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Abstract—A fundamental data integration task faced by online commercial portals and commerce search engines is the
integration of products coming from multiple providers to their product catalogs. In this scenario, the commercial portal has its
own taxonomy (the “master taxonomy”), while each data provider organizes its products into a different taxonomy (the “provider
taxonomy”). In this paper, we consider the problem of categorizing products from the data providers into the master taxonomy,
while making use of the provider taxonomy information. Our approach is based on a taxonomy-aware processing step that
adjusts the results of a text-based classifier to ensure that products that are close together in the provider taxonomy remain
close in the master taxonomy. We formulate this intuition as a structured prediction optimization problem. To the best of our
knowledge, this is the first approach that leverages the structure of taxonomies in order to enhance catalog integration. We
propose algorithms that are scalable and thus applicable to the large datasets that are typical on the Web. We evaluate our
algorithms on real-world data and we show that taxonomy-aware classification provides a significant improvement over existing
approaches.
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1 INTRODUCTION

An increasing number of Web portals provide a
user experience centered around online shopping.
This includes e-commerce sites such as Amazon and
Shopping.com, and commerce search engines such as
Google Product Search and Bing Shopping. A fun-
damental data integration task faced by these com-
mercial portals is the integration of data coming from
multiple data providers into a single product catalog.
An important step in this process is product categoriza-
tion. All portals maintain a comprehensive “master”
taxonomy for organizing their products, which is used
both for browsing and searching purposes. As new
products arrive from different providers they need to
be assigned to the appropriate category in the master
taxonomy in order to be accessible to the users. At
the web scale, it is impractical to assume that data
providers will manually assign all the products from
their catalog to the appropriate category in the master
taxonomy. Thus, we need automated techniques for
categorizing products coming from the data providers
into the master taxonomy.

An important observation in this scenario is that
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the data providers do have their own taxonomy (the
“provider taxonomy”), and their products are already
associated with a provider taxonomy category. The
provider taxonomy may be different from the master
taxonomy, but in most cases, there is still a powerful
signal coming from the provider classification. Intu-
itively, products that are in nearby categories in the
provider taxonomy, should be classified into nearby
categories in the master taxonomy.

To illustrate this point, consider the example in
Figure 1. The provider taxonomy is an excerpt from
the taxonomy used by Amazon, and the master tax-
onomy is an excerpt from the taxonomy used by
Bing Shopping. Now, given a product tagged with
a category from Amazon’s (provider) taxonomy, we
want to categorize it in the Bing Shopping (master)
taxonomy. Suppose we are given the product “Boss
Audio Systems CH6530” from the category Electron-
ics/Car Electronics/Car Audio & Video/Car Speakers/Coaxial
Speakers in the Amazon taxonomy. If we use a text-
based classifier to categorize this product into the
Bing taxonomy, it is unclear whether this product
should be classified into Electronics/Car Electronics/Car
Audio/Car Speakers or Electronics/Home Audio/Speakers.
If we know that most of the products in the Car Speak-
ers/Coaxial Speakers Amazon category are categorized
to the Car Speakers category in Bing, then we can
conclude that most likely the new product should also
be classified in Car Speakers.

However, for most products in the Electronics/Car
Electronics/Car Audio & Video/Car Speakers/Coaxial Speak-
ers from the Amazon taxonomy, the classifier is actu-
ally unable to decide if they should be classified in
Car Speakers, or Audio Speakers. Therefore, we cannot
use the categorization of the products in the same
category as the new product to guide as for the correct
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Fig. 1. A simple catalog integration example.

decision. In this case, the taxonomy information can
help to determine the correct categorization. As we go
up the taxonomy tree of the Amazon taxonomy, we
observe that many more products in the Car Audio &
Video Amazon category are classified to the Car Audio
master category, as opposed to the Home Audio master
category. Using this information we can conclude that
most likely the products from the Electronics/Car Elec-
tronics/Car Audio & Video/Car Speakers/Coaxial Speakers
category should be mapped to Electronics/Car Electron-
ics/Car Audio/Car Speakers rather than Electronics/Home
Audio/Speakers.

In this work, we propose techniques that leverage
the intuition described above. We show how we can
use the taxonomy information in order to “adjust”
the results of a text-based classifier, and improve the
product categorization accuracy. The key contribution
of our work is that we make use of the structure
of the master and provider taxonomies in order to
achieve this goal, exploiting the relationships between
different categories in the taxonomy, rather than rely-
ing on the category membership information of the
products. In the example we described above, when
the text-based classifier fails to give a clear classifi-
cation of the new product, the category-membership
information of the product in the provider taxonomy
does not provide any additional help since there is
no clear mapping between categories at the leaf level.
However, there is a strong signal about the correct
classification coming from mappings at higher levels
of the taxonomies. Using the taxonomy structure, we
can propagate this information to the lower levels
of the taxonomy, and assign the correct leaf-level
category to the new product.

The idea of using the “structure” of the data to en-
hance classification underlies many structured predic-
tion approaches, and has been shown to work well in
other areas such as computer vision [4] and NLP [3].
The general principle is that we can improve the
accuracy of classification by making use of relation-
ships between the items that are classified. However,
previous approaches for catalog integration [1], [28]

ignore possible relationships among the taxonomy
categories, essentially treating the taxonomy as a flat
collection of classes. In contrast, we exploit the full
structure of the taxonomy, defining relationships be-
tween items that belong to different categories, based
on the relationship of the categories in the taxonomy
tree. Furthermore, most of the previous approaches
suffer from scalability issues due to the large number
of pairwise relationships that need to be considered.
For the catalog integration problem, where we are
interested in categorizing hundreds of thousands, or
millions of products, such solutions are impractical.
In our work, we carefully prune the relationships we
consider for the classification of an item to obtain a
scalable linear-time algorithm.

Contributions. In this work we make the following
contributions:

1) We formulate the taxonomy-aware catalog in-
tegration problem as a structured prediction
problem. To the best of our knowledge, this is
the first approach that leverages the structure
of the taxonomies in order to enhance catalog
integration.

2) We present techniques that have linear running
time with respect to the input data and are appli-
cable to large-scale catalogs. This is in contrast to
other structured classification algorithms in the
literature which face challenges scaling to large
datasets due to quadratic complexity.

3) We perform an extensive empirical evaluation
of our algorithms on real-world data. We show
that taxonomy-aware classification provides a
significant improvement in accuracy over exist-
ing state-of-the-art classifiers.

The rest of the paper is organized as follows. In
Section 2 we formally define the catalog integration
problem. In Section 3 we present our approach, and
in Section 4 an efficient algorithm for our formulation.
Section 5 contains the experimental evaluation of our
approach. In Section 6 we present the related work,
and in Section 7 we give our concluding remarks.
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2 PROBLEM DEFINITION

We now introduce some basic terminology, and for-
mulate the taxonomy-aware catalog integration problem.

A product x is an item that can be bought at a
commercial portal. Each product has a textual rep-
resentation that consists of a name (a short sentence
describing the product), and possibly a set of attribute-
value pairs. For example, Figure 1 shows a product
whose name is “Boss Audio Systems CH6530”, and has
also a description attribute with value “Chaos Series
6.5-Inch 3-Way Speaker, 300W peak power”. Note that
the name and the attributes of a product may vary
across providers. For example, another provider may
use the name “Boss CH6530 Speakers” for the same car
speakers, and have no description, or other attributes
associated with the product.

A product taxonomy G = (Cg, Eg) is a directed
acyclic graph whose nodes Cg represent the set of
possible categories into which products are organized.
Each graph edge (c1, c2) ∈ Eg represents a subsumption
(i.e., an “is-a”) relationship between two categories
c1 and c2. For example, in the master taxonomy
of Figure 1, category Electronics subsumes category
Car Electronics. Typically, the taxonomy structure is a
rooted tree, where each category (excluding the root)
has a single parent. A directed acyclic graph (DAG)
is also possible, where a category may have multiple
parents. We make the assumption that a taxonomy
is a tree with a single root, thus imposing a clear
hierarchical structure. The distance of a category from
the root is the depth of the category in the taxonomy.
For example, in the Master taxonomy of Figure 1,
category Electronics has depth 1, while Car Electronics
has depth 2.

A product catalog K = (P,G, v) is a taxonomy G
populated with a set of products P as defined by the
mapping function v : P → Cg that maps each product
in P to a category in Cg . Abusing the notation, we
will use v to denote the output vector of function v

on P , that is, v ∈ C |P |g , and element vx of the vector
v denotes the category of product x in taxonomy G.
Since v is a function, we assume that each product is
associated to exactly one category, although our work
can also be applied to cases where this assumption
does not hold.

In the taxonomy-aware catalog integration problem,
we are given a source catalog Ks = (Ps, S, s) that
corresponds to some provider’s catalog defined over
the source taxonomy S = (Cs, Es), and a target (or
master) catalog Kt = (Pt, T, t) that corresponds to the
catalog of the commercial portal defined over the
target (master) taxonomy T = (Ct, Et). The goal is to
learn a cross-catalog labeling function ` : Ps → Ct that
maps products of the source catalog to the categories
of the target catalog taxonomy. Similar to before, we
abuse the notation and we use ` ∈ C |Ps|t to denote the
labeling vector, where the entry `x of the vector is the

assigned category of product x ∈ Ps in taxonomy T .
We can now define our problem abstractly as fol-

lows:
Definition 1 (Taxonomy-Aware Catalog Integration):

Given a source catalog Ks and a target catalog Kt, use
a taxonomy-aware process fT to learn a cross-catalog
labeling function ` = fT (Ks,Kt).

The key novelty in our approach is that the learning
process fT that produces labeling vector ` makes use
of the full taxonomy structure of the taxonomies S
and T in order to define relationships between prod-
ucts in the source and target catalog, and guide the
classification process. Previous approaches [1] have
exploited the category assignments s, and t, but not
the structure of the taxonomies S and T . In the next
Section we describe how to formulate the process fT
as a combinatorial optimization problem.

3 TAXONOMY-AWARE CLASSIFICATION

At a high level we can describe our approach to
taxonomy-aware classification as a two-step process.
First, each product is classified using a base classifier
that is not aware of the taxonomies. We call this the
base classification step. Then, we use the structure of
the source and target taxonomies in order to adjust
the output of the base classifier, and produce a final
classification. We call this the taxonomy-aware process-
ing step. We now discuss these two steps in detail.

3.1 The Base Classification Step
In the base classification step, we classify the products
based solely on their textual representation. For this
purpose, we train a text-based classifier using stan-
dard supervised machine learning techniques. In this
paper, we consider Naive Bayes, and Logistic Regres-
sion [18], but any other machine learning technique
could be used. We use a subset of the target catalog
as the training set. This provides us with examples
of products labeled with categories of the target tax-
onomy. The features of the classifier are extracted
from the textual product representations. Note that at
training time we have no knowledge of the providers’
catalogs, and we make no use of the structure of the
target taxonomy.

Let b denote the classification model we obtain after
training. Given an product x ∈ Ps from the provider
catalog we apply the classifier b on the textual represen-
tation of the product, as this appears in the provider’s
catalog. In our example in Figure 1 the features are
extracted from the text “Boss Audio Systems CH6530,
Chaos Series 6.5-Inch 3-Way Speaker, 300W peak power”.
The output of the base classification step is a proba-
bility distribution Prb[τ |x] over all target categories
τ ∈ Ct for each product x ∈ Ps. The probability
Prb[τ |x] provides an estimate of the likelihood that
product x belongs to category τ , and the confidence
that the classifier has for this assignment.
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We stress again that during the base classification
step we do not make use of any knowledge about
the target or source taxonomy, either during training,
or during the application of the classifier. This refers
to both the structure of the taxonomy, as well as the
names of the categories. It is possible for the classifier
to try to match the names of the categories between
the source and target taxonomies. However, this en-
tails the danger of over-fitting, and also as we have
observed, category names often vary significantly be-
tween providers (e.g., Cameras v.s. Photography).

3.2 The Taxonomy-Aware Processing Step

The intuition behind the taxonomy-aware processing
step is that the target categories assigned by the
base classification step can be adjusted by taking into
account the relationships of the products in the source
and target taxonomies. The goal of the taxonomy-
aware processing is to assign categories in the target
taxonomy to the products coming from the provider’s
catalog, such that the assignments respect the deci-
sions of the base classifier, while at the same time
they preserve the relative relationships of the products
in the source taxonomy. We will now show how the
taxonomy-aware processing step can be defined as
an optimization problem, and discuss the different
parameters of the problem.

3.2.1 The Optimization Problem
Formally, we define taxonomy-aware processing as an
optimization problem, where given a source catalog
Ks, and a target catalog Kt, the objective is to find
a labeling vector ` that minimizes the following cost
function:

COST(Ks,Kt, `) =(1− γ)
∑
x∈Ps

ACOST(x, `x)

+ γ
∑

x,y∈Ps

SCOST(x, y, `x, `y) (1)

The taxonomy-aware process fT is the algorithm that
finds the labeling ` that minimizes the cost function:

fT (Ks,Kt) = arg min
`

COST(Ks,Kt, `).

The first term of the cost function, ACOST, is the
assignment cost which penalizes classifications that
differ from the ones chosen by the base classifier. We
define the assignment cost in Section 3.2.2. The second
term, SCOST is the separation cost which penalizes
classifications that place products that are close in the
source taxonomy to distant categories in the target
taxonomy (or vice-versa). We introduce the separation
cost in Section 3.2.3 and we discuss it in detail in Ap-
pendix A. The parameter γ (also called regularization
parameter) balances between the two costs. Note that
an optimal classification ` may assign a product x to a
target category `x that is different from the one chosen

TABLE 1
Category similarity and penalty functions used in

separation cost.

Category similarity functions: simG(c1, c2)

Shortest-Path similarity 2−hops(c1,c2)

LCA similarity 1− 2−depth(lca(c1,c2))

Cosine similarity 1+depth(lca(c1,c2))√
1+depth(c1)

√
1+depth(c2)

Penalty functions: SCOST(sx, sy , `x, `y)

Absolute difference |simS(sx, sy)− simT (`x, `y)|
Multiplicative simS(sx, sy)(1− simT (`x, `y))

by the base classifier, if the neighboring products of x
in the source taxonomy are assigned target categories
that are close to category `x in the target taxonomy. In
this way, we are getting signal both from the product
representation (assignment cost) and from the source
categories and taxonomy structure (separation cost).

3.2.2 Assignment Cost
We use the probabilities of the base classifier to define
the assignment cost function ACOST: Ps × Ct → R+.
For a product x the cost of classifying product x to
target category `x is defined as follows:

ACOST(x, `x) = 1− Prb[`x|x] (2)

This definition penalizes the classification of product
x to a category `x for which the base classifier yields
small probability estimates. On the other hand, the
assignment cost is small if product x is assigned to
a category for which the base classifier assigns high
probability.

3.2.3 Separation Cost
The separation cost function SCOST : P 2

s ×C2
t → R+ is

defined over a pair of products x, y ∈ Ps that we want
to classify, and a pair of categories `x, `y ∈ Ct that are
candidate target categories for x and y respectively.
Intuitively, it captures the cost of separating products
x and y to target categories `x and `y . The separation
cost should be high if products x and y belong to
categories sx, sy that are close in the source taxonomy,
and which are assigned classes `x, `y that are distant
in the target taxonomy.

To formally define this intuition, we need a defini-
tion of similarity between two categories in a taxon-
omy. For a given taxonomy G = (C,E) a similarity
function simG : C × C → [0, 1] returns a value in
[0, 1] for any two categories c1, c2 ∈ C, where 1 means
that categories c1 and c2 are identical and 0 means
that they are completely dissimilar. A meaningful
similarity definition should satisfy the intuition that
two categories that are close in the taxonomy tree are
more similar than two categories that are far apart.
For example, two categories that have a common
parent are more similar than two categories that have
different parents and a common grandparent.

With the notion of category similarity at hand, we
now define the separation cost as a function of the
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similarity simS(sx, sy) between categories sx and sy of
x and y in the source taxonomy S and the similarity
simT (`x, `y) between `x and `y in the target taxonomy
T , that is,

SCOST(x, y, `x, `y) = δ (simS(sx, sy), simT (`x, `y)) (3)

where δ is a penalty function that yields high values
if the similarity simS(sx, sy) of the source categories
is high, while the similarity simT (`x, `y) is low, or
vice versa. An example of the penalty function δ is
the absolute difference of the two similarity values.
Intuitively, we want the relative position of assigned
categories of two products in the target taxonomy to
be similar to the relative position of the categories in
the source taxonomy.

Depending on the choice of the penalty and simi-
larity functions, we obtain different definitions for the
separation cost. The similarity and penalty functions
that we consider in this work are listed in Table 1, to-
gether with their mathematical definition. We discuss
the definitions in detail in Appendix A.

Note that as defined in Equation 3, for a given
choice of the penalty function δ, the separation cost is
fully defined by the tuple (sx, sy, `x, `y), and it does
not depend on the identities of the individual prod-
ucts x and y. We can thus write SCOST(sx, sy, `x, `y)
to denote the separation cost SCOST(x, y, `x, `y). That
is, we can define the function SCOST : C2

s ×C2
t → R+

over pairs of source and target categories.
The key observation is that all pairs of products

x, y such that sx = σ and `x = τ , and sy = σ̄ and
`y = τ̄ , for some σ, σ̄ ∈ Cs, and τ, τ̄ ∈ Ct have
the same separation cost SCOST(σ, σ̄, τ, τ̄). That is, the
separation cost is the same for all pairs of products
x, y that that come from source categories σ and σ̄
respectively, and are assigned to target categories τ
and τ̄ respectively. If n(σ, τ) denotes the number of
products from σ that are assigned to τ , according
to some labeling `, then, there are n(σ, τ) · n(σ̄, τ̄)
such pairs of products, and each one will contribute
SCOST(σ, σ̄, τ, τ̄) to the separation cost. Then, we can
write the separation cost in Equation 1 as follows:∑

x,y∈Ps

SCOST(x, y, `x, `y) (4)

=
∑

σ,σ̄∈Cs

∑
τ,τ̄∈Ct

SCOST(σ, σ̄, τ, τ̄)n(σ, τ)n(σ̄, τ̄)

Note that the sum in Equation 4 is now expressed
over pairs of source categories and pairs of target
categories, rather than pairs of products. We leverage
this observation for the efficient computation of the
separation cost that we present in Section 4.

Although we do not discuss it further in this pa-
per, we can modify Equation 3 to handle multi-class
classification of products in the source taxonomy. If
x and y are classified in more than one categories
in the source taxonomy then sx and sy are now sets

of categories, rather than single categories. Given a
similarity measure between the set members there
are different ways for defining the similarity between
sets that we can employ. One possibility is to use the
maximum similarity of any pair of elements between
the two sets. The intuition for such a choice is that
if two products x and y appear in close-by categories
in a taxonomy then they are similar, even if they also
appear in some distant categories.

4 THE TACI ALGORITHM

The optimization problem in Section 3.2.1 is closely
related to a variety of optimization problems such
as the metric labeling problem [12], or structured pre-
diction problems [3]. These problems are known to
be NP-hard when asking for a hard labeling of the
data. For certain variants there are approximation
algorithms [5], [6], [12], [23]. Our problem can be
formulated as an Integer Linear Program (ILP) or a
Quadratic Integer Program (QIP), however the num-
ber of variables is proportional to the number of
products in the source catalog, which is prohibitively
large. To the best of our knowledge, none of the
solutions that have been proposed are applicable to
web-scale classification problems, where the number
of products to be classified can be in the order of
hundreds of thousands, or millions.

In this section, we present a scalable algorithm for
the taxonomy-aware classification step that scales up
to large datasets. Although we present our technique
with respect to our specific problem, the methodol-
ogy that we propose can be applied to other struc-
tured prediction problems in order to deal with the
quadratic number of pairwise relationships that need
to be considered. To aid the presentation, we refer the
reader to Table 2 which explains the main terminology
and symbols that we will use in this section.

4.1 Search Space Pruning
We now present a heuristic for efficiently performing
the taxonomy-aware calibration step. The idea is to
judiciously fix the category for some of the products in
the source catalog in order to obtain a landscape of the
mappings between the two taxonomies. We then treat
each of the open (non-fixed) products independently
making use of Equation 4 to efficiently compute the
separation cost.

We identify the products whose assigned class can
be fixed using the output of the base classifier. The
intuition is that if the base classifier is sufficiently
“confident” about the top category of a source prod-
uct, then it is likely to be making the correct pre-
diction. However, if it is not confident about the
category (low probability estimate), it might not be
predicting the right category and therefore we should
consider adjusting the assignment at the taxonomy-
aware calibration step.
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TABLE 2
Algorithm terminology chart.

Generic terms
S, T source and target taxonomies
Cs, Ct sets of source and target taxonomy categories
σ, τ denote a source and target taxonomy category
Ps set of source catalog products

Algorithm Parameters
k number of top categories to consider as candidates
θ probability threshold for fixing the category
γ regularization parameter between assignment and

separation cost
Variables used in TACI algorithm

Prb[τ |x] probability of category τ for product x output by
base classifier b

Fθ products whose category is fixed
Oθ open products whose category is not fixed

h(σ, τ) separation cost for product coming from category
σ and assigned to category τ

Ψ cache for h(σ, τ) values
Hθ,k source-target category pairs for which we need to

compute the separation cost h

Let θ ∈ [0, 1] be a threshold value that defines
when the category probability estimate returned by
the base classifier is large enough so that the predicted
category is likely to be correct. Let Fθ be the subset
of products that pass the threshold, that is:

Fθ = {x ∈ Ps|max
τ∈Ct

Prb[τ |x] ≥ θ}. (5)

For the products in Fθ we trust the prediction of the
classifier, and we fix their labeling to the most likely
base classifier output. That is, for all x ∈ Fθ

`x = arg max
τ∈Ct

Prb[τ |x]. (6)

Let Oθ = Ps \ Fθ denote the products whose clas-
sification remains open. We treat each open product
x ∈ Oθ independently, and we compute a separation
cost for x only with respect to the fixed products in
Fθ. If sx is the source category of x, and tx is a
candidate target category, then the separation cost for
this source-target pair is defined as follows:

h(sx, `x) =
∑
y∈Fθ

SCOST(x, y, tx, `y).

Using Equation 4 we can rewrite h(sx, tx) as:

h(sx, tx) =
∑

σ∈S,τ∈T

SCOST(sx, σ, tx, τ)n̄(sx, tx)n̄(σ, τ) (7)

where n̄(σ, τ) is the number of products in Fθ that
belong in category σ in S and are assigned to category
τ in T . Therefore, by fixing the labeling of the products
in Fθ we have effectively achieved the following: first,
we have created a set of “anchors” against which we
compute the separation cost for a new open product;
second, the n̄(σ, τ) values, define a mapping between
the source and target taxonomies. This mapping is
used to compute the separation cost, and guide the
categorization of new open products.

To further speed-up the taxonomy-aware classifi-
cation step, we also reduce the space of candidate
source-target pairs. For an open product x ∈ Oθ, let

TOPk(x) denote the top-k candidate target categories
with respect to the probability estimates Prb[τ |x] of
the base classifier. We reduce the search space by con-
sidering only these k target categories as candidates
for product x. As we discuss in Section 4.3, restricting
ourselves to the top-k categories does not significantly
limit our maximum achievable accuracy.

We use Hθ,k to denote the set of candidate source-
target pairs for which we need to compute the sepa-
ration cost h:

Hθ,k = {(sx, τ) : x ∈ Oθ, τ ∈ TOPk(x)}.

From Equation 7 it follows that the separation cost for
the pairs in Hθ,k can be computed using the mappings
defined by the products in Fθ, and it is independent
of the products in Oθ. Therefore, for each candidate
source-target category pair (σ, τ), we need to compute
the separation cost h(σ, τ) only once, and store the
value for future use. We describe the algorithm in
detail in the next section.

4.2 Taxonomy-Aware Algorithm
Algorithm 1 describes the Taxonomy Aware Catalog
Integration algorithm (henceforth referred to as the
TACI algorithm). The algorithm assumes the existence
of a base classifier trained on data from the target
catalog. The input to the algorithm consists of a
source catalog and a target taxonomy, as well as the
parameters θ, k, and γ. The output of the algorithm
is a labeling ` for the products in the source catalog.

In the loop of Lines 2-9, the algorithm applies
the base classifier to each product. Based on the
base classifier output probabilities, the algorithm ei-
ther classifies the product to the top category given
by the base classifier (Lines 4-6), or it leaves its
classification open and stores the top k categories,
sorted by probability (Lines 7-9). Given the set of
open products Oθ, and their top-k candidate target
categories the algorithm computes the set of candidate
source-category pairs Hθ,k (Line 10). In the loop of
Lines 12-13 the algorithm computes the separation
costs for all of the candidate pairs (σ, τ) ∈ Hθ,k, and
stores them in a hash table Ψ. Note that for each
source-target pair we compute the value of h only
once, and we never compute a separation cost that
we will not use later on. In the loop of lines 14-15
the algorithm classifies the open products in Oθ. A
product x ∈ Oθ is assigned to the category `x among
the top-k categories in TOPk(x) that minimizes the
objective function.

We now provide an analysis of the running time
of the algorithm. The first loop in Lines 2-9 iterates
over the set Ps of all products in the source taxonomy,
and requires O(|Ct|) time to process each product,
where |Ct| is the number of categories in the target
taxonomy. Hence, the running time of the first loop is
O(|Ps||Ct|). The set of candidate pairs Hθ,k has size at
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Algorithm 1 TACI Algorithm
Input: source catalog Ks, target taxonomy T , base classifier

b, and parameters θ,k, and γ.
Output: a labeling vector `

1: Fs ← ∅
2: for all x ∈ Ps do
3: τ∗ ← arg maxτ∈Ct Prb[τ |x]
4: if Prb[τ∗|x] ≥ θ then
5: `x ← τ∗

6: Fθ ← Fθ ∪ {x}
7: else
8: Oθ ← Oθ ∪ {x}
9: Compute TOPk(x)

10: Compute candidate pairs Hθ,k
11: Initialize hash table Ψ to empty
12: for all (σ, τ) ∈ Hθ,k do
13: Ψ[(σ, τ)] = h(σ, τ)

14: for all x ∈ Oθ do
15: `x ← argmin

τ∈TOPk(x)

{(1− γ)ACOST(x, τ) + γΨ[(sx, τ)]}

most |Cs||Ct|, and thus the computation of the candi-
date pairs at Line 10, has cost at most O(|Cs||Ct|).
However, we expect this to be significantly lower,
since for each product we are only considering the
top-k categories, and it is unlikely that all possible
pairs of categories will occur in practice. In the loop
of lines 12-13, the algorithm computes the separation
cost h(σ, τ) for all candidate pairs in Hθ,k. The cost
of calculating h(σ, τ) is O(|Cs||Ct|), so the worst case
running time of the loop is O(|Cs|2|Ct|2). Again, we
expect this to be smaller in practice, since the size
of the candidate set is likely to be smaller. The loop
in Lines 14-15 now just sums up the precomputed
costs, for the open products in Oθ for each one of
the top-k candidate categories. The processing time is
O(k|Ps|). Thus, the total running time of Algorithm 1
is O(|Ps||Ct|)+O(|Cs|2|Ct|2)+O(k|Ps|), which is linear
with respect to the number of products |Ps| in the
source catalog.

4.3 Parameter Calibration

The tuning of the parameters k, γ and θ is important
for the performance of our algorithm. Similarly to
other works [1], [28], we assume the existence of
a validation set on which we tune the parameters.
The validation set consists of products that are cross-
labeled in both the source and the target taxonomy.
To obtain such a set, we can either automatically
match source to master taxonomy products using
some universal unique identifier such as the ISBN for
books, or manually label some products of the source
taxonomy if such an identifier does not exist. In both
cases, it is assumed that the obtained validation set
is too small to be used for the base classifier training
that involves tens of thousands of features, while it
is big enough to tune few parameters of the TACI
algorithm.

The calibration of the parameters of the algorithm
works as follows. First, we run the base classifier b on
the products of the validation set, and for each prod-
uct x we obtain a probability distribution Prb[τ |x].
The first parameter we set is parameter k, such that
the accuracy of the classifier over the top-k categories
is high. The details are described below. Then we
tune the parameters θ and γ. We consider a set
{θ1, ..., θNθ} of candidate values selected as described
below. For each candidate parameter θi we find the
“optimal” parameter γ such that the accuracy of the
TACI algorithm on the validation set is maximized.
The algorithm for estimating γ is described below. We
output the pair of parameters θ, γ that achieve the
maximum accuracy. We note that all parameters are
selected such as to maximize the accuracy of the TACI
algorithm on the validation set. Since the products
on the validation set are cross-labeled we know the
true labeling and we can compute the accuracy. To
avoid overfitting, when tuning the parameters θ and
γ we do not update them unless we have a significant
improvement in the accuracy (0.1% of the previous
value in our experiments).

Tuning Parameter k: we set the parameter k, such
that the accuracy of the base classifier over the top-k
results (i.e., the fraction of times that the true category
is contained in the top-k results) is above a certain
threshold (99% in our experiments), or k reaches
a predefined maximum (20 in our experiments). In
this way we guarantee that the TACI algorithm can
achieve accuracy up to 99%.

Tuning Parameter θ: The parameter θ determines the
anchor set Fθ: the products in Fθ should have high
classification accuracy, and at the same time capture
the true mappings between the source and target
taxonomies. The first requirement does not necessarily
imply the second, and thus we cannot set the thresh-
old θ in the same way we did for k. We thus perform
a linear search for Nθ different values, and we select
the one for which the calibration step gives the best
accuracy. We judiciously select the candidate values
for θ using the probabilities output by base classifier
to guide our choice. Let π∗x = Prb[τ

∗|x] denote the
probability of the most likely category of product x.
We sort the probabilities π∗x and we select Nθ values,
evenly spaced, as the candidate θ values. Thus, the
choice of the candidate values controls the fraction
of products in the validation set that are below the
threshold: this is the set of products for which we
run the taxonomy-aware step. This way we can focus
on the appropriate range of candidate values.

In our experiments we used Nθ = 40 different
values that divide the base classifier probabilities in 40
equally sized buckets. For example, if the validation
set has 4000 products, then each interval [θi, θi+1) con-
tains 100 products, that is, 2.5% of the total products.
Furthermore, for the θi candidate value there are 100i
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products that have probability π∗x ≤ θi for which we
run the taxonomy-aware processing step.

Tuning Parameter γ: The parameter γ is important
since it controls the effect of the taxonomy signal on
the classification. If the taxonomy provides a mislead-
ing signal, then we need to minimize its contribu-
tion to the optimization problem. We determine the
parameter γ by making use of the assignment and
separation costs over the validation set, and finding
the value of γ that gives the best accuracy. For a
given product x in the validation set, let τ1, ..., τk be
the set of candidate target categories in TOPk(x), and
let τ∗ denote the correct category for x. Note that
τ∗ may not be one of the categories in TOPk(x). For
each target category τi we can compute an assignment
cost ηi and a separation cost ζi. For a given value
of the parameter γ the cost of assigning x to this
category is ci = (1−γ)ηi+γζi. The item x will receive
the correct category τ∗, if τ∗ ∈ TOPk(x), and for all
τi ∈ TOPk(x), c∗ ≤ ci. In this case, the correct category
has the minimum cost, and it will be selected by our
algorithm. We want to find a value for γ that ensures
that the above requirement is satisfied for as many
products in the validation set as possible.

The algorithm proceeds as follows. For each candi-
date target category τi of product x we find the range
of values for γ that satisfy the inequality:

(1− γ)η∗ + γζ∗ ≤ (1− γ)ηi + γiζ ,

where η∗ and ζ∗ denote the assignment and sepa-
ration cost for the correct category τ∗. This is the
range of values of γ for which the correct category
τ∗ is selected over τi. If the interval [lx, ux] is the
intersection of the ranges of values for all τi, then for
any γ in this interval the correct category τ∗ is selected
over all categories in TOPk(x). If this interval is empty,
or it does not intersect with [0, 1] (e.g., it is negative)
then we discard item x since there is no value of γ for
which we can assign x the correct category. Otherwise,
any value in the interval [lx, ux] can be used as the γ
value. In this case we say that the interval satisfies
product x.

After processing all products, we obtain a set of
intervals, one for each product that was not discarded.
For any value γ ∈ [0, 1], the number of intervals
in which it is contained is the number of products
it satisfies. Intersecting all the intervals we find the
range of values [γl, γu] that satisfies the maximum
number of products. We return the mean of the
interval γ = (γl + γu)/2 as the final value for the
regularization parameter.

5 EXPERIMENTAL EVALUATION

In this section, we present the experimental evaluation
of our approach. The main goals of this evaluation
are the following: (1) to show the benefits of our
taxonomy-aware calibration step and compare the

taxonomy-aware algorithm against other catalog in-
tegration approaches (Section 5.2); (2) to evaluate the
different cost and similarity functions we consider
(Section 5.3); and (3) to study the running time of
our algorithm (Section 5.4), and the sensitivity to
parameter values (Section 5.5).

5.1 Experimental Setup
Datasets. We use as master catalog the catalog of Bing
Shopping, which aggregates data feeds from retailers,
distributors, resellers, and other commercial portals.
We consider three providers: Amazon, Etilize, and
Pricegrabber. The Amazon source catalog contains
65, 512 products; the Etilize catalog has 136, 876 prod-
ucts; and the Pricegrabber catalog consists of 544, 898
products.

In all the experiments, we consider a target tax-
onomy that consists of all the categories in Bing
Shopping taxonomy that are related to consumer elec-
tronics (all of the dataset products come from such cat-
egories). The resulting taxonomy has 297 categories.
There are 37 internal nodes, and 260 leaf nodes. The
height of the tree is 4 and the average branching
factor is 8.2. As source taxonomies, we use taxonomies
from the Amazon, Etilize and Pricegrabber providers,
restricted to the consumer electronics domain. In the
case of Etilize, the taxonomy has 523 nodes, of which
94 are internal nodes, and 429 are leaf nodes. The
taxonomy tree has height 5, and an average branching
factor of 5.6. The Pricegrabber taxonomy has 1001
nodes, 211 of which are internal nodes and 790 are
leaf nodes. Pricegrabber taxonomy has height 3 and
average branching factor is 4.8. Amazon has 1788
nodes in total, 1312 of which are leaves and 476 are
internal nodes. The height of the taxonomy is 7, and
the average branching factor is 3.8.

An important observation regarding the datasets
is the skewed category distribution over products
in all of the taxonomies. For example, the master
taxonomy with all of the dataset products has five
categories with more than 50K products each, while
it has approximately 70 categories with less than 500
products. We can make similar observations for the
source taxonomies. The skewed category distribution
over classified objects has also been observed in other
large web taxonomies [16]. This observation justifies
the normalization step that we use in Section A.3.

Ground truth. The ground truth is the true labeling of
the products in the provider catalog with categories
from the master taxonomy. We obtained the ground
truth as follows: the Etilize products were manually
labeled by human experts; the Pricegrabber products
were assigned a category from the master taxonomy
by applying rules developed by domain experts; the
Amazon products were associated to products in the
master catalog via universal identifiers (e.g., ASIN
and UPC numbers), and then they were assigned
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to the master category of the matching product in
the catalog. We split the ground truth data into two
subsets: the validation set that consists of 10% of
the labeled data, and the test set that consists of the
remaining 90% of the labeled data. We use the valida-
tion set to tune the parameters of the algorithms, and
the test set in order to evaluate their performance.

Algorithms. We compare our approach against two
types of algorithms: representation-based algorithms,
which classify products using only the textual rep-
resentation of the product, and category-aware algo-
rithms that make use of the source category of the
products, but not the full taxonomy structure (i.e.,
assuming a flat taxonomy structure).

For the representation-based approaches, we con-
sider two base classifiers: Naive Bayes (NB) and
Logistic Regression (LR). These are standard classi-
fication algorithms [18]. The features that we use
are unigrams and bigrams extracted from the textual
representation of the product, that is, the product
name and the attribute values. At training time the
features are extracted from the representation of the
products in the master catalog. At test time (or during
the parameter tuning phase) we extract the features
from the textual representation of the product in the
provider catalog. The provider catalogs always have
a name associated for each product. For the Etilize
catalog we also have attribute values (such as brand
name). Since we use the master catalog products to
train the base classifier, we do not use textual features
from the category names to avoid over-fitting (the cat-
egory name directly indicates the product category).

For the category-aware approach we consider the
algorithm of Agrawal and Srikant [1] (henceforth
denoted as the AS algorithm), one of the few category-
aware classification algorithms that can handle large-
scale datasets. Their algorithm builds upon a Naive
Bayes classifier, and biases the classification of a
product x towards the target categories in which
other products from x’s source category have been
classified. More specifically, the algorithm first runs
Naive Bayes on the test data to obtain the base prob-
abilities Prb[τ |x] for the product classifications. Then,
assuming that a product x is classified to category
τ = argmaxτ ′ Prb[τ

′|x] it computes the conditional
probabilities Pr[τ |σ] that a product that comes from
σ will be classified to τ using the formula:

Pr[τ |σ] =
n(τ)× n(σ, τ)w∑

τ ′∈Ct n(τ ′)× n(σ, τ ′)w
, (8)

where n(τ) is the number of products in τ , n(σ, τ) is
the number of products in σ predicted to be in τ , and
w is a tuning parameter. Finally, product x is classified
to category τ∗ = argmaxτ Pr[τ |σ]Prb[τ |x]. The param-
eter w for the Agrawal and Srikant algorithm is tuned
over the validation set.

For our taxonomy-aware (TACI) approach, we ex-

TABLE 3
Accuracy for all classifiers over all datasets

NB LR AS TACI-NB TACI-LR
Amazon 77.3% 70.5% 80.5% 81.1% 75.9%
Etilize 75.3% 80.1% 86.0% 81.7% 91.8%
Pricegrabber 41.6% 49.3% 55.0% 71.2% 74.4%

perimented with both Logistic Regression and Naive
Bayes as base classifiers. We use TACI-LR to denote
TACI over Logistic Regression, and TACI-NB for TACI
over Naive Bayes. The parameters of our algorithm
are tuned over the validation set. We use the same
validation set for both TACI and the AS algorithm.

Evaluation Metric: We use classification accuracy with
respect to the ground truth set as our evaluation
metric. The accuracy is the number of source products
for which the correct target category is predicted,
divided by the total number of source products.

5.2 Classification Accuracy Evaluation

In this section we compare the classification accuracy
of the different approaches for catalog integration.
The results for all algorithms over all datasets are
in Table 3. For the TACI algorithms, we report the
best results over all possible choices of similarity
metric and separation cost. We study the similarity
and separation cost parameters in detail in Section 5.3.

The first observation from Table 3 is that the
taxonomy-aware step provides significant benefits
over the representation-based base classifiers. As we
can see in Table 3, TACI-NB and TACI-LR consistently
outperform NB and LR, respectively. For example, on
the Etilize dataset TACI-LR improves the accuracy of
LR by an additional 10.7%, reducing the classification
error to less than half of that of LR. In the Pricegrabber
dataset, the TACI-LR algorithm gives an additional
25.1% accuracy over the LR algorithm, slashing the
classification error to half. The gains as less pro-
nounced in the Amazon dataset, although TACI-NB
improves over the accuracy of NB by 3.8% .

Second, TACI outperforms the AS algorithm that
we use as a category-aware baseline. The category-
aware AS algorithm does achieve accuracy gains over
the NB baseline, but, as we can see in Table 3,
TACI has overall higher accuracy. The improvement
is especially pronounced for the Etilize and Price-
grabber datasets: in the former TACI-LR improves
the accuracy by an additional 5.8%, while in the
latter the increase is by an additional 19.4%, reducing
the classification error to almost half of that of AS.
The improvement is less pronounced on the Amazon
dataset.

In order to get a better understanding of the above
results, we manually inspected the errors in the Ama-
zon dataset for NB, AS, and TACI-NB (notice that both
AS and TACI-NB build on top of NB). The anecdotal
findings are very revealing of how the TACI algorithm
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TABLE 4
Classification accuracy for different similarity metrics

and separation costs.

Absolute Multiplicative
Difference Cost

PG

Shortest-Path 63.1% 62.7%

LCA 74.4% 62.1%

Cosine 69.7% 63.7%

Et
il

iz
e Shortest-Path 91.3% 90.9%

LCA 91.7% 91.2%

Cosine 91.3% 90.6%

A
m

az
on Shortest-Path 77.2% 81.1%

LCA 80.6% 80.2%
Cosine 79.6% 79.4%

manages to make use of the taxonomy structure.
Consider the following example, which is actually
the motivation example we used in the introduction.
There are 272 products in the test set tagged with the
Amazon category Electronics/Car Electronics/Car Audio &
Video/Car Speakers/Coaxial Speakers which, according
to the ground truth, map to the master category
Electronics/Car Electronics/Car Audio/Car Speaker. How-
ever, NB makes 138 errors, 118 of which correspond
to products mapped to the category Electronics/Home
Audio/Speakers. This can be explained from the fact
that the NB classifier has only access to the product
representation (i.e., the textual description), and the
representation of a car speaker can be easily confused
with the representation of a home audio speaker. The
AS algorithm makes fewer mistakes (68 in total), but
TACI-NB is considerably better with just 21 errors.

The reason that the TACI-NB performs so well is
that there is a strong signal in the taxonomy that
the algorithm is able to exploit. While at the leaf
level there is uncertainty about the right category,
as we move upwards in the taxonomy tree it be-
comes apparent that the car audio speakers should
be mapped to a subcategory of Car Electronics and
not Home Audio. For example, if we aggregate the
predictions of the NB classifier over all products in
the source category Electronics/Car Electronics/Car Audio
& Video, 64% of them map to the target category
Electronics/Car Electronics compared to 43% of the prod-
ucts in Electronics/Car Electronics/Car Audio & Video/Car
Speakers/Coaxial Speakers that map to Electronics/Car
Electronics/Car Audio/Car Speaker. It is precisely this
higher-level mappings between taxonomies that the
taxonomy-aware approach is able to take advantage
of, while the category-aware approach is unable to
make use of this signal.

5.3 Similarity and Separation Cost Analysis

In this section we study the different similarity metric
and separation cost options. Table 4 shows the accu-
racy performance of the TACI algorithm for the three
similarity measures we consider, and the two possible
separation cost definitions, for all three datasets. The

taxonomy-aware step is applied on top of the best-
performing baseline classifier. This is logistic regres-
sion for Etilize and Pricegrabber, and the Naive Bayes
for Amazon. The accuracy numbers in bold are the
best for a specific similarity metric (best in the row),
and the boxed numbers are the best for the specific
dataset.

First, note that our technique demonstrates a consis-
tent trend for all of the different choices of separation
cost and similarity definitions. In the Etilize dataset,
which appears to be amenable to the taxonomy-
aware approach, all of the algorithms exhibit more
or less the same accuracy. In the Amazon dataset,
where the taxonomy information appears to be min-
imally helpful for the classification task, all of the
algorithms exhibit similar minimal gains (if any). In
the PriceGrabber dataset, despite the variability in the
results, all of the algorithms exhibit gains of at least an
additional 10% with respect to the baseline classifier
accuracy.

Regarding the separation cost, Absolute Difference
outperforms the Multiplicative Cost for most combi-
nations of datasets and similarity metrics. A possible
explanation for this is the symmetric property of
Absolute Difference Cost. Because of this property,
TACI helps eliminate base classifier mistakes that
classify products from dissimilar categories in the
source taxonomy to close-by categories in the target
taxonomy.

Regarding the similarity metrics, the LCA similarity
seems to perform the best overall. It has the highest
accuracy for Etilize and Pricegrabber, and it is close
to the best performance for Amazon. The LCA metric
captures nicely the intuition that the similarity of two
nodes in the taxonomy is determined by the point at
which they merge (or split). It also fits well with the
TACI approach that tries to make use of mappings
between ancestral nodes of two categories in order
to bias the classification. This intuition is not as well
captured by the Shortest-Path metric that does not
take into account the position of two nodes in the
taxonomy. The Cosine similarity is similar to LCA, but
it penalizes differently two nodes depending on how
deep they are in the taxonomy. This is reasonable, but
given that the parent relation in a taxonomy implies
also subsumption (every SLR digital camera is also a
digital camera), it is not always intuitive.

5.4 Running Time
In this section we study the running time of our
algorithm with respect to the number of products and
the number of categories in the source taxonomy. We
ran our experiments on a Windows Server machine
with two 4-core Zeon E5504 processors at 2.0GHz. We
parallelized the algorithm for the preprocessing step
to make use of the full power of the 8 cores.

In our first experiment, we study the running time
of the taxonomy-aware calibration step as the num-
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Fig. 2. Scalability experiments: Preprocessing and processing time for different samples of the Pricegrabber
dataset. Comparison of total execution time for all three datasets.

ber of source catalog product increases using the
Pricegrabber dataset. In particular we subsampled 9
different datasets from the Pricegrabber dataset of
sizes 10K, 25K, 50K, 75K, 100K, 200K, 300K, and 500K.
Each sample is a subset of the immediately larger
sample We use the parameters γ, k and θ that we
optimized for the full Pricegrabber dataset.

Figures 2(a) and 2(b) show the preprocessing time
(the loop in lines 12-13 of Algorithm 1), and the
product processing time (the loop in lines 13-14)
against the number of products in the dataset. The
first observation by looking at the y-axis scale for the
two plots is that the running time is dominated by
that of the preprocessing step, which is an order of
magnitude larger than that of the processing step.
This is expected, since in the preprocessing step we
perform essentially all of the computation necessary
for classifying the open products in Oθ. Thus the
running time of the processing step is small, and
scales in a linear way.

The running time of the preprocessing step depends
on the number of candidate source-target category
pairs that we need to consider. As more products are
introduced, the number of candidate pairs increases.
For very large datasets the number of candidate pairs
should saturate, and it should remain constant. We
do observe a concave trend in our plot (the increase
in the running time becomes smaller as the data size
grows), but our dataset is not large enough for it
to be clearly demonstrated. However, it is clear that
the preprocessing time grows in a sublinear way,
preserving our requirement for linear time processing.

In the second experiment we study the running
time of the TACI algorithm as the number of source
catalog categories increases. We applied the TACI al-
gorithm for all three datasets using the same number
(50K) of products, so that we understand the effect of
the spread of the products over different categories.
The 50K Etilize products come from 201 categories,
the 50K Pricegrabber products come from 653 differ-
ent categories, and the 50K Amazon products come
from 1,584 different categories. Figure 2(c) shows how

the preprocessing and processing running time varies
for the set of 50K products from the tree different
datasets. The running time is again dominated by the
preprocessing time. Notice that in practice the running
time increases almost linearly with the number of
categories. This increase is significantly lower than
the quadratic increase computed by the worst case
analysis.

5.5 Parameter Sensitivity Analysis
The tuning of the parameters is important to the
correct operation of the TACI algorithm. We rely on a
validation set for this purpose. The validation set is a
small subset of the source catalog data for which we
have the true labeling in the target taxonomy. Such
a labeling is created through manual effort, or auto-
mated techniques such as matching unique identifiers
(e.g., UPC codes). Since the size of the validation set
is typically small, this requires a manageable amount
of effort. Still, there are cases where it may be hard to
obtain such a validation set, or where the validation
set is limited only to subsets of the catalog. In such
cases we can only obtain rough estimates of the best
possible parameters.

In this section we study the sensitivity of the TACI
algorithm to the setting of the parameter values. For
each of the three parameters k, γ, and θ, we consider
several possible values and we will show that there
is a large range of parameter values for which we
obtain results comparable to those obtained when
the parameter values are set by the calibration step.
For the parameter k that determines the number of
candidate categories that we consider for an item, we
consider four different values K = {5, 10, 15, 20}. For
the parameter γ that determines the tradeoff between
the assignment and separation cost, we consider seven
different possible values such that the ratio γ

1−γ takes
values in the set Γ = {0.1, 0.2, 0.5, 1, 2, 5, 10}. For
the parameter θ that determines the threshold on
the confidence of the base classifier, we consider ten
different values. In order to deal with the variability
of the output of the base classifier, and to be consistent
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Fig. 3. Sensitivity experiments on the Amazon dataset.

with the way we choose the values in the calibration
step, we select the values for θ such we can control the
fraction of the products for which we need to apply
the taxonomy aware processing step. Since we have
ten values for θ, this means that for the i-th value of
θ, 10i% of the products have probability less than the
threshold, and thus need to be processed.

In our experiment, for each dataset we consider
the version of the TACI algorithm that obtains the
best accuracy in Section 5.2. This is the TACI-LR
for Etilize and Pricegrabber, and the TACI-NB for
Amazon. When testing the sensitivity of one of the
parameters, we fix the other two to the values we
used in the experiment in Section 5.2. We run the
experiment over the full labeled truth set, and we
measure the accuracy of the specific parameter setting.
In Figure 3 we present the results for the Amazon
dataset. The results of the other two datasets showed
similar trends and they are omitted due to space
constraints. For each of the three parameters, we
plot the accuracy we obtain for the values of the
parameter we consider. In the plots the accuracy for
the different parameter values is denoted by TACI.
For comparison’s sake we also plot the accuracy of
the base classifier, and that of the TACI algorithm with
the parameters we obtained from the calibration step
(denoted as “TACI-opt” in the plots).

Figure 3(a) shows that the algorithm does not seem
affected from the choice of the parameter k; we obtain
more or less the same accuracy for all values of k.
Surprisingly, smaller k values seem to do better, and
k = 5 outperforms the value k = 15 that we used in
our experiments. However, the difference in accuracy
is small.

As expected, the performance is more sensitive to
the setting of the tradeoff parameter γ that balances
the weight between the assignment and the separation
costs. Figure 3(b) shows that for values of γ in the
range between 0.5 and 0.75 the TACI accuracy is close
to the optimal. However, values of γ that are out of
this range result in significantly worse accuracy, al-
though it is still higher than the baseline NB accuracy.

The observations are similar for the setting of pa-

rameter θ. In Figure 3(c) we plot the accuracy versus
the fraction of products that are below the threshold
value of θ. When this fraction is between 0.2 and
0.5, we obtain accuracy that is comparable that of the
calibrated TACI algorithm. For other values of θ the
accuracy drops significantly, but we still obtain some
improvement over the base classification.

In conclusion, the TACI algorithm is obviously af-
fected from the setting of the parameters. However,
when varying the parameters the accuracy plots are
mostly smooth, and there is a range of values for all
parameters for which the algorithm achieves perfor-
mance comparable to that of the calibrated parameter
values. Thus, TACI is not overly sensitive to the exact
setting of the parameters, and it can perform compa-
rably well for a wide range of parameter values.

6 RELATED WORK

Catalog Integration. To the best of our knowledge, no
other scalable catalog integration approach exploits
the structure of the product taxonomies. Previous
work makes use of source category information, but
treats the source and target taxonomies as flat. In the
experimental section, we compared our method with
the one of Agrawal and Srikant [1]. Their method
scales to large datasets (like ours), but it showed
lower classification accuracy than our method in the
experiments. Sarawagi et al. introduce cross-training
[28], which is an approach to semi-supervised learn-
ing in the presence of multiple label sets. Unlike
our approach, they assume the existence of some
training data labeled using both the source and master
taxonomy. Their experimental results show that the
accuracy of cross-training in the catalog integration
problem is comparable to the method of Agrawal
and Srikant. Finally, Zhang et al. have also developed
approaches to catalog integration by using boosting
[33] and transductive learning [32], [34]. Although
these approaches achieve better classification accuracy
than AS, similar to the cross-training approach, they
require training data that are labeled in both the
source and the target taxonomies. So such methods
are not applicable to our problem setting.
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Nandi and Bernstein [20] propose an approach for
matching taxonomies based on query term distribu-
tions. The approach is quite different to ours. First,
it performs the mapping at the taxonomy level, map-
ping categories from the source to the target, while
we perform the mapping at the instance level by
categorizing individual product instances to the target
taxonomy. Secondly, the approach is not based on
classification but rather on exploiting distributions of
terms associated to the categories.

Metric Labeling and Structured Prediction. Our
formulation of the catalog integration problem as
an optimization problem is inspired by the metric
labeling problem that was introduced in [12]. In the
metric labeling problem, the goal is to find the optimal
labeling of some objects so that they minimize an
assignment and a separation cost. The problem is
NP-hard [12] and the different existing approximate
solutions formulate it as an LP [12] or a QP [23]. The
complexity of these methods makes them inapplicable
to large-scale datasets with more than a few hun-
dreds of products. The objective of our optimization
problem is also similar to the objective that arises
in computer vision problems [4], [5], [13]. The most
popular application is image restoration, where the
goal is to restore the intensity of every pixel in an
image using the values of the observed intensities. The
algorithms developed in this area focus on separation
costs defined in the Euclidean space, i.e., the similarity
of two items decreases linearly with their euclidean
distance. Although such algorithms are scalable, they
cannot be adapted to the separation cost definitions
that are suitable for taxonomies.

Structured prediction—the study of machine learn-
ing algorithms whose goal is to predict complex
objects with internal statistical dependencies—is an
active area of machine learning research [2]. It has
direct applications to natural language processing,
in which most prediction problems are structured
in nature: sequences of syntactic or semantic labels
for words in a sentence (part of speech tagging
or entity recognition), syntactic trees (parsing), for-
eign language sentences (machine translation), graph
matchings (word- or sentence-alignment) or logical
forms (semantic parsing). In these areas, research
has primarily focused either on the computational
problem of test-time inference, which is typically a
discrete optimization problem [9], [14], [26], [27], [29],
or of model training, which typically involves opti-
mizing over an exponentially large set of potential
outputs [7], [15], [25], [30]. Like these natural language
processing problems, our work involves recognizing
statistical dependencies in structured data; the pri-
mary difference is that in our setting, the structures
are always known ahead of time and our goal is to
leverage the information present in these structures.
The most similar line of work in structured prediction
to our setting is that of bipartite graph alignment

[10], [11], [19], which, in our application domain,
would amount to trying to learn a generic taxonomy
alignment model for arbitrary new portals making use
of additional information in the taxonomies.

Ontology Alignment and Schema Matching. There
is a large body of work in ontology alignment. Rep-
resentative examples include Glue [8], a system that
uses machine learning to learn how to map between
ontologies; and Iliads [31], a system which makes
use of machine learning and logical inference tech-
niques to output alignments. In general, the focus
in ontology alignment is to map nodes of a source
taxonomy to nodes of a target taxonomy. In con-
trast, in our work we are not interested in solving
the (much harder) alignment problem between tax-
onomies, but rather given an instance (i.e., a product)
the goal is to categorize it in the target taxonomy
using aids from the taxonomy structure. The end-
goal is always the categorization of the product.
This distinction is very important in many practical
scenarios. For example, suppose that the source tax-
onomy contains the leaf category Cameras, and that
it has no nodes that distinguish between different
types of cameras. Suppose that the target taxonomy
contains the categories Cameras, Cameras/SLR Digital
Cameras, and Cameras/Compact Cameras. An ontology
alignment technique would only be able to tell that
the category Cameras in the source corresponds to the
category Cameras in the target. However, given an
actual product whose source category is Cameras, it
is necessary to employ instance-level techniques like
the ones presented in this paper, to decide whether the
product corresponds to Cameras/SLR Digital Cameras or
Cameras/Compact Cameras.

Similar considerations apply to schema matching
techniques [22]. Such techniques find correspondences
between elements of different schemas, such as tables
and attributes. While the correspondences may be
obtained by exploiting (aggregated) instance infor-
mation, the output of schema matching techniques
is always given at the schema level. In our context,
that represents associating categories of the master
taxonomy to categories of the provider taxonomy. In
contrast, as we argued above, our techniques deal
with the different problem of determining for each
input data instance element the appropriate category
in the taxonomy. While schema matching techniques
typically exploit schema structure (e.g., a graph with
edges based on foreign keys relations in similarity
flooding [17]), the leveraged structure is significantly
different from the one that we exploit in this paper,
namely hierarchical relationships in a taxonomy.

7 CONCLUSIONS
In this paper, we presented an efficient and scalable
approach to catalog integration that is based on the
use of source category and taxonomy structure infor-
mation. We also showed that this approach leads to
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substantial gains in accuracy with respect to existing
classifiers.

While we focused on shopping scenarios, our tech-
niques are relevant to many other important domains.
In particular, they are applicable to classification in
any domain where there is a concept of a master
taxonomy and there are information providers which
use their own taxonomy to label the items that they
provide. This includes important verticals such as
Local, Travel, Entertainment, etc. One example in
Entertainment is the integration of media for stream-
ing purposes. For instance, the Xbox Dashboard now
provides the ability to access movies and TV shows
from multiple providers, such as Netflix, Hulu, dif-
ferent TV networks, etc. These providers use their
own taxonomy to label movies and shows, and thus
the need to properly organize them under a master
taxonomy. As another example, in the Local domain,
different providers may label restaurants in a different
way. For example, one provider may tag a restau-
rant as “Ethnic/Greek” while another may tag it as
“Mediterranean”.

While our techniques were used for classification,
they can also be used for other problems. For example,
their output could be be used as a feature for item
matching, when we want to match elements classified
under the master taxonomy (e.g., the products in the
master catalog) to incoming offers from the providers.

For future work, we would like to explore semi-
supervised learning techniques to incrementally re-
train the base classifier with elements chosen during
the taxonomy-aware calibration step. Finally, it would
be interesting to use our techniques in an active learn-
ing setting, in order to identify candidate products for
labeling.

REFERENCES
[1] R. Agrawal and R. Srikant. On integrating catalogs. In WWW,

pages 603–612, New York, NY, USA, 2001. ACM.
[2] G. Bakir, T. Hofmann, B. Schölkopf, A. Smola, B. Taskar, and

S. Vishwanathan, editors. Predicting Structured Data. MIT
Press, 2007.

[3] G. Bakir, T. Hofmann, B. Schlkopf, A. Smola, B. Taskar, and
S. Vishwanathan. Predicting Structured Data. MIT Press, 2007.

[4] Y. Boykov and V. Kolmogorov. An experimental comparison
of min-cut/max-flow algorithms for energy minimization in
vision. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 26(9):1124–1137, 2004.

[5] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy
minimization via graph cuts. IEEE Trans. Pattern Anal. Mach.
Intell., 23(11):1222–1239, 2001.

[6] C. Chekuri, S. Khanna, J. S. Naor, and L. Zosin. Approx-
imation algorithms for the metric labeling problem via a
new linear programming formulation. In SODA, pages 109–
118, Philadelphia, PA, USA, 2001. Society for Industrial and
Applied Mathematics.

[7] H. Daumé III, J. Langford, and D. Marcu. Search-based
structured prediction. Machine Learning Journal, 2009.

[8] A. Doan, J. Madhavan, R. Dhamankar, P. Domingos, and
A. Halevy. Learning to match ontologies on the semantic web.
The VLDB Journal, 12(4):303–319, 2003.

[9] T. Finley and T. Joakims. Training structural SVMs when exact
inference is intractable. In International Conference on Machine
Learning (ICML), 2008.

[10] A. Fraser and D. Marcu. Getting the structure right for word
alignment: Leaf. In Empirical Methods in Natural Language Pro-
cessing and Computational Natural Language Learning (EMNLP-
CoNLL), 2007.

[11] J. Graca, K. Ganchev, and B. Taskar. Learning tractable word
alignment models with complex constraints. The Computational
Linguistics Journal (CL), 36(3), 2010.
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APPENDIX A
THE SEPARATION COST

To define the separation cost we need to define the
similarity and penalty functions. In this section we
discuss different possible definitions for both func-
tions and outline their properties. We also discuss a
normalization step that we apply to the separation
cost function in our experiments, in order to alleviate
the effects of categories with large number of prod-
ucts.

A.1 Category Similarity
Category similarity in a taxonomy is a well-studied
topic, and different metrics have been proposed. Catia
et al. [21] provide a good summary of such metrics.
In this paper we present some representative metrics
and we compare them in the experiments section.
Recall that the value of simG(c1, c2) is the similarity of
categories c1 and c2 in the taxonomy G. We consider
the following similarity measures.

Shortest-Path similarity: This similarity measure is
defined using the shortest path between two categories
in the taxonomy tree. More specifically, the similarity
between c1 and c2 is defined as follows:

simG(c1, c2) = 2−hops(c1,c2) (9)

where hops(c1, c2) is the length of the shortest path
between c1 and c2 in taxonomy G. We also apply
an exponential decay function in order to further
penalize categories that are far apart. For example,
if c1 = c2 then simG(c1, c2) = 1, if c1 is the parent of
c2 then simG(c1, c2) = 1/2, and if c1 and c2 have the
same parent then simG(c1, c2) = 1/4.

The shortest-path similarity has the property that
the similarity is maximized when c1 = c2, which is a
desirable property for a similarity function. However,
since we use the similarity between categories to
define similarity between products, this has the effect
that two products under a high-level category such as
Electronics are as similar as two products under a deep,
specific category such as Electronics/Car Electronics/Car
Audio/Car Speakers. Similarly, for two categories c1 and
c2 that are children of the same node in the taxonomy,
their similarity will always be simG(c1, c2) = 1/4, re-
gardless of whether they are children of the root node,
or of a node deep in the taxonomy. This stems from
the fact that the similarity definition does not take
into account the position of the categories within the
taxonomy tree, and the semantics of the subsumption
relationship defined by the edges in a taxonomy.

LCA similarity: This similarity measure is defined
using the depth of the lowest common ancestor
lca (c1, c2) of categories c1 and c2. More specifically,
the similarity between c1 and c2 is defined as follows:

simG(c1, c2) = 1− 2−depth(lca(c1,c2)) (10)

The intuition for the use of the LCA comes from
the work of Resnik [24]. Categories deeper in the
taxonomy, i.e., further away from the root node, are
more narrow and specific than categories higher in the
taxonomy, i.e., closer to the root. The LCA category of
c1 and c2 is the most specific category that subsumes
both categories. The deeper this category is, the higher
the similarity between c1 and c2.

For example, in the master taxonomy tree in Fig-
ure 1 categories Electronics and Software have similar-
ity 1/2, while categories Electronics/Car Electronics/Car
Audio/Car Speakers and Electronics/Car Electronics/Car
Audio/Car Amplifiers have similarity 7/8. Note that in
this definition if c1 = c2 = c then simG(c1, c2) =
1− 2−depth(c). The similarity increases the deeper the
category c, and it is not maximized. This makes sense
in our scenario where we want products under a high-
level category to be less similar than products under
a deeper more specific category.

Cosine similarity: For this similarity measure, we
represent a category c using the categories in the path
from the root to category c. Let {x0, x1, ..., xd} denote
the set of categories in path from the root x0 =Root, to
the category xd = c, where d = depth (c) and xi ∈ C
are categories in the taxonomy tree. We represent a
category c as a binary vector vc over the category
space C, that takes value 1 for each category x ∈ C in
the path from c to the root. Formally,

vc[x] =

{
1 if category x ∈ {x0, x1, ..., xd};
0 otherwise.

For example, the master taxonomy tree in Figure 1
has 12 category nodes in total (including the root),
and thus each category c is represented as a 12-
dimensional binary vector. The vector for category
Electronics takes value 1 for the entries of categories
Root and Electronics and zero for all other entries.
The vector for category Electronics/Car Electronics/Car
Audio takes values 1 for the entries of categories Root,
Electronics, Electronics/Car Electronics and Electronics/Car
Electronics/Car Audio.

Given the vector representation we can now define
the similarity of two categories c1 and c2 as the cosine
similarity of their corresponding vectors v1 and v2.
The cosine of the two vectors is defined as

cos(v1, v2) =
v1 · v2

|v1||v2|

Where v1 · v2 is the dot product of the two vectors
and |v| is the length of the vector v. Note that the
number of 1’s in a category vector vc is equal to the
number of categories in the path of category c to
the root, which is equal to 1 + depth (c). Therefore,
|vc| =

√
1 + depth (c). The dot product of two binary

vectors is equal to the number of entries for which
both vectors have value 1. Since the vectors represent
paths in the tree, this is the number of categories in
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the path from the least common ancestor to the root.
That is, v1 · v2 = 1 + depth (lca (c1, c2)).

Therefore, we can compute the cosine similarity
between categories c1 and c2 as follows:

simG(c1, c2) =
1 + depth (lca (c1, c2))√

1 + depth (c1)
√

1 + depth (c2)
(11)

Using this similarity measure, two categories c1 and
c2 are similar if their lowest common ancestor is deep
in the taxonomy, and categories c1 and c2 are close
to their least common ancestor, that is their shortest
path is small. For example, in the master taxonomy
tree in Figure 1 categories Electronics/Car Electronics
and Electronics/Home Audio are more similar than Elec-
tronics/Car Electronics/Car Audio and Electronics/Home Au-
dio/Speakers since the former pair is closer to their
least common ancestor Electronics. The measure has
also the property that similarity of a category to itself
is 1. Furthermore, categories that are deeper in the
taxonomy are more similar than categories that are
higher in taxonomy.

Given the set representation of a category c, we
can also use other set similarity measures such as the
Dice and Jaccard coefficient. We experimented with
these similarity measures, and we obtained results
very similar with the cosine similarity, so we do not
report them in this paper.

We note that our problem formulation is not tied to
any specific similarity measure; any similarity mea-
sure can be utilized. We compare experimentally the
measures we defined in this section in Section 5.3
where we also discuss how their properties affect their
performance.

A.2 The Penalty Function

To complete the definition of the separation cost, we
need to define the penalty function δ that we will
use. In this paper we consider the following two
definitions for the penalty function, and, as a result,
two different definitions for the the separation cost.

Absolute Difference Cost: The penalty function is the
absolute difference between the similarities in the two
taxonomies:

SCOST(sx, sy, `x, `y) = |simS(sx, sy)− simT (`x, `y)|
(12)

The absolute difference cost is symmetric: it penalizes
both the placement of similar products in dissimilar
categories, and the placement of dissimilar products
in similar categories.

We also experimented with the squared difference
between the similarities as a candidate penalty func-
tion. We observed similar results, and we do not
report them in this paper.

Multiplicative Cost: The penalty function is the dis-
similarity (1− simT (`x, `y)) of the categories `x and `y

in the target taxonomy T , weighted by the similarity
simS(sx, sy) of sx and sy in the source taxonomy S:

SCOST(sx, sy, `x, `y) = simS(sx, sy)(1− simT (`x, `y))
(13)

This definition is inspired by the metric labeling
problem [12] and yields an asymmetric cost. That is,
the cost penalizes similar products (high simS(sx, sy))
that are classified to dissimilar target categories (low
simT (`x, `y)), but it does not penalize heavily dissimi-
lar products that are placed in similar categories. Such
a property is useful if the target taxonomy contains
combined categories that correspond to different cate-
gories in the source taxonomy, e.g., target has category
Computing & Electronics while the source taxonomy has
two separate categories Computing and Electronics.

We discuss the differences between the two penalty
functions along with their performance comparison in
Section 5.3 of the experiments.

A.3 Normalization
In our experiments we normalize the separation
cost SCOST(sx, sy, `x, `y) by a normalization parameter
ρ(sx, sy). The reason for the normalization is that in
practice we observed that the distribution of products
into the source taxonomy may have a significant
impact on the results. Categories that have a very
large number of products can pull in products from
distant categories, simply because of their size. This is
common in large web taxonomies, where the distribu-
tion of the number of objects per category is often very
skewed (e.g., power-law or log-normal [16]). In these
cases, separating the products from small-size source
categories from the products of a large source category
incurs a high penalty, and thus our optimization
technique will tend to merge products from small cat-
egories together with those of the large category in the
target taxonomy. The normalization parameter serves
the purpose of eliminating this “gravitational pull” of
categories with very large number of products.

We calculate the normalization factor ρ as follows.
Let x and y be two products, and sx and sy be their
respective source categories. We compute ρ(sx, sy) as
the total number of products whose source category
is at the same similarity radius from sx as sy :

ρ(sx, sy) =
∑
σ:simG(sx,σ)=simG(sx,sy) n(σ) (14)

where n(σ) is the total number of products in source
category σ. Note that the normalization factor it is
asymmetric, that is, it is a normalization with respect
to x instead of being symmetric with respect to the
pair x, y. It is easy to make it symmetric by taking the
sum or average. However, we define it asymmetric on
purpose, since in Section 4 we compute the separation
of an element x with respect to a set of already clas-
sified elements. This normalization factor was shown
to perform well in our experiments, prohibiting large
categories from attracting too many products.
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