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1 Dept. of Computer Science, University of California Davis, CA 95616
2 Genome Center, University of California Davis, CA 95616

{thau,sbowers,ludaesch}@ucdavis.edu

Abstract. We present a method for using aligned ontologies to merge taxonomi-
cally organized data sets that have apparently compatible schemas, but potentially
different semantics for corresponding domains. We restrict the relationships in-
volved in the alignment to basic set relations and disjunctions of these relations.
A merged data set combines the domains of the source data set attributes, con-
forms to the observations reported in both data sets, and minimizes uncertainty
introduced by ontology alignments. We find that even in very simple cases, merg-
ing data sets under this scenario is non-trivial. Reducing uncertainty introduced
by the ontology alignments in combination with the data set observations often
results in many possible merged data sets, which are managed using a possible
worlds semantics. The primary contributions of this paper are a framework for
representing aligned data sets and algorithms for merging data sets that report the
presence and absence of taxonomically organized entities, including an efficient
algorithm for a common data set merging scenario.

1 Introduction

We address the problem of merging data sets when the domains of the data attributes
overlap but are not equivalent. Consider, e.g., two data sets that report observations of
the presence or absence of biological taxa in a given region and at a given time.1 Each
of the dimensions, biological, spatial, and temporal, may be represented using a taxon-
omy, and the data sets may each use different taxonomies for any given dimension. In
the absence of any information about the relationship between the concepts in their tax-
onomies, the data sets can be naively merged by simply concatenating the observations
into a single data set. This method, however, may result in a self-contradictory data set,
or one that contains hidden redundancies and uncertainty. Given information about how
the data sets’ taxonomies relate (an alignment), the data sets can be merged in a more
informed way. We present here a methodology for merging data sets that takes advan-
tage of alignments between taxonomies while detecting contradictions, and minimizes
uncertainties that may arise in the merge.

? Work supported by NSF awards IIS-0630033, DBI-0743429, and DBI-0753144.
1 Presence data sets such as this are very common. For example, epidemiological studies track

the presence of diseases over time and space [1]. In ecological and biodiversity research, many
data sets stored in data repositories (such as Metacat [2]) are composed of lists of biological
taxa found in specified geographic extents over given periods of time.
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Fig. 1: Two data sets, with corresponding ontologies and ontology alignments.

Figure 1 presents a simple example involving two presence data sets D1 and D2
that describe types of rats found to be present or absent at specific places and times.
The Taxon column represents biological taxa, preceded by an abbreviation (e.g., “A” for
Norwegian rat). The taxonomies used to define and relate the taxa are represented by
ontologies depicted above the Taxon columns of the data sets. The creators of the two
data sets may have used different field guides to identify the taxa, in which case the
Taxon ontologies must be aligned to account for differences between the field guides.
The Loc column represents spatial locations: counties in Iowa in the first data set, and
the State of Iowa in the second data set. The ontologies from which the location names
are drawn are represented above their respective columns, and an alignment relates the
location names used in the data sets. Note that Iowa is both the name of a US State,
and of a county in that state. Time records when the observations are made. Finally, O
records whether or not a given taxon, at a given place and a given time is present (P) or
not present (N) (absent).2 We assume here that presence and absence are complements;
a taxon cannot be both present and absent at a given location and time.

Merge Scenarios. Each data set shown in Figure 1 provides a perspective on the state
of the world at a given place and time, according to a given observer. We call each data
set a scenario. Merging the data sets should provide a more complete description of the
state of the world. However, it may not be clear how to best merge the data sets, and
many scenarios may be possible. For example, the merged data set shown in Table 1(a)
describes the scenario arising from a simple union of the source data sets. Although
it seems like an obvious merge, it makes many, possibly incorrect, assumptions. First,
it assumes every name is distinct from every other name. However, concepts between
data sets can be equivalent, potentially rendering the merge in Table 1(a) inconsistent.
If concept A in D1 (Norwegian rat) is equivalent to concept F in D2 (House rat), and R
in D1 is equivalent to S in D2 (both studies were carried out in June, 2001), and concept
J in D1 (Iowa County) is a proper part of M (Iowa State) in D2, then the observations
corresponding to rows 1 and 6 in Table 1(a) would be reporting both the presence and

2 Note that the presence of a taxon does not imply that only one instance of that taxon was seen
at that place, at that time.



absence of the same taxon at the same place and time. Table 1(a) further assumes that
an unreported taxon does not imply the absence of that taxon. If an unreported taxon is
assumed to be absent, and, e.g., if Norwegian rat in D1 is disjoint from all the taxa listed
in D2, it would be problematic that D1’s observer reported the presence of at least one
Norwegian rat and D2’s observer did not. Table 1(b) and (c) present two alternative

Taxon Loc. Time O

A J R P

B K R N

C J R P

D L R N

E M S P

F M S N

G M S P

(a)

Taxon Loc. Time O

AE JM RS P

AE J̄K̄L̄M RS P

BF KM RS N

BF J̄K̄L̄M RS N

CG JM RS P

CG J̄K̄L̄M RS N

D LM RS N

D J̄K̄L̄M RS N

(b)

Taxon Loc. Time O

AE JKLM RS P

BF JKLM RS N

CG JKLM RS P

D JKLM RS N

(c)

Table 1: Three possible merges of the data sets in Figure 1.

scenarios. Table 1(b) assumes an alignment in which certain concepts are equivalent
(e.g., A≡E as represented by the new taxon AE). The alignment also asserts that certain
concepts are proper parts of others. For example, concept J is aligned as a proper part
of concept M (J ( M). This is represented by introducing new location concepts, JM
represents the region where J and M overlap (J∩M), and J̄K̄L̄M represents the region
of M that excludes J,K and L (M \ (J∪K∪L)).

Sources of Uncertainty. Uncertainty induces multiple possible merges. For example,
the different merges in Table 1 occur because of uncertainty in the alignment between
ontologies: the concepts A and E might be distinct concepts, as in Table 1(a), or equiv-
alent concepts, as in Table 1(b). This uncertainty may have been explicitly stated by
the ontology aligner (A≡ E or A ! E), or it may have been inferred from an incomplete
alignment [3]. We call this kind of uncertainty disjunctive relation uncertainty (DRU)
because it involves a disjunction of relations (equivalent or disjoint, in this case). Dis-
junctive relations may also exist within individual ontologies. For example, the tradi-
tional interpretation of “isa” as “equals or is included in” [4] is a disjunctive relation.

Even when the relationship between two concepts is certain, the relationship may
lead to uncertainty. For example, if an alignment holds that concept A according to D1 is
a kind (i.e., proper subset) of concept E according to D2 (A ( E), it is unclear whether
or not any of the E’s reported in data set 2 are also A’s. There are two possibilities:
either all the observed rats are both A’s and E’s (AE), or some of the rats are E’s but not
A’s (ĀE). We call this source of uncertainty basic relation uncertainty (BRU) because
it arises from basic set relations. Whereas disjunctive relation uncertainty exists at the
ontology level, basic relation uncertainty occurs at the level of the observations in the
data sets. To reliably resolve this uncertainty, one would have to ask for clarification
from the data set’s observer.

Our goal is to create data set merges free of BRU and DRU. While BRU and DRU
may appear in source data sets, in our experience high quality data sets do not contain



these types of uncertainty. We provide algorithms for merging data sets that are free of
BRU and DRU, as well as those that are not. However, the algorithm for merging data
sets that do not contain BRU or DRU is considerably more efficient than the one for
merging data sets that already contain uncertainty.

Contributions and Road Map. This paper contributes a novel modeling framework for
merging data sets with aligned domains under uncertainty. We describe several sources
of uncertainty within data sets as well as arising from the merging of data sets; and
present a possible worlds semantics for managing this uncertainty. Finally, we provide
algorithms for merging data sets in this context, providing NEXP-time algorithms for
the general case of generating possible worlds, and an NP-time SAT-based solution for
the common case of merging source data sets that do not contain BRU and DRU.

We proceed as follows. Section 2 describes our basic approach for managing un-
certainty that arises while merging data sets with aligned attribute domains. Section 3
provides formal representations for the various aspects of our framework: data sets,
observations, relationships between domains, presence, absence, and possible merges.
Section 4 describes algorithms for merging data sets that contain BRU and DRU, as
well as data sets that do not contain such sources of uncertainty. Section 5 compares
the efficiency of the different merging algorithms, demonstrating improvements in the
feasibility and performance of the optimized algorithms. Finally, Section 6 describes
related work and concludes the paper.

2 Basic Approach

This section provides an informal description of the elements involved in data set merg-
ing, and a high level description of our approach to performing the merge. We consider
data sets that can be defined as relations over finite sets of attributes. Data items within
a data set are tuples of values, where the values are drawn from their respective at-
tribute domains. In this work, the values represent concepts (classes), which are sets
of instances. For example, taxa are sets of (perhaps unknown) biological specimens,
locations are sets of points in space, and times are sets of moments. The attribute do-
mains may be structured, containing the domain concepts and relations between them
stated in some language (e.g., first-order logic, monadic logic, or description logic). To
emphasize the richness of the domains, we call them ontologies and we call a data set’s
collection of ontologies its metadata. We assume the source data sets are internally con-
sistent. Inconsistency, however, can occur in a number of places. A data set may contain
contradictory information if, e.g., it states both the absence and presence of a taxon at a
given place and time. A data set may also be inconsistent with its metadata, e.g., if the
metadata states that taxa A and B are equivalent (represent equivalent sets), but the data
say that A is present at a given place and time and B is absent. Finally, the ontologies in
the metadata may be inconsistent. We define a legal data set as one that does not violate
any of these consistency constraints. We further define an unambiguous data set as a
legal data set that contains neither basic nor disjunctive relation uncertainty.

Merging data sets is enabled by alignments between data set ontologies. Alignments
are sets of articulations of the form: “A r B”, where A and B are ontology concepts, and



r is a relation between the sets that the concepts represent. Relations are drawn from the
RCC-5 algebra [5], which has proven to be useful in biological taxonomy alignment [6,
7]. A key feature of RCC-5 is that in addition to five basic set relations (e.g., set equiv-
alence and set disjointness) disjunctions of relations are represented. These disjunctive
relations are necessary when the relationship between two sets is only partially known
(e.g., set A either overlaps with or is a proper part of set B).

Each scenario in Table 1 describes one unambiguous data set. We propose treating
each possible merged data set as one of many possible worlds [8, 9] in a possible worlds
set (PWS). Given two data sets, one could generate the appropriate PWS by generat-
ing an initial world set (IWS) containing every conceivable world (restricted by the
finite domains of the metadata), including those worlds that violate the alignment and
certainty constraints, and then reducing this set by eliminating columns and rows that
violate the constraints.
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Fig. 2: (a) A very simple scenario, (b) its initial world set, (c) the reduced possible world set, (d)
and (e) the corresponding merged data sets.

Unfortunately, this approach is intractable. Consider the extremely simple scenario
shown in Figure 2(a) having two data sets D1 and D2 with taxon A present in D1, and B
present in D2. Each data set has a single biological attribute, and that attribute can only
take one value: A for D1 and B for D2, and an articulation between these concepts states
that A ( B. To generate an IWS, we first determine all conceivable conditions that may
or may not hold based on the concepts in the data set ontologies. There are four ways to
combine the biological concepts A and B: a biological specimen might be an example
of AB,AB̄, ĀB, or ĀB̄. We call each of these combinations a combined concept. Each
combined concept represents a set of instances, and a data set reports whether there are
no instances of the set present within the context of the data set (absence), or at least one
instance from the set present (presence). The resulting IWS has 22 = 4 conditions and
24 = 16 worlds. This IWS can be conveniently represented with a world set relation [10]
as shown in Figure 2(b). In this table, the conditions are represented as columns, and
each world is a row in the table. The number 1 indicates that instances of the condition
are present in a given possible world, and 0 represents the absence of instances of that
condition. The first world represents the (impossible) situation in which instances of all
the conditions are present. This is impossible because the first combined concept, AB̄
cannot be present (in fact, is not satisfiable) because A ( B.



Once the IWS table is created, it may be reduced by removing conditions and pos-
sible worlds that violate constraints or are unsupported by the input data sets. For ex-
ample, because A ( B, AB̄ is an impossible combined concept, any condition involving
it cannot hold. Similarly, because D1 reported the presence of A, and A ( B, AB must
be 1 in every possible world, and any world with 0 in that column should be removed.
In addition, conditions for which there is no evidence should be removed. In this exam-
ple, the last condition of the IWS should be removed because neither data set describes
specimens that are neither A nor B. Finally redundant rows created by the deletion of
combined contexts should be removed. Removing all of the impossible, redundant, and
unsupported information results in the two possible worlds in the PWS shown in Fig-
ure 2(c). The two merged data sets that correspond to these possible worlds are shown
in Figures 2(d) and 2(e).

In more typical situations, this approach will not work. For example, merging two
data sets with three attributes, where each attribute has a corresponding ontology (O1,O2
and O3) with |On| concepts will result in a IWS with C = 2|O1|+|O2|+|O3| columns, and
2C rows. The simple scenario in Figure 1 would lead to an IWS with 27+4+2 = 8192
conditions and 28192 worlds; a number of worlds too large to enumerate, much less
manipulate. A primary contribution of this work is a set of more tractable algorithms
for generating the appropriate PWS. To do so, we more formally define the framework
within which the merge occurs.

3 Framework

Dimensions, Concepts, and Ontologies. We distinguish between distinct types of ob-
jects using classification dimensions (or dimensions for short). Here we are primarily
concerned with three dimensions: spatial (e.g., locations and regions), temporal (e.g.,
points in time and intervals), and biological (e.g., organisms classified via biologi-
cal taxonomies). Vocabularies for classifying objects are represented using ontologies
O = ({C1, ...,Cn},Σ) each consisting of a finite set of concepts and a set of constraints
Σ on those concepts. Each concept C specifies a set of objects that are considered to
be instances of C. Each ontology O is associated with a dimension given by a func-
tion dim(O). Thus, each concept of a particular ontology classifies objects of the same
dimension.3 Below, we assume that biological ontology concepts describe sets of organ-
isms, spatial ontology concepts describe sets of points in space, and temporal ontology
concepts represent sets of moments in time.

Each concept within an ontology may be represented as a unary predicate, and rela-
tions between predicates can be described using first-order logic (or some appropriate
subset). For example, we may define the biological ontology for a data set as a set of
concepts B1, · · · ,Bn ∈B, and a set of “isa” relations between these concepts represented
in monadic first-order logic as ∀x : Bi(x)→ B j(x). This formula states that any instance
of biological concept (or taxon) Bi is also an instance of taxon B j. When merging data
sets, we exploit the constraints given by the structure of B.

3 An ontology typically contains terms from different dimensions and can be viewed in our
framework as consisting of one or more domains.



Data Sets and Observations. Data sets are represented as relations D over the schema

C1×·· ·×Cn×D1×·· ·×Dm

where each Ci denotes a context attribute and each D j denotes a data attribute. A total
function, m : C → O maps each context attribute to an associated ontology, and the
domain of the attribute is restricted to the concepts in the associated ontology. A data
attribute represents a set of possible values corresponding to observations made over
the given context attributes. In our example, we consider the following special case

CB × CS × CT × DO

where CB represents a required biological context attribute (e.g., organisms classified
via biological taxonomies), CS represents an optional spatial context attribute, CT rep-
resents an optional temporal context attribute, and DO represents a simple data attribute
denoting a presence or absence observation over context attributes. In general, presence
data sets are represented by one or more records of the form D(b,s, t,o) where b ∈ CB,
s ∈ CS, and t ∈ CT are concepts and o ∈ DO is either P, meaning at least one b was
observed in region s during time t, or N, meaning no instances of b were found in region
s during time t. We call each record in a data set an observation. Although biodiversity
data sets often contain additional context information and measurements [11], the fea-
tures described above are sufficient to demonstrate the core issues of data set merging
that we address.

Absence Closure. So far we have described data sets containing presence and absence
information explicitly. In some cases, a data set may contain only presence information,
but intend that absence is implied when an observation is not made. We say that a
presence data set is closed under absence if for each context term bi ∈CB, s j ∈CS, and
tk ∈ CT there is a record D(bi,s j, tk,o). If no such record exists in the data set, we can
close the data set by asserting an absence observation via the record R(bi,s j, tk,N).

Relationships Between Ontologies. In this work we describe merging two data sets
of the aforementioned schema. Although the schemas are the same, the ontologies for
the biological, spatial and temporal context attributes may differ between data sets.
We allow concepts within and across ontologies of the same dimension to be related
through sets of (first-order) constraints Σ. Given an ontology O, we write ΣO to denote
the constraints of O. Constraints expressed between concepts of different ontologies
are referred to as articulations. We call a set of articulation constraints A = ΣO1O2 an
alignment, and refer to the ontologies in an alignment as A.1 and A.2. In this work,
we only consider articulations between concepts that appear in ontologies of the same
dimension, dim(A.1) = dim(A.2). A set of alignments, A = {A1, · · · ,An} where ∀x,y ∈
A : x 6= y→ dim(x.1) 6= dim(y.1), is called an alignment set.

We use the five basic relations of the region connection calculus RCC-5 for express-
ing constraints between ontologies [5, 6]. Specifically, RCC-5 constraints relate pairs of
(non-empty) concepts using the relations shown in Fig. 3. Any two concepts C1,C2 may
be related by one or more of the five basic relations, e.g., C1 {(,⊕} C2 states that C1
is either a proper subset of or overlaps C2. Similarly, the constraint C1 {≡,(} C2 rep-
resents the standard “isa” relation between concepts. Unless otherwise given (i.e., by
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Fig. 3: The five basic, pairwise disjoint relations of the region connection calculus: (i) N ≡M stating that the set denoted by
N is equivalent to M, (ii) N ( M stating that N is a proper subset of M, (iii) N ) M stating that M is a proper subset of N,
(iv) N⊕M stating that N and M overlap, and (v) N ! M stating that N and M are disjoint, for two non-empty sets N and M.
Further, for N⊕M, it is assumed that at least one element is in the intersection.

default), any two concepts are assumed to be related by the disjunction of all five con-
straints, sometimes called the universal relation.

Merging Ontologies. Merging the context ontologies described here is a straightfor-
ward generalization of [7] which describes a method for merging taxonomies under
RCC-5 articulations. Given two ontologies, O1 and O2 and an alignment ΣO1O2 describ-
ing the RCC-5 articulations between the concepts in O1 and O2, the merge algorithm
begins by converting the ontologies to axioms in a first-order language (ΦO1 ,ΦO2 and
ΦO1,O2 ) and using a reasoner to calculate the RCC-5 closure of the union

ΦM = ΦO1 ∪ΦO2 ∪ΦO1,O2

of the logic axioms describing the source ontologies and the articulations.
We then create a merged ontology by defining, if necessary, a new concept for each

class of equivalent concepts, and rewriting the articulations determined by the RCC-5
closure with the new concept terms. CM represents the set of predicate names in ΦM .
We define an equivalence relation on CM such that:

a∼ b if Φ |= ∀x.a(x)↔ b(x),

where the equivalence class of a ∈C is [a] = {x ∈C | x ∼ a}. We say that ontology O
has synonyms if for some a,b ∈C with a 6= b we have that a∼ b; otherwise O is called
synonym-free. Using this definition we can construct a unique, synonym-free version
of the initial merged ontology. We call this simplified version a quotient ontology O/∼
such that:

C/∼ = {[a] | a ∈C},
Φ/∼ = {[ϕ] | ϕ ∈Φ}.

Here for every FO formula ϕ, we define its quotient [ϕ] to be the formula where each
atom a(x) has been replaced by the atom [a](x).

Data Set Merge Result and World Sets. The result of merging two data sets M =
Merge(D1,D2,A) is often a set of possible worlds. Each world represents an unam-
biguous data set that has as its metadata the merge of the source data sets’ ontologies,
and furthermore respects the observations in the source data sets. One data set D1 re-
spects the observations of another D2 (D1 ≺ D2) if D1 |= D2. For example, a data set
derived from a possible world DM respects the observations of one of its sources DS if
for every tuple t in DS, we have that DM |= t.



≡: ∀x : A(x)↔ B(x). !: ∀x : A(x)→¬B(x).
(: ∀x : A(x)→ B(x). ⊕: ∃x : A(x)→ ((A(x)∧B(x)) | (A(x)∧¬B(x))).
): ∀x : B(x)→ A(x). ∃x : B(x)→ ((A(x)∧B(x)) | (¬A(x)∧B(x))).

Table 2: A monadic logic encoding of articulations of the form A◦B where ◦ ∈ {≡,(,),⊕, !}. This encoding applies when
translating data sets into logic. When translating ontologies and articulations into logic for the purpose of checking their
consistency or merging the ontologies, use the encoding in [6].

The main challenge addressed in this paper is (efficiently) determining the possible
worlds. Once they have been found, the worlds can be conveniently represented using a
single relation W [12]. We start with a set of possible worlds P, where each world p∈ P
is an instance of a relation following the D(b,s,t,o) schema, where |p| is the number of
tuples in p. For each tuple in each possible world, we apply a function f () to create
a symbol representing the concatenation of the context attributes. For example, for the
tuple D(b1,s1, t1,P), create a symbol b1s1t1. We call the set of such symbols T . The
attributes of the schema of W are the symbols in T , and its arity is |T |. We index each
attribute in W with values 1≤ i≤ |T |.

The tuples in W are created as follows. For a given world p∈P with tuples {t1, ...., tn},
let tp be a tuple following the schema of W where for 1≤ i≤ |T |, tp(Wi) = 1 if ∃x ∈ p
such that f (x) =Wi and o(x) = P; tp(Wi) = 0 if ∃x∈ p such that f (x) =Wi; and o(x) = N
and p(Wi) =⊥ otherwise.

Translation into Logic. To determine whether or not two data sets may be merged,
to ensure the consistency of data sets, and to validate the result of the merge requires
reasoning about the data sets, their ontologies, and the relationships between the on-
tologies. To provide this reasoning, we translate each of these elements into sets of
first-order logic formulas.

Each record of a data set D induces a first-order logic formula as follows. A presence
observation denoted by a record of the form D(b,s, t,P) is represented by a formula

(∃xyz) b(x)∧ s(y)∧ t(z)∧present(x,y,z)

where the relation present(x,y,z) holds whenever the biological entity x was present at
location y and time z.4 The formula above states that a biological organism x of type b
was observed within location y of type s and at time z of type t. Similarly, an absence
observation denoted by a record D(b,s, t,N) is represented by a formula

(∀xyz) b(x)∧ s(y)∧ t(z)→¬present(x,y,z)

stating that for each biological entity x of type b, location y of type s, and time z of type
t, x was not found within location y at time z. Note that this encoding of absence asserts
the complete absence of entities of the given biological type throughout the given spatial
and temporal contexts. We refer to the set of axioms reflecting the observations of a data
set as ΦDI .

We encode the constraints over the concepts in the ontologies using monadic logic.
More specifically, we restrict the ontology constraints in ΣO to relations from the RCC-
5 algebra, plus an additional type of constraint called coverage. The coverage con-
straint states that one concept can be defined as the union of a set of concepts (e.g.

4 Where the formula includes the S and T terms only if these are part of the presence-absence
schema.



(∀x) P(x)↔C1(x)∨ ·· ·∨Cn(x).) We define ΦO as the combined set of formulas gen-
erated by translating the RCC-5 constraints in ΣO into monadic logic using the rules in
Table 2, plus additional coverage constraints. The RCC-5 based articulations between
ontology concepts are also represented as monadic logic formulas ΦA.

A complete data set, then, is defined as

ΦDS = ΦDI ∪ΦO1 ∪·· ·∪ΦOn

where n ranges over the ontologies referenced by the data set.

Merge-Compatible Data Sets. To determine whether or not two data sets may be
merged, we calculate the absence closure for each data set, if required, and then translate
the data sets into the first-order logic representation above, along with their ontologies
and the alignment axioms relating the ontologies. We then apply a first-order reasoner
to determine whether or not the combined axioms are consistent. The merge of two
data sets ΦM is the union of the formulas for each data set combined with the formulas
derived from the RCC-5 articulations between the data set ontologies

ΦM = ΦDS1 ∪ΦDS2 ∪ΦA1 ∪·· ·∪ΦAn

where n ranges over the context attributes in the data sets.

Example (Merge-Compatible). Consider Fig. 1 without absence closure, and ontology
alignment set A = {{A≡ E;B≡ F ;C≡G},{J ≡M;K ≡M;L≡M},{R≡ S}}. In this
simple example, merging the two data sets is straightforward, where the single merge
result shown in Table 1(c) contains no BRU or DRU and represents all the observed
data. Typically, however, merging two data sets does not result in a combined data set
that is free of uncertainty, due to non-trivial ontologies and articulation constraints. In
the following section we describe an approach for merging data sets when the merge
cannot be satisfied by a single data set, and instead must be represented as a set of
possible merges.

4 Merging Data Sets

Merging two data sets results in a set of possible merges, each representing an un-
ambiguous data set that respects the observations in the source data sets. Before car-
rying out the merge, we determine the input data sets’ merge compatibility. If the sets
are merge compatible, we perform one of two types of merge. Basic relation merges
(BRM) are those in which all the relations between concepts in the two data sets are
drawn from the basic set relations. Disjunctive relation merges (DRM) are those that
involve at least one disjunctive relation (e.g., A{≡,)}B). This section proceeds by first
describing how to check for merge compatibility. We then describe a naive algorithm
for merging data sets, followed by two BRM algorithms, and then a description of how
to perform a DRM.



Algorithm 1: Merge Compatible

Input: Two data sets and a set of articulations between the ontologies
Output: true if the data sets are merge compatible, false otherwise

1. Determine consistency.
(a) For each data set

i. Calculate ΦO for each ontology and check its consistency.
ii. Calculate ΦDS for the data set and check its consistency.

2. If each data set is consistent, check the alignment ΦO1 ∪ΦO2 ∪ΦA12 between each pair of data set ontologies for
consistency.

3. If each alignment is consistent, check the full merge ΦM for consistency, applying absence closure if required.

Algorithm 2: Calculate Absence Closure Axioms
Input: A data set
Output: A set of logic axioms representing absence axioms

1. Create logic absence axioms A = {a1, · · ·an} for each possible combination of context attribute values B×S×T
2. For each row in the data set ri, for each created absence axiom ai:

(a) if ri→ ai remove ai from A
(b) if ai→ ri remove ai from A

3. Return A

4.1 Merge Compatibility and Absence Closure

For two data sets to be merge compatible, they must follow our schema, their ontologies
must be consistent, the data must be consistent with the ontologies, the alignments
between their ontologies must be consistent, and finally, the union of the logic axioms
for each data set, their ontologies, and the ontology alignments must be consistent.
These steps are outlined in Algorithm 1.

Consistency in the last step may be violated by contradictions introduced by explicit
absence statements, as well as axioms introduced in absence closure. For example, in
Fig. 1, if D≡X where X is some known, but unreported rodent in data set 2’s taxonomy,
absence closure leads to a direct contradiction; data set 2 would state explicitly that X
is absent, conflicting with the observed D in data set 1. Algorithm 2 provides a straight-
forward way of calculating these absence axioms. This algorithm first determines all
possible cases in which presence might be observed within the given attribute contexts,
and then rules out those cases that are implied by known observations, and also those
that imply known observations.

4.2 The Naive BRM Algorithm

The most straightforward way to calculate the possible worlds is to create an initial
world set (IWS) as described in Section 2, encode each world in logic, and test whether
or not it is consistent with the formulas in ΦM. This method, however, is both intractable
and inefficient. A somewhat more efficient approach is to initially rule out impossible
conditions in the IWS. For example, if an articulation holds that A ( B, any world
in which the combined concept AB̄ is either present or absent would be inconsistent
with the articulation. Removing conditions containing such concepts reduces the size
of the IWS and, as will be shown in Section 5, can generate possible worlds for small
data sets. Table 3 lists the monadic logic formulas generated to test the possible world
in Fig. 2(d) in which instances of taxa that are both A and B are present, as well as



instances of taxa that are B but not A. The complexity of naive BRM algorithm comes
primarily from the need to perform many (up to 2n) monadic logic proofs, each of which
is NEXPTIME [13].

Axioms: Conjecture:
∀x : A(x)→ B(x). ∃x : AB(x). ∀x : AB(x)→ (A(x)∧B(x)). (∀x : (A(x)→ B(x)))∧
∀x : B(x)↔ (AB(x)∨ ĀB(x)). ∃x : ĀB(x). ∀x : ĀB(x)→ (¬A(x)∧B(x)). (∃x : A(x))∧ (∃x : B(x)).
∀x : A(x)↔ AB(x). ¬∃x : ĀB̄(x). ∀x : ĀB̄(x)→ (¬A(x)∧¬B(x)).
∀x : A(x)∨B(x).

Table 3: Monadic logic rules demonstrating the possibility of the data set in Fig. 2(d).

4.3 General Basic Relation Merge (BRM-G)

The general basic relation merge (BRM-G) presented in Algorithm 3 applies when the
data sets to be merged have no DRM, but may have BRM. The key steps to the BRM-G
algorithm are calculating the columns of the PWS H, and the propositional formula Φ,
the models of which represent the possible worlds in the PWS. The compress function in
step 2(c)ii takes two combined concepts, both of length n. If the two combined concepts
agree on n− 1 concepts, the result is the concepts they agree on, plus the concepts
they disagree on. For example, compress(AB̄C̄, B̄C̄D) results in AB̄C̄D. The compress
function also makes sure to not create any impossible combined concepts, such as ones
that contain a term and its negation (e.g., AĀ).

Example (Only one context domain). Consider a simplified version of Fig. 1 with
only the biological attribute context, the observation data context, and the following
alignment between the biological ontologies of the data sets: A = {A ≡ E;B ≡ F ;C⊕
G;D ( G}. A straightforward union of the biological concepts in this situation shown in
Table 4(a) contains several problems. First, listing both A and E is redundant, as A≡ E.
More importantly, D and G have a ( relation between them, so the result in Table 4(a)
still contains BRU. Finally, although C and G are both named pack rat, they are not
equivalent terms as represented in Table 4(a).

Running the BRM-G against this example results in the H and Φ shown at the
top of Table 4.5 The PWS that results from these formulas is show in Table 4(b). The
enumeration of all possible worlds shown in Table 4(b) indicates that the combined
concept AE is present in all possible worlds (certainly present), while BF and DG are
absent in all possible worlds (certainly absent). The situation is more complicated for
concepts C and G. Table 4(c) and (d) give two of the possible merged data sets showing
different possible configurations of C and G .

5 To save space and improve legibility, the complete combined concepts are not given in the
table. For each abbreviated concept in Table 4, the full combined concept can be determined
by adding the negated form of all the concepts in the data sets not mentioned in the combined
concept. For example, the abbreviated combined concept AE in Table 4 stands for AB̄C̄D̄EF̄Ḡ.



Algorithm 3: General Basic Relation Merge (BRM-G)

Input: A naively merged data set.
Output: A possible world set representing each possible merge.

1. Create a new concept c1c2 · · ·cn for those concepts that are equivalent according to the articulations. Replace all con-
cepts contributing to the new concept with the new concept in ΦM . Remove redundant formulas.

2. For each attribute A ∈ {B,S,T}:
(a) Create an empty set PA.
(b) For each pair of rows (ri,r j) in the data set

i. Let ci = A(ri) and c j = A(r j)
ii. If ci ( c j , add cic j and c̄ic j to PA.

iii. if A(ci)⊕A(c j), add cic j , ci c̄ j , c̄ic j to PA.
iv. if A(ci) ! A(c j) add ci c̄ j and c̄ic j to PA.

(c) Repeat |A|−2 times, where |A| is the number of concepts of attribute A in the data sets.
i. Create empty set EA

ii. For each pair of concepts ci,c j , i 6= j ∈ PA, add compress(ci,c j) to EA
iii. set PA = EA

3. For each data set row r, for each attribute A ∈ {B,S,T}, for each term p ∈ PA, if A(r) appears positively in p then add
p to VA(r).

4. Create a propositional logic statement that will generate the possible worlds: Create an empty sets A and H. For each
observation r in each data set:

(a) For each attribute A ∈ {B,S,T} : DA =
W

VA(r)
(b) C =

W
DB×DS×DT

(c) If O(r) = P, add C to A
(d) If O(r) = N add the negation of C to A
(e) Add C to H

5. Conjoin the elements in set A - this will be a propositional logic statement - the possible worlds are the models of this
statement.

(a) H contains the conditions in the header of the table
(b) Create the rows: For each model, add a new row to the table where for each condition in H, if the condition holds

in the model, put 1in the appropriate column, and add 0 otherwise.

H = {AE,BF,CḠ,CG,C̄D̄G,DG}
Φ = AE ∧¬BF ∧ (CḠ∨CG)∧ (C̄D̄G∨CG∨DG)∧¬DG

Taxon O

A P

B N

CG P

D N

E P

F N

(a)

World AE BF CḠ CG C̄D̄G DG
1 1 0 1 1 1 0
2 1 0 1 0 1 0
3 1 0 1 1 0 0
4 1 0 0 1 1 0
5 1 0 0 1 0 0

(b)

Taxon O

AE P

BF N

CḠ P

CG N

C̄D̄G P

DG N

(c)

Taxon O

AE P

BF N

CḠ N

CG P

C̄D̄G N

DG N

(d)
Table 4: Possible worlds for Fig. 1 with just its biological attribute context and its data context. (a) shows a merge representing
the (ambiguous) straightforward union of the data sets. (b) shows the PWS of unambiguous worlds. Tables (c) and (d)
represent unambiguous merged data sets derived from the PWS.

Example (Two context domains). Consider the taxonomic and spatial dimensions of
the running example with the alignment A = {{A ≡ E;B ≡ F ;C⊕G;D ( G},{J (
M;K ( M;L ( M}}. Below are the columns of the PWS (each given a number), fol-
lowed by the propositional formula describing the possible worlds.

H = {1 : AEJM,2 : BFKM,3 : CGJM,4 : CḠJM,5 : DGCM,6 : AEKM,7 : AELM,8 : AEJ̄K̄L̄M,

9 : BFJM,10 : BFKM,11 : BFLM,12 : BFJ̄K̄L̄M,13 : CGKM,14 : CGLM,15 : CGJ̄K̄L̄M

16 : C̄D̄GJM,17 : C̄D̄GKM,18 : C̄D̄GLM,19 : C̄D̄GJ̄K̄L̄M,20 : DGJM,21 : DGKM,22 : DGJ̄K̄L̄M}

Φ = 1∧¬2∧ (3∨4)∧¬5∧ (1∨6∨7∨8)∧¬(9∨10∨11∨12)∧ (3∨13∨14∨15∨16∨17∨18∨19∨20∨21∨5∨22)



Φ has 24576 (< 215) models, each of which is a possible merged data set. This may
seem like a large number, but it is considerably smaller than the number of possible
worlds in the initial world set (22(7+5)

= 24096). The BRM-G is considerably more ef-
ficient than the naive algorithm because it involves a single NP-complete SAT proof,
rather than up to 2n NEXPTIME monadic logic proofs. The algorithm itself, however
is O(2n) due to the need to run the compress function multiple times. Each time com-
press is run, the size of changes P, and in the worst case, when all the concepts overlap,
|P|= 2n the final time compress is run.

4.4 The Basic Relation Merge for Unambiguous Data Sets (BRM-U)

The BRM-G algorithm works when source data sets contain BRU. The BRM-U algo-
rithm presented here is far more efficient, but only works when the source data sets have
no BRU (or DRU). The only difference between the BRM-G and BRM-U algorithms
is in how the compress function creates combined concepts. In the BRM-G algorithm,
compress is run n−2 times where n is the number of distinct concepts in the source data
sets and the input can be as large as 2n combined concepts. In the BRM-U algorithm, on
the other hand, compress is only run once on

(n
2

)
combined concepts. This is possible

because when a data set has no BRU, and the equivalent concepts have been combined
into a single concept (step 1 in Algorithm 3), any combined concept can contain at most
one pair of non-negated concepts (one concept from each data set). After a single run of
compress, each combined concept in PA will be three concepts long, and all the feasible
pairs of non-negated concepts will have been found. After this single run of compress,
each combined concept is then padded with the negated version of all the n−3 concepts
that are not yet in that combined concept. The resulting compress algorithm is O(n2)
as it involves a single pass through

(n
2

)
combined concepts determined in step 2b of

Algorithm 3. The entire BRM-U algorithm is O(n2) except for the single SAT proof at
the end, which is NP-complete.

4.5 Merging under Disjunctive Relation Uncertainty

The algorithm described here applies to merges involving both BRU and DRU. The
strategy is to divide alignments containing disjunctions into several alignments con-
taining no disjunctions, determine the PWS for each BRM situation, and combine the
results. Dividing disjunction containing alignments into several basic alignments is an
expensive process. Consider, e.g., the taxonomy alignment in Fig. 4, which contains
two disjunctive relationships {A {≡,(} E ; B {≡,)} F} and represents “isa” relations
as (. To decompose this disjunction-containing alignment into alignments containing
only basic relations, one might try simply multiplying out the disjunctive relationships,
creating four possible alignments. If, however, the following additional constraints hold
in the alignment: X ≡ A∨B∨C∨D; Y ≡ E ∨F ∨G, and sibling concepts are disjoint,
two of the four possible alignments ({A ( E;B ≡ F} and {A ≡ E;B ) F}) are ruled
out.

With this in mind, the disjunction containing alignment above can be divided into
two consistent alignments containing only basic relations: one equivalent to the one
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Fig. 4: When sibling concepts are disjoint and parents contain no instances not found in their children, this disjunctive relation
containing alignment has two basic relation interpretations.

World AE BF ĀE BF̄ CḠ CG C̄D̄G DG
1 1 0 ⊥ ⊥ 1 1 1 0
2 1 0 ⊥ ⊥ 1 0 1 0
3 1 0 ⊥ ⊥ 1 1 0 0
4 1 0 ⊥ ⊥ 0 1 1 0
5 1 0 ⊥ ⊥ 0 1 0 0
6 1 0 1 0 1 1 1 0
7 1 0 1 0 1 0 1 0
8 1 0 1 0 1 1 0 0
9 1 0 1 0 0 1 1 0

10 1 0 1 0 0 1 0 0
11 1 0 0 0 1 1 1 0
12 1 0 0 0 1 0 1 0
13 1 0 0 0 1 1 0 0
14 1 0 0 0 0 1 1 0
15 1 0 0 0 0 1 0 0

P
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2

(a)

Taxon O

AE P

BF N

CḠ N

CG P

C̄G N

DG N

(b)

Taxon O

AE P

BF N

ĀE N

BF̄ N

CḠ N

CG P

C̄G N

DG N

(c)

Table 5: PWS for Section 4.5(a) and two data sets derived from the PWS: world 5 in (b) and world 15 in (c).

described in Section 4.3, and the other following the alignment: A = {A ( E;B )
F ;C⊕G;D ( G}. Table 5(a) shows the complete PWS for the disjunction containing
alignment. The column to the side of the table records which alignment applies to the
given row: alignment 1 is where A≡ E and B≡ F , and alignment 2 is where A ( E and
B ) F . This additional information may be considered provenance; the actual metadata
for the merged data sets is still the merged ontologies of the original data sets. The ⊥
seen in worlds 1 through 5 indicates that the combined concept does not exist in that
world.

Table 5 contains some subtly different merges. For example, in merge 15 (shown in
Table 5(c)), no instances of ĀE were seen, while in merge 5 (shown in Table 5(b)) there
is no such thing as an instance of ĀE.

5 Evaluation

Here we evaluate the efficiency of the basic relation merge, which is the core of our
data set merging methodology. We implemented the naive, BRM-G, and BRM-U data
set merge algorithms in Python, and compared them using two types of data sets: those



Data Items 3 4 5 6 7 8 9
naive 8.83 23.57 32.49 > 60 > 60 > 60 > 60

BRM-G 0.03 0.04 0.08 0.34 1.86 16.88 23.91

(a) Ambiguous Inputs

Data Items 3 4 5 6 7 8 9
naive 1.73 6.46 18.09 > 60 > 60 > 60 > 60

BRM-G 0.03 0.04 0.05 0.11 0.37 2.06 7.24
BRM-U 0.03 0.04 0.04 0.05 0.05 0.06 0.06

(b) Unambiguous Inputs

Data Items 25 50 75 100 200 300 400 500
BRM-U 0.19 0.37 0.86 2.32 24.54 121.25 359.24 824.92

(c) BRM-U with larger unambiguous input data
sets

Data Items 3 4 5 6 7 8 9
Ambiguous Inputs 22 12 26 81 266 173 180
Unambiguous Inputs 2 3 7 86 58 165 224

(d) Worlds generated by mixed relation
data sets

Table 6: Average run times in seconds for the naive algorithm and two versions of the BRM algorithm using data sets of
between 3 and 9 concepts in two conditions: (a) where the data set contains basic relation uncertainty, and (b) where the input
data sets do not contain basic relation uncertainty. Run times in seconds for larger data sets using the BRM-U algorithm are
shown in (c). The average number of worlds generated by data sets with mixed relations is shown in (d).

containing no BRU or DRU (the unambiguous inputs condition), and those that con-
tained BRU (the ambiguous inputs condition).

Pairs of data sets and the alignments between their concepts were generated ran-
domly. Each data set had only one context attribute, and each observation of the data
sets was recorded as present. Generating interesting large consistent alignments be-
tween data set concepts proved challenging. While it is simple to generate large align-
ments in which all the relations are of one type (e.g., all equivalent, all overlapping, all
disjoint), generating consistent alignments that mix relations is computationally expen-
sive. To address this issue, we generated alignments of up to 9 concepts in which the
non-disjoint relationships were either all-⊕, all-(, or had mixed relations, including ≡,
⊕, (, and ). We found the same patterns of results held in the all-⊕, all-(, and mixed
conditions, so for data sets of fewer than 10 concepts, we report the average results of
these three types of data sets. Results of 10 or more concepts are the average of the all-⊕
and all-( conditions. Each condition was run three times, and only marginal variance
was found between runs.

The naive algorithm runs employed the first-order reasoner iProver 0.7 [15] to test
whether a given world qualifies as a possible merge. Comparisons between iProver and
several other available first-order reasoners showed iProver to be the fastest to solve our
class of problem. The BRM algorithm tests employed the c2d [14] reasoner to check
the satisfiability of the propositional statement that determines the possible merges,
and to generate and count models of the statement. c2d has the advantage of providing
polynomial-time model counting.

As may be seen in Table 6, the naive implementation performs poorly, taking over
a minute to generate possible worlds for data sets with more than 6 concepts. In the
ambiguous input condition, the BRM-G algorithm performs considerably better. How-
ever, the time to generate the possible worlds still grows exponentially with the size
of the input. The unambiguous inputs condition shows the same pattern for the naive
and general BRM algorithms. However, the BRM-U algorithm performs comparatively
well, providing both a feasible and efficient method for generating the possible data set
merges. Table 6(c) shows how the BRM-U algorithm scales to up to 500 concepts. The
presence data sets we have seen have listed fewer than 300 concepts, and the largest pair



of articulated biological taxonomies we have seen to date [17] has comprised 360 con-
cepts, so the algorithm scales well to the currently available real-world data. Table 6(d)
gives the average number of worlds generated by the data sets with mixed relations.

6 Related Work and Conclusion

This paper has described a framework and algorithms for merging data sets when the
domains of attributes overlap and contain uncertainty. We have shown that no single
merge, except in trivial cases, can satisfy all the requirements of a data set merge, and
multiple merges must be represented. We have given a possible worlds semantics for
such data sets, and algorithms for constructing these possible worlds when ambiguity
arises during the merge. We have also presented an efficient algorithm for performing
the merge when ambiguity is due to articulations (i.e., source data sets do not contain
ambiguity).

The three areas most similar to the current work are traditional data integration, data
fusion, and ontology merging. In traditional data integration [16], two or more databases
with different schemas are combined through the definition of a common (i.e., global)
schema. The current work, on the other hand, focuses on merging data sets when the
schemas of data sets are the same, but the domains of the schema attributes may be dif-
ferent. Another difference is that in traditional data integration, the data themselves are
generally not considered; integration happens at the schema level. In the current work,
however, the alignments between the domains of the data set attributes impact the inter-
pretation of the data itself. Data fusion [18] tasks typically involve integrating multiple
types of information about the same objects. The data fusion setting differs from the
current one in that we are merging data sets that contain the same type of data: presence
data, in this case. Furthermore, our observations are about sets of objects rather than
individuals. Ontology merging [19–21], like traditional data integration tasks, focuses
on the schema level rather than the instance level. The work in [7], which describes how
to merge taxonomies that have been aligned with RCC-5 relations, is more similar to
ontology merging. As we have seen here, merging taxonomies is just the first step in
merging taxonomically organized data sets.

This work can be expanded in several directions. First, although we use RCC-5 to
describe relations between attribute domains, there are other algebras that may be more
suited to specific domains. For example, RCC-8 may be a better language to describe
relations between spatial regions. Allen’s interval calculus is more suited for the tempo-
ral dimension. The types of languages used constrain the questions that may be asked.
In this work, we are satisfied to ask questions that are suitable for RCC-5 articulated
domains. In the future, other languages should be applied. Second, in the current work,
domains are independent. However, in general this may not be the case. For example,
one taxonomic alignment may apply in one spatial region, while a second taxonomic
alignment may apply in a different region. Extending the algorithms to deal with this
extra complexity is not straightforward. Third, we have only considered presence data
here. As we have seen, merging data sets with even this limited type of data is com-
plicated. However, data sets typically contain data other than simple presence data, so
this work should be extended to include other types of measurements. Finally, the work



must be evaluated by testing its utility for the people who currently spend their time
integrating data sets by hand. This evaluation will no doubt generate interesting new
avenues of study.
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