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Abstract. The integration of distributed information sources is a key
challenge in data and knowledge management applications. Instances of
this problem range from mapping schemas of heterogeneous databases
to object reconciliation in linked open data repositories. In this paper,
we approach the problem of aligning description logic ontologies. We
focus particularly on the problem of computing coherent alignments,
that is, alignments that do not lead to unsatisfiable classes in the re-
sulting merged ontologies. We believe that considering coherence during
the alignment process is important as it is this logical concept that dis-
tinguishes ontology alignment from other data integration problems. De-
pending on the heterogeneity of the ontologies it is often more reasonable
to generate alignments with at most k correspondences because not every
entity has a matchable counterpart. We describe both greedy and opti-
mal algorithms for computing coherent top-k alignments between OWL
EL ontologies and assess their performance relative to state-of-the-art
matching systems.

1 Introduction

The growing number of heterogeneous knowledge bases on the web has made
data integration systems a key technology for sharing and accumulating dis-
tributed information sources. In this paper, we focus on the problem of aligning
description logic ontologies. Due to the explicit semantics of ontologies, align-
ment systems can take advantage of the logical concepts of coherence and con-
sistency. Ensuring complete coherency and consistency is especially important
in the area of ontology merging, where two ontologies are merged to one single
ontology using the generated reference alignment.

Ontology debugging, for instance, is the process of efficiently finding and elim-
inating incoherencies. Several approaches to this problem were presented in [21]
where the debugging process was based on the computation of minimal conflict
sets. Similar concepts and algorithms have been used to debug pre-computed
ontology alignments [13]. Their algorithm scales well for few conflict sets in the
alignment, but if the number of conflict sets increase, the performance decreases
significantly. In [15] they build a set of hard and soft markov logic rules to re-
duce the incoherency of the alignment. Although the performance is still high for
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many conflict sets and most of the incoherencies are filtered out, the delivered
alignments are not guaranteed to be coherent. In both, [13] and [15] a threshold
is used to pre-select correspondences and a reasoner is needed to pre-calculate
certain axioms.

Currently, most state-of-the-art matching systems such as Falcon [10], Aroma
[5], and AgreementMaker [4] generate incoherent alignments [7]. To the best of
our knowledge, only two of the matching systems that participated in the ontol-
ogy alignment evaluation initiative (OAEI) of 2010 reduce the degree of align-
ment incoherence. While the semantic verification algorithm [11] of ASMOV
reduces incoherence in a post-processing step CODI [17] employs incoherence
reducing rules during the alignment process. Both matching systems, however,
do not guarantee the final alignments to be coherent [7]. Another matching
system not participating in the OAEI but focusing on coherent alignments is
PROMPT [18]. It provides the user with different interactive views on the on-
tologies and aids the merging process by pointing out logical conflicts.

Depending on the heterogeneity of the ontologies it is often more sensible to
generate alignments with at most k correspondences because not every entity
in one ontology has a matchable counterpart in the other. Top-k algorithms are
common in the area of information retrieval and ranking and have recently been
applied in more structured data management systems. In the context of database
schema matching, for instance, [8] presented an approach to computing the best
k schema mappings.

With this paper, however, we present an optimal coherent top-k ontology
matching algorithm, that is, an algorithm that generates optimal coherent align-
ments of size at most k. Compared to [13] our approach will still perform well
for large number of conflict sets. The strength of the approach lies in its ability
to incorporate arbitrary confidence values which could have been for example
computed by other matching applications. Hence, the top-k algorithms are not
intended to compete with existing matching systems but rather to complement
their strength in deriving high-quality confidence values.

We present both a greedy and an optimal algorithm for computing coherent
top-k alignments. The optimal algorithm utilizes the existence of a set of ma-
terialization rules for the description logic EL++ [1,12] without nominals and
concrete domains, and formulates the alignment tasks as linear optimization
problems. To reduce the complexity of these problems, the algorithm combines
a cutting plane inference and a delayed column generation algorithm originally
developed in the context of Markov logic [19].

We conduct extensive experiments to evaluate the accuracy and efficiency of
both the greedy and optimal top-k algorithms. We also compare the coherence,
recall, precision, and F1 scores of the computed alignments with those generated
by various state-of-the-art matching systems.

2 Description Logics

Description logics (DLs) are a family of knowledge representation languages [3].
They provide the logical formalism for ontologies and the Semantic Web. We
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Table 1. The description logic EL++ without nominals and concrete domains

Name Syntax Semantics

top � ΔI

bottom ⊥ ∅
conjunction C � D CI ∩ DI

existential ∃r.C
{x ∈ ΔI |∃y ∈ ΔI :

restriction (x, y) ∈ rI ∧ y ∈ CI}
GCI C 
 D CI ⊆ DI

RI r1 ◦ ... ◦ rk 
 r rI1 ◦ ... ◦ rIk ⊆ rI

focus on the DL EL++ which captures the expressivity of numerous real-world
ontologies. EL++ is the description logic on which the web ontology language
profile OWL 2 EL is based [1]. Reasoning tasks such as consistency and instance
checking can be performed in polynomial time. Therefore, EL++ is practical for
applications employing ontologies with large numbers of properties and classes.
It is possible to express disjointness of complex concept descriptions as well
as range and domain restrictions [2] and role inclusion axioms (RIs) allow the
expression of role hierarchies r � s and transitive roles r ◦ r � r.

EL++ concept descriptions are defined recursively by a set of constructors,
starting with a set NC of concept names, a set NR of role names, and a set NI

of individual names. Concept descriptions and role inclusions in EL++ are built
with the constructors depicted in Table 1. We write r, s to denote role names and
C, D to denote concept descriptions. The semantics of the concept descriptions in
EL++ are defined in terms of an interpretation I = (ΔI , ·I). The interpretation
function ·I is recursively defined as shown in Table 1. A concept C is subsumed
by a concept D with respect to a CBox C, written C �C D, if CI ⊆ DI in every
model I of C.

A constraint box (CBox) is a finite set of general concept inclusions (GCIs)
and role inclusions (RIs). Given a CBox C, we use BCC to denote the set of basic
concept descriptions, that is, the smallest set of concept descriptions consisting of
the top concept �, all concept names used in C, and all nominals {a} appearing
in C. Then, C is in normal form if all GCIs have one of the following forms, where
C1, C2 ∈ BCC and D ∈ BCC ∪ {⊥}:

C1 � D; C1 � ∃r.C2;
C1 
 C2 � D; ∃r.C1 � D

and if all role inclusions are of the form r � s or r1 ◦ r2 � s. By applying
a finite set of rules and introducing new concept and role names, any CBox
C can be turned into a normalized CBox [1]. For any EL++ CBox C we write
norm(C) to denote the set of normalized axioms that result from the application
of the normalization rules to C. A normalized EL++ CBox is classified when
subsumption relationships between all concept names are made explicit. A CBox
C is coherent if for all concept names C in C we have that C ��C⊥.
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3 Coherent Ontology Alignment

Ontology alignment is the process of inferring correspondences between entities
of two ontologies. We begin by formally defining the notions of correspondence
and alignment based on a definition by Euzenat and Shvaiko [6]. In this pa-
per, each ontology is equivalent to a EL++ CBox without nominals and concrete
domains, that is, an OWL 2 EL ontology without nominals and datatype prop-
erties. We refer the reader to [9] for a primer of the W3C recommendation for
OWL 2 and its profiles.

Definition 1 (Correspondence and Alignment). Given ontologies O1 and
O2, let q be a function that defines sets of matchable entities q (O1) and q (O2).
A correspondence between O1 and O2 is a triple 〈e1, e2, r〉 such that e1 ∈ q (O1),
e2 ∈ q (O2), and r is a semantic relation. An alignment between O1 and O2 is a
set of correspondences between O1 and O2.

The general form of Definition 1 captures a wide range of correspondence types.
In the following we focus on equivalence correspondences between concepts and
object properties, respectively. The majority of matching systems provide nor-
malized confidence values for each correspondence. Based on these confidence
values, an alignment is extracted by applying a threshold τ ∈ [0, 1] meaning
that only the correspondences with a confidence value greater than or equal to
τ are included in the alignment.

In this paper, however, we are interested in solutions to the problem of com-
puting coherent alignments between ontologies. An alignment A is coherent with
respect to the coherent ontologies O1 and O2 if the ontology O1 ∪O2 ∪A is co-
herent, that is, if the ontology that results from merging O1 and O2 under the
alignment A is coherent. Hence, in the remainder of the paper, we assume the
existence of confidence values provided by, for instance, state-of-the-art match-
ing systems. We refer to these values as a-priori confidence values. The score of
an alignment is the sum of confidence values of its correspondences. We say that
an alignment A of size k with score s is optimal if for every other alignment of
size at most k with score s′ we have that s′ ≤ s.

3.1 Greedy Coherent Top-k Alignment

The first algorithm for generating top-k coherent alignments from a set of corre-
spondences with a-priori confidence values follows a greedy strategy. It appends
an initially empty alignment with correspondences according to their a-priori
confidence values in descending order. After each addition, it employs a reasoner
to check whether the resulting alignment causes incoherences, and if it does,
removes the previously added correspondence. The advantage of the approach
is its efficiency – classification and, therefore, checking coherence of OWL EL
ontologies can be performed in polynomial time. However, the approach does not
compute optimal alignments. Once a correspondence has been added it cannot
be revoked in later stages of the computation. The following example from the
conference domain demonstrates said problem.
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Table 2. The first-order theory F . Valid instantiations of the formulas are those com-
patible with the types of the predicates from Definition 2. The predicates cmap and
pmap model the correspondences between concept and role names, respectively. ⊥ and
� are constant symbols representing the bottom and top concept.

F1 ∀c : sub(c, c)

F2 ∀c : sub(c,�)

F3 ∀c, c′, d : sub(c, c′) ∧ sub(c′, d) ⇒ sub(c, d)

F4
∀c, c1, c2, d : sub(c, c1) ∧ sub(c, c2)∧

int(c1, c2, d) ⇒ sub(c, d)

F5 ∀c, c′, r, d : sub(c, c′) ∧ rsup(c′, r, d) ⇒ rsup(c, r, d)

F6
∀c, r, d, d′, e : rsup(c, r, d) ∧ sub(d, d′)∧

rsub(d′, r, e) ⇒ sub(c, e)

F7 ∀c, r, d, s : rsup(c, r, d) ∧ psub(r, s) ⇒ rsup(c, s, d)

F8
∀c, r1, r2, r3, d, e : rsup(c, r1, d) ∧ rsup(d, r2, e)∧

pcom(r1, r2, r3) ⇒ rsup(c, r3, e)

F9 ∀c : ¬sub(c,⊥)

F10 ∀c1, c2 : cmap(c1, c2) ⇒ sub(c1, c2)

F11 ∀c1, c2 : cmap(c1, c2) ⇒ sub(c2, c1)

F12 ∀r1, r2 : pmap(r1, r2) ⇒ psub(r1, r2)

F13 ∀r1, r2 : pmap(r1, r2) ⇒ psub(r2, r1)

Example 1. Let O1 contain the axiom Review 
 JournalReviewer �⊥ and
O2 the axiom Reviewer 
 PaperReview �⊥. Moreover, consider the following
correspondences and their associated a-priori confidence values: 〈Reviewer ≡
Review, 0.9〉, 〈PaperReview ≡ Review, 0.7〉, 〈Reviewer ≡ JournalReviewer,
0.6〉. The greedy top-k approach would include the correspondence 〈Reviewer ≡
Review, 0.9〉 and would not add more correspondences due to the resulting in-
coherence. While an optimal top-k approach would also add the same corre-
spondence for k = 1 it would generate the correct alignment {〈PaperReview ≡
Review, 0.7〉, 〈Reviewer ≡ JournalReviewer, 0.6〉} for k = 2 revoking the pre-
vious decision.

In the following we introduce a novel algorithm that computes optimal coherent
top-k alignments. It leverages the completion rules for the DL EL++ without
nominals and concrete domains [1,12].

3.2 Optimal Coherent Top-k Alignment

The optimal top-k alignment algorithm which we describe in the remainder of
this section computes an optimal coherent alignment of size at most k from a
given set of a-priori confidence values. The crucial insight is that the optimal
alignment problem can be reduced to an optimization problem: Given the a-
priori confidence values and the two input ontologies O1 and O2, maximize
the sum of confidence values of correspondences in the alignment subject to
the coherence of the ontology that results when merging O1 and O2 under the
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alignment. In order to guarantee the coherence of the alignment we map the
normalized axioms of the two ontologies to ground predicates and formulate the
optimization problem in such a way that all solutions to the problem correspond
to coherent ontologies. We achieve this through a set of materialization formulas
that capture the underlying DL semantics. We refer the reader to [12] for more
details on materialization calculi and to [1,12] for the completeness of a finite set
of completion rules for EL++ from which the set of formulas F (see Table 2) is
partially derived. Furthermore, we refer the reader to [16] for the introduction
of log-linear description logic which is the foundation of our approach. We begin
by defining the mapping ϕ between ontologies and sets of ground atoms of the
theory F .

Definition 2 (Ontology Transformation). Let O1 and O2 be two normalized
ontologies, let NU = BCO1 ∪BCO2 be the set of basic concept descriptions of both
ontologies, and H be the set of all valid instantiations of predicates in F (see
Table 2) relative to NU (the Herbrand base of F with respect to NU as a set of
constant symbols). The function ϕ maps O1 ∪ O2 to a subset of H as follows.

C1 � D �→ sub(c1, d)
C1 
 C2 � D �→ int(c1, c2, d)
C1 � ∃r.C2 �→ rsup(c1, r, c2)
∃r.C1 � D �→ rsub(c1, r, d)
r � s �→ psub(r, s)
r1 ◦ r2 � r3 �→ pcom(r1, r2, r3).

All predicates are typed meaning that r, s, ri, (1 ≤ i ≤ 3), are role names, C1, C2

basic concept descriptions, and D basic concept descriptions or the bottom con-
cept.

Based on the previously defined mapping, we can state the computation of an
optimal top-k alignment as an instance of integer linear programming (ILP). Let
O1 and O2 be two normalized coherent ontologies, let NU = BCO1 ∪ BCO2 , let
FNU be the set of all valid instantiations of F relative to NU, and let H be the
Herbrand base of F relative to NU. Moreover, let K = ϕ(O1 ∪O2) and let L be
a set of valid instantiations of the predicates cmap and pmap modeling corre-
spondences between classes and object properties, respectively, each associated
with its a-priori confidence.

For each ground atom gi occurring at least once in either L (with a-priori
confidence value wi), K, or in a formula in FNU we associate a variable xi ∈ {0, 1}.
Let CL be the set of indices of ground atoms in L, let CK be the set of indices of
ground atoms in K, and let CF

j (C̄F
j ) be the set of indices of unnegated (negated)

ground atoms in the clause equivalent to Fj ∈ FNU . Then, the top-k ILP with
respect to L is stated as follows

max
∑

i∈CL

wixi subject to
∑

i∈CL

xi ≤ k and
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∑

i∈CK

xi ≥ |CK | and
∑

i∈CF
j

xi +
∑

i∈C̄F
j

(1 − xi) ≥ 1, ∀j (2).

Theorem 1. Each solution of the Top-k ILP with respect to L corresponds to an
ontology that results from (a) merging the ontologies O1 and O2 under an optimal
alignment A ⊆ L of size at most k and (b) classifying the merged ontology.

Thus, the algorithm not only computes an optimal coherent top-k alignment but
also classifies the merged ontologies making subsumption relationships between
each pair of classes explicit. For a proof concerning the classification and the
coherency of Theorem 1 the reader is referred to [16].

The immediate addition of all above constraints, however, would result in
a very complex and potentially intractable optimization problem. In order to
avoid this problem, we combine variants of the cutting plane inference algo-
rithm [20] and the delayed column generation algorithm [14] both of which were
first proposed for computing maximum a-posteriori (MAP) states in Markov
logic networks [19]. To compute the solution of a top-k ILP we first construct
the top-k ILP with respect to the set L′ containing only m ≥ k correspondences
with highest a-priori confidence values. The ILP is initially solved without the
constraints of type (2). Given the current solution, the algorithm determines
all violated constraints of type (2) in polynomial time, adds those to the ILP,
and solves the updated problem. This is repeated until no violated constraints
remain. If the solution contains k correspondences we have found an optimal
top-k alignment. Otherwise, the set L′ is augmented with m more correspon-
dences with highest a-priori confidence values and the top-k ILP with respect to
L′ is solved as before. This is repeated until we have found a solution with k
correspondences or until L′ contains all correspondences.

Due to the extendability of the ILP formulation of the top-k alignment prob-
lem it is possible to include additional types of constraints such as constraints
enforcing functional and one-to-one alignments and constraints modeling known
correct correspondences.

4 Experimental Evaluation

We conducted extensive experiments to evaluate the performance of the greedy
and optimal top-k alignment algorithms. In particular, we compared the optimal
with the greedy top-k algorithm both in terms of computation time and align-
ment accuracy. We also assessed the accuracy of the alignments by comparing
them to the alignments generated by state-of-the-art matching systems that par-
ticipated in the latest OAEI of 2010 [7]. Moreover, we analyzed and compared
the degree of coherence of each of the alignments computed by the matching
systems.

4.1 Experimental Set-Up

For the experimental evaluation we used the ontologies of the conference and
anatomy tracks of the OAEI. The availability of reference alignments and recent
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Table 3. Number of classes and properties as well as number of normalized EL axioms
in the respective ontologies we used for the experiments.
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Conference ontologies

cmt 30 49 25 27 0 48 0 0
conference 60 46 56 14 7 47 13 0

confof 39 13 42 43 9 11 0 1
edas 104 30 90 409 3 29 0 0
ekaw 73 33 80 74 6 20 8 3
iasted 141 38 291 3 126 49 0 0
sigkdd 50 17 59 0 15 23 0 0

Anatomy ontologies

mouse anatomy 2744 3 4493 0 1637 0 0 0
nci anatomy 3304 2 5423 17 1662 0 0 1

results from state-of-the-art matching systems make the two tracks particularly
suitable. The conference track consists of several expressive ontologies modeling
the domain of scientific conferences. The ontologies have been developed by
different groups and, therefore, reflect different conceptualizations of the same
domain. Reference alignments for seven of these ontologies are made available
by the organizers of the OAEI. These 21 alignments contain correspondences
between concepts and properties including a reasonable number of non-trivial
instances. The two ontologies of the anatomy track are from the medical domain
modeling the anatomy of humans and mice, respectively, and consist of over
2500 classes each. Since our matching approach is restricted to EL axioms we
used the OWL API to downgrade the more expressive conference ontologies.
We applied the set of rules from [1,2] to normalize the ontologies and to also
include existing range restrictions. Table 3 lists the resulting conference and the
anatomy ontologies along with the number of classes, properties, and normalized
EL axioms.

We have argued that the top-k algorithms are not intended to compete with
existing matching systems but rather to complement their strengths in gener-
ating high-quality a-priori confidence values. Hence, in order to asses the al-
gorithms’ ability to compute alignments from given confidence values we used
the Levenshtein distance normalized to the range [−1, 1]. Using such a näıve
algorithm to derive confidence values lets us evaluate the performance of the
alignment algorithm without being influenced by highly sophisticated confidence
measures. Please note, however, that the strength of the approach is the ability
to incorporate confidence values generated by existing matching systems. We
employed the reasoner Pellet [22] for the greedy algorithm and the mixed ILP



Coherent Top-k Ontology Alignment for OWL EL 423

4 6 8 10 12 14 16 18 20
k

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

F 1
sc

or
e

Greedy vs. Optimal Top-k

Greedy Top-k
Optimal Top-k

Fig. 1. F1 scores of the optimal top-k and the greedy top-k algorithms averaged over
the 21 alignment problems in the conference ontologies

solver Gurobi1 for the optimal algorithm. We also augmented the ILP with con-
straints enforcing functional one-to-one alignments and we set the parameter m
to 2k. The experiments were run on a desktop PC with AMD Athlon Dual Core
Processor 5400B with 2.6GHz and 1GB RAM. The source files and supplemen-
tary materials are available at http://code.google.com/p/elmatch/.

4.2 Results of the Evaluation

We first assessed the relative performance of the two top-k algorithms with re-
spect to their F1 score. Figure 1 shows the F1 scores of the optimal and greedy
top-k algorithms averaged over the 21 ontology pairs of the conference track.
For k ≤ 6 the F1 scores are almost identical which is due to the absence of inco-
herence causing correspondences in the small alignments. With k = 8, however,
the optimal algorithm starts to outperform the greedy approach as the larger
alignments cause incoherences and substitutions of correspondences of the type
described in Example 1 are becoming more prevalent.

The runtime of the algorithms is summarized in Table 4. For the conference
ontologies and k ≤ 10 the run time of the optimal algorithm is comparable to the
greedy approach. The reason for the increase in runtime of the optimal algorithm
for k = 20 is caused by the small size of the ontologies – alignments of size 20
exist only between 9 of the 21 pairs of ontologies. Hence, the optimal algorithm
has to include all correspondences in its ILP formulation thus increasing the
complexity of the optimization problem. Interestingly, the effect is reversed for

1 http://www.gurobi.com/

http://code.google.com/p/elmatch/
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Fig. 2. Minimum, maximum and standard deviation of the F1 score for the optimal
top-k algorithm on the conference ontologies. The decrease in standard deviation for
k ≥ 19 is due to the fact that there are only few pairs of ontologies with functional
one-to-one alignments of size k.

the anatomy ontologies. While the optimal algorithm has an overhead of about
40 seconds for classifying the large merged ontology the increase in runtime is
smaller compared to the greedy approach. For k = 1 the greedy approach is
about 10 times faster but only about twice as fast for k = 20. Considering that
the reasoner Pellet is highly optimized for EL ontologies we find this to be a
convincing result.

A suitable choice for the parameter k of the top-k algorithms clearly depends
on the number of matchable elements and, therefore, on the size of the involved
ontologies. Figure 2 shows the minimum, maximum and standard deviation of the
optimal algorithm for the 21 different alignments. The large standard deviation
and the discrepancy between the minima and maxima makes it evident that we
need to adjust the parameter k individually for each alignment instance. We used
the following ad-hoc heuristic to determine a suitable choice for the parameter
k. We first computed the number P of correspondences where both matchable
elements have identical labels. We then computed the parameter k with the
formula k = P + α(kmax − P ) where kmax is the maximal possible number of
correspondences and α ∈ [0, 1]. The parameter α determines the fraction of “non-
trivial” correspondences one wants to derive and depends on the heterogeneity
of the involved ontologies. In our experiments, we set the parameter α to 0.2.
Table 5 depicts precision, recall, and F1 scores of the optimal coherent top-k
algorithm and a selection of matching systems that participated in the OAEI2

2 Please visit http://oaei.ontologymatching.org/2010/ for a complete list of results
and all matching systems that participated at the OAEI 2010.

http://oaei.ontologymatching.org/2010/
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Table 4. The average time in seconds needed to compute coherent top-k alignments
for the benchmark and anatomy ontologies and classifying the merged ontologies

k 1 5 10 15 20

Conference ontologies

Greedy Top-k 0.36 0.41 0.56 0.77 1.21

Optimal Top-k 0.49 0.49 1.21 2.93 14.24

Anatomy ontologies

Greedy Top-k 4.67 4.96 10.39 17.66 29.68

Optimal Top-k 40.76 42.42 45.10 48.74 53.60

Table 5. Comparison of the optimal top-k algorithm with state-of-the-art matching
systems on the conference ontologies. Precision, recall, and F1 scores are measured
relative to the reference alignments. Coh. Align is the fraction of coherent alignments
and Coh. Class is the fraction of coherent classes relative to the number of classes in
all ontologies.

Matcher Top-k Falcon AgrMaker Aroma ASMOV

Precision 0.78 0.59 0.50 0.36 0.45

Recall 0.44 0.58 0.65 0.49 0.07

F1 score 0.57 0.58 0.57 0.42 0.12

Coh. Align 1.0 0.29 0.38 0.14 1.0

Coh. Class 1.0 0.95 0.84 0.64 1.0

with standard threshold 0.5. The coherent top-k algorithm has the best precision
and competitive F1 scores.

The main advantage of both top-k approaches compared to other matching
systems, however, is the coherence of their alignments for EL ontologies. Ta-
ble 5 lists the fraction of coherent alignments and classes, respectively, in the
merged ontologies. Except for ASMOV, whose incomplete semantic verification
algorithm [11] also reduces incoherences, all other matching systems generated
incoherent alignments. In summary, only 14% of Aroma’s, 29% of Falcon’s, and
38% of AgreementMakers alignments were coherent indicating that these sys-
tems do not leverage the notion of coherence during the alignment process.

5 Conclusion and Future Work

With this paper, we presented a greedy and a novel optimal algorithm for com-
puting coherent top-k alignments between OWL EL ontologies. The optimal
algorithm employs integer linear programming solvers to maximize the sum of
confidence values subject to the coherence of the ontology. Our evaluation showed
that although we spent no effort on optimizing the confidence values (we used
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the simple Levenshtein distance), our F1 scores were competitive compared to
the participating systems at the OAEI 2010. The real strength of the top-k
algorithms, however, is their ability to existing incorporate a-priori confidence
values.

Currently, our approach is limited to the description logic EL++ without
nominals and concrete domains but we intend to extend it to more expressive
description logic languages such as Horn-SHIQ. Moreover, we will work on sup-
porting class and role assertions, nominals, and concrete domains. Apart from
this, we will modify our approach to incorporate confidence values for complex
correspondences. To this end, we will express complex matching patterns and
their confidence values and integrate them in the optimization problem to com-
pute coherent complex alignments between ontologies.
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