STBenchmark: Towards a Benchmark for Mapping Systems

Bogdan Alexe
UC Santa Cruz

abogdan@cs.ucsc.edu

ABSTRACT

A fundamental problem in information integration is to psety
specify the relationships, called mappings, between sakerbe-
sighing mappings is a time-consuming process. To allewtsite
problem, many mapping systems have been developed to #msist
design of mappings. However, a benchmark for comparing eald e
uating these systems has not yet been developed.

We present STBenchmark, a solution towards a much neede
benchmark for mapping systems. We first describe the clygdken
that are unique to the development of benchmarks for mappisg
tems. After this, we describe the three components of STiBenc
mark: (1) a basic suite of mapping scenarios that we beliepeer
sents a minimum set of transformations that should be neadjp-
ported by any mapping system, (2) a mapping scenario gemerat

as well as an instance generator that can produce complex map

ping scenarios and, respectively, instances of varyiresfa given
schema, (3) a simple usability model that can be used as afirst
measure on the ease of use of a mapping system. We use STBenc
mark to evaluate four mapping systems and report our resasts
well as describe some interesting observations.

1. INTRODUCTION

A fundamental problem in information integration is to psety
specify the relationships, calletiappings between schemas. A
mapping is a precise specification of how data stored undfer-di
ent representations are related. Mappings are fundamauitding
blocks in many applications such as data integration, dathamge
and peer data management systems [21, 24, 26]. Howevei; spec
fying mappings (also referred to as ttiata programmability prob-
lemin [3]) is a time-consuming and laborious process [19] beeau
schemas are typically heterogeneous, designed indepgndiedif-
ferent formats and with different applications in mind. &cf, one of
the goals of model management [3] is to make the task of diegjgn
mappings between different representations easier.

In this paper, anapping systenis a visual programming sys-
tem with the goal of assisting a mapping designer towardg¢me
eration of a precise specification of the relationships betwtwo
schemas with less effort. The precise specification is allyicle-

“Work partly done while visiting UC Santa Cruz

Permission to copy without fee all or part of this materigranted provided
that the copies are not made or distributed for direct comialeadvantage,
the VLDB copyright notice and the title of the publicatiortdts date appear,
and notice is given that copying is by permission of the Veayde Data
Base Endowment. To copy otherwise, or to republish, to postesvers
or to redistribute to lists, requires a fee and/or speciaission from the
publisher, ACM.

Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0@w/

Wang-Chiew Tan
UC Santa Cruz

wctan@cs.ucsc.edu

Yannis Velegrakis*
University of Trento

velgias@disi.unitn.eu

scribed in some programming language (e.g., XSLT or XQuang)
it spells out the data exchange process, i.e., how an irestaver
one schema, called the source schema, is to be translapeahiiiri-
stance over the other schema, called the target schemay, Today
mapping systems such as Altova Mapforce [29], IBM RationatieD
Architect [23], Microsoft BizTalk Mapper which is embeddiedMi-
crosoft Visual Studio [45], Stylus Studio [41], BEA Aqualiog13],

dand the research prototypes Clio [20] and HePToX [9] have blee

veloped to alleviate the task of designing mappings. Despi¢
availability of many mapping systems, there has been nohHeark
developed for comparing and evaluating them. Similar tontloé-
vation of benchmarking relational database managemeterags a
benchmark for mapping systems is important for assessaigrti-
ative merits, which is in turn important to customers for ingkhe
right investment decisions. In fact, a recent workshop dorina-
tion integration [6] has also raised the need for developitgnch-
mark for data exchange systems. However, unlike benchnfarks

H_elational database management systems [42] or XML quegines

such as [8, 12, 37, 39, 46], it is considerably more challegp de-
sign a benchmark for mapping systems. One major difficuisear
from the fact that there does not exist a standard input geor in-
put methodology for mapping systems. In contrast, bencksrfar
RDBMSs and XML query processing systems could leverage thei
respective standard query languages, SQL and XQuery 1iasggc
to specify their benchmark test cases. We shall elaborate o
the challenges in the design of a benchmark for mapping regste
our solutions and the goals of STBenchmark in Sec. 2.

In this paper we present STBenchmérla first attempt towards
a benchmark for comparing and evaluating mapping systerus. O
evaluation criteria are based on the effort needed to imphtra
mapping through the visual interface of a mapping system d+
gree of support offered by a mapping system for the impleatemt
of various scenarios, and the scalability of the generataasfor-
mation code in terms of schema and instance sizes. Our specifi
contributions are the following:

(1) We identify the not obvious challenges that are uniquéh®
development of benchmarks for mappings systems, and expba
STBenchmark deals with these challenges. (see Sec. 2)

(2) We decribe a suite of basic mapping scenarios we beligge r
resents a minimum set of transformations that should becstgzp
through the visual interface of any mapping system. Thismaea
that for every basic mapping scenario, the designer shauétble to
obtain the desired executable code through the visuaffaeof a
mapping system without having to understand and manualbjifsno
the executable code. These mapping scenarios are the oésudt
careful analysis of constructs commonly needed acrossrdift in-

!standing for Source-to-Target mapping Benchmark
2http://www.stbenchmark.org

Source Target

) Visual . .
- -< }specification E':spn[oLE”s"gr\[lo'“] <Tar get > <Tar get > <Tar get >
name——— Name <Enmp> <Enp> <Enmp>
<SSN>111</ SSN> <SSN>111</ SSN> <ssn>111</ssn>
Generation of <Sour ce> <SSN>222</ SSN> <Name>John</ Name> <nane>John</ nane>
intermediate code <Enp> <Name>John</ Name> </ Enp> </ Enp>
<ssn>111</ssn> <Nane>Ann</ Name> </ Tar get > <Enp>
<name>John</ nane> </ Enp> <ssn>222</ssn>
[Generation of executable code] <1EE"p> </ Tar get > <name>Ann</ nanme>
<Enp>
<ssn>222</ ssn> </ Enp>
<nane>Ann</ name> </ Tar get >
XSLT | ...| XQuel </ Enp>
| | | o) | </ Sour ce> (©) (d) (e)

(@) (b)

Figure 1: (a) Architecture of mapping systems. (b) An examp visual specification and source instance. (c,d,e) Targetstances.

formation integration applications, such as data exchatgje ware-
houses, XML publishing, schema evolution, as well as realdv
mapping specifications. (see Sec. 3)

(3) We present a mapping scenario generator and an instaneg-g
ator we have designed and implemented. (see Sec. 4.) Themgapp
scenario generator is able to produce complex mapping sosna
between two schemas and the instance generator is ablestran
instances of varying sizes that conform to these schemasnésan
extract schemas from the generated mapping scenarios fh@nga
scenario generator can also be used as a schema generatlsoWe
describe how our generators can be applied to stress tesitafgs
that were developed for a wide variety of information inttgn
projects such as schema integration, evolution, as welbagosi-
tion and debugging of mappings.

(4) We describe a simple usability model, for assessing dse ef
use of the visual interface of a mapping system. While it isnmeant
to replace a much needed comprehensive human-computexante
tion study (which is not the subject of this paper) on the iisplof
mapping systems, it could be used for providing a first-cuasnee
on the ease of use of a mapping system. (see Sec. 5)

(5) We evaluate four mapping systems with STBenchmark,rtepo
our findings and describe some interesting observatioesyse. 6).

2. CHALLENGES AND SOLUTIONS

State-Of-The-Artin Mapping Systems.Recall that anapping sys-
temis a visual programming system that is typically built wittet
goal of assisting a mapping designer towards the generatioap-
pings between two schemas with less effort. The typical Gyt
taken by mapping systems to achieve this goal is to use aigedph
user interface and a graphical representation that akstrecunder-
lying specification between two schemas.

Our benchmark is targetedr@ationship-based mapping systems
[36], which adopt the following methodology towards theigasof
a mapping (see Fig. 1(a)): In the visual interface, one seh@he
source schem8) is displayed on the left panel of the screen while
the other schema (the target schefjgis displayed on the right of
the screen. After this, the mapping designer is allowed lateel-
ements of the two schemas by creating lines between theme Som
mapping systems [5, 20, 29] can also suggest element corresp
dences automatically between the two schemas. It is alsitpeso
visually specify complex relationships between elemehte®two
schemas through a library of supported functions. In somgping
systems, the functions in the library are direct correspands to
functions native to the language in which the transfornmattoex-
pressed. A function is typically depicted as a box with inaggrand
outgoing lines that connect to schema elements or othetifunsc
Hence, thevisual specificatiorthat illustrates the source and target
schemas, as well as the lines and boxes across elementstofothe
schemas, provide an intuitive description of the undegdypnecise
specification. An example of a visual specification is showriap
of Fig. 1(b). The visual specification can usually be contpilgo

different executable languages, such as XSLT, XQuery, da@

In tools such as [9, 20], this visual specification is first pded

into an intermediate code from which executable code ismg¢ea.
Most mapping systems are also able to save the visual spicific
either in some proprietary format or directly as executalge, so
that the visual specification can be reloaded into the mapgys-
tem at a later time. Hence, the input to these mapping systenid
either be a visual specification or a file in some proprietarynft.
It is also worth noting that different mapping systems hatfernt

levels of language support. For example, Stylus Studioatipphe
use of many XSLT functions through its graphical user irtegfbut
Clio does not.

Mapping systems are not to be confused vatthema matching
systems The latter is concerned with obtaining a setno&pping
elementswhere each mapping element indicates how elements of
one schema relate to elements of the other schema [35]. Tde re
tionship specified between sets of elements could be as eiampl
stating that the two sets are related, or it could involve ppigy
expression such as the concatenation of firsthame and iasto
one schema being equal to the name element of the other schema
The set of mapping elements is required as input to the code ge
eration process. Some mapping systems have a matching enodul
that (semi-)automatically derives these mapping elemeviige in
many others, the set of mapping elements are manually sgxcifi
through the visual interface. We emphasize that STBendhisar
not a benchmark for schema matching systems. There are already
proposals for schema matching benchmarks [17, 47]. Howéver
would be interesting to consider incorporating a schemahirag
benchmark into STBenchmark in future.

Challenges and Solutions of STBenchmark A benchmark is “a
standardized problem or test that serves as a basis foragieaiu
or comparison (as of computer system performance)” [30jndde
one goal of STBenchmark is to provide a standard set of tasisca
that could be used to evaluate and compare different magyisg
tems. However, there are many factors unique to mappin@sst
that make the design of a benchmark for such systems coabligier
more challenging than benchmarks for other types of systerols
as query engines.

One major difficulty is that currently, there does not existan-
dard approach for designing a mapping between two schemassac
different mapping systems. Although lines and boxes araaVis
metaphors commonly used as input across different mappislg s
tems, they are interpreted in distinct ways by differenteys. For
example, the simple visual specification depicted on top@f Kb)
which consists of a source and target schema with two liretctn-
nect the ssn elements and the name elements, respectivebmr
piled into inequivalent XSLT scripts by different mappingsgeems.
The XSLT script that is generated by Altova Mapforce [29]grs
all ssns of employees in the source, followed by all namesof e
ployees in the source, under a singlanp) tag. (see Fig. 1(c) which
is the result of applying Mapforce’s XSLT script on the sauio-
stance shown at the bottom of Fig. 1(b).) Thus, in the casenwhe

the source instance consists of more than one employeeartet t
instance generated by the XSLT script does not even confothet
target schema. (In fact, to specify a transformation thaiethe
source instance, Mapforce requires an additional line éetwthe
Emp elements in Fig. 1(b).) The XSLT script that is generdtgd
Stylus Studio [41] creates a sing|lEmp) tag within which there is
a single(SSN and(Name tag. Only the first ssn and name of em-
ployees in the source are listed under {8SN and (Nameé tag
respectively. (see Fig. 1(d).) Microsoft’s BizTalk Mapé5], IBM
Rational Data Architect [23] and Clio [20] generate XSLTipts
that return a copy of the source instance. (see Fig. 1(e).)

Since mapping systems interpret the same visual speaificati
different ways, it is therefore impossible to specify ountiemark
test cases as visual specifications to mapping systems.ntrasg
observe that benchmarks such as TPC-H [42] are able to tpvera
the industry-wide standard query language SQL for spewifyhe
input test cases to different database vendors. Our spltdidhis
challenge is to specify each test case asa@ping scenariinstead.

DEFINITION 2.1. A mapping scenarids a triple (S, T,P),
whereS is a source schemd; is a target schema, arfelis a precise
transformation function on how an instanceSof to be transformed
into an instance oT.

3. BASIC MAPPING SCENARIOS AND
REAL SOURCE INSTANCES

In this section, we describe the first component of STBenckma
which consists of a set of basic mapping scenarios that weveel
represents a minimum set of transformation functions thatiksl be
supported through the visual interface of any mapping sysihis
means that each basic mapping scenario should be readilg-imp
mentable through the visual interface of any mapping systéim
out having the mapping designer understand and modify tderun
lying executable code in order to achieve the desired efféhts,
valuable designer effort and time could be saved. The besitasios
are similar in spirit to benchmarks like TPC-H [42] and XM&BRQ],
which consist of a set of queries that is expected to be eablaut
by any database system or XML query engine. Our basic mapping
scenarios capture some transformations typical of inftionan-
tegration applications and they are derived by a carefulyaisaof
elementary constructs needed for applications such aggeltiange
or data warehouses, XML publishing, schema evolution;wneald
mapping specifications, as well as the authors’ experiemt¢bese
areas. We emphasize that our basic mapping scenarios areant
to be an exhaustive representation of all possible tramsftions.
Rather, they are intended to capture common transformatsas
that occur in practice and have wide industry relevance. é¥ew

Since mapping systems do not take mapping scenarios as inputthey cover all the cases presented in [27].

each mapping scenario needs to be implemented by the berichma
user by using the visual interface of each mapping system.

An important measure of the quality of a mapping system is its
performance. There are two natural aspects of performafhe:
first is the time the mapping system takes to compile a viguet-s
ification into executable code. The second is the performanic
the generated executable code. Since all the mapping systern

Every basic mapping scenario is accompanied by a source in-
stance which has been extracted from a real data source such a
the BioWarehouse [7] or the DBLP Server [16]. Thus, the trans
formation scripts generated by a mapping system can beatedlu
against these “real” source instances. In what follows, escdbe
and justify each basic mapping scenario. The XQueries itésgr
the transformation functions can be found in Appendix A.

we encountered do not provide methods by which we can record Copying In many data transformation applications it is frequently

the time they take to generate executable code, we omit thie fir
performance aspect in STBenchmark. For the second aspect, o
solution is to measure the performance of the executable ood

the case that an instance or subinstance of a source scheimglg
copied to the target.
The source and target schema are shown in Fig. 2(a). Theesourc

a common execution engine. In this paper, we measure the qua| schema consists of a set of Source/Protein reé(wdﬂ:h consist of

ity of XSLT scripts that are generated by different mappipgtsms
on various mapping scenarios by executing the XSLT scripta o

three subelements. This set of records is copied to the sEiref
get/Protein records. [J

common XSLT execution engine. We measure how well the gener- Constant Value GenerationThis mapping scenario represents the

ated scripts scale with the size of the mapping scenario ancte
instance through the use of STBenchmark’s mapping sceaado

situation when some constants need to be created in the.tSigeh
scenario occurs frequently in practice according to ouegrpce as

instance generator (see Sec. 4). We focus on XSLT because alWell as [7, 14, 27], where constant values that are indeperafehe

mapping systems that we encountered support the genecéo®-
cutable code in XSLT. Similar tests could be carried out enftiture
for other executable code generated in other languages.

As described earlier, a mapping system compiles a visuai-spe
fication into executable languages, such as XSLT, XQuerg da
C. Since visual interfaces are very much part of mappingesyst
it is also important to assess the degree and ease by whicbaone
implement the mapping scenarios with the visual interfacéhe
mapping system. While it is sometimes easy to determinehvenet
mapping system is able to implement a mapping scenarioghrits
visual interface, the ease by which the mapping scenarideam-
plemented with the visual interface of the mapping systesigisif-
icantly harder to quantify. Our solution to this challengaisimple
usability model for assessing the ease of use of a mappingrsys
(see Sec. 5). We believe that our simple usability modelésuligor
providing a first-cut measure on the ease of use of a mappsigray
However, we emphasize that the simple usability model ismeznt
to replace a much needed comprehensive human-computeadnte
tion study (which is not the subject of this paper) on the iisplof
mapping systems.

source instance need to be added to the target instance.

The target schema is shown in Fig. 2(b). The source schema can
be any schema and is therefore omitted. Here, a Target/BagtsS
ment is created to record the name of the database and theltzte
the database was created. In this case, the constants FBatisand
“July 4th” are the Name and LoadingDate respectively.]

Horizontal Partitioning This mapping scenario represents the situ-
ation where the contents of a source are partitioned intmtwoore
fragments in the target. This scenario occurs frequentschrema
evolution [27]. It may happen that a set of elements growsasgel
over time that it affects the performance of a database neemeagt
system. Hence, the database needs to be partitioned. Ashaesc
below, horizontal partitioning typically requires datadiing sup-
port (e.g., selection conditions) in mapping systems.

The source and target schema are shown in Fig. 2(c). Theesourc
schema consists of a set of Source/Gene records, whichstonsi
of three subelements. The target schema consists of twookets
Target/Gene and Target/Synonym records respectivelyofégthe
WID subelement in the target for this scenario.) The souecends

We use the nested relational model to interpret the scherawe,
the order in which Source/Protein records occur does ndemat

Source
Protein [0...*]
name

Target
Protein [0...*]
Name

Target
Dataset
“SwissProt— Name
accession — Accession "July 4"y LoadingDate
created —— Created
(b) Constant Value Generation

(a) Copy
Source Target Source Target
Gene [0...*] Gene [0...%] Reaction [0...4] Reaction [0...*]
name Name entry ——— 5 Entry
type Protein name —» Name
protein WID comment —— Comment
Orthology
nonym [0...% orthology————»
);\l;m)é 01 definition CoFactor €——
Protein equation \EhEmiCallnfo [0..4
WID Definition
(c) Horizontal partition and (d) Surrogate Key Assignment Equation

CoFactor ¢———
(e) Vertical partition

Source Target Source Target

Reference [0...*] Publication [0...*] Reference [0...*] Period [0...*]
title —————————-Title title Year
year Year year Author [0...%]
publishedin — Publishedin publishedin Name
Author [1...%] Name name ublication [0...*]
name / \ Title
Publishedl|
(f) Unnesting (or Flattening)) uplishedin
(9) Nesting
Source Target Source Target
Gene [0...%] Gene [0...*] Name [0...*] Taxon [0...*]
name Name €—— id—pId
type Protein name ———p Name
protein uniqueName —> UniqueName
Synonym [0...*] class ——»Class
Name Parent
WID
(h) Self Joins

Node [0...] Rank
taxiD EmblCode
parentll
rank

emblCode

(i) Denormalization and Join Path Selection

Source
Experiment [0...*]
contact
date
description
ExperimentalData [0...*]
data
role

Source Target
Contact [0...*] f, Contact [0...*]

name i: FirstName
address B LastName
stre;.L/v Address
city Phone

zip /

phone

Target
Experiment [0...*]

Description
ExperimentalData [0...*] . .
Data f,: getFirstName()
Role f,: getLastName()
© f5: concat(street,city, zip)

FlowCytometrySample [0...%
contact
date
Probe [0...

data
type

*
(k) Manipulation of Atomic Values

(j) Keys and Object Fusion
Figure 2: Basic Mapping Scenarios of Sec. 3.

are partitioned horizontally into the two target sets basadhe
value of the type subelement: Target/Gene consists of 8fEene
records whose type is “primary” and Target/Synonym cogasist
Source/Gene records whose type is not “primary”. It is tghcthe
case that in horizontal partitioning, the schema of eadljetgrarti-
tion is identical to the source schema. However, we havetedihe
“type” subelement in the target partitions in this scenarid]
Surrogate Key Assignmentin data warehouses, objects are often
given new unique identifiers (or keys) that may be differeonfthe
identifiers in the original data sources. The surrogate ksigament
scenario depicts this situation.

The source and target schema are identical to those of tle hor
zontal partitioning scenario except that now, we considerwID
subelements in the target schema. See Fig. 2(d). As in the hor
izontal partitioning scenario, Target/Gene consists afr6&Gene
records whose type is “primary” and Target/Synonym cogasist
Source/Gene records whose type is not “primary”. In addjtio

two or more sets of records in the target. In other words, dhget
sets are typically projections of the original set of resord

The source and target schema of the vertical partition swena
are shown in Fig. 2(e). The first four subelements and theiast
subelements of Source/Reaction are subelements of TRegetion
and Target/Chemicallnfo respectively. Additionally, Jet’/Reaction
and Target/Chemicallnfo are related via the referentinktaint on
CoFactor. The transformation takes each record in Soueaetion
and splits it into two smaller records in the target. At theneaime,

a unigue CoFactor value is used to relate the two smallerdsdn
the target sets. []

Unnesting (or Flattening) Another frequently occurring scenario in
information integration and particularly in XML-to-relahal stor-
age is that of unnesting (or flattening) nested structures.

The source and target schema are shown in Fig. 2(f). Theeourc
schema is a set of Source/Reference records within whigle fke
a nested set of Author records. The target schema consiatsetf
of Target/Publication records without any nested sets. Sdteof
Reference records in the source is flattened into a set ofdatibh
records in the target. In other words, Target/Publicatiomsists of
the set of records that is the result of taking the Cartesiadyzt
of each Source/Reference record with their respectiveedesdt of
Author tuples. [

Nesting The nesting scenario, which is the opposite of unnesting,
also occurs frequently in information integration apgiicas such
as relational-to-XML publishing [40] and schema evolut[a].

The source and target schema are shown in Fig. 2(g).
Source/Reference is a set of “flat” records. In the targétrima-
tion about references is organized as follows: For each yeate is
an associated set of authors who published in that year,cargh€h
author, there is an associated set of publications of titabau [
Self JoinsJoin is the main operation used to associate information
located in different elements. In some cases, the elemeits as-
sociated by the join path are located in the same relatiomcélea
relation has to be joined with itself. A classic textbook rexde is
a self-join on the parent relation to retrieve the set of paohild
pairs. Our self-join scenario is similar to the parent-d¢tgkample
and is described below. The scenario has been derived fremeéth
data integration application Biowarehouse [7].

The source and target schema are shown in Fig. 2(h). Theesourc
schema consists of a single set of Source/Gene records hréh t
subelements describing the name of the gene, the type (arhieth
is ‘primary’ or not) and the protein which the gene belongsThe
target schema consists of two sets of records, Target/Geh&an-
get/Synonym respectively. Since a protein can have maltighes
but only one of the genes is primary, the primary gene is dtore
Target/Gene, while all other genes of the same protein 6yn-
onyms) are stored in Target/Synonyms. Additionally, aifprkey
Target/Synonym/WID references Target/Gene/Name to atelithe
primary gene of each synonym and the protein to which thegcol
tively belong. O
Denormalization and Join Path SelectiorRelevant or overlapping
information is often found in different data sources anddsee be
combined. It may happen that there are multiple ways (icn j

a fresh new value is generated for every record in the target Paths) to combine these data sources. The denormalizattbjoim

sets. Target/Gene/WID is the key for Target/Gene recordsTan
get/Synonym/WID is the key for Target/Synonym recordd.]
Vertical Partitioning The vertical partitioning scenario also occurs
frequently when a schema is redesigned or when the schervegvo
In fact, this scenario is also referred to as the normabmatask in
schema evolution [27].

Unlike horizontal partitioning which splits a set of recsrihto
two or more different sets of records in the target based omeso
condition, vertical partitioning splits a set of recordstiaally into

path selection scenario depicts this situation and can & @ the
reverse of vertical partitioning scenario.

The source and target schema are shown in Fig. 2(i). If adecor
in Source/Name has id value equal to the taxID value of a decor
in Source/Node, then the two records are combined to formra Ta
get/Taxon record. Note that Source/Name and Source/Noded®
can also be joined through the id-parentID subelements.averyin
this scenario, we require that Source/Name and Source/i¢adeds
be joined through id-taxID subelements.[]

Keys and Object FusionThe scenarios presented so far have not Source Target SourceSchema TargetSchema

o

taken into consideration any key constraints that may émishe RECIie R] Horzor@l |Horizontal
source or in the target. Keys are frequently used to mergenrd- yemr — Year | Padiion} | Partifion
i i . publishedln —® Publishadin e
tion from different sources that refer to the same real wobect Author[0..] g Name _ S Copy
(i.e., object fusion) and for duplicate elimination. Sudemsarios el .]/3:;:"?’;"” \ | T ;
occur frequently in data integration. RNy — i sl hlsaivle

The source and target schema are shown in Fig. 2(j). Every Students[e-y‘
time an experiment is performed, details about the expeiime . -~ -
are recorded in Source/Experiment. Each experiment isuehjiq (a) (b}

identified by the contact and date subelements and may have
zero or more experimental data associated with it. An experi Figure 3: (a) Example of an unnesting scenario generated by
ment may also be associated with zero or more flow cytometry SGen and (b) a concatenation of mapping scenarios by SGen.
probes. Information about flow cytometry probes is recordeder
Source/FlowCytometrySample. Each FlowCytometrySample i
also uniquely identified by its contact and date. Targetéexpent

is a warehouse of experimental data and flow cytometry probes
It consolidates the two, based on contact and date, making no
distinction between experimental data and probes. In thisstor-
mation, we migrate all ExperimentalData from Source/Eipents

and all Probes from Source/FlowCytometrySample to Tar-
get/Experiment/ExperimentalData. In the target, all Expe

imentalData from Source/Experiment and all Probes from 4.1 SGen: A mapping Scenario Generator
Source/FlowCytometrySample are grouped by contact and) . .
In what follows, we describe how SGen (i) allows a benchmark

date. Hence, Target/Experiment is essentially a full ojggr of e X .
Source/Experiment and Source/FlowCytometrySample omacon ~ USEr to tune the characteristics of a generated mappingasoen

and date. [through a set of configuration parameters, (ii) construwtssburce
Manipulating Atomic Values In data integration and schema evolu- and target schemas, including source and target constrahta
tion, information stored as one atomic element in one da@bzay complex mapping scenario from basic mapping scenancn)sggn-
be modeled as more than one atomic element in another. The re-rates the specification of the transformation in a gengragpping
verse situation where multiple atomic elements in one dealare ~ Scenario, (iv) ensures that generated mapping scenagosepro-
combined into a single element in another database alsoobeu ducible over time, across different hardware platforms@petating

The data model used internally by SGen and IGen is the nested
relational model, which is sufficiently general to modelat&inal
schemas and a large class of XML schemas. In this model, axsche
is a set ofroots (or labels), where each root has an associated type
7. A type can be an atomic type (e.g., String or Int), or a Set,of
or arecord Redf : 71,...,ln : T»], Wherel; are labels and; are
types. In the case when each root is a Set of Redfy, ..., I, : 7]
wherer; are atomic types, this models a relational schema.

quently in practice. Due to semantic heterogeneity, sometj there systems.
is also a need to apply a function on an atomic value in orderitg (i) Input configuration parameters to SGen.SGen allows a bench-
itinto the correct semantic context in another databasémple ex- mark user to tune the characteristics of generated mappémasos

ample would be the need to translate US dollars into Eurosallin through a set of configuration parameters. These paramesses-
these cases, mapping from one element to one or more eleamehts tially specify the characteristics of the schemas in the pirapsce-
vice versa will typically require the application of one oora func- narios to be generated. The configuration parameters ¢taists
tions. characteristic parametefs along with 6 standard deviation param-
The source and target schema are shown in Fig. 2(k). etersD, and 12 repetition parameteRs(one for each basic scenario
The transformation assumes the existence of three fursction and one for a composed scenario which will be explained khort

get Fi rst Nane(), getLast Nanme() and concat (). For The parameters i@ are described below.
every Sourge/Contact record, a Target/Contact recprd aated e Nesting Depth IV,): Determines the nesting level of the
where its FirstName and LastName values are obtained by-appl schemas. If set to 0, the generated schemas are relational.

ing get Fi r st Name() andget Last Nane(), respectively, on
the name value of the Source/Contact record. A reversetisitua
occurs with Target/Contact/Address, where the Addreasevialthe
result of applying theoncat () function on street, city and zip of

e Number of SubelementsV;;): Specifies the number of children
elements of an element. In the case of relational schemas, it
specifies the number of attributes in the tables.

Address in the Source/Contact record] e Join Size (V;): Specifies the length of the join paths in the
schemas.
4. COMPLEX MAPPING SCENARIO AND e Join Kind (V): Determines the kind of the joins (star or chain)
SOURCE INSTANCE GENERATION in the schemas.
In order to allow a thorough evaluation of the mapping system e Join Width (V,,): Specifies the number of atomic subelements
it is important for a mapping benchmark to provide scenasiog that participate in a join.
instances of different complexity and sizes. STBenchmeokiges e Number of Function Arguments\,): Determines the number

two modules for this purpose, namely SGen and IGen. SGes take of source atomic elements on which a function should be egpli
as input a set of configuration parameters and returns asitoatp

mapping scenarid¢S, T,P). Using appropriate configuration pa-
rameters, the mapping scenario generated by SGen can b sign
cantly more complex and larger than the basic mapping sicanair

Sec. 3. SGen can also be used as a schema generator sinceone ¢
choose to ignor& andP. IGen takes as input a schema and a set of
configuration parameters and returns as output an instaateadn-
forms to the input schema. The size of the generated instans
according to the configuration parameters.

Every characteristic parameter ¢his in fact the mean value of
a Gaussian distribution whose standard deviation is theevaf the
corresponding parameterIn By sampling values from these Gaus-
sian distributions, SGen is able to generate natural lgpkaihemas,
i”.‘e., schemas that are not rigid. For exampléyifhas a value of 3
and the corresponding standard deviation is 1, it essnti@ans
that most complex schema elements that are generated wallde
tween 2 and 4 subelements, and not alway# the standard devi-

ation is 0, then every complex schema element will have gx&ct ments occurs across ti lists. In particular, two randomly selected
subelements. elements from each ligf, are moved td 1 and one element from
(i) Generating Complex Mapping Scenarios. SGen generates ~ k+1 10 Fi. During the shuffling, the system may randomly decide
and outputs a complex mapping scenario by concatenating-mul 0 perform an element duplication instead of a move. In thaeca

ple mapping scenarios. Intuitively, the concatenationved sce- referential constraint is added between the two duplicatedetter
nariosM; = (S1,T1,P1) and My = (Sz, T2, P2), denoted understand these two tasks, Fig. 4(d) illustrates an eletramsfer
as M, .M, is a new mapping scenari®:.Sz, T1.T2, P1.P2), (Attry3) and an element duplication (Af)c The shuffling is an im-
whereS; .Sz (resp. T1.T2) denotes a schema that is obtained by Portant task since it guarantees that the root elementwlmatlg.et
concatenating the roots 8f (resp.T1) with the roots ofSs (resp. will not have the same atomic elements as in the source. This a

T3) andP; . P; has the following semantics: Given a source instance 2ally models thedenormalizatiorand thevertical partitioningtrans-
I of S1.S2, the target instance & . T is obtained by concatenat- formations. A sixth step is to introduce a number of new atomi

ing the results of executing; and P on the parts of that corre- ~ €léments in some randomly selected ligis In each selected list,
spond toS; andS. respectively. Here, we assume that the symbols the number of new elements is obtained by rounding up to tae ne
in S1 andS. are disjoint and the symbols ifi; andT- are disjoint. est integer 5% of the number of atomic elements that alrezidy e

The scenarios used in the concatenation by SGen are of tale.kin N the list. This step is shown in Fig. 4(e) where the intraztliele-
The first kind is referred to asxpandedscenarios. Arexpanded ~ Ments are the Atir, Attris and Attrio. Each of the new elements is

scenariaM? is generated from one of the basic mapping scenarios Set €ither to some constant value (e.g., Ajtrsimulating that way a
described in Sec. 3, sag, using the configuration parametats ~ Constant Value Generatigtenario, or some identifier (e.g., Atl),
andD. The transformation functio” of the expanded scenario ~ Simulating theSurrogate Keyscenario, or a value that is a function
MP=(SB, TB, PB) is the same as the one described by the basic of other a@omlc elements (e.g., Atg), modeling theAtomic Valug
mapping scenarid, except thaP”? is now written according to the Manlpulatlon scenario. The number of arguments of the functions
source and target schen®® andT®, respectively. As an example N the latter case is also a random value that depends on thmpa

of an expanded scenario, consider the one illustrated in Fa) eter N, and its deviation value. In the sequel, the elements of each
which has been generated by thenestingbasic mapping scenario. flat list F; are nested to form a tree structure, implementing that way
Observe that the specific expanded scenario has two additevels theNestingscenario. The level of nesting and the number of atomic

of nesting (i.e., Affiliation and Studehand additional subelements ~ Subelements of each element are random numbers whose \ealue d

when compared to thbasic unnesting scenariof section 3. The Pend on the parametefé; and N, respectively, and their deviation
transformation function of the expanded scenario of Fig) 8an be values. The root element of each such tree becomes one afdtse r

found in Appendix B. of a new schemd’. For our running example, the scheffais il-
The second kind of scenario used by SGen in the generaties of i ustrated in Fig. 4(f). There are two additional steps tratehnot

complex mapping scenario is an intermix of different typéba- been mentioned here, and they serve to model the transformaf

sic mapping scenario transformations, in which, unlikeftfevious Object FusiorandHorizontal Partitioning

kind, there may be no clean separation betweliestingand aver- It is important to note that the execution of each of the alsteps

tical partitioning, for instance. This kind of scenario is referred to as 1S conditional on the repetition parametsts For instance, if the
composedComposed scenarios intend to capture cases where differ-repetition parameter for thigestingbasic scenario is 0, then the re-

ent types of transformations occur simultaneously inghmepart spective step above will not be performed, ensuring thatthatthe

of the schema. They are powerful enough to describe inteaiiba- target schema will not be a nested schema.

sic transformations such as those described by GLAV mapfiifj The generated composed scenario has as a source schema the
or explicit mappings involving outer joins [34]. schemaS that was created in the first step (e.g., Fig. 4(a)), and as

A composed scenario is constructed through a series of conse @ target schema the schefiisthat was created during the last step
tive steps that are described next and illustrated throngtxkample (€, Fig. 4(f)). The transformation specification thatgemerate is
in Fig. 4. The role of each step it to model some of the basicaimap a.XQuery. and folllowsf t.he semantics of the chase with GLAV'map-
scenario transformations. The first step in the creatiorcofaposed ~ Pings, which are implicitly generated during the composeghario
scenario is the generation of a schefaccording to the configu- ~ 9eneration steps. The query generation algorithm we ugeilssin
ration parameter€ andD. In the general case this will be a nested SPirit to the query generation algorithm of [33]. We omit thiscus-

schema with referential constraints involving multiplereents. If Sion of this algorithm here. The transformation specifarafor the
N,=1, the schem# will be relational, and ifN; or N,, are0, then composed scenario example _of Fig. 4 can be found in Appendix C
there will be no referential constraints in it. Fig. 4(aygtrates a To generate the final mapping scenario, SGen produces and con

possible schem& generated in this first step. In the next step, for Ccatenates a set of extended and composed scenarios. Thegiapp
every rooti in S, a list } is constructed to contain all the atomic ~ Scénario generation algorithm steps are illustrated iroAllgm 1.
elements in the roat, at any depth. See Fig. 4(b). This step is per- SGen starts with an empty mapping scenario, i.e., a scewéhian
formed in order to implement thelatteningtransformation. Inthe ~ ©MPty source and target schema and an empty transformation f

third step, one of the list&; is randomly selected and duplicated. tion (line 1 of Algorithm 1). It then iterates through eactpeéy’3
The new list?” is added in the list of7;s. The role of the duplicated ~ ©f basic mapping scenario (i.€Copy, Constant Value Generation

list is to model the self join basic scenario transformati@ue to etc.) and generatess extended scenarios of type, whererp is
space limitations we do not perform this step in Fig. 4. To eidde the value in the repetition parameter fitfor the scenario of type
case in which some elements of the source schema do not dppear B (lines 2-6 of Algorithm 1). By setting the configuration pamer
the target, an average of 5% of the atomic elements ofithists terrp to 0, the benchmark user can prevent SGen from generating

are eliminated. Fig. 4(c) depicts the result of eliminatélgments scenarios of type3. This is useful if the user already knows that

Altr2, Attrs and Attro from Fig. 4(b). Next, some shuffling of ele- the mapping system under evaluation does not support theaes
tive transformation type. The mapping scenario generatedrsis

“In general, element names may not be as meaningful as what isintended to model real life mappings which typically invelmul-
g?%vxnlzgthéf(j(sa) since we sample element names fromadao {ije types of transformations that occur in parallel andifferent
9 : parts of the schemas. In the sequel, SGen genergtesmposed

Algorithm 1: SGen

Input: The characteristic parametea?s
the corresponding standard deviatidhs
and the list of repetition parameteRs.

Output: A mapping scenarioy, T, P)

SGEN(C, D, R)

(1) M—(0,0,0)

(2) foreachtype of basic scenari®

3) Letrp be the corresponding value for scenafian R.
(4) foreachi€[1..rg]

(5) M p «— generateExtendedScenaiity(C, D)

(7) foreachie(l..rg]

(8) M < generateComposedScenafg(C, D)

9) M— M. Mg

(20) return M

R1[0-4]
Attrl

[Attr2
SE1[0-1]

F1,
Attrl
Attr2
Attr3
Attrd.
Attr5
Attré.
Attr7

F1:
Attrl
Attr3
Attrd.
Attré.
Attr7

F1:
Attrl
Attr3
Attrd.
Attré
Attr7
[Attr8b

F1
Attrl
Attr3
Attrd
Attr6
Attr7
[Atigb
Attr19 (=id()

R4 [0-4]
Attrl
Attr3
Attrd
SE5 [0-1]
Attr6
Attr7
[Atr8b
Attr19

Attr3

Attrd

Attrs
SE2[0-]
Attre
Attr7

F2
Attr8
Attr9
Attrll
Attr12

F2
 Awrg
Attr9
[Attrll
Attr12
Attrl3

F2

—— Attrs

Attr9

[Attrll

Attr12

Attr13

Attr17 (="June”)

R6 [0-4]
A8

Attr9

[Attrll
Attr12
Attr13
Attr17

R2[0-4]
Attr8
—— Attr9
SE3 (0]
Attr1l0
SE4[0-]

= Attrll

Attr12
R3[0-]
Attr13
Attr14

— Atrls
Attr16

Attr8
Attr9
Attrl0
Attrll
Attrl2

F3
Attrl3
Attr14
Attrl5
Attr16

R7[0-4]
Attr14
—— Atr15
SE6 [0-]
Attr16
Attr18

®

Attrl3
Attr14
Attrl5
Attr16

F3:
Attr14

— Atrls

Attr16

F3
Attr14
]
Attr16
AMr18 (=Attr2*Attr14)

(e)

() (b) () (d)

Figure 4: Composed scenario generation steps

scenarios and concatenates them to the mapping scenariwiha
be returned (lines 7-9 of Algorithm 1). The valugis the one in the
repetition parameter lisR that corresponds to the composed sce-
narios. By setting this parameter to 0, a benchmark user Isan a
disallow the existence of composed scenario transformsiio the
generated mapping scenario. The addition of the composawsc
ios in the mapping scenario generated by SGen models realitif
uations in which different kinds of transformations occiamngtane-
ously at the same part of the schema. Fig. 3(b) illustrateaping
scenario that has been constructed through this proceBeao pair

of squares with the same pattern in the source and the tatgets
corresponds to a component scenario. For instance;ldhizontal
Partition type extended scenario was generated first, and it was fol-
lowed by aCopyand anUnnestingtype extended scenarios. Finally
a composed scenario was generated and concatenated tdstivegex
scenario.

(iif) Communicating the intended transformations.

The generated transformation functighis potentially complex
and difficult to understand. To help the benchmark user whaled
the specificatior?, one approach is to load the source and target

schemas of the mapping scenario returned by SGen into a map-

ping system that supports automatic matching of source and t
get elements. Since our generated mapping scenario hascalen
source and target element names, this makes it easy for tichinm
module to determine the correspondences between sourc¢argetl
schema elements. The visual representation of the comdspoes
between source and target elements is thus an intuitiveiggéen of

P. However, as described in Sec. 2, the visual representiatiaot a
reliable mechanism for describir®gsince there is currently no stan-
dard approach for interpreting such visual representsitido allevi-
ate this problem, SGen provides hints about the transféoméinc-

tions of each component mapping scenavifa, ..., M,, through the
naming of the schema elements. For example, SGen may constru
a source schema element with name “D2@PR2K2”" in the pro-
cess of generating a mapping scenario. The word “Date” iglie
ment name. The first occurrence of the number 2 indicateghtzat
schema element belongs to the second mapping scenario alsat w
concatenated by SGen. Pictorially, this means that thensalede-
ment is located in the second square box from the top of theeeou
schema in Fig. 3(b). The two letters “CP” indicate that theosel
square box is £€opyscenario. The two letters “R2” means that this
schema element is a subelement of the second root iGdpgsce-
nario. The letters “K2” indicate that “Dat2BCPR2K2” participates

in a join that involves at least two elements and “Da@PR2K2" is

the second element in the join. It is always possible for Si@een-
erate such meaningful codes due to the way it constructs pintap
scenario. It is also possible to construct explanationb@frtansfor-
mation functions of each component scenakiy, 1 < i < n, in
order to explain the transformation functiéh

(iv) Determinism. An important requirement for benchmark mod-
ules that generate test cases is that, given the same imamters,
these modules must be able to reproduce the same test cgaes re
less of where and when they are executed. To obtain this giyope
and to guarantee that the benchmark will easily run on diffeplat-
forms, we implemented SGen in Java. The random number gen-
erators provided by the Java library, with identical sequieduce
identical streams of pseudo-random numbers that are indepé of
hardware platforms, operating systems, and time. Heneenghe
same configuration parameters, SGen can reproduce idemiga
ping scenarios regardless of where and when it is executedn,|
which we describe next, also enjoys the same determinispepro

4.2 1Gen: a source Instance Generator

In this section we describe 1Gen, the component of STBendhma
that is used to generate instances that conform to the sechesna
of a mapping scenario generated through SGen. Such source in
stances are needed in order to perform the data transfameiec-
ified in a mapping scenario generated by SGen.

Before describing IGen, we briefly describe the ToXGene §ad
generation engine on which IGen is built upon. ToXGene takeas-
put a template, which describes the structure of the XML doent
to be generated, in a format similar to an XML schema. Thetinpu
template contains annotations that specify the vocalmdamnd data
ranges used for generating random data values, as well atisthe
tributions used when sampling for these random values. %G
has a mechanism of reusing the same generated data valubt for
ferent elements, providing the user with a way to enforceregttial
integrity constraints in the generated instance.

IGen takes as input a schema (with constraints), as wellras th
configuration parameters (and their associated standardtidas)
which we describe next:

e N, sets the number of occurrences of a complex element. In the
nested relational model (see Sec. 4), this corresponde tcath
dinality of a set of records. In the relational model, thisulb
correspond to the number of tuples in a relation. This param-
eter provides the most direct way of controlling the sizehaf t
generated instance.

Smaz Sets the maximum length of the atomic string values. By
default, for string-typed atomic elements, 1Gen uses XMark
compliant [39] random text values, as they are generatedBy T
Gene. The upper bound on the length of these text values is set
throughSy.az -

Nmao Sets the upper limit for numeric values. By default, for
numeric-typed atomic elements, IGen generates unifornsly d

tributed integer values in the range from 0XG,.:.

Each of the above parameter has an associated standartiaevia
denoted a%,, o5, ando, respectively. Like SGen, IGen samples
values from a Gaussian distribution with mean (eld,) and stan-
dard deviation (e.g9g,).

Source instance generation takes place in two phases, I5est
considers the configuration parameters described abogethter
with the source schema and its constraints, and outputs &&nX
template. In the second phase, this template is providedpas fo
ToXGene, which in turn generates an XML instance. This pgsce
is completely transparent to the benchmark user, who ordgmvies
the final product, namely the XML instance conforming to therse
schema.

5. A SIMPLE USABILITY MODEL

In this section, we describe owimple usability (SU) model
which is a model intended to provide a first-cut measure on the
amount of effort required by a mapping designer to implenent
mapping scenario through the visual interface of a mappjstes.
Our SU model quantifies effort roughly as the number of mouse a
tions and the number of keystrokes used for text input. Thite
ferent types of mouse actions are captured by our model:gdrag
actions, single and double mouse clicks. One might arguetibee
is little need to measure the exact number (e:g/s. 3c) of mouse
actions or keystrokes used since the task of executing therged
transformation takes a long time in general. However, siheeyoal
of visual interfaces is to reduce a mapping designer’s eftovards
the generation of the desired transformation, we wouldtbkguan-
tify the amount of effort used in our model.

DEFINITION 5.1. Theeffort required by a mapping designer to
implement a mapping scenario on a mapping system according t
the SU model is a quadruple., S, D, K), whereL is the number
of dragging actions$ and D are the numbers of single mouse clicks
and double mouse clicks respectively, dids the total number of
keystrokes used for text input.

For example, consider the following sequence of actions:
Right mouse click to pull up menu.
Click to select “Insert Input”. Box 1 will appear on screen.
Enter name of variable “varl” in box 1.
Click to select “Specify Value”.
Enter string “Testing”.
Draw line from box 1 to a target schema element.

The effort required by a mapping designer in the sequence-of a
tions above ig1, 3,0, 11) because the sequence of steps consists of
1 dragging action, 3 single mouse clicks and 11 keystrokes.

Limitations of the SU model. The SU model does not consider the
aesthetics of a mapping system, such as the presentatidayand

of features on the visual interface, the ease of accessaugiéntly
used features etc. It also does not take into account hurmars er
that may occur during the process of implementing a mappieg s
nario. Neither does it capture the “think time” of a mappimsidner

in implementing a scenario nor the amount of time requirefinid

a particular feature (e.g., button) on the visual interfdoeparticu-
lar, the SU model assumes that the mapping designer is ctetyple
familiar with the visual interface of the mapping system amakes
no mistakes when implementing a mapping scenario. We erigghas
that the SU model is a first-cut measure on the ease of use gba ma
ping system. A systematic human-computer interactionystuith
real users (which is not the subject of this paper) would eired

to make a comprehensive study on the usability of mappingsys

A Simple Cost Model. Following the findings of [28] which show

that it is generally slower and more error-prone to perfordrag-
ging task than a point-and-click task, we assign a highet s

dragging than for a single or double mouse click in our costieho
The cost for a double mouse click is twice that of the cost faingle
mouse click since it requires twice the effort. In additifmilowing
the intuition that it is also easy to make mistakes (e.g.Q$ypvhen
typing, we model the cost of a keystroke to be equal to thahef t
cost of a dragging task.

DEFINITION 5.2. Let(L, S, D, K) be the effort of implement-
ing a mapping scenario on a mapping system under the SU model.
Thecostassociated with this effort iSL + .S + 2D + 4K.

For example, the cost associated with the effort consistingy
dragging action, 3 single mouse clicks and 11 keystrokes.is 5

Our experience shows that the SU model is able to cover abktyp
of actions needed to implement all mapping scenarios iryavaip-
ping system that we have considered. The details are pezbént
Sec. 6.1.

6. EXPERIENCE AND EXPERIMENTS

To demonstrate the wide applicability of our benchmark, we d
scribe a few potential applications with STBenchmark armh&tase
the use of STBenchmark [1] by applying it to evaluate foufedént
mapping systems.
Example applications. Schema integration is the problem of pro-
ducing an integrated schema from multiple input schemasicéle
SGen could be used to produce multiple input schemas forrexpe
imenting with schema integration algorithms. SGen couta dde
used to produce pairs of schemas to test schema matching algo
rithms. Another example that requires generating mappiegar-
ios, in addition to schemas, to test the algorithms that wiexel-
oped is that of schema evolution. Indeed, SGen could replece
custom-made schema evolution scenario generators in f84]4
that were developed specially for their experiments. Aglaroap-
plication, in the area of debugging schema mappings, dlgos
have been developed to compute routes that show the redhijpmn
of tuples in the source and target instance of a data excHabye
SGen and IGen, together with a schema mapping tool that & use
to obtain a target instance, could be employed to creatéhstjat
mapping scenarios for these route computation algoritiifesnote
that SGen’s ability to generate constraints in the targhesa is
extremely useful for testing the route algorithms.

Next, we showcase the use of STBenchmark by applying it to
evaluate four mapping systems.

6.1 Usability Experience

In this section, we report our usability experience of ea@pm
ping system. Our goal is to implement each basic mappingasiten
through the visual interface of each mapping tool and reporthe
ease/difficulty of doing so. One method of quantifying thgrée of
ease/difficulty is through the cost and effort measures asriteed
in Sec. 5.

Methodology. Prior to implementing each basic mapping scenario,
we have familiarized ourselves with each mapping systemcand
thus be considered expert users of each mapping systenmehiss
that when there are multiple ways of implementing a mappegg s
nario, we assume that we know the method of implementing the
mapping scenario with the least cost and this is the cost pertre

in our findings. Each mapping scenario is implemented udieg t
default visual interface of the mapping system as customitie
visual interface may decrease the cost of implementingicenbap-
ping scenarios. Except when mentioned, we generate ezaadde

in the XSLT 1.0 language, which is the language that is contynon
supported across all four mapping systems. In our impleatiens,
the action of drawing a line to associate a source schemaeatem
with a target schema element is classified as a draggingneatio a
right mouse click is classified as a single mouse click.

Scenario / Mapping System A B C D

Effort | Cost Effort | Cost Effort | Cost Effort | Cost
Copy (1,4,0,0) 8 (4,0,0,0) 16 (4,0,00) [16 (0,4,0,0) 4
Constant Value Generation (2,4,0,17) 80 (2,0,0,17) 76 (4,0,0,17)| 84 (0,6,0,17) | 74
Horizontal Partition (10,4,0,7) 72 (9,4,1,9) 78 (8,5,0,7) | 65 | (0,22,2,21)| 110
Surrogate Key Assignment (14,6,0,7) 920 (13,6,1,9) 96 (8,6,0,28)| 150 | (0,42,2,39)| 202
Vertical Partition (7,4,0,0) 32 (12,4,0,0) 52 (9,1,0,00 | 37 | (0,7,0,0) 7
Unnesting (5,0,0,0) 20 (6,2,0,0) 26 (6,1,0,0) | 25 (0,7,0,0) 7
Nesting * * (8,11,6,54) (a)| 271 (a) * * (0,18,2,0) | 22
Self Joins (18,10,0,7) (b)| 110 (b) * * * * * *
Denormalization * * * * * * (0,23,2,1) | 31
Keys and Object Fusion (12,10,0,0) (c)| 58(c) * * * * (0,30,4,0) | 38
Manipulation of Atomic Values (12,6,0,3) 66 (11,9,2,6) 81 (15,5,0,0)| 65 | (0,20,0,45)| 200

Legend

(*) Cannot be fully implemented through the visual integfa®equires inspection and manual modification of partigdigerated XSLT code.

(a) Requires the use of XSLT 2.0 specific features.

Some manual modifications required on the generated XSL& bedause of an apparent bug in the mapping system.
(b) Requires that the source schema be duplicated throeglighal interface.
(c) Requires that part of the target schema be duplicatedigirthe visual interface.

Table 1: Effort and cost of implementing each basic mapping&enario.

Observations. Fig. 6.1 tabulates our findings in terms of effort and
cost. We first state some cost-independent observations.

(1) A is the only system that is able to implement the self joins sce
nario. This is becausA allows one to duplicate the source schema
through the visual interface and perform a join with the ioad
schema.

(2) C could not implement the most number of basic mapping sce-
narios. In addition, for those mapping scenarios which adé
implemented, some of the generated execution code contaims
standard XSLT 1.0 code that can only be executed using theaeva
tion engine that comes with the system.

(3) All mapping scenarios, except for self joins, can be enpénted
through the visual interface &. Every other mapping system could
not implement at least two basic mapping scenarios. Furibes,
D is the only system that is capable of implementing the deabrm
ization scenario.

We state our cost-dependent observations next. Note thapex
for the copy and constant value generation scenarios, #ts asso-
ciated withD are either significantly higher or lower than the rest of
the systems.

(1) The costs of implementing the copy scenaricAinand D are
lower than those oB and C for the following reason: WhiléB
and C support only dragging actions to relate source elements to
target elements A andD do not. In fact, observe that the effort for
dragging actions foD is always 0 for every mapping scenario. To
relate the source element Source/Protein/name to the &leyeent
Target/Protein/Name i for example, one is required to click on
the former element, click on the latter element and thenoperfa
right mouse click action to bring up a menu and another click t
confirm the correspondence. This sequence of actions hted adst

of 4 units which is in fact the same as the cost of a dragginigract
from the former to the latter element. The lower costidis due

to the schema matching module Bf which kicks in automatically,
after the first correspondence is established, to suggdshing the
corresponding accession elements and created elemelnéssource
and target schemas. The mapping designer only needs tompeafo
additional mouse click to confirm all suggestions (cost ofnit)u
Furthermore, inD, there is no need to relate the protein elements
in the two schemas to generate the correct XSLT script. Héree

5A total of four dragging actions are required to match theeor
sponding protein, name, accession and created elemerfts twod
schemas and hence the total cost of 16 units.

total cost to implement the copy scenariolnis 4 units. A also

has a schema matching module but one is required to first draw a
line (which involves a dragging action) between the progééments

of the two schemas before manually invoking this module ¢Wwhi
involves 4 single mouse clicks) to relate children elements

(2) The cost to implement the vertical partitioning scemdar D
is much lower than the rest of the systems. There are two measo
First, the schema matching module of D automatically kickand
“does the right thing”. That is, the lines inferred by the ofdihg
module go hand-in-hand with the semantics of the intendaalstr
formation. SecondD automatically handles the target schema con-
straint on CoFactor in its XSLT code generation. In confrast
B and C require the designer to explicitly correlate the two target
relations by CoFactor in order to achieve the desired effect

It also costs less to implement the unnesting scenarioWitvhen
compared to the rest. Again, this is becai3és the only system
in which the schema matching module can be used effectigely t
achieve the desired visual specification.

(3) For implementing surrogate key assignment and martipala
of atomic values scenarioB) is costlier thanA, B, andC by more
than 50 units. This is becausely the mapping designer is required
to enter the names of the XSLT functions used (e.g., “sulggtri
before” to extract the first name). In contrast, one can dnagie-
sired function from a library of supported functions A, B, and
C. Since our cost model heavily penalizes keyboard-baseat,inp
the cost forD’s implementation is high in these cases.

6.2 Performance Comparisons

In this section we report on our experiments comparing th®pe
mance of the transformation scripts generated by the foynping
systems. Although different mapping systems could supglifetr-
ent transformation languages, XSLT 1.0 is the only language
ported by all of them. Thus, it was the natural choice for ecing
meaningful comparisons between the systems. As a conssguen
XML was also the data type used for the experiments.

We conducted two series of experiments. The first one detesni
how the size of the source instance influences the time neteded
perform the data transformation through the XSLT scriptsegated
by the systems. The second series of experiments investigjae
influence of the size of the mapping scenario on the time rk&xe
perform the data transformation.

Experimental Setting. All of our experiments were performed on
a Dual Intel Xeon 3.4 GHz workstation with 4GB RAM running
GNU/Linux. To have meaningful and comparable results, veslzs

Flattening

Horizontal Partitioning

Atomic Value Management

120 120 42000
100 41950 Em System B
100 B System B EE System B 4 I
80 System A 80 System A 41900 System A
z 0 SystemD @ W System D Tz 540 8 System D
60- o E 500
g £ E |
F 4 Py
40
20 20
0 0
S L R R R I AR S T . T S NY e e RS
Source Instance Size (MB) Source Instance Size (MB) Source Instance Size (MB)
(a) Source instance scaling experiments
Copy Surrogate Key Assignment Vertical Partitioning
1000 50 200
s El SystemB El System B El System B
2 00 System A 40 System A 150- System A
§ mm SystemD @ 30 B System D & W System D
o ~ -
S 100
‘. :
o
£ 50
E 10

Characteristic Parameters

Characteristic Parameters

Characteristic Parameters

(b) Mapping scenario scaling experiments

Figure 5: XSLT Scripts Performance Comparisons

common evaluation engine (Saxon-B version 8.9 [38]) to eteethe
XSLT scripts generated by all the mapping systems. SindesyS
generates non-standard XSLT code that can only be execsieg u
the engine built in their system, we excluded syst&nirom our
performance comparisons.

Methodology. First, we restricted our attention, among the mapping
scenarios presented in section 3, to the ones that could ple-im
mented entirely through the graphical interface by at léast of
the mapping systemA, B, andD. One exception is the nesting
scenario, which can be implemented by bBtfandD, but was nev-
ertheless discarded from our experimental comparison. r&&son

First, one peculiarity of the scripts generated4ys that they em-
ployf or - each loops withval ue- of statements nested inside, in
order to access the value of an atomic element in any corgesh
if the cardinality of the atomic element is at most one. Ondtieer
hand, the scripts generated Byuse directlyval ue- of statements
relative to the current context to achieve the same goateSitomic
elements with a cardinality of one represent a very frequase in
our scenarios, the redunddnar - each loops account for a signif-
icant part of the difference in execution time between ssrigner-
ated byB andA..

Another cause of overhead in the scripts&fis the way they

is thatB can generate XSLT 2.0 code that takes advantage of group- make use of variables. For instance, to make a string cosgrari

ing constructs built into the language, wher&aas to achieve the
same effect through XSLT 1.0 constructs. This leads to upeoas
ble experimental results.

Source Instance Scaling Experiments.In the first set of exper-

a script of A would first store the Boolean result of the comparison
in a variable, then convert the value of this variable to mgtrand
finally make a second comparison between this value andténall
true orfal se. Also, to produce a value through a sequence of

iments, for each basic scenario, we keep the source andt targefunction applications, the scripts & store each intermediate result
schemas fixed (as they are presented in Sec. 3). Using IGen, wen a separate variable and use this variable as an argumsubse-

generated multiple source instances of varying sizes.

In Fig. 5(a), we show only the results we obtained for the flat-
tening, horizontal partitioning and atomic value manageniasic
scenarios. The results for the other scenarios show a sitréliad
and are thus omitted. The size of the source instance (in EB) i
represented on the X axis, while the execution time (in sgepis
represented on the Y axis.

For source instances of size no greater than 100MB, all the pr
cessing could be done in main memory. However, for larger in-
stances, (e.g., 500MB) we noticed significant disk swapping
ing the execution of the XSLT scripts. Hence, the observextiex
tion times for 500MB instances are much longer than the tifoes
smaller instances. For the flattening and horizontal paniitg sce-
narios, the scripts generated Bycould not be executed on 500MB
instances due to insufficient memory.

As a general observation, the scripts generateB laye the fastest
to execute, followed byA, and the transformation scripts generated

guent function applications. In contrast, the script8oémploy di-
rectly an expression containing the composed functioniegumns,
without storing intermediate results in temporary vargsbl

The main cause of the observed differences in executionligne
tween the scripts generated Byand the others lies in the fact that
D performs the data transformation through a two-phasedepsyc
where each phase involves the execution of a separate XSipE.sc
Also, the script executed in the first phase assigns an foamtd
each element of a complex type generated in the intermeitiate
stance. Computing the value of this identifier is potentiakpen-
sive since it involves accessing the values of all the at@i@ments
in the source instance that contribute to the complex eléimging
generated.
Mapping Scenario Scaling Experiments.In the second series of
experiments, we investigate the influence of the size of thppimg
scenario on the time needed to execute the XSLT scripts gtker
by the mapping systems. We performed one group of expersment

by D are the slowest. Throughout the experiments, the gap batwee for each mapping scenario described in Sec. 3. The resulthdo

B and A was much less significant than the one betwAeandD.

By inspecting the XSLT scripts generated by the systems, ame c
identify some possible causes for the differences in ei@ttimes,
which we detail below:

copy, surrogate key assignment, and vertical partitiosicgnarios
are presented in Fig. 5(b). The graphs we obtained for theroth
basic scenarios exhibited a similar trend and we omit thema. he

As presented in Sec. 4.1, SGen produces a mapping scenario

based on configuration paramet€rsD andR. The mean values
used for each of the 6 characteristic parametetsane represented
on the X axis of the graphs (in the vect®;_Ns_N; _Nj, Ny -Ng),
while the execution time of the scripts (in seconds) is repnéed
on the Y axis. For the join kindV,, parameter we used a value of
0 for star joins and 1 for chain joins. To ensure that we are &bl
sample larger values as we increase the vector of mean yalees
set the standard deviations of every parameté? to 0. Except for
the basic scenario of interest for which the repetition peater is
set to 1, every other repetition parametefidris set to 0. We started
with a set of initial mean values fat To achieve the desired sce-
nario scaling effect, we increased simultaneously the mahres of
all relevant characteristic parameters, thus obtainingaeh step, a
larger mapping scenario.

Benchmarks have also been developed for schema matching sys
tems. In XBenchMatch [17], a matching system is evaluatemh&g-
suring the precision and recall (similar to the way they aseduin
information retrieval) of the results returned by the matgtsystem
with respect to the correct matchings. In STBenchmark, cpect
of the evaluation of a mapping system is to test whether easltb
mapping scenario can be implemented through its visualfate.
It does not measure the precision and recall, or the extemhich
an implementation of a mapping scenario can be achievedth&no
benchmark for ontology/schema matching is OAEI [31], whaahs
at building evaluation methods and collecting test case®ritol-
ogy/schema matchings. STBenchmark is not about colle¢ésg
cases although it would be useful to have a repository of imapp
scenarios, especially when a standard for specifying mgpgte-

To make the comparisons meaningful, in each experiment, we narios as input to mapping systems exists.

kept the parameters used for generating the syntheticesmstance
using IGen (see Sec. 4.2) constant across the differentrechen-
figurations. We then implemented each scenario throughrdgghg
ical interfaces ofA, B, andD. As in the previous series of ex-
periments, we compared the execution times of the XSLT tscrip
generated by each system.

There are some interesting observations we can make byzanaly
ing the results of this second set of experiments. For thg sop-
nario, the scripts generated by are orders of magnitude slower to
execute than the scripts generated by the two other systédmsrie
the logarithmic scale of the time axis in the first graph of. Ei)).
This behavior appears if the source and target schemadigaein
the case of the copy scenario) are nested. The XSLT scrigrgen
ated byD contains a nesteflor - each loop with as many levels
as the levels of nesting in the source schema. The domaincbf ea
f or - each iteration is a nodeset returned by an XPath expression
relative to the root of the source instance. Evaluatingah&Bath
expressions at each iteration in the nested loop becomggxpen-
sive on large source schemas and instances. This accourntgefo
blowup in execution times dD scripts when introducing nesting in
the source schemas used for the copying scenario.

In the surrogate key assignment and vertical partitioniog- s
narios, there is an additional reason for the differencesenied
in execution times. While the scripts &€ and B use the built-
in generate-id XSLT function to construct identifiersD’s
method of constructing identifiers does not rely on any XSduilth
in functions or any language-specific constructs for thatenaThe
gener at e- i d function is a function of the first node in the node-
set given as an argument, whil@’s identifier-generating function
constructs a string from a sequence of atomic-valued esjomes
This method of constructing identifiers is more expensivesD is
required to obtain all values of the atomic-valued expmssbefore
an identifier can be constructed.

7. RELATED WORK

Benchmarks have been developed for many different areal, su
as data mining, dependable systems and data stream sy$?ems.
haps the most notable benchmarks are the ones for relatioKML
query engines [8, 12, 37, 39, 42, 46]. Benchmarks for query en
gines typically consist of a set of queries on a predefineérseh
as well as a data generation module that produces instahckfs o
ferent sizes according to the schema. The queries are @éstgn
test various features that are typically expected to be g by

In [25], the authors gave a detailed study on the differemd&iof
matchings that can exist between schema elements. Theingsd
can serve as a guide on some of the basic transformatiorshibiaitl
be directly supported by a mapping system. Some of our basc m
ping scenarios coincide with their findings.

One approach in measuring data exchange systems is to tevalua
the process from end-to-end, i.e., considering the maickie map-
ping and the query execution time as one single process ahabés
the final result. Based on this idea, Spicy [10] uses strataumaly-
sis to compare a target instance to another one used as eneder
and deciding that way the quality of the mapping. For bencking
ETL transformations, on the other hand, factors like coxipleand
execution time are of major importance [43].

In [32], a framework for developing benchmarks for data ex-
change tools has been proposed. However, no actual berichmar
has been implemented. The proposed schema generatioittatyor
in [32] follows a top down approach, where parts of a largeeatd
are projected to create different mapping scenarios. ltrast) our
scenario generation strategy is bottom up. It scales andic@s
basic mapping scenarios in different ways to form larger gem
mapping scenarios. For this reason, we believe the spaassitye
mapping scenarios that we can generate is much larger.

THALIA[22] is a benchmark for information integration sgsbs.

It describes a set of benchmark queries and the respectiemnss
these queries are based upon. The integration system isméxdlby
counting the number of queries that return correct resaltslae ef-
fort required to reconcile the schemas. In contrast to STBerark,
it does not provide synthetic schemas, thus itis hard taiat@lhow
well the integration systems scale. Furthemore, it doeprmtide a
detailed model for measuring the required integrationreffo

Various schema and evolution scenario generators havde¢so
proposed in different research projects for their expenit@eset-
tings [4, 47, 48]. However, to the best of our knowledge, SiS¢e
first general-purposmapping scenarigenerator.

Visual interfaces for specifying XML-to-XML [11, 18] or
relational-to-relational [49] transformations, in XQuar XML, re-
spectively, can also be considered as mapping systems.eHi¢ie
also possible to apply STBenchmark on these systems tcetgdhe
expressiveness, performance of queries generated, anddhdity
of these systems.

8. CONCLUSIONS

We have described STBenchmark, a benchmark that we have de-

a query engine. The benchmark can be used to determine the exveloped for evaluating mapping systems. STBenchmark stnef

tent of queries supported by a query engine, as well as holthreel
performance of the query engine scales with the size of thetin
instances. STBenchmark is similar to such benchmarks. &he b
sic mapping scenarios and the generators, SGen and 1Ge&nr, &ser
similar purpose.

three components that are designed to test how readily mgsgs-
tems support basic mapping scenarios, how well they perfarm
this paper, in terms of the performance of generated XSLiptsgr

on simple and complex mapping scenarios with instancesrging
sizes, as well as the ease of use of mapping systems. We talve ev

uated four mapping systems with STBenchmark. In additioouto
findings reported in Sec. 6, our experience with mappingesyst
indicate that mapping systems share a lot of commonalitgrims

of the visual metaphors and constructs used for designimgpimgs.
However, there is currently a lack of standard in interpigethese
visual metaphors and constructs. Hence, even though napps
tems take visual specifications as input, the transformdtinctions

in our basic mapping scenarios are specified with XQuery aad w
leave the task of creating the visual specifications of mappte-
narios on mapping systems to the benchmark user.

Based on our study, we believe that it is crucial to develo@a-s
dard (either by standardizing the interpretation of visuataphors
and constructs and extending upon them to achieve moressipee
ness (e.g., [34]) or, by developing a standard mapping Spaton
language) for specifying inputs to mapping systems. Sutaralard
will not only serve to standardize the specifications of basapping
scenarios in STBenchmark and output of SGen, but also serae a
important step towards the development of a uniform testoat!
repository for schema mappings and data exchange tasks [6].

Acknowledgment: Work partly supported by the NSF CAREER
Award I1S-0347065, the NSF grant 11S-0430994 and the EU Marr
Currie Fellowship MIRG-CT-2006-046548.

References

[1] B. Alexe, W. Tan, and Y. Velegrakis. Comparing and Evéh@Map-

ping Systems with STBenchmark. WL.DB, 2008.

D. Barbosa, A. O. Mendelzon, J. Keenleyside, and K. A.ng0oTox-

gene: An extensible template-based data generator forlrrilebDB

pages 49-54, 2002.

P. Bernstein and S. Melnik. Model Management 2.0: Malziting

Richer Mappings. I'8IGMOD, pages 1-12, 2007.

P. A. Bernstein, T. J. Green, S. Melnik, and A. Nash. Immpéating

Mapping Composition. IIVLDB, pages 55-66, 2006.

P. A. Bernstein, S. Melnik, and J. E. Churchill. Incrert@rSchema

Matching. InVLDB (demo)pages 1167-1170, 2006.

[6] Bertinoro Workshop on Information

http://www.dis.uniromal.it/"lenzerin/INFINT2007/.

Biowarehouse database integration for

http://biowarehouse.ai.sri.com/.

[8] T.Bohme and E. Rahm. XMach-1: A Benchmark for XML Data Man
agement. IBTW, pages 264-273, 2001.

[9] A. Bonifati, E. Q. Chang, T. Ho, and L. V. S. Lakshmanan. pfieX:
Heterogeneous Peer to Peer XML Databases, 2005.

[10] A. Bonifati, G. Mecca, A. Pappalardo, S. Raunich, andSBmma.

Schema mapping verification: the spicy way. HDBT, pages 85-96,

2008.

D. Braga, A. Campi, and S. CerQBE (query by example): A visual

interface to the standard xml query languag€M TODS 30(2):398—

443, 2005.

[12] S. Bressan, G. Dobbie, Z. Lacroix, M.-L. Lee, Y. G. Li, Nambiar,
and B. Wadhwa. X007: Applying 007 Benchmark to XML Query Pro-
cessing Tool. I'CIKM, pages 167-174, 2001.

[13] M. J. Carey. Data delivery in a service-oriented wotlte BEA Aqua-
Logic data services platform. BIGMOD Conferencepages 695-705,
2006.

[14] M. J. Carey, J. Kiernan, J. Shanmugasundaram, E. Jitdhekd S. N.
Subramanian. Xperanto: Middleware for publishing objetational
data as xml documents. WLDB, pages 646—648, 2000.

[15] L. Chiticariu and W. Tan. Debugging Schema MappingshviRbutes.
In VLDB, pages 79-90, 2006.

[16] dblp.uni-trier.de: Computer science bibliography. ttph/dblp.uni-
trier.de/.

[17] F.Duchateau, Z. Bellahsene, and E. Hunt. XBenchMadBenchmark
for XML Schema Matching Tools. IWLDB, pages 1318-1321, 2007.

[18] M. Erwig. Xing: a visual xml query languagel. Vis. Lang. Comput.
14(1):5-45, 2003.

[2]

Integration.

bioinformatics

(11]

[19] L. M. Haas. Beauty and the Beast: The Theory and Pracfid¢efor-
mation Integration. InCDT, pages 28—-43, 2007.

[20] L. M. Haas, M. A. Hernandez, H. Ho, L. Popa, and M. RothlioC
Grows Up: From Research Prototype to Industrial ToolSIGMOD,
pages 805-810, 2005.

[21] A.Y.Halevy, Z. G. Ives, D. Suciu, and |. Tatarinov. Salee mediation
for large-scale semantic data sharivd.DB J, 14(1):68-83, 2005.

[22] J. Hammer, M. Stonebraker, and O. Topsakal. THALIA:tTearness
for the Assessment of Legacy Information Integration Apgiees. In
ICDE, pages 485-486, 2005.

[23] Rational Data Architect. www.ibm.com/software/dattegration/rda.

[24] P. G. Kolaitis. Schema mappings, data exchange, anddatt man-
agement. IliPODS pages 61-75, 2005.

[25] F. Legler and F. Naumann. A Classification of Schema Nfaggpand

Analysis of Mapping Tools. IBTW, pages 449-464, 2007.

M. Lenzerini. Data Integration: A Theoretical Perspee In PODS

pages 233-246, 2002.

B. S. Lerner. A Model for Compound Type Changes Encawaten

Schema EvolutionTODS 25(1):83-127, Mar. 2000.

I. S. MacKenzie, A. Sellen, and W. Buxton. A comparisdninput

devices in elemental pointing and dragging tasksCHi, pages 161—

166, 1991.

Altova MapForce

http://www.altova.com.

Merriam-Webster. Merriam-Webster Online - The Langgi&enter.

http://www.m-w.com/home.htm.

http://oaei.ontologymatching.org.

T. Okawara, A. Morishima, and S. Sugimoto. An Approachtlie

Benchmark Development for Data Exchange ToolsDétabases and

Applications pages 19-25, 2006.

[33] L. Popa, Y. Velegrakis, R. J. Miller, M. A. HernandezydaR. Fagin.
Translating Web Data. INLDB, pages 598-609, 2002.

[34] A. Raffio, D. Braga, S. Ceri, P. Papotti, and M. A. Herdan. Clip: a
Visual Language for Explicit Schema Mappings./GDE, 2008.

[35] E. Rahm and P. A. Bernstein. A survey of approaches toraatic
schema matchingvVLDB J, 10(4):334-350, 2001.

[36] M. Roth, M. A. Hernandez, P. Coulthard, L. Yan, L. PoplaC.-T. Ho,
and C. C. Salter. XML mapping technology:Making connecignan
XML-centric world. IBM Sys. Journal45(2):389-410, 2006.

[37] K. Runapongsa, J. M. Patel, H. V. Jagadish, and S. AllihaThe
Michigan Benchmark: A Microbenchmark for XML Query Prodess
Systems. IrEEXTT, pages 160-161, 2002.

[38] The Saxon XSLT and XQuery Processor,
http://saxon.sourceforge.net.

[39] A. R. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, |. Miscu,
and R. Busse. XMark: A Benchmark for XML Data Management. In
VLDB, pages 974-985, 2002.

[40] J. Shanmugasundaram, E. J. Shekita, R. Barr, M. J. CBrey. Lind-

say, H. Pirahesh, and B. Reinwald. Efficiently publishinigtienal data

as XML documentsVLDB J, 10(2-3):133-154, 2001.

Stylus Studio, XML Enterprise Suite,

http://www.stylusstudio.com.

TPC Transaction Processing Performance Council:/kfip.org.

P. Vassiliadis, A. Karagiannis, V. Tziovara, and A. 88is. Towards a

Benchmark for ETL Workflows. 'QDB, pages 49-60, 2007.

Y. Velegrakis, R. J. Miller, and L. Popa. Mapping addjata under

evolving schemas. IWLDB, pages 584-595, 2003.

Microsoft ~ Visual Studio 2005, Version

http://msdn2.microsoft.com/en-us/ie/bb188238.aspx.

B. Yao, T. Ozsu, and N. Khandelwal. XBench benchmark jpedor-

mance testing of XML DBMSs. IhCDE, pages 621-633, 2004.

Y.Lee, M. Sayyadian, A. Doan, and A. Rosenthal. eTun&un-

ing Schema Matching Software using Synthetic ScenaridsDB J,

16(1):97-122, 2007.

C. Yu and L. Popa. Semantic adaptation of schema mappiriten

schemas evolve. IMLDB, pages 1006-1017, 2005.

[49] M. Zloof. Query-By-Example: A Data Base LanguadfgM Sys. Jour-
nal, 16(4):324-343, 1977.

[26]
[27]

(28]

[29] Professional Edition, Version 2008.
[30]

(31]
[32]

version 8.9.

[41] Release 2.

[42]
[43]

[44]
[45] 8.0.50727.42.
[46]

[47]

(48]

APPENDIX
A. BASIC MAPPING SCENARIOS
A.1 Copying

The copying scenario iS, T, P), whereS andT are shown in Fig. 2(a).
The precise specification @ is described in XQuery below:

<Tar get >

for $x0 in /Source/Protein

return

<Pr ot ei n>
<Nane> $x0/ nane/t ext () </ Nane>
<Accessi on> $x0/ accessi on/ t ext () </ Accessi on>
<Cr eat ed> $x0/ creat ed/ t ext () </ Creat ed>

</ Protein>

</ Tar get >

A.2 Constant Value Generation
The constant value generation scenari¢9sT, P), whereT is

shown in Fig. 2(b). The source schema can be any schema and

therefore not shown. The precise specificatiorPak described in
XQuery below:

<Tar get >
<Dat aSet >
<Nanme>Swi ssPr ot </ Nanme>
<Loadi ngDat e>Jul y 4t h</ Loadi ngDat e>
</ Dat aSet >
</ Tar get >

An alternative to the constant date value “July 4th” is a exyst

functiont oday() that returns the current date. However, the use

of such system functions is dependent on the mapping system.

A.3 Horizontal Paritioning

The horizontal partitioning scenario (S, T, P), whereS and T
are shown in Fig. 2(c). For this mapping scenario, we ignbee t
WID subelements in Target/Gene and Target/Synonym. Thegare
specification ofP is described in XQuery below.

<Tar get >
for $x0 in /Source/ Gene
where $x0/type/text() = 'primry’
return
<Gene>
<Nane> $x0/ nane/text () </ Name>
<Protei n> $x0/ protein/text() </Protein>
</ Gene>
for $x0 in /Source/ Gene
where $x0/type/text() != 'prinmary’
return
<Synonyn»
<Nanme> $x0/ nane/text () </Nanme>
<Protei n> $x0/ protein/text() </ Protein>
</ Synonynp
</ Tar get >

A.4 Surrogate Key Assignment
The surrogate key assignment scenari@isT,), whereS and

T are shown in Fig. 2(d) and is identical to the source and targe

schemas, respectively, of the horizontal partitioninghac®. As-

<Nanme> $x0/ nane/text () </ Nane>
<Protein> $x0/protein/text() </Protein>
<W D> genl () </W D>

</ Gene>

for $x0 in /Source/ Gene

where $x0/type/text() !="primry’

return

<Synonyn»
<Nanme> $x0/ nane/text () </ Nane>
<Protein> $x0/protein/text() </Protein>
<W D> genl () </W D>

</ Synonynw

</ Tar get >

A.5 Vertical Partition

The vertical partition scenario iSS, T, P), whereS andT are
shown in Fig. 2(e). Assuming thgenl D(.) is an XQuery func-
tion that returns an identifier based on its input argumeatt édme
it is invoked, the precise specification Bfis described in XQuery
. below. In our XQuery specification below, we sometimes oimt t

%nd tags to save space.

<Tar get >
for $x0 in /Source/ Reaction
let $id = genl D($x0)
return
<Reacti on>
<Entry> $x0/ nane/ t ext ()
<Nanme> $x0/ nane/ t ext ()
<Comment > $x0/ conment /t ext ()
<Ot hol ogy> $x0/ or t hol ogy/ t ext ()
<CoFact or > $i d </ CoFact or >
</ Reacti on>
for $x0 in /Source/ Reaction
let $id = genl D($x0)
return
<Cheni cal | nf 0>
<Definition> $x0/definition/text()
<Equat i on> $x0/ equati on/text ()
<CoFactor> $id
</ Chem cal | nf 0>
</ Tar get >

A.6 Unnesting (or Flattening)

The unnesting scenario {8, T, P), whereS and T are shown
in Fig. 2(f). The precise specification &f is described in XQuery
below. As before, we sometimes omit the end tags to save space

<Tar get >
for $x0 in /Source/ Ref erence
$x1 in $x0/ Aut hor
return
<Publ i cati on>
<Title> $x0/titlel/text()
<Year > $x0/text ()
<Publ i shedl n> $x0/ publ i shedl n/text ()
<Nanme> $x1/ nane/text ()
</ Publ i cation>
</ Tar get >

A.7 Nesting

The nesting scenario iSS, T, P), whereS and T are shown in
Fig. 2(g). The precise specification &f is described in XQuery

suming thatgenl D() is an XQuery function that returns a new pgjow.

identifier each time it is invoked, the precise specificatdr is
described in XQuery below.

<Tar get >

for $x0 in /Source/ Gene

where $x0/type/text() = 'primry’
return

<CGene>

<Tar get >
for $x0 in distinct-val ues(
/ Sour ce/ Ref erence/ year)
return
<Peri od>
<Year > $x0
for $x1 in distinct-values(

| Sour ce/ Ref er ence[year =$x0] / nane)
return
<Aut hor >
<Nanme> $x1
for $x2 in /Sourcel/ Ref erence
where $x2/year/text()=$x0 and
$x2/ name/ t ext () =$x1
return
<Publ i cati on>
<Title> $x2/titleltext()
<Publ i shedl n>
$x2/ publ i shedl n/ text ()
</ Publ i shedl n>
</ Publi cati on>
</ Aut hor >
</ Peri od>
</ Tar get >

A.8 Self Joins

The self joins scenario i§S, T, P), whereS and T are shown
in Fig. 2(h). The precise specification Bfis described in XQuery
below.

<Tar get >
for $x0 in /Source/ Gene
where $x0/type/text() = 'primry’
return
<Gene>
<Nanme> $x0/ nane/ t ext ()
<Protei n> $x0/ protein/text()
</ Gene>

for $x0 in /Source/ Gene
$x1 in /Sourcel/ Gene
where $x0/type/text() = 'primary’ and
$x1/typel/text() !'= "primary’ and
$x1/ protein/text() = $x0/protein/text()
return
<Synonyne
<Nanme> $x1/ nane/text ()
<W D> $x0/ nane/ t ext ()
</ Synonym
</ Tar get >

A.9 Denormalization and Join Path Selection

The denormalization and join path selection scenari8jsr’, P),
whereS andT are shown in Fig. 2(i). The precise specification of
‘P is described in XQuery below.

<Tar get >
for $x0 in $doc/ Sour ce/ Nane,
$x1 in $doc/ Sour ce/ Node
where $x0/id/text() = $x1/taxld/text()
return
<Taxon>
<l d> $x0/id/text()
<Nanme> $x0/ nane/ t ext ()
<Uni queNanme> $x0/ uni queNane/t ext ()
<Cl ass> $x0/ cl ass/text ()
<Parent> $x1/parent|d/text()
<Rank> $x1/rank/text()
<Enbl Code> $x1/ enbl Code/t ext ()
</ Taxon>
</ Tar get >

A.10 Keys and Object Fusion

The keys and object fusion scenario(|, T, P), whereS and

T are shown in Fig. 2(j). We assume that contact and date form a

key for the Experiment and FlowCytometrySample sets. Tlee pr
cise specification oP is described in XQuery below. The first part
creates a target Experiment element for each source Exgetrimmd
copies the associated ExperimentalData information, disasehe

ExperimentalData associated with any FlowCytometrySantimht
agrees with the source Experiment on contact and date. The se
ond part creates target Experiment elements for each Flown@y
trySample that does not agree on contact and date with amgesou
Experiment.

<Tar get >
for $x0 in /Source/ Experinent
return
<Experi nment >
<Cont act > $x0/ contact/text()
<Dat e> $x0/ dat e/ t ext ()
<Descri ption> $x0/ description/text()
for $x1 in $x0/ Experi nental Dat a
return
<Experi ment al Dat a>
<Dat a> $x1/data/text ()
<Rol e> $x1/rol e/ text()
</ Experi ment al Dat a>
for $x2 in /Sourcel/ Fl onCyt onet rySanpl e
wher e $x2/ cont act =$x0/ cont act
and $x2/ dat e=$x0/ dat e
return
for $x3 in $x2/ Probe
return
<Experi nent al Dat a>
<Dat a> $x3/dat a/text ()
<Rol e> $x3/type/text()
</ Experi ment al Dat a>
</ Experi nent >

for $x0 in /Source/Fl owCyt onet rySanpl e
wher e
not (exi st s(/ Sour ce/ Experi nent
[cont act =$x0/ cont act and dat e=$x0/ date]))
return
<Experi nent >
<Cont act > $x0/ contact/text()
<Dat e> $x0/ dat e/t ext ()
<Descri ption/ >
for $x1 in $x0/ Probe
return
<Experi nment al Dat a>
<Dat a> $x1/data/text ()
<Rol e> $x1/type/text()
</ Experi ment al Dat a>
</ Experi nment >
</ Tar get >

A.11 Manipulating Atomic Values

The keys and object fusion scenariq & T, P), whereS and T
are shown in Fig. 2(k). The precise specificatiorofs described
in XQuery below.

<Tar get >
for $x0 in $doc/ Sour ce/ Cont act
return
<Cont act >
<Fi r st Name> get Fi r st Nane($x0/ nane/text ())
<Last Nanme> get Last Nane($x0/ nane/text ())
<Addr ess> concat ($x0/ street/text (),
$x0/city/text(),
$x0/ zi p/text())
<Phone> $x0/ phone/t ext ()
</ Cont act >
</ Tar get >

B. AN EXPANDED SCENARIO

The precise specification of the transformation functi®wof the
scenario(S, T, P), whereS and T are shown in Fig. 3(a) is pro-
vided next in XQuery. Note that this scenario is an expanded s
nario generated by tHdnnestingbasic scenario.

<Tar get >
for $x0 in /Source/ Ref erence,
$x1 in $x0/ Aut hor,
$x2 in $x1/Affiliation,
$x3 in $x2/ St udent
return
<Publ i cati on>
<Title> $x0/titlel/text()
<Year > $x0/text ()
<Publ i shedl n> $x0/ publ i shedl n/ t ext ()
<Nanme> $x1/nane/text ()
<Uni versity> $x2/university/text()
<Country> $x2/ country/text()
<St udNanme> $x3/ snane/text ()
</ Publ i cation>
</ Tar get >

C. ACOMPOSED SCENARIO

The precise specification of the transformation functfoof the
scenario(S, T,P), whereS and T are shown in Fig. 4(a) and
Fig. 4(f), respectively, is provided next in XQuery.

<Tar get >
for $x0 in /Source/R1,
$x1 in $x0/ SE1, $x2 in $x1/ SE2,
$x3 in /Sourcel/ R2,
$x4 in $x3/ SE3, $x4 in $x3/ SE4,
$x5 in /Source/ R3
wher e
$x0/ Attr2/text()=$x3/Attr9/text() and
$x5/ Attrl4/text()=$x4/ Attrl2/text() and
$x5/ Attri15/text ()=$x4/ Attrll/text()
return
<R4>
<Attri1> $x0/Attril/text()
<Attr3> $x1/Attr3/text()
<Attr4> $x1/Attrd/text()
for $x10 in /Source/R1,
$x11 in $x0/ SE1, $x12 in $x1/SE2,
$x13 in /Source/ R2,
$x14 in $x3/ SE3, $x14 in $x3/ SE4,
$x15 in / Source/ R3
wher e
$x10/ Attr2/text()=$x13/Attr9/text() and
$x15/ Attr 14/ text ()=$x14/Attri2/text() and
$x15/ Attr15/text ()=$x14/Attrll/text() and
$x10/ Attrl/text()=$x0/Attrl/text() and
$x11/ Attr3/text()=%$x1/Attr3/text() and
$x11/ Attrd/text()=$x1/Attra/text()
return
<SE5>
<Attr6> $x12/ Attr6/text()
<Attr7> $x12/ Attr7/text()
<Attr8b> $x13/Attr8/text()
<Attri19> id()
</ SE5>
</ R4>

for $x0 in /Source/R1,
$x1 in $x0/ SE1, $x2 in $x1/SE2,
$x3 in /Source/ R2, $x4 in $x3/ SE3,
$x4 in $x3/ SE4,
$x5 in /Source/ R3
wher e
$xO0/ Attr2/text()=$x3/Attr9/text() and
$x5/ Attrl4/text()=$x4/ Attri2/text() and
$x5/ Attr15/text ()=$x4/ Attrill/text()
return
<R6>
<Attr8> 9$x3/Attr8/text()
<Attr9> $x3/Attr9/text()
<Attrl1l> $x4/ Attrll/text()
<Attri12> $x4/ Attri12/text()
<Attri13> $x5/Attri13/text()

<Attrl1l7> June
</ R6>

for $x0 in /Source/R1,
$x1 in $x0/ SE1, $x2 in $x1/ SE2,
$x3 in /Sourcel R2,
$x4 in $x3/ SE3, $x4 in $x3/ SE4,
$x5 in /Source/ R3
where $x0/ Attr2/text()=$x3/Attr9/text() and
$x5/ Attrla/text ()=$x4/ Attrl12/text() and
$x5/ Attri15/text ()=$x4/ Attrll/text()
return
<R7>
<Attrl14> $x5/Attrl4/text()
<Attr15> $x5/Attr15/text()
for $x20 in /Source/R1,
$x21 in $x0/ SE1, $x22 in $x1/ SE2,
$x23 in /Sourcel R2,
$x24 in $x3/ SE3, $x24 in $x3/ SE4,
$x25 in /Source/ R3
wher e
$x20/ Attr2/ text ()=$x23/ Attr9/text() and
$x25/ Attr 14/ text ()=$x24/ Attri2/text() and
$x25/ Attr15/text ()=$x24/ Attrll/text() and
$x25/ Attr 14/ text()=$x5/Attri4/text() and
$x25/ Attr15/text ()=$x5/Attr15/text()
return
<SE6>
<Attr16> $x25/Attr16/text()
<Attr18> $x20/Attr2/text()
* $x25/ Attr 14/ text ()
</ SE6>
</ R7>
</ Tar get >

