
Efficient Techniques for Online Record Linkage
Debabrata Dey, Member, IEEE, Vijay S. Mookerjee, and Dengpan Liu

Abstract—The need to consolidate the information contained in heterogeneous data sources has been widely documented in recent

years. In order to accomplish this goal, an organization must resolve several types of heterogeneity problems, especially the entity

heterogeneity problem that arises when the same real-world entity type is represented using different identifiers in different data

sources. Statistical record linkage techniques could be used for resolving this problem. However, the use of such techniques for online

record linkage could pose a tremendous communication bottleneck in a distributed environment (where entity heterogeneity problems

are often encountered). In order to resolve this issue, we develop a matching tree, similar to a decision tree, and use it to propose

techniques that reduce the communication overhead significantly, while providing matching decisions that are guaranteed to be the

same as those obtained using the conventional linkage technique. These techniques have been implemented, and experiments with

real-world and synthetic databases show significant reduction in communication overhead.

Index Terms—Record linkage, entity matching, sequential decision making, decision tree, data heterogeneity.

Ç

1 INTRODUCTION

THE last few decades have witnessed a tremendous
increase in the use of computerized databases for

supporting a variety of business decisions. The data needed
to support these decisions are often scattered in heteroge-
neous distributed databases. In such cases, it maybe
necessary to link records in multiple databases so that one
can consolidate and use the data pertaining to the same real-
world entity. If the databases use the same set of design
standards, this linking can easily be done using the primary
key (or other common candidate keys). However, since these
heterogeneous databases are usually designed and managed
by different organizations (or different units within the same
organization), there maybe no common candidate key for
linking the records. Although it maybe possible to use
common nonkey attributes (such as name, address, and date
of birth) for this purpose, the result obtained using these
attributes may not always be accurate. This is because nonkey
attribute values may not match even when the records
represent the same entity instance in reality.

The above problem—where a real-world entity type is

represented by different identifiers in two databases—is

quite common in the real world and is called the entity

heterogeneity problem [13], [14] or the common identifier

problem [8], [12]. The key question here is one of record

linkage: given a record in a local database (often called the

enquiry record), how do we find records from a remote

database that may match the enquiry record? Traditional

record linkage techniques, however, are designed to link

an enquiry record with a set of records in a local master
file. Given the enquiry record and a record from the
(local) master file, these techniques compare the common
nonkey attribute values of the two records to derive a
similarity measure—typically the probability of a match
[35] or the likelihood ratio [16]. If the similarity measure is
above a certain threshold, the two records are said to
satisfy the linkage rule.

Record linkage techniques have been widely used in
real-world situations—such as health care [2], [17], [36],
[40], immigration [4], [10], [11], and census [6], [20], [21],
[37], [38]—where all the records are available locally.
However, when the matching records reside at a remote
site, existing techniques cannot be directly applied because
they would involve transferring the entire remote relation,
thereby incurring a huge communication overhead. As a
result, record linkage techniques do not have an efficient
implementation in an online, distributed environment and
have mostly been confined to either local master files or to
matching data from various sources in a batch processing
mode. In order to fully appreciate the overall difficulty,
two important characteristics of the problem context must
be understood:

. The databases exhibiting entity heterogeneity are dis-
tributed, and it is not possible to create and maintain a
central data repository or warehouse where precomputed
linkage results can be stored. A centralized solution
maybe impractical for several reasons. First, if the
databases span several organizations, the ownership
and cost allocation issues associated with the ware-
house could be quite difficult to address. Second,
even if the warehouse could be developed, it would
be difficult to keep it up-to-date. As updates occur at
the operational databases, the linkage results would
become stale if they are not updated immediately.
This staleness maybe unacceptable in many situa-
tions. For instance, in a criminal investigation, one
maybe interested in the profile of crimes committed
in the last 24 hours within a certain radius of the
crime scene. In order to keep the warehouse current,

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 3, MARCH 2011 373

. D. Dey is with Foster School of Business, University of Washington,
Seattle, WA 98195-3200. E-mail: ddey@u.washington.edu.

. V.S. Mookerjee is with the University of Texas at Dallas, Richardson,
TX 75803-0688. E-mail: vijaym@utdallas.edu.

. D. Liu is with the University of Alabama in Huntsville, Huntsville,
AL 35899-0001. E-mail: Dengpan.Liu@uah.edu.

Manuscript received 2 June 2009; accepted 23 Sept. 2009; published online
12 Aug. 2010.
Recommended for acceptance by B.C. Ooi.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2009-06-0480.
Digital Object Identifier no. 10.1109/TKDE.2010.134.

1041-4347/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

the sites must agree to transmit incremental changes
to the data warehouse on a real-time basis. Even if
such an agreement is reached, it would be difficult to
monitor and enforce it. For example, a site would
often have no incentive to report the insertion of a
new record immediately. Therefore, these changes
are likely to be reported to the warehouse at a later
time, thereby increasing the staleness of the linkage
tables and limiting their usefulness. In addition, the
overall data management tasks could be prohibi-
tively time-consuming, especially in situations
where there are many databases, each with many
records, undergoing real-time changes. This is
because the warehouse must maintain a linkage
table for each pair of sites, and must update them
every time one of the associated databases changes.

. The participating sites allow controlled sharing of portions
of their databases using standard database queries, but they
do not allow the processing of scripts, stored procedures, or
other application programs from another organization.
The issue here is clearly not one of current techno-
logical abilities, but that of management and control.
If the management of an organization wants to open
its databases to outside scripts from other organiza-
tions, there are, of course, a variety of ways to
actually implement it. However, the decision to allow
only a limited set of database queries (and nothing
more) is not based on technological limitations;
rather it is often a management decision arising out
of security concerns. More investment in technology
or a more sophisticated scripting technique, there-
fore, is not likely to change this situation. A direct
consequence of this fact is that the local site cannot
simply send the lone enquiry record to the remote
site and ask the remote site to perform the record
linkage and send the results back.

In Section 2, we provide two real-world examples of the
online record linkage problem. These examples clearly
demonstrate that the two problem characteristics discussed
above are quite common and are likely to be present in
many other practical situations, as well.

Since the early work by Fellegi and Sunter [16], New-
combe and Kennedy [30], and Tepping [35], the issue of
record linkage has received a lot of attention in statistics
and computer science literature. However, most of the
previous work has been in the context of record linkage
accuracy: based on the structure of the data files, how can
one make better (or more accurate) linkage decisions? For
example, Jaro [21], in applying record linkage to census
data, proposes the use of the EM algorithm for accurately
estimating the probability parameters and applying them to
obtain the matching probabilities that are later used in an
assignment model. Copas and Hilton [10] consider different
statistical models for observed records and fit them to
previously matched immigration record pairs; once a model
is fitted, it can be used to make automated linkage decisions
for unmatched record pairs. Newcombe et al. [29] examine
how partial matches in string attributes (such as the name
of a person) can be used in probabilistic record linkage. The
ability to use partial matches, as opposed to exact matches,

mimics how a human expert performs matching and can
greatly enhance the accuracy of linkage decisions. Belin and
Rubin [6] question the common assumption of conditional
independence among matching patterns of attributes and
develop a method for calibrating the false-match rate in
record linkage by fitting mixtures of transformed normal
distributions. This mixturemodel calibration method is
shown to work well when applied to test census data.
Larsen and Rubin [23] use mixture models for accurate
record linkage in an iterative manner. In their scheme, some
record pairs are directly classified as “links” and “nonlinks”
based on the available information, while other record pairs
are sent for clerical review. As the clerical review corrects
some of the erroneous classifications, this information is
used for a reestimation of the mixture models. Winkler [39]
extends the model of Fellegi and Sunter [16] with fewer
assumptions and develops a linkage model that is compu-
tationally more efficient and requires less human interven-
tion. Baxter et al. [5] show that two new blocking methods,
which are used in record linkage systems to reduce the
number of candidate record comparison pairs, can maintain
or improve the record linkage accuracy. Minton et al. [26]
describe a new machine learning approach that creates
expert-like rules for field matching, a key subprocess in
record linkage. In this approach, they define the relation-
ship between two field values using a set of heterogeneous
transformations, and can thus produce more accurate
results by modeling more sophisticated relationships. In
addition to the papers discussed above, there have been
many others published in various journals and conferences;
a recent summary is provided in [15] and [19]. While all
these papers attempt to improve the accuracy of record
linkage technique, to the best of our knowledge, there has
not been any work that attempts to make the online record
linkage process more efficient by reducing the communica-
tion overhead in a distributed environment. Therefore, the
main contribution of our work is in the application of
sequential information acquisition theory to develop rigor-
ous techniques that can be used to perform record linkage
in an efficient manner. To demonstrate that these techni-
ques provide significant savings in communication over-
head, we normalize the communication overhead needed
by our approach by the size of the remote database from
where the matching records need to be extracted. This
provides a relative measure of performance that is more
meaningful than merely reporting the absolute commu-
nication overhead needed by a technique to generate the
required set of matching records.

An important issue associated with record linkage in
distributed environments is that of schema integration. For
record linkage techniques to work well, one should be able
to identify the common nonkey attributes between two
databases. If the databases are designed and maintained
independently—as is the case in most heterogeneous
environments—it would be necessary to develop an
integrated schema before the common attributes can be
identified. Schema integration is not the focus of this paper;
however, there is an extensive body of literature that deals
with this issue; interested readers are referred to [3], [7],
[22], [24], [25], [31], [33], [34], among others. In this study,

374 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 3, MARCH 2011

we assume that the attribute-level reconciliation has already
been performed prior to employing the record linkage
techniques discussed in this paper.

The rest of this paper is organized as follows: Section 2
describes two illustrative examples to motivate the problem
studied in this paper. Section 3 develops the foundation for
the proposed techniques, which are then analyzed in detail
in Section 4. Results of detailed numerical experiments with
real and synthetic data sets are reported in Section 5.
Section 6 concludes the paper and offers possible directions
for future research.

2 MOTIVATIONAL EXAMPLES

In order to motivate the problem context and illustrate the
usefulness of the sequential approaches presented in this
paper, we provide two real-world examples: the first one is
drawn from insurance claims processing, and the second
from crime investigation.

2.1 Example: Insurance Claims Processing

Consider the following situation in a large city with four
major health insurance companies, each with several
million subscribers. Each insurance company processes
more than 10,000 claims a day; manual handling of this
huge volume could take significant human effort resulting
in high personnel and error costs. A few years ago, the
health insurance companies and the medical providers in
the area agreed to automate the entire process of claims
filing, handling, payment, and notification. In the auto-
mated process, a medical service provider files health
insurance claims electronically using information (about
patients and services provided) stored in the provider
database. A specialized computer program at the insurance
company then processes each claim, issues payments to
appropriate parties, and notifies the subscriber.

Although automated processing works well with most
claims, it does not work with exceptions involving double
coverage. A double coverage is defined as the situation
where a person has primary coverage through his/her
employer and secondary coverage through the employer of
the spouse. Each service is paid according to a schedule of
charges by the primary insurance; co-payments and
nonallowable amounts are billed to the secondary insur-
ance. An exceptional claim is one where the insurance
company is billed as the primary for the first time, whereas
previous billings to this company have been as the
secondary. Quite often, medical service providers submit
the primary claims incorrectly (to the secondary carrier).
Therefore, when an exceptional claim is received, the
insurance company would like to verify that it is indeed
the primary carrier for the subscriber. Since the system
cannot currently verify this, all exceptional claims are
routed for manual processing.

The insurance companies request that their subscribers
inform them of the existence of (and changes in) secondary
coverage. However, many subscribers forget to send the
appropriate notification to update the subscriber database.
To complicate things further, different employers use
different calendars for open enrollment—some use the
calendar year, others use the fiscal year, and many academic
institutions use the academic year. Furthermore, subscribers

often change jobs, and their insurance coverages change
accordingly. With rapid economic growth and the prolifera-
tion of double income families around the city, each
insurance company receives several thousand updates per
day to their subscriber database. However, since not all
updates are propagated across the companies, stories of
mishandled claims are quite common.

In order to overcome this problem, the insurance
companies have recently agreed to partially share their
subscriber databases with one another. Under this agree-
ment, an insurance company would be able to see certain
information (such as name, address, and employer) about
all the subscribers in the other companies by using SQL
queries. Of course, confidential information (such as social
security number, existing diseases, and test results) would
not be shared, nor would the processing of application
programs or scripts from other companies be allowed. The
companies have enhanced the existing claims processing
software so that the subscriber information in all other
databases can be consulted to determine the current state of
coverage. Specifically, before processing an exceptional
claim, one obtains the coverage information from the other
companies, and checks for the existence of double coverage.

Unless an efficient technique is used, the communication
burden needed for record linkage in the above environment
maybe quite high. The databases are quite large—the
average number of subscribers per company is more than
a million. Each record contains many common attributes
with a total size of about 500 bytes per record. If a more
efficient technique is not used, even with a dedicated T-1
connection, it would take in excess of 40 minutes for
downloading the common attribute values of all the records
from a remote database (ignoring queuing delays and the
framing overhead). Thus, the need for an efficient techni-
que, such as the one we are about to propose here, is clearly
indicated for this application.

2.2 Example: Crime Investigation

Consider the situation in a large metropolitan area consist-
ing of about 40 municipal regions. Each municipality is
equipped with (mostly incompatible) criminal data proces-
sing systems and their respective data models. Although,
the municipalities share a significant portion of the stored
criminal records among themselves, it has long been
decided that it is not practical to create a central data
warehouse that consolidates all the information. The
justification for this decision was derived from the funda-
mental failure of the US Government’s “Interstate Identifi-
cation Index” (III) which is fed by the “State Criminal
History Information System” (CHIS). An effort spanning
more than a decade has consolidated only about 60 percent
of the state criminal records. No status report beyond 2001
is available from the US Department of Justice, and whether
the remaining 40 percent records will ever be consolidated
is, therefore, an open question at present.

Currently, a police officer investigating a crime at the site
makes a phone call to a backroom operator, who searches
through the different databases to determine if certain
offender types are known to be located in the call area of
interest. The process is quite inefficient. First, it is often
difficult for a police officer to relay the exact search

DEY ET AL.: EFFICIENT TECHNIQUES FOR ONLINE RECORD LINKAGE 375

requirements to the operator. Second, the police officer has
to rely on the operator’s expertise and intuition in
modifying the search criteria based on the results of a
previous query. Third, when the search criteria are satisfied
by several records in several databases, relaying all the
information back to the police officer over the phone is
cumbersome, error-prone, and time-consuming. Finally, if
all backroom operators are busy working on other
investigations, an officer may have to wait for a long time
before an operator becomes available to provide the
necessary help.

In order to address this problem, a proposal is currently
under consideration whereby the field personnel (such as
investigating officers, certain social workers, and forensic
experts) would be provided with handheld devices. The
basic idea in this proposal is that a crime investigator
should be able to quickly download relevant information
(appropriate to the crime profile of the case at hand) on
these devices, instead of having to rely on a backroom
operator to do the necessary research.

Unfortunately, there are several challenges in implement-
ing this proposal. First, since no centralized data warehouse
exists, an investigating officer may have to send queries to
several databases separately to download the relevant
information. Second, the handheld devices do not have
enough storage capacity to download all the remote
databases in a batch process and store them locally. Third,
the connection speed on these machines (based on a wireless
networking infrastructure) is not very high, making it
impossible to download millions of records on a real-time
basis. Therefore, the practicality of the entire proposal
depends on finding a way to download only the relevant
criminal records to the handheld devices on demand.

3 PROPOSED MODEL

In this section, we draw upon the research in the area of
sequential information acquisition [27], [28] to provide an
efficient solution to the online, distributed record linkage
problem. The main benefit of the sequential approach is
that, unlike the traditional full-information case, not all the
attributes of all the remote records are brought to the local
site; instead, attributes are brought one at a time. After
acquiring an attribute, the matching probability is revised
based on the realization of that attribute, and a decision is
made whether or not to acquire more attributes. By
recursively acquiring attributes and stopping only when
the matching probability cannot be revised sufficiently (to
effect a change in the linkage decision), the sequential
approach identifies, as possible matches, the same set of
records as the traditional full-information case (where all
the attributes of all the remote records are downloaded).
Before we discuss the sequential approach in more detail,
some basic notation and an overview of traditional record
linkage is necessary.

3.1 Basic Notation

Let a be an enquiry record at the local site, and let R ¼
fb1; b2; . . . ; bng be a set of records at the remote site. We are
interested in identifying the records in R that are possible
matches of a. We consider a set of attributes Y ¼
fY1; Y2; . . . ; YKg common to both a and R. The Yk-value of a

record r is denoted by rðYkÞ. The comparison results between
two records, a and b 2 R, and their common attributes can be
expressed as the following random variables:

M ¼
1; if a and b are linked;

0; otherwise;

�

and Uk ¼
1; if aðYkÞ ¼ bðYkÞ;
0; otherwise;

�
k 2 f1; 2; . . . ; Kg:

Although Uk is represented as a binary-valued random
variable here, it is straightforward to extend this idea to the
case where Uk can assume more than two values. In that
case, we would be able to express partial matches between
attribute values as well.

The possible match between a and b is quantified by the
conditional probability that the two records refer to the
same real-world entity instance, given U ¼ ðU1; U2; . . . ; UKÞ,
the matching pattern of their recorded attribute values; this
probability can be estimated using Bayes’ conditionaliza-
tion formula:

pðUÞ ¼ Pr½M ¼ 1jU�

¼ Pr½UjM ¼ 1�Pr½M ¼ 1�
Pr½UjM ¼ 1�Pr½M ¼ 1� þ Pr½UjM ¼ 0�Pr½M ¼ 0�

¼ 1þ
1� pj;
pj;

1

LðUÞ

� ��1

;

ð1Þ

where LðUÞ ¼ Pr½UjM¼1�
Pr½UjM¼0� is the likelihood ratio for the

matching pattern U, and pj; ¼ Pr½M ¼ 1� denotes the
prior probability that a and b refer to the same real-world
entity; clearly, Pr½M ¼ 0� ¼ 1� pj;.

In practice, it is quite common to make the simplifying
(Naı̈ve Bayes) assumption of conditional independence
among Uks given M [16], [21]. Equation (1) then simplifies to

pðUÞ ¼ 1þ 1� pj;
pj;

YK
k¼1

Pr½UkjM ¼ 0�
Pr½UkjM ¼ 1�

 !�1

: ð2Þ

Therefore, the parameters required to calculate p are: pj;,
Pr½UkjM ¼ 1�, and Pr½UkjM ¼ 0�, k ¼ 1; 2; . . . ; K. These
parameters can be easily estimated and stored based on a
matched set of training data [16]. Given any two records to
be matched, the value of the matching probability p can be
calculated based upon the values observed for Uk,
k ¼ 1; 2; . . . ; K.

Traditionally, the linkage rule is expressed in terms of
the likelihood ratio LðUÞ: any two records with the
matching pattern U are not linked if LðUÞ < �, and are
linked as possible matches (perhaps requiring further
clerical review) if LðUÞ � �, where � is a constant
determined in order to minimize the total number of errors
made in the linkage decision [16]. We make two important
observations in this regard. First, we note that the condition
LðUÞ � � is equivalent to the probability condition:
pðUÞ � �, when � ¼ �ð1�pj;Þ

pj;ð1��Þ
. Second, we express the thresh-

old � (and hence �) as a parameter of an explicit cost-benefit
trade-off. In order to do that, consider the case of evaluating
a possible linkage between two records a and b having a
matching pattern U. If a is the same as b (a ’ b) and the

376 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 3, MARCH 2011

records are linked, or if a 6’ b and the records are not linked,
then there is no error. However, if a ’ b, and we fail to link
the records, a type-I error (false negative) is committed; let
c1 denote the cost of this error. Similarly, a type-II error
(false positive) occurs when a 6’ b, but the records are
linked; let c2 denote the associated cost. A rational choice
would be to link a and b if the total expected cost of linking
them is lower than that of not linking them: ð1� pðUÞÞc2 �
pðUÞc1. Simplifying, we get the revised linkage rule:

pðUÞ � � ¼ c2

c1 þ c2
; ð3Þ

where � 2 ½0; 1� is the relative cost of type-II error. It is
possible that a set of multiple remote records satisfy the
linkage rule in (3). When this happens, the eventual
matching could be decided from this set, perhaps after a
clerical review.

3.2 Sequential Record Linkage and Matching Tree

The sequential approach decides on the next “best”
attribute to acquire, based upon the comparison results of
the previously acquired attributes. The acquisition of
attributes can be expressed in the form of a matching tree
as shown in Fig. 1. This tree can be used in the following
manner: Starting at the root, we acquire attribute Y3 first. If
there is a match on this attribute, we acquire attribute Y7;
otherwise, we acquire Y2. Similarly, after acquiring Y7, if
there is a match, we acquire Y1, and so on, till a “STOP”
node is reached. In the end, we would have a set of
probability numbers for each remote record, based only on
a subset of attributes that would have been acquired along a
path of the tree. We now discuss how one can induce a
matching tree similar to the one shown in Fig. 1.

There are two basic principles used in the induction of a
matching tree: 1) input selection and 2) stopping. Before we
describe these two principles, we would like to clarify an
important point. In inducing the tree, as well as in our

subsequent numerical analysis, we make the common
assumption of conditional independence among Uks given
M; this reduces the overall computational burden. How-
ever, the idea presented here is more general, because, even
in situations where this assumption does not hold, the
matching tree can still be constructed through recursive
partitioning of the training data, as is done in the traditional
induction of a decision tree [32].

3.2.1 Input Selection

Assume that we are at some node of the tree and are trying
to decide how to branch from there. Let V be the set of
attributes that has already been acquired; the possibility
that V ¼ ; is not excluded. The matching probability as
revised by the attributes in V can be written as

pjV ¼ 1þ 1� pj;
pj;

Y
Yj2V

Pr½UjjM ¼ 0�
Pr½UjjM ¼ 1�

0
@

1
A�1

: ð4Þ

At this point, we would be interested in finding the next best
attribute Yk to be acquired from the set of remaining
attributes, Y � V. There are two possibilities for the Yk-value
of a remote record b 2 R: either bðYkÞ ¼ aðYkÞor bðYkÞ 6¼ aðYkÞ,
i.e., Uk is either one or zero. Of course, once we know Yk, and
hence Uk, we could revise the matching probability to

pjV [fYkg ¼ 1þ 1� pjV
pjV

Pr½UkjM ¼ 0�
Pr½UkjM ¼ 1�

� ��1

: ð5Þ

The revised probability value pjV[fYkg could be higher or
lower than pjV depending on the actual realization of Uk.
The probability of Uk having a certain value can be found
conditioned on the matching pattern of the attribute values
that have already been acquired and compared. Let
U ¼ fUjjYj 2 Vg. Then, this probability can be written as

Pr½UkjU� ¼
X

m2f0;1g
Pr½UkjM ¼ m;U�Pr½M ¼ mjU�

¼
X

m2f0;1g
Pr½UkjM ¼ m�Pr½M ¼ mjU�

¼Pr½UkjM ¼ 1�pjV þ Pr½UkjM ¼ 0�ð1� pjVÞ:

ð6Þ

We now discuss the reduction in error cost as a result of
acquiring Yk. First, we simplify the notation. Let the current
value of the matching probability pjV be �; it is easily
obtained from (4). Now, if Yk is acquired at this point, the
revised matching probability pjV [fYkg can be obtained from
(5). This revised probability is likely to be different from the
current probability �: If the actual realization of Uk is
favorable toward matching, then the matching probability
would increase. If, on the other hand, the actual realization
of Uk is not favorable, then the matching probability would
decrease. In other words, pjV[fYkg will either be �0 � � (with
a probability of �) or �00 � � (with a probability of 1� �). Of
course, the value of the branching probability, �, corre-
sponds to the actual realization of Uk; it can be computed
from (6) and must satisfy: � ¼ ��0 þ ð1� �Þ�00. For example,
if Uk ¼ 1 is the favorable realization, then � ¼ Pr½Uk ¼ 1jU�
and 1� � ¼ Pr½Uk ¼ 0jU�, both of which can be directly
obtained from (6). Based on this, the reduction in the error
cost from acquiring Yk is given by

DEY ET AL.: EFFICIENT TECHNIQUES FOR ONLINE RECORD LINKAGE 377

Fig. 1. A sample tree showing attribute acquisition order.

�Cost ¼ Cost for �� ½� � Cost for �0�
� ½ð1� �Þ � Cost for �00�;

where the cost associated with a matching probability of �
can be written as

Cost for � ¼ �ð1� �Þ; if � > �;
�ð1� �Þ; otherwise:

�

Analogous expression can be written for �0 and �00 as well,
with appropriate substitutions. Four possible cases arise:

. Case 1 (� > � and �00 > �): Of course, �0 � � > �.
Therefore,

�Cost ¼ �ð1� �Þ � ��ð1� �0Þ � ð1� �Þ�ð1� �00Þ
¼ 0:

. Case 2 (� > � and �00 � �): Again, �0 � � > �.
Therefore,

�Cost ¼ �ð1� �Þ � ��ð1� �0Þ � ð1� �Þ�00ð1� �Þ
¼ ð1� �Þð�� �00Þ � 0:

. Case 3 (� � � and �0 � �): Of course, �00 � � � �.
Therefore,

�Cost ¼ �ð1� �Þ � ��0ð1� �Þ � ð1� �Þ�00ð1� �Þ
¼ 0:

. Case 4 (� � � and �0 > �): Again, �00 � � � �.
Therefore,

�Cost ¼ �ð1� �Þ � ��ð1� �0Þ � ð1� �Þ�00ð1� �Þ
¼ �ð�0 � �Þ � 0:

Therefore, for each attribute that has not been acquired, we
can calculate the savings in error cost (�Cost) if that
attribute is acquired. We then pick the attribute with the
highest savings. A special situation, however, arises when
the cost savings are the same for all remaining attributes.
When this happens, we use entropy reduction (instead of
cost savings) as the selection criterion; we calculate the
entropy reduction as [1]:

�Entropy ¼ �½� log�þ ð1� �Þ logð1� �Þ�
þ �½�0 log�0 þ ð1� �0Þ logð1� �0Þ�
þ ð1� �Þ½�00 log�00 þ ð1� �00Þ logð1� �00Þ�;

and pick the attribute that provides the largest entropy
reduction (�Entropy).

3.2.2 Stopping

Now we consider the issue of when to stop expanding the
matching tree. The stopping decision is made when no
realization of the remaining attributes can sufficiently revise
the current matching probability so that the matching
decision changes. To that end, we find the upper and lower
bounds of the eventual matching probability.

The calculation of these bounds is straightforward. Let V
be the set of attributes already acquired, i.e., the current

matching probability is pjV . Now, consider acquiring an
attribute Yj 2 ðY � VÞ. There are two possibilities: Uj is
either one or zero. Of these two possible realizations of Uj,
as mentioned earlier, one enhances the matching prob-
ability and is called a favorable realization, denoted uþj ; the

other realization, denoted u�j , is called an unfavorable

realization. The favorable and unfavorable realizations of
an attribute can be found from the training data—these
realizations must satisfy

Pr½Uj ¼ uþj jM ¼ 1�
Pr½Uj ¼ uþj jM ¼ 0� � 1; and

Pr½Uj ¼ u�j jM ¼ 1�
Pr½Uj ¼ u�j jM ¼ 0� < 1:

Based on these realizations, we can find the upper and
lower bounds, denoted by pU jV and pLjV , respectively, if pjV
is revised using all the remaining attributes:

pU jV ¼ 1þ 1� pjV
pjV

Y
Yj2ðY�VÞ

Pr½Uj ¼ uþj jM ¼ 0�
Pr½Uj ¼ uþj jM ¼ 1�

0
@

1
A�1

; and

pLjV ¼ 1þ 1� pjV
pjV

Y
Yj2ðY�VÞ

Pr½Uj ¼ u�j jM ¼ 0�
Pr½Uj ¼ u�j jM ¼ 1�

0
@

1
A
�1

:

Note that pLjV � pjV � pU jV . Therefore, if pU jV < �, then it
would be impossible to obtain a matching probability above
� and change the current matching decision (M ¼ 0).
Similarly, if pLjV > �, then the matching probability would
always be above �, so the current matching decision (M ¼ 1)
cannot be revised. In either case, the matching decision
cannot be changed by acquiring more attributes; hence, we

should stop expanding the tree. To put it in another way, we
continue expanding the tree as long as there is any chance
that the matching probability can be revised sufficiently to
change the matching decision. This ensures that we do not
stop expanding the tree prematurely. Any remote record,
when matched using this tree, can follow exactly one path

resulting in eitherM ¼ 1 orM ¼ 0, but not both. Because our
stopping condition guarantees that the matching decision
(M) would never change even if more attribute values are
considered, the tree can be used to partition a set of remote
records unambiguously; we call this the completeness

property of the matching tree.
A distinct advantage of the tree-based sequential record

linkage is that the matching tree can be precomputed and
stored, thereby saving computational overhead at the time of
answering a linkage query. Of course, in a real-world
situation, one may need to store several matching trees, each
for a different value of �. This is because the relative cost of a
type-II error maybe different for different tasks within the

same application. By identifying these tasks a priori and
storing the matching trees for the appropriate values of �,
one can avoid the extra computation at query time.

4 TREE-BASED LINKAGE TECHNIQUES

In this section, we develop efficient online record linkage
techniques based on the matching tree induced in Section 3.2.

The overall linkage process is summarized in Fig. 2. The first
two stages in this process are performed offline, using the

378 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 3, MARCH 2011

training data. Once the matching tree has been built, the
online linkage is done as the final step.

We can now characterize the different techniques that
can be employed in the last step. Recall that, given a local
enquiry record, the ultimate goal of any linkage technique is
to identify and fetch all the records from the remote site that
have a matching probability of � or more. In other words,
one needs to partition the set of remote records into two
subsets: 1) relevant records that have a matching probability
of � or more, and 2) irrelevant records that have a matching
probability of less than �. Our aim is to develop techniques
that would achieve this objective while keeping the
communication overhead as low as possible. The partition-
ing itself can be done in one of two possible ways:
1) sequential, or 2) concurrent (see Fig. 3).

In sequential partitioning, the set of remote records is
partitioned recursively, till we obtain the desired partition
of all the relevant records. This recursive partitioning can be
done in one of two ways: 1) by transferring the attributes of
the remote records and comparing them locally, or 2) by
sending a local attribute value, comparing it with the values
of the remote records, and then transferring the identifiers
of those remote records that match on the attribute value.
As shown in Fig. 3, we call the first one sequential attribute
acquisition, and the second, sequential identifier acquisition.

In the concurrent partitioning scheme, the tree is used to
formulate a database query that selects the relevant remote
records directly, in one single step. Hence, there is no need
for identifier transfer. Once the relevant records are
identified, all their attribute values are transferred. We call
this scheme concurrent attribute acquisition (see Fig. 3).

4.1 Sequential Attribute Acquisition (SAA)

As mentioned earlier, in this technique, we acquire attribute
from the remote records in a sequential fashion. Consider the

matching tree in Fig. 1. Working with this tree, we would first
acquire attribute Y3 for all the remote records inR. When the
Y3-value of b 2 R is compared to that of the local enquiry
record a, we would get either a match or a mismatch.
Therefore, the set of remote records inR gets partitioned into
two sets R1 and R2, where R1 is the set of records with
matching Y3-value, and R2 ¼ R�R1. For all the records in
R1, the next attribute to acquire should be Y7, whereas Y2

should be acquired for all the records in R2. Now, we would
partition R1 and R2 based on the matching pattern of Y7 and
Y2, respectively, and continue in this fashion.

Although the above procedure is simple, its implementa-
tion requires one to maintain the indices of the partitioned
sets, say R1 and R2. For example, when querying the remote
database for the Y7-values of the records in R1, we would
need to identify which records belong to the setR1. SinceR is
partitioned locally, a record identification scheme common
to both the sites must be established. This can be easily done
by using a candidate key from the remote database. In this
scheme, during the first transfer, we acquire the identifiers
for all the remote records and use these identifiers to specify
any desired partition of the set of remote records.

The total communication overhead of the SAA technique
is composed of three elements: 1) the transfer of attribute
values from the remote to the local site, 2) the transfer of all
the identifiers between the remote and the local sites, and
3) the transfer of those records that have a matching
probability greater than �. It is possible to estimate the
expected size of each of these three overheads from the
matching tree. Let X be the set of nonleaf nodes in the
matching tree, and let qðxÞ be the probability of visiting node
x 2 X. Since there aren remote records, the expected number
of remote records visiting node x should be nqðxÞ. Therefore,
total attribute overhead should be n

P
x2X qðxÞsðxÞ, where

sðxÞ is the size of the attribute acquired at node x.
In order to estimate the identifier overhead, we know

that, at node x, nqðxÞ identifiers must be sent from the local
to the remote site, except at the root node where all n
identifiers are received from (and not sent to) the remote
site. Therefore, the expected number of identifiers sent to
the remote site is n

P
x2X qðxÞ � n, whereas n identifiers are

received. Assuming that the identifier size is sK , the total
identifier overhead should be nsK

P
x2X qðxÞ.

Finally, given a remote record, the probability that it
matches the local enquiry record is pj;. So the expected
number of remote records that would match the local record
is npj;. Denoting the size of each remote record by sR, we get
the total overhead from included records as npj;sR.

DEY ET AL.: EFFICIENT TECHNIQUES FOR ONLINE RECORD LINKAGE 379

Fig. 2. The overall process of online tree-based linkage.

Fig. 3. Possible tree-based linkage techniques.

To provide a relative measure of the communication
overhead, we normalize the required overhead by the size
of the remote database, nsR. Therefore, we can express the
total overhead as a fraction of this size as

Normalized Total Overhead

¼
P

x2X qðxÞsðxÞ þ sK
P

x2X qðxÞ
sR

þ pj;:
ð7Þ

The terms
P

x2X qðxÞsðxÞ and
P

x2X qðxÞ in (7) can be easily
estimated from the matching tree induced using the
training data.

4.2 Sequential Identifier Acquisition (SIA)

Sequential identifier acquisition is a minor variation of
sequential attribute acquisition, but can provide significant
savings in terms of the communication overhead. Its better
performance lies in the fact that nonkey attributes stored in
a database are often much larger than an identifier
(typically 2 or 4 bytes long). If the attribute transfer could
be replaced by identifier transfer, the total communication
maybe reduced. Therefore, in this approach, we do not
transfer the attribute values from the remote site. Rather, we
send the local attribute value in a database query and ask
the remote site to send the identifiers of all records that
match the local attribute value. In order to see how this can
be done, consider the matching tree in Fig. 1. Using this
scheme, we would first ask for the identifiers of all the
remote records in R. We would then send the Y3-value of
the local enquiry record and ask for the identifiers of those
records that match on Y3. The set of records identified by
these identifiers is R1; and R2 is calculated as R�R1. Then,
we would send the identifiers in R1 along with the Y7-value
of the local enquiry record, and ask the remote database to
send the identifiers from only that subset of R1 which
matches on Y7. Proceeding this way, we can eventually find
the identifiers of all the remote records with a matching
probability greater than �.

In this case also, there are three types of communica-
tion overheads: 1) attribute overhead, 2) identifier over-
head, and 3) included record overhead. In order to obtain
the total attribute overhead in this case, we note that the
attribute value of the enquiry record at a node x must be
sent as long as there is even a single remote record that
visits x. If we assume that the event of a remote record
visiting a node x is independent of another remote record
visiting x, then the probability that at least one record will
visit x is 1� ð1� qðxÞÞn. Therefore, the total attribute
overhead should be

P
x2X½1� ð1� qðxÞÞ

n�sðxÞ.
In order to find the total identifier overhead, note that the

expected number of remote records visiting a node x is
nqðxÞ. The identifier value of all these records must be
transmitted from the local to the remote site along with the
attribute value; this results in a total transfer of nqðxÞsK . In
response, the remote site sends the identifiers of only those
records that visit lðxÞ, the left child of x; the size of that
transfer is nqðlðxÞÞsK . The only exception is the root node.
At the root node, we receive the identifiers of all records,
and do not have to resend these identifiers. The total can,
therefore, be calculated as

Identifier Overhead

¼ Identifier Sentþ Identifier Received

¼ n
X
x2X

qðxÞsK � nsK

" #
þ n

X
x2X

qðlðxÞÞsK þ nsK

" #

¼ nsK
X
x2X
½qðxÞ þ qðlðxÞÞ�:

The included record overhead is still given by npj;sR.

Normalizing the total overhead by the size of the remote

database, we have

Normalized Total Overhead

¼
1
n

P
x2X½1�ð1�qðxÞÞ

n�sðxÞ þ sK
P

x2X½qðxÞþqðlðxÞÞ�
sR

þ pj;:
ð8Þ

In order to see how SIA performs compared to SAA,

compare (7) and (8) and observe that SIA results in a lower

overhead than SAA if

1

n

X
x2X

1� nqðxÞ � ð1� qðxÞÞn½ �sðxÞ þ sK
X
x2X

qðlðxÞÞ � 0:

This implies that SIA is better as long as

sK �
P

x2X
nqðxÞ�1þð1�qðxÞÞn

n sðxÞP
x2X qðlðxÞÞ

:

The right-hand side of the above expression depends on n,

the number of remote records, and is somewhat cumbersome

to estimate. If possible, we would like to simplify it further.

Now, it can be shown that, for all q 2 ½0; 1� and all n � 1,

1� 1

n

� �
q2 � nq � 1þ ð1� qÞn

n
� 1� 1

n

� �
q2 þ 1

4
:

In order to verify this, let gðnÞ ¼ nq�1þð1�qÞn�ðn�1Þq2

n ; all we

need to show is that 0 � gðnÞ � 0:25. This is clearly true for

n ¼ 1; 2. Assuming that it is true for n ¼ m, we get

ðm� 1Þq2 �mq þ 1 � ð1� qÞm � ðm� 1Þq2 �mq þ 1þm
4
:

After substituting ð1� qÞm in the expression for gðmþ 1Þ and

performing the necessary algebraic manipulations, we get

0 � q
2ðm� 1Þð1� qÞ

mþ 1
� gðmþ 1Þ

� 1

4
� 1

4ðmþ 1Þ ½mqð1� 2qÞ2 þ 4q2ð1� qÞ þ 1� � 1

4
:

This completes the proof by induction. Therefore, SIA

performs better as long as sK < �sK , where

�sK ¼

�
1� 1

n

�X
x2X
½qðxÞ�2sðxÞX

x2X
qðlðxÞÞ

:

Given a matching tree, it is now quite easy to estimate �sK . In

our experiments with real and synthetic data sets, we have

found, except in the extreme case of n ¼ 1, �sK to be much

380 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 3, MARCH 2011

larger than sK , thereby implying an overall superiority of
SIA over SAA.

4.3 Concurrent Attribute Acquisition (CAA)

The main drawback of the sequential schemes (SAA and
SIA) is that the information pertaining to the remote records
must be transferred back and forth between the sites; the
resulting overhead could be substantial, especially when
the number of remote records is large. When we consider
the latency-related delays as well, this back-and-forth
nature of the communication may make them particularly
inappropriate in many situations. This section proposes
another approach that completely eliminates the overhead
that occurs in a recursive partitioning scheme embedded in
SAA or SIA. In this approach, we make use of the matching
tree developed earlier to formulate a database query which
is posed to the remote site to acquire only the relevant
records. Although such a query would usually be quite long
and complex, conceptually it is easily constructed by using
the matching tree and can be generated automatically.

To understand how this can be done, first consider the
vector U ¼ ðU1; U2; . . . ; UKÞ. Certain realizations of this
vector leads to a matching probability greater than �; call
these the favorable realizations. We are only interested in those
remote records that lead to the favorable realizations ofU. We
can use the tree effectively to identify these realizations. Any
path in the tree that leads to a “STOP” node with a matching
probability greater than � provides us with a favorable
realization and is called an acceptance path. Such a path can be
expressed as a conjunctive condition. For example, consider
the acceptance path ðY3; Y7; Y5; Y9Þ in Fig. 1. This path can be
expressed as a query condition:

ðY3 ¼ aðY3ÞÞ ^ ðY7 6¼ aðY7ÞÞ ^ ðY5 ¼ aðY5ÞÞ
^ ðY9 ¼ aðY9ÞÞ:

Since many paths may lead to different favorable
realizations, the overall query condition should be a
disjunction of all the acceptance paths starting at the root.
In other words, if there are m acceptance paths out of the
root, and if ej denotes the condition of path j,
j ¼ 1; 2; . . . ;m, then the overall query condition can be
written as: e1 _ e2 _ � � � _ em. This query condition, however,
is quite cumbersome (with many of the nodes repeated
several times) and can be compressed further.

In order to explain how that can be done, denote by EðxÞ
the complete query condition rooted at node x. Because of
the completeness property of the matching tree (as
discussed in Section 3.2), every relevant record (a record
with matching probability above �) must satisfy EðxÞ, and
every irrelevant record (a record with matching probability
below �) must satisfy :EðxÞ, the negation of EðxÞ. Let lðxÞ
and rðxÞ be the left and right children of node x,
respectively. Denoting the attribute at node x as Y ðxÞ,
EðxÞ can be expressed as a recursion:

EðxÞ � ððY ðxÞ ¼ aðY ðxÞÞÞ ^EðlðxÞÞÞ _ ððY ðxÞ 6¼ aðY ðxÞÞÞ
^EðrðxÞÞÞ:

Assume, without loss of generality, that a match on Y ðxÞ is
a favorable realization. Now consider the revised query
condition

E0ðxÞ � ððY ðxÞ ¼ aðY ðxÞÞÞ ^ EðlðxÞÞÞ _EðrðxÞÞ:

Clearly, EðxÞ) E0ðxÞ, so a relevant record would not be
excluded from consideration if EðxÞ is replaced by E0ðxÞ;
the question is whether irrelevant records would be
erroneously included as a result of this replacement.
Suppose that b 2 R does not satisfy EðxÞ, i.e., b is irrelevant,
but b satisfies E0ðxÞ. Therefore, b must satisfy

E0ðxÞ ^ :EðxÞ � ðY ðxÞ ¼ aðY ðxÞÞÞ ^EðrðxÞÞ
^ :EðlðxÞÞ) ðY ðxÞ ¼ aðY ðxÞÞÞ ^ EðrðxÞÞ:

Since we assumed that a match on Y ðxÞ is a favorable
realization, the matching probability of the above condition
must be greater than the matching probability associated
with the condition ðY ðxÞ 6¼ aðY ðxÞÞÞ ^ EðrðxÞÞ. However,
the latter condition corresponds to an acceptance path in the
tree and has a matching probability greater than �, so b has
a matching probability greater than �. This is a contra-
diction to the assumption that b is irrelevant. Therefore, by
rewriting the expression of EðxÞ as E0ðxÞ and using it
recursively starting at the root, we can ensure each node is
included in the query exactly once, thereby reducing the
size of the query significantly. The size of the compressed
query is, therefore, the size of tree and is equal to

P
x2X sðxÞ.

In this case, there is no identifier overhead, and the
included record overhead is still npj;sR. Therefore, the
normalized overhead in this case is given by

Normalized Total Overhead ¼
P

x2X sðxÞ
nsR

þ pj;: ð9Þ

5 TESTING AND VALIDATION

In order to study the actual performance of the above
approaches, we implement and test them on real-world and
synthetic data sets. Before we describe the implementation
and discuss the results, two aspects of the numerical study
should be discussed.

. The expected communication overhead for the
sequential approach (normalized by the size of the
remote database) can be calculated exactly based on
the matching tree, as shown in (7), (8), and (9).
Hence, we need not resort to simulation (using
actual data sets) to estimate the expected commu-
nication overhead.

. The only role of the data set in this study is to
estimate the conditional probabilities required for
constructing the matching tree. As can be seen from
(4), the probabilities necessary to construct the tree
are: pj;, Pr½UkjM ¼ 1�, and Pr½UkjM ¼ 0�, k ¼ 1;
2; . . . ; K. Once these probabilities are estimated from
the data set and stored, the matching tree can be
easily constructed for different values of �. The
communication overhead for each value of � can
then be calculated.

5.1 Numerical Results

The first data set used in this study is a real-world database
consisting of two versions of the MIS faculty directory
maintained by the University of Minnesota—a 1992 version

DEY ET AL.: EFFICIENT TECHNIQUES FOR ONLINE RECORD LINKAGE 381

(R92) and a 1996 version (R96). We designate the 1992 version
as the “local” database and the 1996 version as the “remote”
database. For training the model, we only use subsets of
these databases with faculty records from the following
randomly selected states: Alabama (AL), District of Colum-
bia (DC), Maine (ME), Pennsylvania (PA), Illinois (IL),
Oklahoma (OK), and New Jersey (NJ). There are 280 and
304 records in the 1992 (local) and 1996 (remote) subsets,
respectively. There are two reasons as to why we consider
records from a randomly selected subset of states, instead of
randomly picking individual faculty records. First, this
choice better mimics our problem context where the two
databases have a significant overlap. If the individual faculty
records were chosen randomly, the overlap would be much
smaller (in fact, none in some cases). There is a secondary
benefit as well—this choice yields much more accurate
estimates of the probability parameters Pr½UkjM ¼ 1�,
k ¼ 1; 2; . . . ; K. This is because, when records from the two
databases are compared, only a few comparisons would
result in a match (M ¼ 1) if the overlap is small. However, if
the overlap is large, there will be enough comparisons with
M ¼ 1, providing ample data points to estimate Pr½UkjM ¼
1� accurately.

A related issue is that of the size of the training data set,
which is always an important consideration in any
empirical validation. In order to address this issue, we
verify that the size of the data set used in our experiments is
well above what is required to obtain accurate and stable
estimates of the required probability parameters. This
verification is done using the well-known �2 test—we find
that the probability distribution remains unchanged even
with data sets that are much smaller than the one used.

There are a total of 17 common attributes between R92

and R96; the total size of the common attributes is 438 bytes
per record. In order to establish the actual linkage, the
records in the two versions are manually matched. We then
obtain the necessary probabilities and construct the match-
ing tree for different values of �. The computational
overhead for this training phase is quite small. It takes
well less than a minute to learn the probability parameters
(Step 1 in Fig. 2) on a 3.2 GHz Pentium PC with 4 Gbytes of
RAM, running Windows XP Professional (64-bit version).
Once the probability parameters are learned, it takes only a
few seconds to build a matching tree (Step 2 in Fig. 2).

Based on the tree, we calculate the communication
overhead in each technique as a percentage of the size of
the remote database. The results from the three different
approaches are plotted in Fig. 4, for sK ¼ 2 bytes. This
figure shows, for different values of �, the percentage
overhead as a function of n, the number of remote records.

As can be clearly seen in this figure, the three tree-based
approaches reduce the communication overhead signifi-
cantly. Among these three, the overhead is the largest for
SAA (hovering around 50-55 percent) and is independent of
n. For our data set, SIA performed significantly better than
SAA, except in the trivial extreme case of n ¼ 1. The
percentage overhead for SIA, however, quickly saturates to
about 3-4 percent for values of n above 100. Since, in most
real-world situations, the number of remote records is much
larger than 100, SIA provides a very efficient strategy for

record linkage. For still larger values of n (say, larger than
about 10,000), an even more efficient strategy is provided by
CAA. In this approach, the leading term of the normalized
overhead asymptotically goes to zero with the number of
remote records. The drawback with CAA is that the
overhead could be high (even higher than the overhead
needed to download the remote database) for smaller
values of n (say, below 1,000).

The plots in Fig. 4 could be used to choose the right
linkage strategy for a given situation. Since the tree can be
precomputed, and the parameters of tree estimated, such
plots could be generated for different values of �. At the
time of actual usage, a simple database query could first be
used to ascertain the number of remote records. An
appropriate plot can then be consulted to determine which
tree-based approach to use for obtaining the set of relevant
records, with the least communication overhead.

Finally, it is interesting to note here that these tree-based
approaches not only reduce the total communication
overhead, but also requires considerably lower storage
space for the local site and, therefore, is quite attractive for
thin clients deployed for field work, for example, in crime
investigation. Of the three approaches, in CAA, only the
relevant records are sent to the local site, requiring only a
small amount of storage. In SAA and SIA, however, one
would need to locally store the identifier attribute values of
all the remote records. While this is still manageable for
smaller databases, this storage requirement could be
prohibitively large for very large remote databases. How-
ever, as Fig. 4 clearly suggests, if the remote database is very
large, we would prefer to use CAA which, as discussed
above, requires only a small amount of storage.

5.2 Additional Validation

In addition to the numerical testing performed with the
faculty directory database, we also test the tree-based
approaches on a synthetic data set, to obtain additional
insights and to strengthen the empirical validation. More
specifically, we perform numerical tests using the Freely
Extensible Biomedical Record Linkage (FEBRL) database—it is
a large data repository containing synthetic census data and
has been used in prior studies in record linkage [9], [18]. We
use two synthetic data sets from FEBRL—the first data set
contains 6,000 original records, and the second contains
4,000 synthetically generated duplicate records. For a record
in the first data set, there maybe up to nine duplicates in the
second data set. These duplicates are generated from the
original data set by modifying attribute values—there are at
most three modifications per attribute and at most
10 modifications per record. The first and the second data
sets serve as the “local” and the “remote” data sets,
respectively, in our experiments.

There are a total of 11 common attributes between the
local and the remote databases; the total size of the common
attributes is 196 bytes per record. Since most attribute values
in the remote data set contain synthetically injected errors (to
simulate typographical and other errors), an exact match of
attribute values is quite rare in this case. As a result, if one
insists on a perfect match, the matching patterns of attributes
(Uk) do not provide sufficient information about matches in
entities (M), and the subsequent record linkage is quite

382 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 3, MARCH 2011

error-prone. In order to circumvent this problem, we

implement fuzzy matching for all the string-valued attri-

butes. We first define a similarity measure between any two

character strings, �1 and �2, based on a character-by-

character comparison of these two strings:

�ð�1; �2Þ ¼
1

	

X	
i¼1

I�1½i�¼�2½i�;

where I�1½i�¼�2½i� is 1 only if the ith characters of both the

strings are the same, and it is zero otherwise; 	 is the length

of the shorter of the two strings. Now, given a string-valued

attribute Yk, and two records a and b, we redefine the

matching pattern of Yk as

Uk ¼
1; if �ðaðYkÞ; bðYkÞÞ � 0:8;
0; otherwise:

�

We run the three approaches on this data set; the results are

shown in Fig. 5. Comparing Fig. 5 with Fig. 4, we find that, in

terms of how the tree-based approaches contribute toward

reducing the communication overhead, the results show

similar trends. As before, SIA works better when the remote

database is relatively small, and CAA, when the remote

database is large. This provides additional validation of the

efficacy of our approaches and their applicability in practice.

5.3 Matching Results

The focus so far has been the efficiency or the performance

of the approaches in terms of reduction in communication

overhead. We do not directly address the issue of the

effectiveness or the performance of the approaches in terms

of matching accuracy. Although we know from the

completeness property of the tree that the matching

performance of our approaches should be exactly the same

as the full-information case, it would be nice to see how the

tree-based approaches perform on real data.
To that end, we run two additional sets of experiments

with our data sets. We first use the MIS faculty database.

There, we select all the faculty records from the two versions

(R92 and R96) for the following states: Georgia (GA), Idaho

(ID), Michigan (MI), New Hampshire (NH), Virginia (VA),

Washington (WA), Wisconsin (WI), and California (CA). The

DEY ET AL.: EFFICIENT TECHNIQUES FOR ONLINE RECORD LINKAGE 383

Fig. 4. Normalized overhead as a function of n in the three approaches.

1996 version with 497 records is designated as the remote
database. We then run four trials with 50 queries each. Each
query uses a randomly picked enquiry record (without
substitution) from the local database. The results are
provided in Table 1, in terms of the recall and precision
measures. As can be clearly seen from this table, the tree-
based approaches work very well in identifying the possible
matches.

Next, we run basically the same experiment using the
FEBRL data set. For this part of the experiment, the remote
databases has 1,384 randomly picked records. The enquiry
records are also picked randomly and a linkage query is run
for each enquiry record. As before, we again run four trials,
but this time with 100 queries each. The results are
provided in Table 2. As can be seen from this table, the
linkage performance is quite good, although not as good as
the performance with the MIS faculty database (Table 1).
This is not surprising. As mentioned earlier, the FEBRL
database has a lot of attribute value modifications inten-
tionally introduced to mimic typographical and other data
entry and transformational errors that often creep into real-
world databases. In fact, it is quite surprising that the

linkage performance is this good, both in terms of recall and
precision, despite all these errors. Overall, this shows the
robustness of our approach and its flexibility to be adapted
in different practical situations.

6 CONCLUSIONS

In this paper, we develop efficient techniques to facilitate
record linkage decisions in a distributed, online setting.
Record linkage is an important issue in heterogeneous
database systems where the records representing the same
real-world entity type are identified using different identi-
fiers in different databases. In the absence of a common
identifier, it is often difficult to find records in a remote
database that are similar to a local enquiry record.
Traditional record linkage uses a probability-based model
to identify the closeness between records. The matching
probability is computed based on common attribute values.
This, of course, requires that common attribute values of all
the remote records be transferred to the local site. The
communication overhead is significantly large for such an
operation. We propose techniques for record linkage that

384 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 3, MARCH 2011

Fig. 5. Normalized overhead in the three approaches for the FEBRL data set.

DEY ET AL.: EFFICIENT TECHNIQUES FOR ONLINE RECORD LINKAGE 385

TABLE 1
Matching Performance of Tree-Based Approaches (MIS Faculty Database)

TABLE 2
Matching Performance of Tree-Based Approaches (FEBRL Database)

draw upon previous work in sequential decision making.
More specifically, we develop a matching tree for attribute
acquisition and propose three different schemes of using
this tree for record linkage.

The three techniques proposed in this study were tested
on real-world and synthetic data sets and were found to
significantly reduce the communication overhead needed to
perform record linkage. The worst of the three techniques
still provided matching at a normalized overhead of about
40-50 percent (relative to the size of the remote database),
whereas the other two provided the same results at a much
lower overhead (less than 5 percent in most cases). Of these
two, SIA did consistently well for all values of n, the
number of remote records. CAA did not do well for low
values of n, but at high values of n, it outperformed the
other two techniques by a large margin. Based on these
results, the appropriate technique could be adopted given a
real-world application. Further, given the compelling
nature of the results from our experiments, we expect our
approach to work well in other real-world applications, too.
It is necessary to point out that the proposed techniques
reduce the communication overhead considerably, yet the
linkage performance is assured to be at the same level as the
traditional approach.

In this analysis, we compare three different approaches
based on the expected size of communication overhead.
One may also be interested in comparing these approaches
in terms of transmission delay. Although we do not
explicitly consider transmission delay, communication
overhead is a reasonable surrogate, except in situations
where network latency is a significant part of the delay. The
introduction of latency into our analysis should further
strengthen the case for CAA over the other approaches.
Because of the sequential nature of the first two approaches,
the total transmission there is broken into several smaller
transmissions. Each of these smaller transmissions suffers
from network latency. On the other hand, in CAA, the total
transmission occurs in a single step—the query is sent once,
and only one response is returned. Thus, the delay due to
network latency is minimal in CAA.

There are several other directions for future research. For
example, one could study how to extend the sequential
model to cases where there are several enquiry records at
the local site. In that case, the matching must be performed
in a manner so that no local record is paired with more than
one remote record and vice versa. The resulting sequential
decision model would be different, and it may not be
possible to build a decision tree a priori. Another avenue for
future research is to perform an explicit cost-benefit trade-
off between error cost and communication overhead. In this
study, we were able to reduce the communication overhead
significantly while keeping the error cost at the level of
traditional techniques. It may, however, be possible to
further reduce the communication overhead at the expense
of incurring higher costs of linkage errors. One could also
apply sequential decision-making techniques to the record
linkage problem using nonprobabilistic similarity measures
such as the distance-based measures used in clustering; this
maybe useful in situations where the training data (to
estimate the probabilities) are not readily available.

While discussing the efficiency of the tree-based techni-

ques, we did not consider the extra computational load

placed on the remote server. For SAA and SIA, the remote

server would have to respond to a series of queries sent in a

sequential manner. Especially for SIA, many of these

queries would involve selecting records by comparing

values of attributes for which a secondary index may not

exist. The resulting load on the remote server may not

always be insignificant. We did not consider this issue

because the reduction of communication overhead is the

major focus here. However, it would be interesting to study

how the approaches can be implemented in a more efficient

manner with respect to the load on the remote server.
Finally, an emerging area of research in record linkage

concerns the preservation of privacy associated with the

individual records shared across organizational boundaries.
In this research, we consider situations where this is not a

serious issue, or even if it is, it has been adequately addressed
prior to applying our proposed approaches. However, it
would be interesting to see if a linkage strategy such as the

one proposed in this paper can make use of traditional
privacy preservation ideas, such as data perturbation.

ACKNOWLEDGMENTS

The authors would like to express their gratitude to the

Associate Editor (Dr. Chengqi Zhang) and the three

anonymous reviewers of IEEE Transactions on Knowledge

and Data Engineering for their comments and suggestions;

this paper has greatly benefited from their efforts.

REFERENCES

[1] R. Ash, Information Theory. John Wiley and Sons, 1965.
[2] J.A. Baldwin, “Linked Record Health Data Systems,” The

Statistician, vol. 21, no. 4, pp. 325-338, 1972.
[3] C. Batini, M. Lenzerini, and S.B. Navathe, “A Comparative

Analysis of Methodologies for Database Schema Integration,”
ACM Computing Surveys, vol. 18, no. 4, pp. 323-364, 1986.

[4] I. Baussano, M. Bugiani, D. Gregori, C. Pasqualini, V. Demicheli,
and F. Merletti, “Impact of Immigration and HIV Infection on
Tuberculosis Incidence in an Area of Low Tuberculosis Preva-
lence,” Epidemiology and Infection, vol. 134, no. 6, pp. 1353-1359,
2006.

[5] R. Baxter, P. Christen, and T. Churches, “A Comparison of Fast
Blocking Methods for Record Linkage,” Proc. ACM Workshop Data
Cleaning, Record Linkage and Object Consolidation, pp. 25-27, Aug.
2003.

[6] T.R. Belin and D.B. Rubin, “A Method for Calibrating False-Match
Rates in Record Linkage,” J. Am. Statistical Assoc., vol. 90, no. 430,
pp. 694-707, 1995.

[7] P. Bernstein, “Applying Model Management to Classical Meta
Data Problems,” Proc. Conf. Innovative Database Research (CIDR),
pp. 209-220, Jan. 2003.

[8] J. Bischoff and T. Alexander, Data Warehouse: Practical Advice from
the Experts. Prentice-Hall, 1997.

[9] P. Christen and T. Churches, FEBRL: Freely Extensible Biomedical
Record Linkage Manual, Release 0.2 ed., https://sourceforge.net/
projects/febrl/, Apr. 2003.

[10] J.B. Copas and F.J. Hilton, “Record Linkage: Statistical Models for
Matching Computer Records,” J. Royal Statistical Soc., vol. 153,
no. 3, pp. 287-320, 1990.

[11] M. DesMeules, J. Gold, S. McDermott, Z. Cao, J. Payne, B.
Lafrance, B. Vissandjée, E. Kliewer, and Y. Mao, “Disparities in
Mortality Patterns among Canadian Immigrants and Refugees,
1980-1998: Results of a National Cohort Study,” J. Immigrant
Health, vol. 7, no. 4, pp. 221-232, 2005.

386 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 3, MARCH 2011

[12] D. Dey, “Record Matching in Data Warehouses: A Decision Model
for Data Consolidation,” Operations Research, vol. 51, no. 2, pp. 240-
254, 2003.

[13] D. Dey, S. Sarkar, and P. De, “A Probabilistic Decision Model for
Entity Matching in Heterogeneous Databases,” Management
Science, vol. 44, no. 10, pp. 1379-1395, 1998.

[14] D. Dey, S. Sarkar, and P. De, “A Distance-Based Approach to
Entity Reconciliation in Heterogeneous Databases,” IEEE Trans.
Knowledge and Data Eng., vol. 14, no. 3, pp. 567-582, May/June
2002.

[15] A.K. Elmagarmid, P.G. Ipeirotis, and V.S. Verykios, “Duplicate
Record Detection: A Survey,” IEEE Trans. Knowledge and Data Eng.,
vol. 19, no. 1, pp. 1-16, Jan. 2007.

[16] I.P. Fellegi and A.B. Sunter, “A Theory of Record Linkage,” J. Am.
Statistical Assoc., vol. 64, pp. 1183-1210, 1969.

[17] M.J. Goldacre, J.D. Abisgold, D.G.R. Yeates, and V. Seagroatt,
“Risk of Multiple Sclerosis after Head Injury: Record Linkage
Study,” J. Neurology, Neurosurgery, and Psychiatry, vol. 77, no. 3,
pp. 351-353, 2006.

[18] L. Gu and R. Baxter, “Adaptive Filtering for Efficient Record
Linkage,” Proc. Fourth SIAM Int’l Conf. Data Mining (SDM ’04),
pp. 22-24, Apr. 2004.

[19] L. Gu, R. Baxter, D. Vickers, and C. Rainsford, “Record Linkage:
Current Practice and Future Directions,” Technical Report 03/83,
CSIRO Math. and Information Sciences, 2003.

[20] M.E. Hill, S.H. Preston, and I. Rosenwaike, “Age Reporting among
White Americans Aged 85þ: Results of a Record Linkage Study,”
Demography, vol. 37, no. 2, pp. 175-186, 2000.

[21] M.A. Jaro, “Advances in Record-Linkage Methodology as Applied
to Matching the 1985 Census of Tampa, Florida,” J. Am. Statistical
Assoc., vol. 84, no. 406, pp. 414-420, 1989.

[22] W. Kim, I. Choi, S. Gala, and M. Scheevel, “On Resolving Semantic
Heterogeneity in Multidatabase Systems,” Distributed and Parallel
Databases, vol. 1, no. 3, pp. 251-279, 1993.

[23] M.D. Larsen and D.B. Rubin, “Iterative Automated Record
Linkage Using Mixture Models,” J. Am. Statistical Assoc., vol. 96,
no. 453, pp. 32-41, 2001.

[24] J.A. Larson, S.B. Navathe, and R. Elmasri, “A Theory of Attribute
Equivalence in Databases with Application to Schema Integra-
tion,” IEEE Trans. Software Eng., vol. 15, no. 4, pp. 449-463, Apr.
1989.

[25] R.J. Miller, Y.E. Ioannidis, and R. Ramakrishnan, “Schema
Equivalence in Heterogeneous Systems: Bridging Theory and
Practice,” Information Systems, vol. 19, no. 1, pp. 3-31, 1994.

[26] S.N. Minton, C. Nanjo, C.A. Knoblock, M. Michalowski, and M.
Michelson, “A Heterogeneous Field Matching Method for Record
Linkage,” Proc. Fifth IEEE Int’l Conf. Data Mining (ICDM ’05),
pp. 314-321, Nov. 2005.

[27] J. Moore and A. Whinston, “A Model of Decision Making with
Sequential Information Acquisition—Part I,” Decision Support
Systems, vol. 2, no. 4, pp. 285-307, 1986.

[28] J. Moore and A. Whinston, “A Model of Decision Making with
Sequential Information Acquisition—Part II,” Decision Support
Systems, vol. 3, no. 1, pp. 47-72, 1987.

[29] H.B. Newcombe, M.E. Fair, and P. Lalonde, “The Use of Names
for Linking Personal Records,” J. Am. Statistical Assoc., vol. 87,
no. 420, pp. 1193-1204, 1992.

[30] H.B. Newcombe and J.M. Kennedy, “Record Linkage: Making
Maximum Use of the Discriminating Power of Identifying
Information,” Comm. ACM, vol. 5, no. 11, pp. 563-566, 1962.

[31] C. Parent and S. Spaccapietra, “Issue and Approaches of Database
Integration,” Comm. ACM, vol. 41, no. 5es, pp. 166-178, 1998.

[32] J.R. Quinlan, “Induction of Decision Trees,” Machine Learning,
vol. 1, no. 1, pp. 81-106, 1986.

[33] E. Rahm and P.A. Bernstein, “A Survey of Approaches to
Automatic Schema Matching,” The VLDB J., vol. 10, no. 4,
pp. 334-350, 2001.

[34] I. Schmitt and G. Saake, “A Comprehensive Database Schema
Integration Method Based on the Theory of Formal Concepts,”
Acta Informatica, vol. 41, nos. 7/8, pp. 475-524, 2005.

[35] B. Tepping, “A Model for Optimum Linkage of Records,” J. Am.
Statistical Assoc., vol. 63, pp. 1321-1332, 1968.

[36] A.M. Ward, N. de Klerk, D. Pritchard, M. Firth, and C.D. Holman,
“Correlations of Siblings’ and Mothers’ Utilization of Primary and
Hospital Health Care: A Record Linkage Study in Western
Australia,” Social Science and Medicine, vol. 62, no. 6, pp. 1341-
1348, 2005.

[37] W.E. Winkler, “Advanced Methods of Record Linkage,” Proc.
Section Survey Research Methods, pp. 467-472, 1994.

[38] W.E. Winkler, “Matching and Record Linkage,” Business Survey
Methods, B.G. Cox, D.A. Binder, B.N. Chinnappa, and A.
Christianson, eds., Wiley & Sons, 1995.

[39] W.E. Winkler, “Methods for Evaluating and Creating Data
Quality,” Information Systems, vol. 29, pp. 531-550, 2004.

[40] D.S. Zingmond, Z. Ye, S. Ettner, and H. Liu, “Linking Hospital
Discharge and Death Records-Accuracy and Sources of Bias,”
J. Clinical Epidemiology, vol. 57, no. 1, pp. 21-29, 2004.

Debabrata Dey received the PhD degree in
computers and information systems from the
University of Rochester. Currently, he is a
professor of information systems at the Univer-
sity of Washington, Seattle. His current research
interests are heterogeneous and distributed
systems, network pricing and performance,
information security, data warehousing, systems
development, and contracting. His research has
been published in Management Science, Opera-

tions Research, Information Systems Research, ACM Transactions on
Database Systems, IEEE Transactions on Knowledge and Data
Engineering, INFORMS Journal on Computing, and several other
leading journals and conference proceedings in Information Systems
and Computer Science. He currently serves as a senior editor for
Information Systems Research and as an associate editor for Informa-
tion Technology & Management. In the past, he has served as associate
editors for Management Science, Information Systems Research, MIS
Quarterly, and INFORMS Journal on Computing. He is a member of the
IEEE, the ACM, the INFORMS, and the AIS.

Vijay S. Mookerjee received the PhD degree in
management, with a major in MIS, from Purdue
University. Currently, he is a professor of
information systems at the University of Texas
at Dallas. His current research interests include
social networks, optimal software development
methodologies, storage and cache manage-
ment, content delivery systems, and the eco-
nomic design of expert systems and machine
learning systems. He has published in and has

articles forthcoming in several archival Information Systems, Computer
Science, and Operations Research journals. He serves (or has served)
on the editorial board of Management Science, Information Systems
Research, INFORMS Journal on Computing, Operations Research,
Decision Support Systems, Information Technology & Management,
and Journal of Database Management.

Dengpan Liu received the PhD degree in
management science with a concentration in
information systems from the University of
Texas at Dallas in 2006. He is currently an
assistant professor of management information
systems at the University of Alabama, Hunts-
ville. His research interests include information
security, software development, personalization
at e-commerce sites, and data reconciliation.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

DEY ET AL.: EFFICIENT TECHNIQUES FOR ONLINE RECORD LINKAGE 387

