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Abstract. Ontology matching is one of the key research topics in Se-
mantic Web. In the last few years, many matching methods have been
proposed to generate matches between different ontologies either auto-
matically or semi-automatically. To select appropriate ones, users need
some measures to judge whether a method can achieve the similar com-
pliance even on one dataset without reference matches and whether such
a method is reliable w.r.t. its output result along with the confidence.
However, widely-used traditional measures like precision and recall fail
to provide sufficient hints. In this paper, we design two novel evaluation
measures to evaluate stability of matching methods and one measure
to evaluate credibility of matching confidence values, which help an-
swer the above two questions. Additionally, we carry out comparisons
among several carefully selected methods systematically using our new
measures. Besides, we report some interesting findings such as identifying
potential defects of our subjects.

1 Introduction

An ontology provides a common vocabulary, which can be used to model a do-
main. It is a formal representation of shared knowledge between human beings
and machines. Nevertheless, due to the openness of Semantic Web, the widely
adoption of ontologies also exposes the heterogeneity problem to the public. On-
tology matching is one of the positive efforts to reduce heterogeneity. It aims at
finding matches between semantically related entities of different ontologies|[7]. In
recent years, many ontology matching methods and systems have been developed
such as Lily[15], ASMOV[11], Anchor-Flood[9] (aflood for short), RIMOM][12],
Falcon-AO[10] and AgreementMaker[2] (AgrMaker for short). With so many
matching methods in hand, users need some criteria to evaluate them and select
appropriate ones for their applications.

Users usually choose match candidates above a confidence threshold (CT).
The threshold is adjusted on some training datasets with reference matches on
hand. Then the trained C7T is applied on test data. To achieve good matching
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performance, data characteristic or distribution of the test data is assumed to
be similar to that of the training set. However, it does not always hold. Addi-
tionally, it is labor-intensive and error-prone to obtain comprehensive reference
matches especially between large ontologies. In some cases, we even do not have
authorizations to access the whole ontologies to get those matches. Thus, a
widely-used feasible way is to train C'T" on small or partial datasets with repre-
sentative selected samples. When trying to select the most appropriate method
or system according to the user’s application domain, we can only predict the
matching quality of those methods working on ontologies without any reference
matches. Hence, we introduce a new concept called stability for matching as-
sessment. Generally speaking, a matching method with high stability indicates
that it performs consistently on the data of different domains or scales.

On the other hand, a matching method outputs candidate matches sorted
by their matching confidence values. We prefer methods which generate true
positive matches with high confidence values (ranked high) while return false
positive ones with low values (ranked low). This is another important criteria
called credibility to guide users on ontology matching method selection.

However, existing measures only focus on judging the basic compliance like
precision, recall or their extensions like relaxed precision and recall[4], and se-
mantic precision and recall[6]. In this way, these measures fail to assess a match-
ing method based on the two important criteria, which makes users hard to
select the most suitable method or system. Some methods[5,13,14] for select-
ing the best matching strategy take several parameters into account, yet these
parameters do not include scores for evaluating stability and credibility.

In this paper, we propose several novel measures according to the matching
criteria. The main contributions are as follows:

— We propose the STD (STandard Deviation) score to measure matching sta-
bility by examining the fluctuation of the original confidence thresholds. To
give an overall consideration of both the theoretical optimum matching qual-
ity of matching methods and their matching quality using the trained CT's
in practical, we extend the classical F-measure to a comprehensive version.

— A ROC (Receiver Operating Characteristics) graph indicates the tradeoff
between benefits (true positive matches) and costs (false positive matches)
[8]. We use the ROC-AUC (Area Under Curve) score to measure the credi-
bility by taking the tradeoff into account.

— We further carry out comprehensive experiments to compare several carefully
selected methods based on the new measures mentioned above. By observing
exceptions, e.g., the score of a matching method is well below the average, we
can tell potential weak points a matching method has on particular datasets.

The rest of this paper is organized as follows. Section 2 presents the formal
representation of matches and describes some typical ontology matching meth-
ods. In Section 3, we recap some basic measures as well as introduce the new
measures. In Section 4, we show experimental results using the new introduced
measures and provide deep analysis. Finally, we make a conclusion in Section 5.
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2 Preliminaries

We will introduce some typical ontology matching methods in a nutshell. They
are outstanding participants of OAEI (Ontology Alignment Evaluation Initia-
tive) campaigns' and subjects of our evaluation experiments.

Lily[15] Lily realizes three main matching components: GOM (Generic On-
tology Matching) uses semantic subgraph technique to combine lexical and
structural matching; LOM (Large-scale Ontology Matching) is adopted to
match large size ontologies without using ontology modularization; SOM
(Semantic Ontology Matching) uses the Web knowledge to recognize the
semantic relations through the search engine.

ASMOV][11] ASMOV incorporates a semantic validation process (remove any
incorrect or invalid matches) and calculates four partial similarities: simp,
measures lexical similarity referring WordNet; sim; and sim g measure inter-
nal and external structure similarity respectively; sim y measures individual
one.

Anchor-Flood[9] Aflood aims at achieving high performance and resolving
the scalability problem. This algorithm starts off with a pair of concepts
from each ontology, gradually exploring concepts by collecting neighboring
concepts. This system has two parts: one is the ontology schema match-
ing algorithm that aligns concepts and properties; the other is the instance
matching approach.

RiMOM][12] RIMOM includes several lexical matching strategies: Edit-
Distance, Vector-Distance and referring to WordNet. The structural match-
ing uses an adaptive variation of the similarity flooding. A strategy selection
process is applied to improve the match accuracy. Similarity combination
and propagation are also key steps.

Falcon-AO[10] Falcon-AO consists of four matchers: I-Sub and V-Doc (Virtual
Documents) are two light-weight linguistic matchers which take neighbor-
ing information into consideration; GMO (Graph Matching for Ontologies)
is a structural matcher, uses RDF bipartite graphs to represent ontologies
and computes structural similarities; PBM (Partition-Based Block Match-
ing) divides large-scale ontologies into blocks and finds block matches be-
tween them.

AgreementMaker[2] AgrMaker adapts three string-based techniques: BSM
(Base Similarity Matcher), PSM (Parametric String-based Matcher) and
VMM (Vector-based Multi-word Matcher), VMM is similar to V-Doc. A
graph-based structural matcher is used which is based on the idea that if
two nodes are matched with a high similarity, then their children should be
similar. It also refers to WordNet to find further matches as its last step.

3 Evaluation Measures

In this section, we propose some new measures for evaluating matching methods.
We first introduce three well-known measures: Precision, Recall and F-measure.

! http://oaei.ontologymatching.org/
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Let the result set of ontology matching be divided into subset TP (true posi-
tives, means correctly proposed matches) and subset FP (false positives, means
falsely proposed matches). Let FN (false negatives) be the set of missing correct
matches, then it comes the definitions of Precision and Recall:

Precision = |TP|/(|]TP| + |FP)) (1)
Recall = |TP|/(JTP|+ |FN|) (2)

Precision reflects the share of correct matches among all found ones, while
Recall reflects the share of correctly proposed matches among all expected ones.
In order to avoid the imperfection in evaluating the compliance with Precision or
Recall alone, F-measure, the harmonic mean of Precision and Recall is proposed
and widely used:

7 2 x Precision x Recall (3)
-measure =
Precision + Recall

3.1 Comprehensive F-measure

A confidence value is included in the match computed from matching methods
to describe the confidence about the result. The higher a confidence value is,
the more similarities two entities share, and the more correct a match is likely
to be. Intuitively speaking, matches with low confidence value are likely to be
incorrect and will lower the Precision values. However, denying all matches with
low confidence values to increase Precision values will lose a certain number of
correct ones, which, on the contrary, will decrease the Recall values.

Therefore, in practice, application systems have to determine a confidence
threshold (CT) value to preserve only those matches with confidence values
above it in a matching task. In this case, F-measure is a function of CT. The
greedy principle of selecting the C'T is to have F-measure reaches its maximum
[7]:

maxF-measure = max F-measure(CT) (4)
marFCT = argmax F-measure(CT) (5)
cT

The maxF-measure reflects the theoretical optimal matching quality of match-
ing methods but it does not consider their matching quality in practice. The
design of a matching method usually takes several semantic information into
account, such as Lexical knowledge, Structural knowledge, Domain knowledge,
and Instance-based knowledge [1], which are quite dataset specifically (as shown
in our subsequent experiments). Thus, application systems have to adjust and
tune the CT dramatically to keep a matching method applicable with a high
F-measure across different datasets. This is costly especially facing large-scale
real-world datasets, and even infeasible if there are no enough reference answers
for certain datasets in hand. In this case, those matching methods that generate
relative stable mazFCTs will surpass the others, because they can ensure to
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give a holistic applicable mazFCT value from only some selected ones among all
datasets. Since validation datasets are scarce, we propose a novel measure, i.e.
unif-measure (uniform F-measure), to simulate the practical application and
evaluate such stability of matching methods.
The uniF-measure is computed as follows. First, we compute mazFCT's from
a set of selected datasets (named a test unit), and then calculate their arith-
metic mean average(maxFCTs). Further, the F-measure for each corresponding
dataset is re-computed under this mean value, which is then defined as the uniF-
measure:
uniF-measure = F-measure(average(maxzFCTs)) (6)

The test unit mentioned above usually means a set of similar datasets describ-
ing the same domain and sharing many resemblances, but differing on details.
A test unit contains several matching tasks and reference answers are necessary.
It is hired to simulate featured subsets of a particular ontology.

If a matching method is stable, maxFCTs of a test unit should be relatively
stable, i.e. uniF-measure value should not be much lower than maxF-measure
value. In this way, we can observe the stability of matching methods by con-
trasting their maxF-measure values and uniF-measure values, or just calculat-
ing their arithmetic mean, the comF-measure (comprehensive F-measure) value.
comF-measure is an extended F-measure and defined by

comF-measure = (maxF-measure + uniF-measure) /2. (7)

3.2 STD Score

As described in Section 3.1, for some reason (such as lacking enough reference
answers, or in a predicting task), there is only a limited part of the datasets
(so-called the test unit) available beforehand. So we select a matching method
with high stability on a limited dataset and hope this method can perform well
in the coming matching tasks.

Measuring the dispersion of mazFCT's in a test unit can help us estimate the
difficulty in obtaining mazF-measure for a given matching method. However,
sometimes it is too strict to just focus on mazFCTs. In practice, we also accept
those C'T values that cause the test unit to have F-measure values close to mazF-
measure. Here we use a real example as shown in Figure 1 to further explain this
condition. When CT = 0.848, F-measure reaches its maximum 0.946. Actually,
some smaller values near this maxF-measure are fully acceptable too, e.g., F-
measure = 0.939 when CT = 0.878.

Thus, we give some grace when finally determine the expecting CT measuring.
From all C'T's that can get top 20 percents of F-measure, we choose the maxi-
mum CT as the relaxedCT. The relaxedCT can be formally defined similar to
marFCT:

relaredCT = max(arg top20pct (F-measure(CT))) (8)
cT

The dotted box in Figure 1 encloses top 20 percents of F-measure and we
have relaxedCT = 0.878 now. The value of relaredCT will be too far apart
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Fig. 1. Relation between F-measure and CT
(result for Benchmark#304 by Falcon-AO)

from maxFCT if the range of F-measure varies widely in some cases. So we
should restrict the range of relazedC'T" under this condition. Here we choose the
top 10 percents of F-measure if the variation range exceeds 0.1. If the variation
range still exceeds 0.1 under the circumstances, only those F-measures that are
between maxF-measure and maxF-measure—0.1 will be taken into account.

With the definition of relaxedCT, we propose the STD score as another
stability measure.

N
1 2
STD score =1 — N 2_1 (relazedCT; — relazedCT) 9)

where N is the number of matching tasks in a test unit, and relaxedCT is the
mean value of relaxedCTs.

The STD scoreis a standard deviation to measure the dispersion of relaxedCTs,
and hence that of maxFCTs. According to the probability theory and statistics,
slight diversity of relaxedCT will cause the deviation of STD score apparently.
Therefore, STD score is effective in measuring the stability of matching methods.
STD scores are comparable when they are calculated under the same test unit.

3.3 ROC-AUC Score

A reasonable matching method should have a certain degree of credibility in
confidence value, because the credible confidence value plays an important role
in ranking matching results reasonably. With such credibility, the greater con-
fidence value a matching method gives, the relevant match is more likely to be
correct. We hire the Receiver Operating Characteristics (ROC) analysis tech-
nique [8] to measure such credibility.

The ROC' analysis is used for ‘visualizing, organizing and selecting classifiers
based on their performance’ [8]. As shown in Figure 2, ROC graphs are two-
dimensional polygonal line graphs in which true positives rate is plotted on the
Y axis, and false positives rate is plotted on the X axis.
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Fig. 2. An Example of ROC' Graph

To measure the credibility of confidence value with ROC graph, we should
first sort matches by their confidence values before drawing the ROC' curves.
Starting from the match with the highest confidence value, if it is true positive,
the curve climbs up by one unit distance (1/|TP|); otherwise, the curve move
horizontally to the right by 1/|F P|. The whole polygonal line starts from origin
and ends up at (1,1). The ROC-AUC (Area Under Curve) is the area surrounded
by ROC curve, X axis and line X = 1. Since the domains of axes are normalized,
the score of this kind of measure could be defined easily as:

ROC-AUC score = ROC-AUC (10)

ROC-AUC score is applicable for measuring the credibility of confidence value
because if confidence values are really credible, the ROC' curve should climb
straight towards (0,1) in the early stage of drawing the curve, and ROC-AUC
should be relatively large, i.e. ROC-AUC score should be high. The meaning
of ROC-AUC score could be explained by referring to an illustration from the
realm of information retrieval that the users always want to receive most correct
answers with high confidence value (cf. ranking score).

Ehrig [3] does not recommend this measure for the reason that different
dataset results cannot be compared directly because the unit distance we use
for drawing the curve is dependent on the result size. In fact, we do not directly
compare matching methods using this measure, but qualitatively analyze their
potential problems.

4 Experimental Results

OAEI is widely used for ontology matching evaluation. It not only assesses the
strength and weakness of matching methods but also helps improving the work
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on ontology matching. We choose OAEI 2009 Benchmark track and the Confer-
ence track as test datasets because relatively complete reference matches of these
tracks are available for judging. In the following subsections, we will introduce
main characteristics of each dataset and present experimental results using the
above described evaluation measures.

4.1 Testing on the Benchmark Track

The OAEI setups benchmark test library to offer a set of tasks which are ‘wide
in feature coverage, progressive and stable’?. These tasks describe bibliographic
reference.

Most ontologies of the Benchmark track orient from a complete reference
ontology and there are six categories of alteration. All the benchmark tasks can
be divided into five groups and we treat each group as a test unit (tasks in a
test unit share many resemblances):

#101-#104 (10X for short) The descriptions of classes or properties may
have some differences.

#201-#210 (20X for short) Local names and comments information are re-
duced while structural information remains the same.

#221-#247 (22X for short) Hierarchy, instances, properties and classes in-
formation are reduced while lexical information remains the same.

#248-#266 (24X for short) Lexical information is suppressed and structural
information is reduced. We abandon this test unit because we do not think
information of real-world ontologies is so deficient.

#301-#304 (30X for short) Four real-world ontologies.

The synthetic benchmark is instrumental in evaluating matching methods.
Here we measure a simple matching method and five sophisticated ones. They
are StringDistance, Falcon-AO, Lily, ASMOV, RiMOM and aflood respectively.
More precisely, StringDistance simply compares differences between strings. We
treat it as our baseline. The five sophisticated matching methods are selected
due to their outstanding and stable performance in Benchmark track of OAEI
campaigns in recent years (2005-2009).

10X Test Unit. This test unit is relative simple, so we provide all three kinds of
scores in Table 1. In order to visually compare these scores of different matching
methods, we also present results with Spider Charts (Figure 3). In Spider Charts,
we can not only capture disparities of scores shown in three axes, but also learn
overall quality by surveying the area surrounded by score lines. We start axes of
Spider Charts at 0.5 for enlarging the disparities.

The Spider Chart for 10X test unit (Figure 3a) shows that all matching meth-
ods get high scores in comF-measure and ROC-AUC measures except StringDis-
tance. However, STD scores of Lily and ASMOV are lower than that of others.

2 http://oaei.ontologymatching.org/2009/benchmarks/
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Table 1. Results for Benchmark Test Units

Tools # comF-measure STD score ROC-AUC # comF-measure STD score ROC-AUC
Falcon-AO 0.996537 0.999240 1.000000 0.989778 0.949460 0.996392
Lily 0.993873 0.837004 1.000000 0.966045 0.767347  0.986057
ASMOV 10X 0.991161 0.832834  1.000000 ;- 0.795300 0.742211  0.988999
RiMOM 0.965817 0.996060 1.000000 0.986734 0.947575 0.988127
aflood 1.000000 1.000000 1.000000 0.991277 1.000000 0.986153
StringDistance 0.779116 1.000000  0.638158 0.818852 1.000000  0.698579
Falcon-AO 0.897292 0.633577  0.955449 0.806695 0.950244  0.885652
Lily 0.973254 0.914770  0.993886 0.807346 0.836017  0.825668
ASMOV 20X 0.940700 0.836917 0.989130 30X 0.747131 0.762499 0.794369
RiIMOM 0.822705 0.472834  0.993197 0.813504 0.892603  0.804618
aflood 0.925260 1.000000 0.973064 0.830853 1.000000 0.900738
StringDistance 0.544872 0.878835 0.439786 0.802029 0.912243 0.548727

Table 2. Ontology Information of Benchmark-20X Test Unit

Datasets Names Comments Datasets Names Comments

203 0 N 207 F 0
204 C 0 208 C N
205 S 0 209 S N
206 F F

We draw Figure 4 which reflects the fluctuations of relaxedCT values, so as
for further analysis on the STD scores. More precisely, we project each task into
one unique point at X axis: 10X test unit (including 3 tasks) corresponds to point
1 to point 3, 20X test unit corresponds to 4 to 10, etc. Each horizontal dashed
line in red running through a set of points represents the mean value of the
corresponding relaxedCT's. Intuitively, the more discrete points are, the lower
STD score will be. We do not present aflood on the figure because relaredCT's
of aflood are always 1s. In fact, aflood does not provide distinguishing confidence
values but 1 for any match.

20X Test Unit. 20X test unit is a little more complex, and detailed ontology
information is described in Table 2. Here we explain the meaning of abbrevia-
tions: 0 (stay unchanged), N (suppressed), F (strings in another language than
English), C (naming conventions) and S (synonyms). We abandon tasks 201, 202
and 210 due to the same reason of abandoning 24X test unit.

We present mazF-measure and uniF-measure results (Figure 5) for this test
unit because some exceptions are detected. Performances of Falcon-AO (Fig-
ure 5a), ASMOV (Figure 5¢) and RIMOM (Figure 5d) draw our attention. All
of them have clear disparities between uniF-measure scores and maxF-measure
scores in #209. To find out the reason, we can come back to figure 4 (#209 corre-
sponds to 10 at X axis). These three matching methods should set CT's really low
to get mazF-measure scores. That is to say, when meet synonyms, these methods
do not have much confidence in matching. Comparing with StringDistance we
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Fig. 3. Spider Charts for Benchmark Test Units

can infer that they must use structural information to get decent mazF-measure
scores. Lily and aflood are not facing the instability problem although they also
meet the challenge of lacking for lexical information.

We also observe that RIMOM does not work well in #205, #206 and #207 at
the same time. Together with #209, we can find that RiMOM does not perform
stable enough when Local Name information is suppressed a lot.

All evaluation results of this test unit are presented in Figure 3b. The over-
all matching quality can be summarized easily according to comparing areas
surrounded by score lines.

22X Test Unit. The detailed ontology information of 22X test unit is described
in Table 3. Meanings of abbreviations are: 0 (stay unchanged), N (suppressed),
F (flattened), E (expanded) and R (random strings).

In this test unit, Lily and ASMOV get some exceptions and their mazF-
measure and uniF-measure scores are presented in Figure 6.
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Table 3. Ontology Information of Benchmark-22X Test Unit

Datasets Hierarchy Instances Properties Classes Datasets Hierarchy Instances Properties Classes

221 N 0 0 0 233 N 0 N 0
222 F 0 0 0 236 0 N N 0
223 E 0 0 0 237 F N 0 0
224 0 N 0 0 238 E N 0 0
225 0 0 R 0 239 F 0 N 0
228 0 0 N 0 240 E 0 N 0
230 0 0 0 F 241 N N N 0
231 0 0 0 E 246 F N N 0
232 N N 0 0 247 E N N 0

Referring to Figure 4b, Figure 4c¢ and ontology features described in Table 3,
we can find out potential flaws of these matching methods: Lily is hyper-sensitive
to instances information while ASMOV is hyper-sensitive to properties informa-
tion. Hyper-sensitivity means a matching method makes great different in final
results (confidence values of matches) for whether or not a certain kind of infor-
mation is missing. Hyper-sensitivity concededly damages stability of matching
methods.

30X Test Unit. This test unit contains four real-world ontologies. According to
the explanation of OAEI the reference matches for these tasks are not perfect?,
so we will not care matching quality which is represented by comF-measure. Ac-
tually, mazF-measure scores of all matching methods, including StringDistance,
are very close.

StringDistance does not provide result for #303 because this ontology lacks
in local names of classes and properties and StringDistance fails to extract this
information from complete URIs. Lily also faces this problem, but it considers

3 http://oaei.ontologymatching.org/2009/benchmarks/#266



286 X. Niu et al.

S maxF-measure 0 unif-measure

F-measure
F-measure
F-measure

203 204 205 206 207 208 209 mean 203 204 205 206 207 208 209 mean 203 204 205 206 207 208 209 mean

(a) Falcon-AO (b) Lily (c) ASMOV

maxF-measure 0 uniF-measure EmaxF-measure [ uniF-measure

maxF-measure  0uniF-measure

F-measure
F-measure

F-measure

N \ N LR N N D
203 208 205 206 207 208 2

203 204 205 206 207 208 209 mean

203 204 205 206 207 208 209 mean mean

(d) RIMOM (e) aflood (f) StringDistance

Fig. 5. mazF-measure and uniF-measure Results for Benchmark-20X Test Unit

maxF-measure [JuniF-measure maxF-measure O uniF-measure

1.00 - - o — 1.00 .
090 NHYHNHRMH | YN 090 NININFYIAFYN[RH H
080 WNHHHMHHMHH NN N RN 080 NHYNHNNH N H H
o 070 NINNIN M NN AR o 070 NENHNEN RN H
5060 NHNFNFRHY M HH AN 5060 NMNMNFFYANANH H
2 H
8 050 NINFNFNHVH FN N 8 050 NINFYHAANANAYH | H
€ 040 NINFNIYHY A N YN £ 040 NN NAH H H
o030 N N3 HANARH “ 03 NHNANARARNR NN H H
020 NHYHNHHH FN HANAH 020 NHYANFRINAENAAAN AT ! H
010 NHYHNHRMH H A HAAH 0,10——————————F7— ‘ H
000 NLNLNLRLAL 000 NLNINLNLNLMNLNINLNLNMNLNLN NI N
Sa Mt NmOerN®NOo D e C C N M YN ®OHNMON®AO DO N C
NN RN ARRRIRITELES AAIRRR AR AR RLIILE S
NIRNIRS IR TRRARIIINARNG NRRRAANAIRAIITRRIIIRS
(a) Lily (b) ASMOV

Fig. 6. Partial maxF-measure and uniF-measure Results for B-22X Test Unit

comments, so matches are found after all. Real-world ontologies usually have
some special features that matching methods should take into account. Besides
missing local names mentioned above, #301 also has a unique characteristic
that all local names of properties start with ‘has’, which is a typical naming
convention.

The Spider Char of 30X test unit (Figure 3d) shows that the sophisticated
matching methods have no advantages over the simple StringDistance method
except when we measure ROC-AUC scores.

4.2 Testing on the Conference Track

The ontologies of Conference track come from conference organization domain.
All of these ontologies are built by different groups and have ‘heterogeneous char-
acter of origin’*. We choose seven ontologies whose reference matches are offered.
The target of this track is to match every two ontologies so there are C2 = 21
tasks and we group all these tasks into a single test unit. A simple matching

4 http://oaei.ontologymatching.org/2009/conference/
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method (StringDistance) as baseline and three sophisticated ones (Falcon-AO,
AgrMaker and aflood) are measured for Conference test unit. Falcon-AO per-
forms well and stably in Conference track of OAEI 200682007 while AgrMaker
and aflood perform better than other participants in Conference track of OAEI
2008&20009.

From the visual representation of evaluation results (Figure 7), we observe
that all STD scores are satisfactory while all comF-measure scores are not that
good. We even notice that simple StringDistance can nearly take the place of the
sophisticated ones. However, ROC-AUC score holds it back. Figure 8 exhibits
that most relaxedCTs of StringDistance are 1s, in other words, all confidence
values of matches are 1s. That means it is useless to sort matches by confidence
values, so users can hardly distinguish more likely correct matches among them.

Aflood faces the same problem since it always sets confidence values as 1s.
This method gets normal ROC-AUC scores in Benchmark track so we infer that
it generates confidence values for sorting during processing but does not output
them in the end. Anyhow, it confuses users eventually and does not continue
getting high ROC-AUC score in this track.

4.3 Discussion

Single F-measure score or even comF-measure score may mask potential prob-
lems of matching methods. As the detailed experimental analysis shows above,
differences are manifested on STD scores in Benchmark track and ROC-AUC
scores in Conference track.

Hyper-sensitivity is detected in our experiments by STD scores, e.g., Falcon-
AO and ASMOV are hyper-sensitive to synonyms, RIMOM is hyper-sensitive to
local names and properties information and Lily is hyper-sensitive to instances
information. To promote stability of matching methods, researchers should pay
more attention to the information that matching methods are hyper-sensitive
to.

Users have the authorities to determine final confidence threshold, so matching
methods ought to provide credible and diverse confidence values for different
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matching tasks. Indifference confidence value is a simple cause of low ROC-AUC
scores, yet more internal factors of matching methods remain to be dug and
improved.

5 Conclusions and Future Work

Ontology Matching is one of the most popular research fields in Semantic Web. In
recent years, many matching methods have been proposed. In order to assess the
matching performance of these methods, it is essential to have a comprehensive
benchmark which can find the potential weakness of these methods and help
researchers to improve them to a certain extent.

In this paper, we design three new evaluation measures to evaluate stability of
matching methods and credibility of their matching confidence values. Moreover,
we identify potential defects of subjects by detecting the exception of these
measure scores. The deep analysis can shed light on the selection of appropriate
matching systems against the specific domain and environment. It may also help
pointing out the way to improve a given matching method.

In the future, we intend to extend our evaluation measures to a comprehensive
strategy for selecting matching methods and compare this strategy with existing
ones. We also plan to test more matching methods under other datasets in OAEI
using our proposed measures. As a result, we would like to make both stability
and credibility as standard evaluation measures for ontology matching.
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