
Schema Mapping Verification: The Spicy Way

A. Bonifati,1,2 G. Mecca1, A. Pappalardo1, S. Raunich1, G. Summa1

1 Dipartimento di Matematica e Informatica 2 ICAR – CNR
Università della Basilicata Rende – Italy

Potenza – Italy

ABSTRACT
Schema mapping algorithms rely on value correspondences –
i.e., correspondences among semantically related attributes
– to produce complex transformations among data sources.
These correspondences are either manually specified or sug-
gested by separate modules called schema matchers. The
quality of mappings produced by a mapping generation tool
strongly depends on the quality of the input correspondences.
In this paper, we introduce the Spicy system, a novel ap-
proach to the problem of verifying the quality of mappings.
Spicy is based on a three-layer architecture, in which a schema
matching module is used to provide input to a mapping gen-
eration module. Then, a third module, the mapping veri-
fication module, is used to check candidate mappings and
choose the ones that represent better transformations of the
source into the target. At the core of the system stands a
new technique for comparing the structure and actual con-
tent of trees, called structural analysis. Experimental results
show that, by carefully designing the comparison algorithm,
it is possible to achieve both good scalability and high pre-
cision in mapping selection.

1. INTRODUCTION
Data integration is considered one of the most intriguing
challenges of our era. Given a source repository, S, and a
target repository, T , a key step in their integration is that
of finding a set of mappings that can be used to transform
instances of S into instances of T .

Several systems in recent literature have studied the problem
of deriving mappings among sources based on value corre-
spondences; each of these correspondences states that an at-
tribute of the target is semantically related to one attribute
(or more) in the source, and is usually drawn as a line go-
ing from the source attribute to the corresponding target
attribute. A prominent example of a line–based mapping
generation system is Clio [24, 28]. Clio implements a so-
phisticated mapping algorithm to generate source-to-target
transformations, i.e., executable queries capable of translat-

EDBT ’08 Nantes, France

ing an arbitrary instance of the source into an instance of
the target. The mapping generation algorithm captures all
semantical relationships embedded in the source and target
schemas, and is guaranteed to produce legal instances of the
target with respect to constraints.

It can be seen, however, how a crucial step in the mapping
generation process is the discovery of the initial value corre-
spondences. In fact, the quality of the mappings produced
by the mapping generation system is strongly influenced by
the quality of the input lines: starting from faulty correspon-
dences incorrect mappings are inevitably produced, thus im-
pairing the quality of the overall integration process. To
avoid these problems, it is usually assumed that value cor-
respondences are interactively provided to the system by a
human expert after carefully browsing the source and target
repositories. However, such manual process is very labor-
intensive, and does not scale well to medium and large inte-
gration tasks.

To alleviate the burden of manually specifying lines, one al-
ternative is to couple the mapping generation system with a
schema matching system, i.e., a system that automatically
or semi-automatically tries to discover matching attributes
in a source and target schema. The study of automatic tech-
niques for schema matching has received quite a lot of atten-
tion in recent years; for a survey see [29, 11, 30]. Clio itself
has been complemented with a companion schema match-
ing module based on attribute feature analysis [25]; this tool
may be asked to suggest attribute correspondences to the
user.

Unfortunately, schema matching has been recognized as a
very challenging problem [18], for which no definitive so-
lution exists: although current schema matching systems
perform well in some application categories, in other cases
they suffer from poor precision. According to [19], there
is no perfect schema matching tool. [19] reports that on
a recent benchmark of ontology–matching tasks [1], partici-
pating matchers on average achieved 40% precision and 45%
recall. Also, even for datasets for which such tools reached
higher precision and recall, they still produced inconsistent
or erroneous mappings.

As a consequence, outputs of the attribute matching phase
are hardly ready to be fed to the mapping generation mod-
ule, and human intervention is necessary in order to ana-
lyze and validate them. It is worth noting that, in general,

human intervention is also necessary after mappings have
been generated, since several alternative ways of mapping
the source into the target may exist. Mapping systems usu-
ally produce all alternatives, and offer the user the possibil-
ity of inspecting the result of each of them in order to select
the preferred one. Based on such an architecture, Figure 1
illustrates the overall mapping process and highlights the
phases in which user intervention is required.

Schema

Matcher

source

target

candidate
correspondences correspondences

s.A � t.E, 0.87
s.B � t.E, 0.90
s.C � t.F, 0.76
s.D � t.F, 0.98
…

Mapping

Generation

selected
correspondences

s.B � t.E
s.C � t.F
…

mapping A
mapping B
mapping C

…

Figure 1: Coupling schema matching and mapping dis-

covery

In this paper, we introduce Spicy, a research project at
Università della Basilicata. The main intuition behind our
approach is that in many cases the mapping generation pro-
cess can be automated to a larger extent by introducing a
third step, which we call mapping verification. More specifi-
cally, we assume that instances of the target data source are
available, and not only its schema. This is typical in many
settings, like, for example, Web data sources. In this case,
whenever we select a set of candidate correspondences pro-
duced in the schema matching phase, we may think of check-
ing the corresponding source-to-target transformation – i.e.,
the executable query induced by such correspondences – by
running the query on (a subset of) the source, and compar-
ing the result to the available target instance. Based on such
comparison, we may on one side identify incorrect transfor-
mations due to wrong correspondences produced during the
schema matching phase, and on the other side rank the re-
maining candidates to suggest to users the ones that more
likely represent correct translations of the source.

The main contributions brought by the project can be sum-
marized as follows:

(a) Spicy proposes an original architecture to integrate sche-
ma matching and mapping generation; so far, these two
problems have been studied essentially as independent steps
of the integration process;

(b) Spicy represents one of the first proposals towards the
definition of a notion of mapping quality and the automa-
tion of mapping verification; we believe that such notions
are crucial in order to improve the quality of current in-
tegration systems; the paper introduces an algorithm that
combines schema matching, mapping generation and map-
ping verification in order to achieve good scalability and high
matching quality;

(c) in view of this, Spicy introduces an original approach,
called structural analysis, to the comparison of data sources;
structural analysis uses electrical circuits to compare the
topology and the information content of tree-like structures
in order to have a quick measure of their similarity; in the
paper, we show that structural analysis represents a very
powerful tool for mapping verification;

(d) finally, the system architecture is generic and modular by
nature; it can handle both flat (i.e., relational) sources, and
nested ones, as XML repositories or OWL ontologies; also, it
is designed to work in conjunction with any existing schema
matching and mapping generation system, thus allowing to
leverage the vast body of research in this field.

We believe the issue of coupling schema matchers with map-
ping generation systems, and the related issue of verifying
mapping quality, represent relevant research problems. To
the best of our knowledge, Spicy represents the first pro-
posal towards the automated verification of schema map-
pings. So far, the only step in the direction of verifying
mappings produced by a mapping generation system has
been presented in [8], under the form of an ad hoc tool that
serves as a debugger for the mapping generation process.
The tool allows users to trace and inspect mappings step
by step during their generation, similarly to source code de-
buggers. Note that our approach is significantly different
from the one pursued in [8], since we aim at reducing hu-
man intervention, while human users play a major role in
the debugging process.

The paper is organized as follows. Section 2 gives an overview
of our approach and introduces the mapping verification al-
gorithm by means of examples. Preliminaries are in Sec-
tion 3. Structural analysis is introduced in Section 4, and
the mapping algorithm in Section 5. Experimental results
are discussed in Section 6. A discussion of related works is
in Section 7.

Schema Matcher
(internal or external)

source

target

Mapping
Generator

(internal

s.A � t.E, 0.87

s.C � t.F, 0.76

s.D � t.F, 0.98

…

match

line
selection

mapping
generation

Spicy

Mapping
Generator

internal or external)

Ranked
mappings:

mapping 1, 0.97
mapping 2, 0.87
mapping 3. 0.72

…

mapping
generation

S
tr

u
c
tu

ra
l

a
n

a
ly

s
is

mapping
verification

Figure 2: Architecture of Spicy

2. OVERVIEW
The mapping problem we want to solve can be informally de-
scribed as follows: given (a portion of) a repository T , called
the target, and a repository S, called the source, find a trans-
formation query – i.e., an executable view – that can be used
to map instances of S into instances of T . In the process, we
aim at minimizing the amount of human intervention. The
overall system architecture is shown in Figure 2. In order
to solve the problem, we assume the availability of one or
more schema matchers, and of a mapping generation mod-
ule. The main advancement of Spicy with respect to the
simple pipelining described in Figure 1 is that these mod-
ules are decoupled by a number of intermediate additional
modules that coordinate the mapping generation process in
order to select the best results.

Given the variety of schema matching systems available, the
system architecture has been designed in such a way that
any of those can be easily integrated. We have tested the

system using both a schema-based and an instance-based
matcher [29]. As an example of a schema-based tool, the
system may be integrated with COMA++ [11, 4]. As there
were no instance-based tools available to us at the time of
writing, we developed an internal instance-based matcher.
Spicy’s attribute matcher allows for two different matching
strategies: on the one side, it may compare attributes in a
rather standard way using features extracted by a sample
of their values; on the other side, it may adopt structural
analysis, as described below. Since the matching module is
not the primary subject of this paper, we will not elaborate
further on this issue.

Several points are worth mentioning with respect to the
matching phase. First, let us only note that, as it is com-
mon in the literature,1 in this paper we shall mainly concen-
trate on 1:1 attribute correspondences. However, the Spicy
schema matching module also handles a common class of
n:1 element correspondences. Note also that, for the sake
of simplicity, we do not consider more expressive classes of
correspondences, like for example contextual matches [6], in
which the same source attribute must be matched to dif-
ferent target attributes in different contexts. However, our
setting can be extended to handle these cases. Finally, our
architecture naturally lends itself to the integration of dif-
ferent schema matchers. However, integrating the outputs
of different matchers goes beyond the scope of this paper
and is left to future investigations.

The system also assumes the availability of a mapping gen-
eration module. The mapping generation module takes as
input a set of correspondences, and generates a number of
mappings under the form of source to target dependencies
(TGDs) [28]. These mappings can then be assembled into
complex transformation queries. A transformation query is
the union of several mappings; it corresponds to an exe-
cutable query that can be run over a source instance to
obtain a target instance. Examples of transformations are
provided below. To derive mappings in Spicy, we have im-
plemented a version of Clio’s mapping algorithm [28]. How-
ever, other mapping generation tools, like, for example, HeP-
ToX [7], could be easily integrated into the system.

The first step of our mapping discovery procedure consists
of running the schema matcher to produce a number of
candidate element correspondences. Each correspondence
is usually labeled with a similarity measure, i.e., a level of
confidence. Note that, in most cases, the schema matching
system will not be able to produce a single correspondence
for each target attribute. It will rather produce a number of
compatible source attributes for each target attribute, with
different degrees of similarity. Since in our setting each tar-
get attribute must be matched to a single source attribute,
we need to consider these as alternative lines to be given as
input to the mapping generation module.

Example 1: Consider for example the data sources in Fig-
ure 3. As it is common in data integration systems, data
structures are represented in the system using an abstract,
graph-based model. It can be seen that the data model is

1
In fact, essentially all systems in the literature with a few excep-

tions [10, 31] are restricted to 1:1 correspondences.

essentially a tree-based representation of a nested-relational
model, in which set and tuple nodes alternate. Instances are
trees as well; while leaf nodes have atomic values – strings,
integers, dates etc. – values for intermediate nodes are oids.
Foreign key constraints are drawn as dashed edges going from
the foreign key to the corresponding primary key.

univDB : tuple

departments : set

name : string

staffSet: set

staff: tuple

id: int

name : string

professor: tuple

id: int

name : string

courses: set

courseName: string

credits: real

univDB : o1

departments : o2

name : “Computer Science”

staffSet : o3

staff: o4

id: 101

name : “Steve Rogers”

professors: o6

id: 201

name : “Frank Castle”

courses: o9

department : tuple

professors: set

staff: o5

…

professor: o8

…

professor: o7

course: tuple

course: o10
instructor: int

name: string

credits: real

instructor: string

course: tuple

courseName: “Databases”

credits: 6

instructor: 201

courseDB: set

course: o10

name: “Prog. Languages”

credits: 9

instructor: “Tony Stark”

course: o21

courseDB: o20

name : “Op. Systems”

credits: 4

instructor: “Hank Pym”

course: o22

course: o11

…

…

Source

Target

(schema)

(instance)

(schema)

(instance)

Figure 3: A sample mapping task

Assume that, when run on the two data sources in our ex-
ample, the selected schema matcher suggests the following
correspondences:
courseDB.course.name → univDB.courses.course.courseName, 0.95
courseDB.course.credits → univDB.courses.course.credits, 0.92
courseDB.course.instructor → univDB....professor.name, 0.87
courseDB.course.instructor → univDB ...staff.name, 0.90

It can be seen how we are deliberately assuming that the
schema matcher considers staff names to be more similar
to course instructors’ names than professors’ names. It
is also apparent that such similarities cannot be fed to the
mapping generation algorithm as they are; since attribute
course.instructor has been matched to two different source at-
tributes, the system must choose between two different con-
sistent line sets: in both sets course names and credits are
correctly mapped to their counterparts; then, in set (a) in-
structors’ names are mapped to professors’ names, while in
set (b) to staff names.

If we were to select the preferred lines exclusively based on
similarity values, we would choose the second candidate set.
However, let us reason for a moment on the two transfor-
mations that would be produced. How these transformations
are generated is discussed in major details in Section 3.2.

Set (a) yields the following transformation (we adopt the
syntax used in [28]):

for d in univDB.departments, p in d.professors,
c in univDB.courses

where c.course.instructor = p.professor.id
exists c’ in courseDB
where c’.course.name = c.course.courseName and

c’.course.credits = c.course.credits and
c’.professor.name = c’.course.instructor

UNION
for d in univDB.departments, p in d.professors,
exists c’ in courseDB
where p.professor.name = c’.course.instructor

The transformation is the union of two TGDs. The first one
states that, in order to obtain an instance of the target, we
need to join courses and professors in the source, and then
produce a tuple for each course name, credits and professor
name. The second mapping, on the contrary, maps profes-
sor names. However, it only contributes to the result for
those professors that do not have courses and therefore do
not participate to the join above. If, how it is reasonable,
we assume that the vast majority of professors have courses,
very few tuples will be generated by the second TGD. Based
on these observations, we may say that the translated target
instance – which we report in tabular form for space reasons
– would look as follows:

name credits instructor

Databases 6 Frank Castle

Networks 3 Scott Summers

...

Set (b), on the contrary, yields a quite different transforma-
tion:

for c in univDB.courses
exists c’ in courseDB
where c’.course.name = c.course.courseName and

c’.course.credits = c.course.credits
UNION
for d in univDB.departments, s in d.staffSet
exists c’ in courseDB
where c’.course.instructor = s.staff.name

In this case, both mappings contribute to the result, because
nobody in the staff teaches courses. The resulting instance is
quite different from the previous one, since the two mappings
generate a number of null values:

name credits instructor

Databases 6 NULL

Networks 3 NULL

NULL NULL Frank Castle

NULL NULL Scott Summers

...

If we compare this second instance to the target instance
shown in Figure 3, we may see how information “flows” quite
differently through them. This might allow us to correctly
infer that set (a) more likely represents the correct choice.

Although this example has been kept very small and rather
simple for clarity’s sake, we may summarize by saying that
schema matchers typically output correspondences that may
be assembled in different ways. This leads to different can-
didate transformations. We advocate that, while an a priori
selection of the right correspondences is often very difficult
and typically leads to poor results, an a posteriori compari-
son of the instances produced by the various transformations
to the original target instance may give very useful insights

on the quality of these transformations, and therefore on the
correctness of the associated lines.

Note that a similar procedure may also help to rank trans-
formations when the right correspondences are known, as
shown in the following example.

Example 2: This example is a variant of the running ex-
ample used in [28]. Suppose both the source and the target
are relational databases, as shown in Figure 4. We assume
that correspondences have been identified without ambigu-
ity. Still, the mapping generation algorithm will suggest two
different transformations. This is a consequence of the mul-
tiple join paths that exist in the source among companies
and funds: to each fund we may attach both the company to
which the fund was granted and the company that served as
a sponsor. As a consequence, the mapping generation algo-
rithm cannot univocally cover correspondences for company
names and budgets, and two different mappings are gener-
ated, as follows (variables corresponding to aliases have been
emphasized):

expenseDB: tuple

companies: set

name: string

budget: real

fundings: set

projectName: string

grantee: int

name: string

amount: real

company: tuple

project: set

projectDB: set

company: tuple

fund: tuple

name: string

budget: real

companyId: int

sponsor: int

Figure 4: A mapping task with alias

for f in expenseDB.fundings,
G in expenseDB.companies,
S in expenseDB.companies

where f.fund.grantee = G.company.companyId and
f.fund.sponsor = S.company.companyId

exists p in projectDB
where f.fund.projectName = p.project.name and

G.company.name = p.project.company.name and
G.company.budget = p.project.company.budget

for f in expenseDB.fundings,
G in expenseDB.companies,
S in expenseDB.companies

where f.fund.grantee = G.company.companyId and
f.fund.sponsor = S.company.companyId

exists p in projectDB
where f.fund.projectName = p.project.name and

S.company.name = p.project.company.name and
S.company.budget = p.project.company.budget

In the first one, the company associated with the project in
the target is the grantee (G), in the second case is the spon-
sor (S). In general, it is not possible to choose one of these
mappings without resorting to explicit user feedback [32].
However, also in this case, by looking at the original tar-
get instance, we may have some hints. More specifically,
companies in the source are divided in two categories: com-
panies that sponsor projects, and companies that do not. It
is conceivable that the first ones have considerably higher
budgets that the second ones. As a consequence, the first
mapping above will produce a translated instance in which

budgets have lower values on average than the second map-
ping. Again, by comparing the two instances to the original
target instance we may use this knowledge to choose the pre-
ferred mapping.

These examples show that a post-translation check of trans-
lated instances against the original target instance may help
to rank them and suggest the preferred ones. It is still open
how such comparison must be conducted. In the following
section we introduce a novel strategy to compare trees that
serves this purpose.

2.1 Overview of Structural Analysis
Structural analysis is based on the adoption of a suitable
model to analyze and compare data structures. Suppose we
are given a portion s of a repository S and a portion t of a
repository T ; in order to compare them, we might proceed
as follows: (i) analyze s using the selected model in order
to derive a number of descriptive features; (ii) do the same
for t; (iii) compare the features computed by the model and
return an index of similarity that is as high as close are the
selected features.

To do this, we have selected a model that we believe meets
two critical requirements – simplicity and good level of ab-
straction: the model of electrical circuits.2 The main intu-
ition behind this choice is that a data structure can be seen
as a “generator of information”; in essence, we may imagine
that its elements – for example, its atomic fields like strings
or numbers – tend to produce a flow of information in the
repository – i.e., they generate an internal stress; each el-
ement, in turn, has some consistency due to its nature –
for example, numbers may be considered of different consis-
tency with respect to strings or dates; from the interaction
between stress and consistencies we may predict the flow of
information. Intuitively, two instances will be considered to
be similar when information flows similarly through them; in
this way, circuits allow us to check the validity of mappings
as discussed in Examples 1 and 2.

Electrical circuits exhibit nice and elegant properties that
make them a very effective means to study similarities about
data structures. In the following sections, we formalize a
transformation function, that, when applied to a tree-like
portion of a data source, generates an electrical circuit that
can be used for the purpose of comparison. For now let us
mention some features of this transformation.

First, the resulting circuit has a tree-like topology that is
isomorphic to that of the original tree; also, the circuit em-
bodies instance-based features; in fact, values for resistors
and voltage generators associated with attributes are de-
rived from numerical features of a sample of instance values;
hence, it is an ideal means to model the informative content
of the data structure.

Second, circuits are an excellent summarization technique
for the purpose of verifying mappings. Recall that our goal
is to evaluate the quality of a mapping by checking the sim-
ilarity of the instance obtained by executing the mapping

2
In fact, the name of the project is inspired by SPICE, the well-known

circuit emulator.

with respect to the instance originally provided with the
target data source. To do this, in principle, we might adopt
a rather straightforward attribute-to-attribute comparison
approach, as follows: (i) after the translated instance has
been generated, we might consider each attribute Ai in the
target separately; (ii) take a sample of values for Ai in both
the original and the translated instance, and derive a num-
ber of numerical features based on this sample; (iii) calcu-
late the overall similarity between the two instances based
on the similarity of the various features. However, combin-
ing independent similarity measures into a single similarity
value is known to be a hard problem [18]. Circuits provide
a nice and elegant solution to this problem. They naturally
lend themselves to a black-box analysis to characterize the
behavior of the two trees, through which we can collect a
small number of descriptive parameters – output current,
average current, internal voltages – that can be effectively
used to measure the similarity of the original structure to
other structures. Our experiments show that circuits per-
form better than attribute-to-attribute feature comparisons.

Finally, the comparison technique based on circuits is fully
automatic and does not require any additional inputs; it is
also quite efficient, since, for the kind of stationary, contin-
uous current circuits used in the system, solving the circuit
amounts to solve a system of linear equations of the form
Ax = b.

2.2 The Mapping Search Algorithm
We now give an intuition of the mapping discovery and ver-
ification process pictured in Figure 2. A key observation,
here, is that the mapping generation process can be quite
demanding from the computational viewpoint. As a con-
sequence, it is mandatory to design the search algorithm in
such a way to achieve a good trade-off between precision and
scalability. Recall that our starting point is a number of can-
didate correspondences generated by the schema matching
module. Whenever multiple source attributes are matched
– possibly with different degrees of similarity – to the same
target attribute, we need to generate alternative transfor-
mations and then rank them. The higher is the number of
correspondences produced by the schema matching step, the
more mappings will be generated and verified.

In view of this, our algorithm is based on a feedback loop in
which we initially fix a similarity threshold; at each step: (i)
we consider only candidate correspondences with similarity
above the threshold; (ii) we combine these correspondences
into consistent sets, and run the mapping generation algo-
rithm to generate the corresponding transformations; (iii)
we use each transformation to translate (a sample of) the
source instance into an instance of the target, and then use
structural analysis to compare the obtained instances to the
original target instance; (iv) we rank transformations – and
therefore correspondence sets – according to such similar-
ity measure. If no satisfactory mappings are produced at
a given iteration, we progressively lower the threshold and
analyze more alternative mappings. In essence, using this
process, users are not required to manually inspect and se-
lect correspondences before mappings are generated; also,
when the process stops, the system will present to them a
ranked list of source-to-target transformations, suggesting
which ones are believed to better reproduce the target.

A key idea in this process is that outputs of the schema
matching module are not considered as a definitive proof
that a source and target attribute are semantically equiva-
lent, but rather as a measure of compatibility between them.
Such compatibility is then checked in subsequent steps. Our
experimental results show that our verification algorithm
achieves very good precision and allows to handle many er-
rors due to incorrect matches.

The following sections introduce with greater detail the mod-
els and algorithms used in the system.

3. PRELIMINARIES
This section introduces some preliminary notions that will
be used in the rest of the paper.

3.1 Data Model
As it is common, data sources are represented in the sys-
tem according to an abstract model, with the advantage of
reducing different concrete data models (relational, XML,
OWL etc.) to a uniform representation. In the following we
briefly formalize such data model.

We fix a number of base data types, ti – e.g., string, integer,
date etc. – each with its domain of values, dom(ti), a set of
labels, A0, A1 . . ., and a set of special values, called oids. A
type is either a base type or a set or tuple complex type. A
set type has the form set(A : τ), where A is a label and τ is
a type. A set node in a schema is a labeled set type, of the
form A : set(τ), with a child node A : τ . A tuple type has the
form tuple(A0 : τ0, A1 : τ1, . . . , An : τn), where each Ai is a
label and each τi is a type. A tuple node is a labeled tuple
type with a child node Ai : τi, for i = 0, 1 . . . , n. Schemas are
trees of typed nodes. More specifically, a schema is a named
type A : τ . Constraints may be imposed over a schema. A
constraint is either a key or a foreign key constraint.

Instances of types are defined as usual. An instance of a
schema tree is a tree of instance nodes. As in [28], an in-
stance node for a schema node of type τ , has a distinct oid
value, plus a number of children, according to the respective
type. The sample data sources shown in Figure 3 are compli-
ant with this model. It can be seen as a relational database
is easily represented as a root tuple node, plus a number of
children set nodes, one for each relation. We also represent
nested XML structures. In this paper, we restrict our at-
tention to the case in which XML schemas are single-rooted
and contain only set and tuple/sequence types.

3.2 Mapping Discovery Algorithm
The mapping discovery employed in the system is the one
developed in Clio. In the following, we briefly review the
main steps of the algorithm [28]. Given a source and a
target schema, the algorithm produces a number of exe-
cutable queries. Each query is the union of several mappings
that represent source-to-target tuple generating dependen-
cies (TGDs). In order to identify such dependencies, several
preliminary steps are necessary.

As a first step, we need to identify the logical relations both
in the source and target schemas. Logical relations are max-
imal tableaux [2]. In order to generate them, the algorithm

finds the so called primary paths in each schema. These are
essentially linear tableaux, and are obtained by the enumer-
ation of all paths from the root to any intermediate node
of set type in such a schema. With respect to the schemas
in Figure 3, the primary paths generated for the source and
target schemas respectively, are the following (with an abuse
of notation we use “select *” to refer to all attributes that
are directly reachable from a set node in the tableaux):

select * from d in univDB.departments
select * from d in univDB.departments, s in d.department.staffSet
select * from d in univDB.departments, p in d.department.professors
select * from c in univDB.courses

select * from p in courseDB

Logical relations are obtained by chasing constraints against
primary paths. In our example, a single constraint must be
considered, from univDB.courses.course.instructor to univDB.-
departments.department.professors.professor.id. Thus, we ob-
tain the following logical relations:

select * from d in univDB.departments
select * from d in univDB.departments, s in d.department.staffSet
select * from d in univDB.departments, p in d.department.professors
select * from c in univDB.courses,

d in univDB.departments, p in d.department.professors
where c.course.instructor = p.professor.id

select * from p in courseDB

During the third step, inter-schema correspondences are pro-
cessed to yield a set of mappings. To generate mappings, all
possible pairs made of a source logical relation and a target
logical relation are considered; a pair generates a mapping if
it covers one or more value correspondences. As an example,
assume the following correspondences have been provided to
the algorithm for the mapping task in Figure 3 (similarities
are omitted since they are not strictly relevant to the map-
ping generation algorithm):

courseDB.course.name → univDB.courses.course.courseName
courseDB.course.credits → univDB.courses.course.credits
courseDB.course.instructor → univDB....professor.name

The algorithms will generate the following TGDs:

for d in univDB.departments, p in d.professors,
c in univDB.courses

where c.course.instructor = p.professor.id
exists c’ in courseDB
where c’.course.name = c.course.courseName and

c’.course.credits = c.course.credits and
c’.professor.name = c’.course.instructor

for d in univDB.departments, p in d.professors,
exists c’ in courseDB
where p.professor.name = c’.course.instructor

Such TGDs represent different ways to cover the correspon-
dences and generate tuples in the target. The final trans-
formation query is obtained by taking the union of the two.
Note that, in general, some of the mappings generated by
the algorithm are redundant, since they are either subsumed
or implied [16] by other mappings. Such mappings should
be discarded. Once transformations have been generated as
unions of TGDs, it is then rather straightforward to trans-
late this abstract syntax into a concrete one, for example
XQuery.

Note, however, that special care must be taken to avoid the
generation of duplicates in the target and to correctly group

translated values. Several strategies have been proposed to
this end (see, for example, [16]). In our system, besides the
ordinary translation to XQuery, we have decided to imple-
ment an internal execution engine to process transforma-
tions. Similarly to Clio [20], the execution engine employs a
deep union operator to prevent the generation of duplicates.

4. STRUCTURAL ANALYSIS
To compare repository portions we transform their trees into
circuits, solve the circuits, and then compare features of the
two circuits (e.g., output currents). In the following, we first
introduce the circuit mapping function, and then the actual
compare procedure.

4.1 Electrical Circuits
We consider electrical circuits [9] made of elements con-
nected to nodes. In our case, elements may be voltage gen-
erators and resistors. In such circuits, voltage generators
cause a flow of current through resistors. A voltage gener-
ator imposes a constant difference Vk of electric potential
between two nodes. A resistor of value r causes a drop of
potential V at its nodes due to the current I that flows
through it; current and voltage are related by Ohm’s law
V = rI. A circuit usually has two distinctive nodes: (i) a
ground node, whose potential is conventionally 0; voltages
at other nodes are measured as differences of potential with
respect to the ground; (ii) an output node, i.e., a node at
which output voltage and current are measured. We de-
fine the output current of the circuit as the current flowing
through the output node when an external resistor of fixed
value is added from output to ground. Solving the circuits
amounts to calculating voltages at the nodes and currents
through elements. This corresponds to solving a system of
linear equations based on Kirchhoff’s law of size n×n, where
n is the number of nodes in the circuit.

4.2 Sampling
In order to build the circuit associated with a data source,
we need to sample instances. For each leaf A in a tree we
select a random sample of instances, sample(A) of size K
(or less) from the repository. Two attributes are considered
to match when they represent the same concept, and their
values are coded using the same format and conventions. As
a consequence, we are interested in studying features such
as the length of values in the sample and the distribution
of characters. For each attribute A we build a number of
distributions. The distributions of lengths DL(sample(A))
contains the frequencies of lengths in the sample, measured
in bytes. Fixed an ordered collection of character categories
C = {c0, c1, . . . cn−1} (i.e., letters, capitalized letters, digits,
special characters, at-signs, slashes etc.), we also compute
the distribution of character categories, DC(sample(A)) =
{fc0 , fc1 , . . . fcn−1}, where fci is the frequency of characters
belonging to category ci in the sample.

Given a distribution of frequencies D = {f0, f1, . . . , fn−1}
such that

∑n−1
i=0 fi = 1, we measure several statistical pa-

rameters. Besides the usual ones (mean value, standard de-
viation, mode), we also consider the Simpson concentration
index [27] of the distribution, defined as IC(D) =

∑n−1
i=0 f

2
i ;

intuitively, this index gives a measure of the entropy of val-
ues in the distribution, in the spirit of information theory:

the higher is the entropy in the sample, the lower is the
concentration index.

Finally, we define the density of a sample of values of at-
tribute A, density(sample(A)) as n/K, where K is the size
of sample(A), and n is the number of non-null values in
sample(A). This is a measure of the number of null values
generated by a transformation, as discussed in Example 1.

4.3 Circuit Generation Function
We introduce a recursive function circ(t), that, given a tree
t generates a circuit. In order to do this, we need to formal-
ize the output of circ() on an atomic attribute, i.e., a leaf
in the tree. There are several ways to map a sampled at-
tribute to a circuit; intuitively, this depends on the features
one decides to embed into the circuit, and on the topology
of circuit elements that represent them. In the following,
we describe the strategy that has provided the best results
in our experiments. Given an attribute A in a schema tree,
annotated with a sample of values, sample(A), with length
and character distributions DL and DC respectively, we de-
fine the following features:

• density index (ID): ID(A) = density(sample(A));

• consistency (C): C(A) = 20×fc0 +21×fc1 +. . . 2n−1×
fcn−1 , where c0, c1, . . . cn−1 are character categories,
and fc0 , fc1 , . . . fcn−1 the respective frequencies in
DC(sample(A)); for the sake of convenience we will re-
fer to the polynomial function above simply as C(A) =
pol(DC(sample(A)));

• stress (S): S(A) = mean(DL(sample(A)), i.e., the
mean value of the distribution of lengths in the sample;

• conc. index 1 (IC1): IC1(A) = IC(DC(sample(A)),
i.e., the index of concentration of the distribution of
character categories;

• conc. index 2 (IC2): IC2(A) = IC(DL(sample(A)),
i.e., the index of concentration of the distribution of
lengths.

circ(A) is assembled by assigning these features to a number
of resistor and voltage generators, as described in Figure 5.

r1(A) = C(A) = pol(DC (sample(A)))

v1(A) = S(A) = mean(DC(sample(A))

r2(A) = IC1(A) = IC(DC(sample(A)))

v2(A) = IC2(A) = IC(DL(sample(A)))

r0(A) = ID(A) = density(sample(A))
circ(A)

=

Figure 5: Electrical circuit for an atomic attribute

The circuit for a tree is easily constructed starting from
building blocks corresponding to atomic attributes; more
specifically, for each intermediate node n in a schema tree
t, we define a resistance value, r(n). Such value cannot be
based on instances, since intermediate nodes do not have a
sample of instances, but rather on the topology of the tree.
More specifically, we define r(n) = k × level(n), where k
is a constant multiplicative factor, and level(n) is the level

of n in t, defined as follows: (i) leaves have level 0; (ii)
an intermediate node with children n0, n1, . . . nk has level
max(level(n0), level(n1), . . . level(nk))+1; nodes(t) will de-
note the set of nodes in tree t.

We can now give a complete definition of the circuit mapping
function, circ(t) over a tree t. For a leaf node A, circ(A) is
as defined above. For a tree t rooted at node n with children
n0, n1, . . . nk, circ(t) is the circuit obtained by connecting in
parallel circ(n0), circ(n1), . . . circ(nk) between ground and
an intermediate circuit node ntop, and then adding a resistor
of value r(n) from node ntop to output. Examples of such
transformation are given in Figure 6. Note how the resulting
circuits are essentially isomorphic to the original trees.

flat structure

r(project) = k

r(projectDB) = 3 k

name : string

amount: real

company: string

project: tuple

circ(company)

Schema Corresponding circuit

circ(name) circ(amount)

nested structure

r(project) = 2 k

r(company) = k

name : string

amount: real

company: tuple

project: tuple

projectDB: set

cname: string

budget: real

circ(name) circ(amount)

circ(cname) circ(budget)

Figure 6: Examples of Circuits

Note that, coherently with the opaque [21] nature of our
approach, labels are not taken into account by the circuit
mapping function, and we are treating values essentially as
uninterpreted strings. Also, in this paper we concentrate on
ordinary alphanumeric data: the features discussed above
reflect this choice. However, the circuit model is sufficiently
flexible to allow the treatment of special data, like large texts
or multimedia, as well; for these data different features must
be adopted [15].

4.4 Compare Procedure
Similarly to [12], our compare module adopts a modular li-
brary of comparators, that can be mixed and matched in
various ways. Given two trees t1 and t2, we compute a mea-
sure of their similarity, as follows: (i) map t1 and t2 to the
corresponding circuits, circ(t1), circ(t2); (ii) solve the two
circuits to determine currents and voltages; (iii) choose a
number of descriptive features of the corresponding circuits,
f0, f1, . . . fi; we introduce the notion of a comparator for fea-
ture fi as a module that computes the index of similarity ∆i

between the two structures with respect to feature fi, as fol-
lows ∆i = abs(fi(circ(t1)) − fi(circ(t2)))/fi(circ(t1)); (iv)
finally, we compute the overall similarity of the two trees
based on ∆0,∆1, . . .∆i.

A very delicate problem in this setting is represented by as-
sembling different similarity measures into an overall quality
estimate; to this end, the system provides three alternative
strategies to compute an overall similarity measure based
on a collection of feature similarity values like ∆0,∆1, . . .∆i,
namely: standard average (A), i.e., arithmetic mean, of sim-
ilarity values; harmonic mean (HM) of similarity values; eu-
clidean distance (D); in this case, candidates are considered
as points in an n-dimensional space, whose coordinates cor-
respond to ∆0,∆1, . . .∆i; euclidean distances give a measure
of how far away a point is from the origin or from another
point; in this case two points are considered to be the more
similar the less is their distance.

Using such a setting, we may compare circuits – and there-
fore trees – using different collections of comparators and
aggregation strategies. To give an example, suppose we de-
cide to use output current alone as a comparison feature. In
this case, we would have a single comparator, and similar-
ity would be equal to the percentual difference between the
output currents measured in the two circuits. If we decide
to employ both output current and average current, than we
have two different comparators, and we need to choose an
aggregation strategy – say, harmonic means; the overall com-
pare will be the harmonic means of ∆outCurr and ∆avgCurr.
Similarly for other features. In Section 6 we discuss how the
selection of comparators affect precision.

5. MAPPING SEARCH ALGORITHM
We can now describe the mapping discovery and verification
process pictured in Figure 2.

A mapping task for Spicy is a pair of data sources, < S, T >,
where S is the source and T the target. As a first step, the
source and target are submitted to the schema matching
module, and a list of candidate correspondences is generated.
This step is performed only once for each mapping task.
The line selection module of Spicy stores the result of the
match step, and generates inputs to the subsequent phases.
Typically, it will only consider a subset of correspondences,
those with a confidence level above a fixed threshold, th.

As discussed in Section 2, it is possible that multiple source
attributes are matched – possibly with different degrees of
similarity – to the same target attribute. We call unambigu-
ous a collection of correspondences if each attribute – both
from the source and the target – appears in at most one
of the correspondences. Correspondences generated by the
matching module contain in general ambiguities, and there-
fore need to be partitioned into a number of alternative un-
ambiguous sets. Each unambiguous set of correspondences
will then be fed to the mapping generation module, and
will produce a transformation query. These transformations
need to be ranked by running structural analysis.

Before turning to the description of the actual algorithm, we
need to make some preliminary observations. A key point,
here, is that the mapping generation process can be quite
demanding from the computational viewpoint. As a conse-
quence, it is mandatory to design the algorithm in such a
way to achieve a good trade-off between precision and scala-
bility. It can be easily seen that the higher is the number of
correspondences that are considered, the higher is the prob-

ability of finding ambiguities, and therefore the number of
instances of the mapping generation process to execute. It is
therefore very important to choose the confidence threshold,
th, in such a way to be selective enough and discard poor
mappings, without excluding promising ones. High values
of the threshold generate a few candidate mappings, poten-
tially none, and may reduce precision. Low values increase
the number of candidates, and may impose a significant over-
head in terms of computing times. In fact, experiments con-
firm that precision tends to increase as the threshold de-
creases. However, this improvement in precision has a cost
in terms of computing times: the number of candidate map-
pings tends to increase very rapidly, and computation times
with them.

Based on these results, it can be seen that it is very diffi-
cult to statically fix an optimal value for the compatibility
threshold th. In view of this, we adopt a dynamic threshold,
initially very high in order to consider only a few candi-
date correspondences; then, if no satisfactory mapping is
produced, we progressively lower the threshold and analyze
more alternative mappings. In essence, the mapping algo-
rithm starts with a very high value for the compatibility
threshold (0.99). If no mapping of acceptable quality is pro-
duced, the algorithm backtracks, it lowers the threshold (of
0.01), and iterates. By lowering the value of th, more corre-
spondences are taken into account, and therefore more po-
tential mappings. This process proceeds until either a map-
ping is produced, or the threshold falls below a stop value,
thstop (0.6).

Given a mapping task < S, T >, the algorithm can be
sketched as follows:

1. run the external schema matcher module to generate
candidate correspondences, match(S, T);

2. fix a step, step, and a stop value thstop for the compati-
bility threshold; initialize th = 1−step; fix a minimum
value for mapping quality minQ;

3. consider all correspondences in match(S, T) with con-
fidence above th; assemble them into maximal unam-
biguous subsets;

4. feed each subset of lines Si to the mapping genera-
tion module, and generate the corresponding transfor-
mations (one or more, depending on the presence of
aliases in the data sources); process each transforma-
tion using the internal execution engine to translate a
sample of the source instance into an instance of the
target;

5. sample each translated instance and use structural anal-
ysis as discussed in Section 4 to compare it to the origi-
nal target instance; the quality of the associated trans-
formation is given by the compare value;

6. if no transformation with quality above minQ is pro-
duced, then th = th − step, and iterate step 3; oth-
erwise output all transformations with quality above
minQ, ranked according to their estimated quality.

Note that at each step a number of candidates that have
already been processed in previous steps are re-generated.

An aggressive caching strategy has been implemented into
the system in order to improve efficiency. More specifically,
we cache logical relations, mappings and circuits in order to
avoid repeated computations along the path. This is quite
effective in reducing the time cost but makes the algorithm
quite demanding in terms of memory.

6. EXPERIMENTAL RESULTS
The system described in the paper has been implemented in
a working prototype. The prototype was developed in Java.
We have used the prototype to run a number of experiments.
Table 1 summarizes the list of experiments that were used
to test the system. We analyzed 12 mapping tasks, based
on different data sources, both relational and XML. Besides
well known data sources like DBLP, Mondial 3, and Amal-
gam 4, we tested several real–life databases serving the in-
formation system of our School of Computer Science (CS-IS,
LbDb, Moodle), and some synthetic datasets.

Source
S.

Type
Target

Targ

Type

S. size

(nodes)

T. size

(nodes)

LbDb rel Comp. Science IS rel 54 6

Moodle rel LbDb rel 596 6

Comp. Science IS rel LbDb rel 276 4

Amalgam1 rel Amalgam2 rel 18 6

DBLP xml Amalgam1 rel 89 5

DBLP xml Amalgam2 rel 89 5

Mondial xml CIA Factbook xml 222 14

Mondial xml Global Statistics xml 222 4

Mondial xml Mondial Flat Europe xml 222 9

Census1 xml Census2 xml 18 6

UniversityDB rel Personnel rel 28 5

StatDB xml ExpenseDB rel 25 13

Table 1: Summary of Experiments

Experiments were run on an Intel core-duo processor ma-
chine, with 2 GB of RAM. Mapping tasks were designed in
such a way that the source was known to contain a map-
ping for the entire target. For each target, we identified
the correct set of correspondences that would generate such
mapping. These correspondences were called the ideal match
Mid; then, we ran the system, and considered as output a
single transformation, Tbest, the one with the highest simi-
larity score. We considered the value correspondences from
which Tbest was generated, called MTbest . We measured
quality in terms of precision and recall of MTbest with re-
spect to Mid. Note however that, in this section we report
precision results only. This is due to the fact that in all cases
the system returned a number of correspondences that was
equal to the size of the target (combinations with less corre-
spondences were discarded since they lowered the similarity
to the target instance due to excessive presence of nulls);
as a consequence, precision and recall are both equal to the
number of correct correspondences in MTbest over the size
of the target.

A key issue to validate our approach was to compare the
quality obtained by selecting attribute matches a posteriori,

3
http://www.dbis.informatik.uni-goettingen.de/Mondial/

4
http://www.cs.toronto.edu/˜miller/amalgam/

i.e., after mapping generation and translation, with respect
to selecting them a priori, i.e., relying only on the output
of the attribute matcher. To test this, we have run our
experiments with several configurations.

Average Match (AM): the best line set was chosen a
priori, as follows: the attribute matcher was run to find
candidate correspondences; then, the unambiguous line sets
(one or more) with the highest confidence were selected; at-
tribute similarities were aggregated in various ways to give
variants of this configuration: AM-A (average match com-
puted as average), AM-HM (average match computed as
harmonic mean), AM-D (average match computed as eu-
clidean distance). An alternative to these approaches would
be to adopt a top-K strategy, as in [17]. These configura-
tions were applied to the various schema matchers employed
by the system, i.e., Spicy’s instance-based matcher based on
attribute features Spicy-F, and Spicy’s matcher based on
structural analysis, Spicy-SA.5

Figure 7: Precision of a priori strategies (average

match)

To assess a posteriori strategies, a second, important point,
is how structural analysis performs with respect to more tra-
ditional comparison procedures, based on attribute features
alone. To do this, we have tested two different configura-
tions:

Attribute Features (AF): the best line set was chosen a
posteriori, as follows: the mapping find algorithm was run as
described in Section 5; however, after candidate transforma-
tions were run on the source to obtain a translated instance
of the target, their quality was measured by comparing it
to the original target instance in a standard fashion, i.e., by
comparing each attribute in the translated instance to its
counterpart using instance-based features; we adopted the
same features that had been used to compare source and
target attributes during the match phase (ID, S, C, IC1,
IC2, as defined in Section 4), and then assembled the simi-
larity measures using average and harmonic means (AF-A,
AF-HM). Since, as discussed in Section 4, our comparison
algorithm has been designed to allow for the combination of
different comparators, we tested different combinations of
these.

Structural Analysis (SA, LSA): finally, we used struc-

5We have also run several preliminary experiments using
COMA++. We saw that the performance of COMA de-
grades on opaque schemas or schemas with very different
vocabularies. Overall, its performance was in line with those
of Spicy’s instance-based matchers.

Figure 8: Precision of a posteriori strategies (attribute

features and structural analysis)

tural analysis – i.e., circuits – as described in the previous
sections. Among the many different combinations of com-
parators based on circuit features, we found these two to
be the most interesting: SA: the current in each branch of
one circuit is compared to the current in the corresponding
branch of the second circuit; LSA: the global output current,
i.e., the output of the whole circuit was considered, plus the
local output currents, i.e., output currents in each subcircuit
corresponding to an attribute.

Average precision over the 12 experiments for a priori strate-
gies is shown in Figure 7, while average precision for a pos-
teriori evaluations is shown in Figure 8. As a first observa-
tion, note that, as it was expected, all a priori configurations
had mediocre performance – below 70%, while significantly
higher values of precision were obtained by some a posteri-
ori configurations. This confirms the intuition of Examples 1
and 2 in Section 2: since the schema matcher does not take
into account semantic mappings, as a posteriori verification
strategies do, it is frequently mistaken.

A second key observation is that structural analysis had
excellent performance: both configurations based on cir-
cuits outperformed attribute features, whose best precision
was around 80%, while the LSA configuration has precision
above 90%, thus confirming the effectiveness of circuits.

More results are shown in Figure 9, in terms of average stop
threshold and total execution times. It can be seen that ver-
ification strategies based on structural analysis have lower
stop thresholds on average; intuitively, this is due to the fact
that, given the search algorithm discussed above, they per-
form deeper searches before finding high quality solutions;
this also explains why they achieve higher precision than
other strategies. This higher level of accuracy comes at the
price of higher execution times. This increase, however, is
acceptable, since under the LSA configuration the 12 ex-
periments were run in less than 3 minutes.

7. RELATED WORK
Debugging schema mappings is a recent research topic and
has been addressed in [8]. There, schema mappings can be
traced and inspected, similarly to source code instructions.
Their approach gives the user a major role in debugging
the schema mappings, thus being significantly different from
ours.

Figure 9: Stop thresholds and execution times

In [6], contextual schema matching is introduced, to denote
correspondences annotated with a predicate saying when the
match is valid. These conditions are then translated into ac-
tual views, and the mapping generation is done by extending
the Clio algorithm. We currently do not deal with contex-
tual matches, but our setting can be extended to incorporate
such kind of matches.

The fact that schema matching tools may return uncer-
tain results has inspired an active body of research [17, 19].
In [17], it is highlighted that a schema matcher often tries to
derive a single best set of correspondences, whereas in most
cases the discarded correspondences may convey useful in-
formation. An heuristic based on confidence values is used
to verify the top-K mappings yielded by a schema matcher,
and refine the matches accordingly.

Our system adopts a Clio-style algorithm for mapping gen-
eration. Clio [24, 28] does not offer a module for automatic
mapping verification, but supports an interactive mapping
refinement process by visualizing mapping examples, i.e.
smaller samples of the source instance that has been trans-
lated using the current mapping. These may help the user
to select among alternative solutions.

Many tools for semi-automatic schema matching have been
proposed in the past. For a complete reference, we refer
the reader to comprehensive surveys in [29, 11, 30]. In
the following we shall briefly review some of these tools.
Schema matching systems are usually classified in two main
categories: schema-based systems use a combination of lin-
guistic and graph-based techniques in order to find simi-
larities in schema labels; instance-based ones rely on actual
values in instances to derive attribute features and similari-
ties. Although schema-based tools represent the vast major-
ity, instance-based tools perform better than schema-based
ones in those contexts in which the databases are essentially
opaque [21], i.e., labels and/or values are difficult or impos-
sible to interpret.

Similarity Flooding [23] (SF, for brevity) proposes a struc-
tural algorithm that can be used to compute similarities be-
tween arbitrary data structures, such as schemas, instances
or both. Despite the apparent similarity between the terms
“flood” and “current flow”, the two systems have hardly any
points in common. Given two structures to compare – called
models – SF runs a fixpoint algorithm over an auxiliary data
structure, called a similarity propagation graph in which ele-
ments of the first and second model are embedded together;
similarities are propagated along the edges of such graph ac-

cording to the intuition that two nodes are similar when their
adjacent elements are similar. On the contrary, in Spicy,
the two tree structures to compare are kept separate, and
no common data structure is employed; moreover, each tree
is turned into an isomorphic circuit, and the circuit is solved
to calculate currents and voltages; this is based on a very
different intuition with respect to SF, namely that currents
model the “flow of information” inside the tree; no similarity
flows through the circuit. Similarities in Spicy are explicitly
computed by selecting a number of features that describe the
circuits response and measuring their distance.

COMA++ [12] bases on well-founded software engineering
principles to build a fully-fledged set of matching techniques.
It introduces the notions of reuse and composition of match-
ers. Both SF [23] and COMA++ [12] are schema matchers,
thus can be used within our matching module.

Among the instance-based mapping tools, we recall [5], [21],
[22], and [13]. A more exhaustive survey is beside the scope
of this paper and can be found in [11]. DUMAS [5] exploits
the presence of duplicates within relations to effectively drive
the schema matching process. Despite their actual labels, at-
tributes that are semantically similar are detected and used
to output the mapping correspondences. Spicy does not
assume the presence of duplicates.

In [21], the authors develop an instance-based approach to
matching opaque databases, i.e., database in which labels
and/or values are difficult or impossible to interpret. They
measure the pair-wise attribute correlations in the tables
and use mutual information and entropy to build a depen-
dency graph, which is then explored to find matching node
pairs. While such information-theoretic approach has some
points in common with our use of entropy, note that Spicy
does not exploit mutual entropy to find matches. Both [5,
21] are orthogonal to Spicy, which can be used to verify the
outcome of the formers.

SemInt [22] clusters similar attributes by using data patterns
and catalog information as inputs to neural network. The
entire approach is automated, yet a set of parsers need to
be instructed at the beginning of a matching task.

LSD [13] adopts a machine learning approach: a set of learn-
ers must be trained by feeding examples of mappings among
a smaller set of sources. Then, the accumulated knowledge
is reused to automatically derive mappings between other
sources in the same domain. The instance-based module in
Spicy is based on electrical circuits and does not require ad-

ditional input, nor training in order to verify the mappings.

Finally, the idea of using electricity to address computer
science problems has also been exploited in other cases. One
example are graphs random walks [14, 26]. In [3], the author
builds an Hex-playing machine: Hex is a two-player game
that aims at connecting two opposite sides of a rhombic
board through continuous black or white cells. In the paper,
a two-dimensional electrical charge distribution is associated
with any given Hex cell. This machine made decisions based
on properties of the corresponding potential field.

8. CONCLUSIONS
In this paper we have introduced a novel architecture that
makes a step towards the goal of automating mapping dis-
covery. A key idea in our proposal is that, when lines are
suggested by a schema matching module, candidate map-
pings must in general be verified by a dedicated mapping
verification module; we showed that this check gives better
precision if performed a posteriori, i.e., after the candidate
translation query has been run on the source. In Spicy,
mapping verification is based on structural analysis, that
has proven to be an effective tool to compare data struc-
tures.

We envision several future directions of investigation, among
which we mention: testing new features to handle non con-
ventional datatypes with circuits, in the spirit of [15]; con-
sidering more complex classes of correspondences, as in [6].

Acknowledgments The authors would like to thank Paolo

Papotti who provided many insightful comments on the subject

of the paper. Salvatore Raunich was partially supported by the

European Social Fund (Fondo Sociale Europeo).

9. REFERENCES
[1] The Ontology Alignment Evaluation Initiative – 2007.

http://oaei.ontologymatching.org/2007/.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[3] V. V. Anshelevich. A Hierarchical Approach to Computer
Hex. Artif. Intell., 134(1–2):101–120, 2002.

[4] D. Aumueller, H. Do, Massmann S., and E. Rahm. Schema
and Ontology Matching with COMA++. In Proc. of ACM
SIGMOD, pages 906–908, 2005.

[5] A. Bilke and F. Naumann. Schema Matching using
Duplicates. In Proc. of ICDE, pages 69–80, 2005.

[6] P. Bohannon, E. Elnahrawy, W. Fan, and M. Flaster.
Putting Context into Schema Matching. In Proc. of VLDB,
pages 307–318, 2006.

[7] A. Bonifati, E. Q. Chang, T. Ho, L. Lakshmanan, and
R. Pottinger. HePToX: Marrying XML and Heterogeneity
in Your P2P Databases. In Proc. of VLDB, pages
1267–1270, 2005.

[8] L. Chiticariu and W. C. Tan. Debugging Schema Mappings
with Routes. In Proc. of VLDB, pages 79–90, 2006.

[9] P. R. Clayton. Fundamentals of Electric Circuit Analysis.
John Wiley & Sons, 2001.

[10] R. Dhamankar, Y. Lee, A. H. Doan, A. Halevy, and
P. Domingos. iMAP: Discovering Complex Semantic
Matches between Database Schemas. In Proc. of ACM
SIGMOD, pages 383–394, 2004.

[11] H. H. Do, S. Melnik, and E. Rahm. Comparison of Schema
Matching Evaluations. In Proc. of the GI Workshop on
Web and Databases, pages 221–237, 2002.

[12] H. H. Do and E. Rahm. COMA - A System for Flexible

Combination of Schema Matching Approaches. In Proc. of
VLDB, pages 610–621, 2002.

[13] A. H. Doan, P. Domingos, and A. Halevy. Reconciling
Schemas of Disparate Data Sources: A Machine-Learning
Approach. In Proc. of ACM SIGMOD, pages 509–520,
2001.

[14] P. G. Doyle and J. L. Snell. Random Walks and Electric
Networks. In Proc. of the Mathematical Associations of
America, 1984.

[15] C. Faloutsos. Indexing multimedia databases. In Proc. of
ACM SIGMOD, page 467, New York, NY, USA, 1995.
ACM Press.

[16] A. Fuxman, M. A. Hernández, C. T. Howard, R. J. Miller,
P. Papotti, and L. Popa. Nested Mappings: Schema
Mapping Reloaded. In Proc. of VLDB, pages 67–78, 2006.

[17] A. Gal. Managing Uncertainty in Schema Matching with
Top-K Schema Mappings. J. of Data Semantics, VI:90–114,
2006.

[18] A. Gal. Why is Schema Matching Tough and What We
Can Do About It. Sigmod Record, 35(4):2–5, 2006.

[19] A. Gal. The Generation Y of XML Schema Matching
(Panel Description). In Proceedings of XML Database
Symposium, pages 137–139, 2007.

[20] L. M. Haas, M. A. Hernández, H. Ho, L. Popa, and
M. Roth. Clio Grows Up: from Research Prototype to
Industrial Tool. In Proc. of ACM SIGMOD, pages 805–810,
2005.

[21] J. Kang and J. F. Naughton. On Schema Matching with
Opaque Column Names and Data Values. In Proc. of ACM
SIGMOD, pages 205–216, 2003.

[22] W. S. Li and C. Clifton. SEMINT: A Tool for Identifying
Attribute Correspondences in Heterogeneous Databases
using Neural Networks. Data and Know. Eng., 33(1):49–84,
2000.

[23] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity
Flooding: A Versatile Graph Matching Algorithm and Its
Application to Schema Matching. In Proc. of ICDE, pages
117–128, 2002.

[24] R. J. Miller, L. M. Haas, and M. A. Hernandez. Schema
Mapping as Query Discovery. In Proc. of VLDB, pages
77–99, 2000.

[25] F. Naumann, C.-T. Ho, X. Tian, L. M. Haas, and
N. Megiddo. Attribute Classification Using Feature
Analysis. In Proc. of ICDE, page 271, 2002.

[26] C. R. Palmer and C. Faloutsos. Electricity-Based External
Similarity of Categorical Attributes. In Proc. of PAKDD,
pages 486–500, 2003.

[27] R. Pierce. An Introduction to Information Theory. Dover
Publications, 1980.

[28] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernandez, and
R. Fagin. Translating Web Data. In Proc. of VLDB, pages
598–609, 2002.

[29] E. Rahm and P. A. Bernstein. A Survey of Approaches to
Automatic Schema Matching. VLDB J., 10:334–350, 2001.

[30] P. Shvaiko and J. Euzenat. A Survey of Schema Based
Matching Approaches. J. of Data Semantics, IV - LNCS
3730:146–171, 2005.

[31] W. Su, J. Wang, and F. Lochovsky. Holistic Schema
Matching for Web Query Interfaces. In Proc. of EDBT,
pages 77–94, 2006.

[32] L. L. Yan, R. J. Miller, L. M. Haas, and R. Fagin. Data
Driven Understanding and Refinement of Schema
Mappings. In Proc. of ACM SIGMOD, pages 485–496,
2001.

