enablera co f-measure from aroundi0% as training data is increased. On the

rect classification of both pairs. Thus, if the trained matdk an
aggregator function, it gives a heavy weight to these teoiogi-
cal measures while structural or linguistic measures wbakk a

weight equal td. In the case of training a decision tree, termino-

logical measures are placed at the top of the tree, and athighg
not appear or be at the bottom of the tree [4].

contrary,BayesNe#chieves the same f-measu68% to 65%) re-
gardless of the number of training scenarios. Thus, as &gec
most matchers increase their f-measure when the numbeaiof tr
ing scenarios increases. Wis) training scenarios, they already
achieve an acceptable matching quality.

Note that the number of training scenarios is not a parameter

At the end of this step, YAM has generated a trained matcher fo that the user must manage. Indeed, YAM automatically choose

each classifier in the KB.

2.2 Selecting a Dedicated Matcher

A dedicated matcher is selected according to its accuratkieon
given training data. Thus, YAM cross-validates each matelita
the correspondences stored in the KB. The matcher whiclowisc
ered most of the correspondences and the fewest irrelenastis
selected as the dedicated schema matcher. Note that thepe-co
tations correspond to the f-measure.

3. EXPERIMENTS

In these experiments, we first measure the quality impactrdec
ing to the number of training scenarios. Our goal is to shoat th
the amount of training data needed to produce a high perfgrmi
matcher is not onerous. Then, we demonstrate that YAM istable
produce an effective dedicated matcher. Finally, we compar
results with two matching tools that have excellent matglgjnal-
ity, COMA++ [1] and Similarity Flooding [10].

Scenarios. To demonstrate the effectiveness of our approach, ing learning. Our approach does not currently use schema in-

we used several schema matching scenamoseersity from [3],

the number of training scenario according to the matchextshéve
to be learned. We have run more thin 500 experiment results,
from which we deduce the number of training scenarios fovargi
classifier. Table 1 shows the conclusion of our empiricalyeig
For instance, when learning a schema matcher basdd&xiassi-
fier, YAM ideally chooses a number of training scenarios leemv
20 to 30.

3.2 Comparing generated matchers

We now study which matchers were selected for differentmehe
matching scenarios. This study highlights the variabititynatch-
ing quality of each matcher on different scenarios, andefioee
the importance of a factory tool such as YAM for selecting amo

http://metaquerier.cs.uiuc.edu/repository
2http://www.seekda.com
Shttps://svn.scms.waikato.ac.nz/svn/weka
“http://secondstring.sourceforge.net

5This classifier is named instance-based since the corrdepoas
(included in the training scenarios) are considered aafiests dur-

stances.

100 T T T

80 1

f-measure

30 B

20 B

10

T
z
@
=
@
@

0 L L L
10 20 30 40 50

number of training scenarios

Figure 1: Average f-measure when varying number of training
scenarios

training scenarios Classifiers

20 and less SLog, ADT, CR

20to 30 J48, J48graft

30to NNge, JRip, DecTable

50 BayesNet, VP, FT

50 and more VFI, IB1, IBk, SMO, NBTree, MLP

Table 1: Number of training scenarios for each classifier

these matchers to produce an effective matcher.

We have run YAM agains200 scenarios, and we measured the
number of times a given matcher is selected as the dedicatthar.
Figure 2 depicts the number of scenarios (ou@f) for which
each matcher was selected as the dedicated matcher. Nuiice t
matchersVFI andBayesNetare selected in half of the scenarios.

as Dedicated Matcher

Number of Election

VFI BayNet NBTree NNge 1B ADT Slog JRp MLP VP IBk

CR JaBgrait J48 FT SMO DecTable

Figure 2: Number of selections as dedicated matcher

scenarios. YAM obtains the highest f-measur& iscenarios, and
reaches0% f-measure int scenarios. COMA++ achieves the best
f-measure forcurrency and university scenarios. SF obtains the
best f-measure in one scenarteagel). In addition, COMA++ is
the only tool which does not discover any correspondencerier
scenario fravel). However, we notice that YAM obtains better re-
sults on the webforms scenarios since it was trained witHavets.
With non-webforms scenarios, YAM is able to achieve acdapta
results.

These results show how our matcher factory relies on the di-
versity of classifiers. Indeed, the dedicated matchersithas
generated for these scenarios are based on various clasgifi,
BayesNetJ48 etc.) while COMA++ and SF only rely on respec-
tively an aggregation function and a single graph propagatigo-
rithm.

YAM obtains the highest average f-measwe%) while COMA++
and SF average f-measures are just ®6. Thus, YAM gener-
ates more robust schema matchers, specifically becauseatbey
based on various classifiers.

These two matchers can be considered as robust as they grovid 3.4 Discussion

acceptable results in most scenarios in our KB. Howeverclmat
ers like CRor ADT, which have a very low average f-measure on
these200 scenarios 3% for CRand28% for ADT), were respec-
tively selected3 and10 times. This shows that dedicated matchers
based on these classifiers are effective, in terms of quiditgpe-
cific scenarios. Thus, they can provide benefits to some .ugées
also note that aggregator functions, li&@ogor MLP, which are
commonly used by traditional matching tools, are only geléas
dedicated matchers in a few scenarios. Thus, they do notdarov
optimal quality results in most schema matching scenaiibese
results support our hypothesis that schema matching teeis to

be flexible. YAM, by producing different matchers and selegt
the best one for a given scenario, fulfills this requirement.

3.3 Comparing with Other Matching Tools

We now compare YAM with two matching tools known to pro-
vide good matching quality: COMA++ and Similarity Flooding
(SF). Both matching tools are described in more detail iticed.

To the best of our knowledge, these tools are the only ondichub
available. As explained in the previous section, the uses dwt
need to choose the number of training scenarios. YAM autemat
cally adjusts this number according to the classifier whiofiding

to be trained.

Figures 3(a) and 3(b) depict the F-measure obtained by YAM
dedicated matcher, COMA++ and Similarity Flooding on ftlie

These experiments support the idea that machine learnihg te
niques are suitable for the schema matching task. First,ave h
shown that YAM has generated, 200 schema matching scenar-
ios, different dedicated matchers (i.e., based on diftakgorithms
such as decision trees, rules, aggregation functiong, &tee sec-
ond experiment would tailor YAM to automatically adjust tiem-
ber of training scenarios according to the classifier to begsed.
We finally compared our approach with two other matchinggool
to show that YAM outperforms them in most scenarios.

Generating all classifiers and selecting the best one iseadon-
suming process (up to several hours if the KB of training dsita
large). Of course, in practice, it is the performance of thdichted
matcher which is crucial and the matchers produced by YAMehav
comparable or better time performance to other matchectu@n
ing COMA++ and Similarity Flooding).

4. RELATED WORK

Much work has been done both in schema matching and ontol-
ogy alignment [6, 11]. However, we only describe in this &ect
schema matching approaches which are based on machineégarn
techniques, and the tools against which we compared ouoagpipr

In [9], the authors use thHBoostingalgorithm to classify the sim-
ilarity measures, by iterating weak classifiers over thiing set
while re-adjusting the importance of elements in this irarset.

100% T T T T T

0%

605

F-measure
F-measure

405

20%

0%

travel

COUTEES CUTTEDCY

(a) Non-webforms scenarios

100%

0%

605

405

20%

0%

finance

dating
(b) Webform scenarios

Figure 3: Precision, recall and f-measure achieved by the tiee matching tools on 10 scenarios

The main drawback deals with the Boosting machine learrmolg-t
nique. Although it gives acceptable results, we have ndtice
section 3 that several classifiers might give poor results some
scenarios. Thus, only relying on one classifier is risky.

MatchPlanner approach [4] makes use of decision treesdaotsel
the most appropriate similarity measures. This approaotiges
acceptable results w.r.t other matching tools. Howeverddtision
trees are manually built, thus requiring an expert intetioen Be-
sides, decision trees are not always the best classifiehoamsin
section 3.

eTuner [8] aims at automatically tuning schema matchind¢stoo
A given matching tool is applied against the set of corregdpones
until an optimal parameter configuration of the matchingl ieo
found. Thus, eTuner strongly relies on the capabilitiefefrhatch-
ing tools. Conversely, YAM learns a dedicated matcher fovarg
scenario. Besides, it is extensible in terms of similarityasures
and classifiers, thus enhancing its capabilities for efittyehan-
dling of new schema matching scenarios.

COMA/COMA++ [1] is a generic, composite matcher with very
effective matching results. The similarity of pairs of elamts is
calculated linguistic and terminological measures. Thestrategy
is applied to determine the pairs that are presented as nggpi
COMA++ supports a number of other features like mergingirgav
and aggregating match results of two schemas. On the cgnirtar
approach is able to learn the best combination of similariga-
sures instead of using the whole set.

Glue/LSD [3] is also based on machine learning techniquih, w
four different learners, which exploit different infornia of the
instances. Then, a meta-learner, based on stacking, iedpplre-
turn a linear weighted combination of the four learners. Y4&h-
erates a dedicated matcher, based on a classifier whichdmast ¢
bines all similarity measures. On the contrary, Glue usassdiers
on the same similarity measures. The meta-learner is arligea
gression function, with its drawbacks in terms of qualitd axten-
sibility, as explained in [4].

Similarity Flooding [10] is a neighbour affinity matchingatio
First, it applies a terminological measure to discoveriahitorre-
spondences, and then feeds them to the structural matahEofo
agation. The weight of similarity values between two eletaén
increased, if the algorithm finds some similarity betwedatesl
elements of the pair. With strongly heterogeneous labelsitr
small schemas, SF may obtain a low matching quality. But this
weak point is compensated by the time performance.

In AUTOMATCH/AUTOPLEX [2], schema elements are matched [11]

to a dictionary (i.e., a knowledge base populated with eeledata

instances thanks to Naive Bayesian algorithm). Then, tindas
ity values of two schema elements that match the same digtion
attribute are summed amdinimum cost maximum floalgorithm
is applied to select the best correspondences. The majobdok
of this work is the importance of the data instances. Besitlesly
uses one similarity measure based on a dictionary.

5. CONCLUSION

In this paper, we have presented YAM, a factory of schemalmatc
ers. During a pre-match phase, it generates, thanks to m&achi
learning algorithms, a dedicated matcher for a given scheatah-
ing scenario. Experiments have shown that the dedicatecherat
obtains acceptable results with regards to other matcbinig.tBe-
sides, the possibility to learn schema matchers based faratif
algorithms enables to efficiently match specific scenarios.

In the future, we first plan to test more machine learningsilas
fiers. Another ongoing work consists in reducing the leagime.

6. REFERENCES

[1] D. Aumueller, H. H. Do, S. Massmann, and E. Rahm. Schenda an
ontology matching with coma++. IBIGMOD Conference, Demo
paper, pages 906-908, 2005.

[2] J. Berlin and A. Motro. Database schema matching usinghine
learning with feature selection. RAISE 2002.

[3] A.Doan, J. Madhavan, R. Dhamankar, P. Domingos, and A. Y.

Halevy. Learning to match ontologies on the semantic WélDB J,

12(4):303-319, 2003.

F. Duchateau, Z. Bellahsene, and R. Coletta. A flexibleraach for

planning schema matching algorithms. Q@M Conferences (1)

pages 249-264, 2008.

F. Duchateau, R. Coletta, Z. Bellahsene, and R. J. Mifam: a

schema matcher factory (demo).@KM, 2009.

[6] J. Euzenat and P. Shvaik@ntology matchingSpringer-Verlag,
Heidelberg (DE), 2007.

[7] J. Hammer, M. Stonebraker, , and O. Topsakal. Thaliat fasmess
for the assessment of legacy information integration aggres. In
Proceedings of ICDEpages 485-486, 2005.

[8] Y. Lee, M. Sayyadian, A. Doan, and A. Rosenthal. etunanirtg
schema matching software using synthetic scenavibBB J,
16(1):97-122, 2007.

[9] A. Marie and A. Gal. Boosting schema matchersORM

Conferences (1)pages 283-300, 2008.

S. Melnik, H. G. Molina, and E. Rahm. Similarity flooding

versatile graph matching algorithm and its applicationctoesna

matching. InData Engineeringpages 117-128, 2002.

E. Rahm and P. A. Bernstein. A survey of approaches tonaatic

schema matching/LDB J, 10(4):334-350, 2001.

(4]

(5]

[10]

