
Normalization and Optimization of Schema Mappings∗

Georg Gottlob
†

Oxford University
Oxford OX1 3QD,UK
georg.gottlob@
comlab.ox.ac.uk

Reinhard Pichler
Technische Universität Wien

A-1040 Vienna, Austria
pichler@

dbai.tuwien.ac.at

Vadim Savenkov
Technische Universität Wien

A-1040 Vienna, Austria
savenkov@

dbai.tuwien.ac.at

ABSTRACT
Schema mappings are high-level specifications that describe the re-
lationship between two database schemas. They are an important
tool in several areas of database research, notably in data integra-
tion and data exchange. However, a concrete theory of schema
mapping optimization including the formulation of optimality crite-
ria and the construction of algorithms for computing optimal sche-
ma mappings is completely lacking to date. The goal of this work
is to fill this gap. We start by presenting a system of rewrite rules
to minimize sets of source-to-target tuple-generating dependencies
(st-tgds, for short). Moreover, we show that the result of this min-
imization is unique up to variable renaming. Hence, our optimiza-
tion also yields a schema mapping normalization. By appropri-
ately extending our rewrite rule system, we also provide a normal-
ization of schema mappings containing equality-generating target-
dependencies (egds). An important application of such a normal-
ization is in the area of defining the semantics of query answering
in data exchange, since several definitions in this area depend on
the concrete syntactic representation of the st-tgds. This is, in par-
ticular, the case for queries with negated atoms and for aggregate
queries. The normalization of schema mappings allows us to elimi-
nate the effect of the concrete syntactic representation of the st-tgds
from the semantics of query answering. We discuss in detail how
our results can be fruitfully applied to aggregate queries.

1. INTRODUCTION
Schema mappings are high-level specifications that describe the re-
lationship between two database schemas. They are an important

∗R. Pichler and V. Savenkov were supported by the Vienna Sci-
ence and Technology Fund (WWTF), project ICT08-032. V.
Savenkov receives a scholarship from the European program “Eras-
mus Mundus External Cooperation Window”. Georg Gottlob’s
work was supported by EPSRC grant EP/E010865/1 “Schema
Mappings and Automated Services for Data Integration and Ex-
change”. G. Gottlob is the holder of a Royal Society Wolfson Re-
search Merit Award.
†Computing Laboratory and Oxford-Man Institute of Quantitative
Finance, University of Oxford.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

tool in several areas of database research, notably in data integra-
tion [12, 18] and data exchange [9]. A schema mapping is usually
given in the form M = 〈S,T,Σ〉, indicating the two database
schemas S and T plus a set Σ of dependencies. These dependen-
cies express conditions that an instance of S and an instance of T
must fulfill. In data exchange, S and T are referred to as source and
target schema. The dependencies Σ specify, given a source instance
(i.e., an instance of S), what a legal target instance (i.e., an instance
of T) may look like. Similarly, in data integration, a schema map-
pingM describes the relationship between a local data source and
a global mediated schema.

Over the past years, schema mappings have been extensively
studied (see [16, 6] for numerous pointers to the literature). How-
ever, only recently, the question of schema mapping optimization
has been raised. In [10], the foundation for optimization has been
laid by defining various forms of equivalence of schema mappings
and by proving important properties of the resulting notions. How-
ever, a concrete theory of schema mapping optimization including
the formulation of optimality criteria and the construction of al-
gorithms for computing optimal schema mappings is completely
lacking to date. The goal of this work is to fill this gap. Below,
we illustrate the basic ideas of our approach by a series of simple
examples, where it is clear “at a glance” what the optimal form of
the schema mappings should look like. In fact, one would expect
that a human user designs these mappings in their optimal form
right from the beginning. However, as more and more progress is
made in the area of automatic generation and processing of schema
mappings [6, 5] we shall have to deal with schema mappings of
ever increasing complexity. The optimality of these automatically
derived schema mappings is by no means guaranteed and schema
mapping optimization will become a real necessity.

For the most common form of schema mappings considered in
the literature, the dependencies in Σ are source-to-target tuple-ge-
nerating dependencies (st-tgds, for short). These are first-order sen-
tences ∀~x (ϕ(~x)→ ∃~y ψ(~x, ~y)), where the antecedent ϕ is a con-
junctive query (CQ) over S and the conclusion ψ is a CQ over T.
The universal quantification is usually not denoted explicitly. In-
stead, it is assumed implicitly for all variables in ϕ(~x).

EXAMPLE 1.1. Consider a schema mapping M = 〈S,T,Σ〉
with S = {L(·, ·, ·), P (·, ·)} and T = {C(·, ·)}, where L,P , and
C denote the relational schemas Lecture(title, year, prof), Prof(name,
area), and Course (title, prof-area), respectively. Moreover, suppose
that Σ consists of two rules expressing the following constraints: If
there exists any lecture at all in the source instance, then the title of
all lectures for 3rd year students as well as the area of the professor
giving this lecture should be present in the Course-relation of the
target instance. Moreover, Σ contains a specific rule which takes
care of the lectures given by professors from the database area. We

thus get the following set Σ of st-tgds:
Σ = {L(x1, x2, x3) ∧ L(x4, 3, x5) ∧ P (x5, x6)→ C(x4, x6),

L(x1, 3, x2) ∧ P (x2,
′db′)→ C(x1,

′db′)} 2

The above schema mapping has a specific form called GAV (glo-
bal-as-view) [18], i.e., we only have st-tgds ϕ(~x)→ A(~x), where
the conclusion is a single atom A(~x) without existentially quanti-
fied variables. In this special case, a close relationship of schema
mappings with unions of conjunctive queries (UCQs) becomes ap-
parent. Indeed, given a source instance I over S, the tuples which
have to be present in any legal target instance J according to the
above schema mappingM are precisely the tuples which are in the
result of the following UCQ:

ans(x4, x6) :- L(x1, x2, x3) ∧ L(x4, 3, x5) ∧ P (x5, x6)
ans(x1,

′db′) :- L(x1, 3, x2) ∧ P (x2,
′db′).

The goal of UCQ-optimization is usually twofold [7, 21], namely to
minimize the number of CQs and to minimize the number of atoms
in each CQ. In the above UCQ, we would thus delete the second
CQ and, moreover, eliminate the first atom from the body of the
first CQ. In total, the above UCQ can be replaced by a single CQ
ans(x4, x6) :- L(x4, 3, x5) ∧ P (x5, x6). Analogously, we would
naturally reduce the set Σ of two st-tgds in Example 1.1 to the
singleton Σ′ = {L(x4, 3, x5) ∧ P (x5, x6)→ C(x4, x6)}.

As mentioned above, GAV mappings are only a special case of
schema mappings given by st-tgds which, in the general case, may
have existentially quantified variables and conjunctions of atoms in
the conclusion. Note that the existentially quantified variables are
used to represent incomplete data (in the form of marked nulls [14])
in the target instance. Hence, as an additional optimization goal,
we would like to minimize the number of existentially quantified
variables in each st-tgd. Moreover, we would now like to minimize
also the atoms in the CQ of the conclusion.

EXAMPLE 1.2. We revisit Example 1.1 and consider a new map-
pingM in the reverse direction so to speak: LetM = 〈S,T,Σ〉
with S = {C(·, ·)} and T = {L(·, ·, ·), P (·, ·)} where L,P , and
C are as before. Moreover, let Σ be defined as follows:

Σ = {C(x1, x2)→ (∃y1, y2, y3, y4)L(y1, y2, y3) ∧
L(x1, 3, y4) ∧ P (y4, x2),

C(x1,
′db′)→ (∃y1)L(x1, 3, y1) ∧ P (y1,

′db′)}
Clearly, Σ is equivalent to the singleton

Σ′ = {C(x1, x2)→ (∃y4)L(x1, 3, y4) ∧ P (y4, x2)}. 2

The above schema mapping corresponds to the special case of LAV
(local-as-view) [18] with st-tgds A(~x) → ∃~y ψ(~x, ~y), where the
antecedent is a single atom A(~x) and all variables in A(~x) actu-
ally do occur in the conclusion. In the most general case (referred
to as GLAV mappings), no restrictions are imposed on the CQs
in the antecedent and conclusion nor on the variable occurrences.
In order to formulate an optimality criterion for schema mappings
with st-tgds of this general form, the analogy with UCQs does not
suffice. Indeed, the following example illustrates that we may get a
highly unsatisfactory result if we just aim at the minimization of the
number of st-tgds and of the number of atoms inside each st-tgd.

EXAMPLE 1.3. LetM = 〈S,T,Σ〉 with S = {L(·, ·, ·)} and
T = {C(·, ·), E(·, ·)} where L, and C are as before and E de-
notes the relational schema Equal-Year(course1, course2), i.e., E
contains pairs of courses designed for students in the same year.
Moreover, let Σ be defined as follows:
Σ = {L(x1, x2, x3)→ (∃y)C(x1, y),

L(x1, x2, x3) ∧ L(x4, x2, x5)→ E(x1, x4)}

Then Σ is equivalent to the singleton
Σ′ = {L(x1, x2, x3)∧L(x4, x2, x5)→ (∃y)C(x1, y)∧E(x1, x4)}
Now suppose that the name-attribute is a key in Lecture. Let li
denote the name of some lecture in a source instance I and sup-
pose that I contains m lectures for students in the same year as
li. Then the computation of the canonical solution (for details, see
Section 2) yields two results of significantly different quality de-
pending on whether we take Σ or Σ′: In case of Σ, we get one
tuple C(li, y) with this course name li. In contrast, for Σ′, we get
m tuples C(li, y1), . . . , C(li, ym) with the same course name li.
The reason for this is that the st-tgd “fires” for every possible com-
bination of key values x1 and x4, even though for the first conjunct
C(x1, y) of the conclusion, only the value of x1 is relevant. 2

We shall refer to the two st-tgds in Σ of the above example as the
split form of the st-tgd in Σ′. We shall formally define splitting of
st-tgds in Section 3. Intuitively, splitting aims at breaking up the
conclusion of an st-tgd in smaller parts such that the variables in
the antecedent are indeed related to the atoms in the conclusion.
Without this measure, any target instance would be artificially in-
flated with marked nulls as we have seen with Σ′ in the above ex-
ample. Splitting helps to avoid such anomalies. Indeed, it can be
seen as an analogous operation to the decomposition of relational
schemas into normal form where we also want to exclude that some
attributes are fully determined by parts of a key. Carrying over this
idea to st-tgds, we want to exclude that some atoms in the conclu-
sion are fully determined by parts of the atoms in the antecedent.
Our first optimization goal for schema mappings will therefore be
to minimize the number of st-tgds only to the extent that splitting
should be applied whenever possible. Minimizing the size of each
st-tgd and the number of existentially quantified variables in the
conclusion will, of course, be pursued as another optimization goal.
We thus have the following optimality criteria for sets Σ of st-tgds:

• cardinality-minimality, i.e., the number of st-tgds in Σ shall
be minimal;
• antecedent-minimality, i.e., the total size of the antecedents

of the st-tgds in Σ shall be minimal;
• conclusion-minimality, i.e., the total size of the conclusions

of the st-tgds in Σ shall be minimal;
• variable-minimality, i.e., the total number of existentially qu-

antified variables in the conclusions shall be minimal.

Then a set of st-tgds is optimal, if it is minimal w.r.t. each of these
four criteria. Following the above discussion, we only take st-tgds
into consideration for which no further splitting is possible. (We
shall give a formal definition of this property and of the four opti-
mality criteria in Section 3). Cardinality-minimality together with
antecedent-minimality means that the cost of the join-operations
is minimized when computing a canonical solution for some given
source instance. Conclusion-minimality (resp. variable-minimality)
means that no obvious redundancy (resp. incompleteness) is intro-
duced in the canonical solution. For the transformation of arbitrary
sets of st-tgds into optimal ones, we shall present a new system of
rewrite rules. Moreover, we shall show that the optimal form of a
set of st-tgds is unique up to variable renaming.

In other words, our optimization of schema mappings is also a
normalization of schema mappings. As an immediate benefit of a
normalization, we get a purely syntactical criterion for testing the
equivalence of two schema mappings. Another, even more impor-
tant application of such a normalization is in the area of defining
the semantics of query answering in data exchange. Several defini-
tions in this area depend on the concrete syntactic representation of

the st-tgds. This is, in particular, the case for queries with negated
atoms (see e.g., [2, 19]) and for aggregate queries (see [1]). Hence,
it would be desirable to have a unique normal form of st-tgds on
which the definition of the semantics of query answering should be
based. Since the minimal set of st-tgds produced by our rewrite
rules is unique up to variable renaming, we can use it as the desired
normal form which eliminates the effect of the concrete represen-
tation of the st-tgds from the semantics of query answering.

EXAMPLE 1.4. Consider a schema mapping M = 〈S,T,Σ〉
with S = {S(·, ·, ·)}, T = {L(·, ·, ·), P (·, ·)}, where L and P are
as in Example 1.2. S denotes the relational schema Student(name,
year, area). Moreover, let Σ express the following constraints: If
there exists a student in any year, then there should exist at least
one lecture for this year. Moreover, if a student specializes in a
particular area, then there should be a professor in this area teaching
at least one lecture for this year. We thus have the following set Σ
with a single st-tgd:

Σ = {S(x1, x2, x3)→ (∃y1, y2, y3, y4, y5)L(y1, x2, y3) ∧
L(y4, x2, y5) ∧ P (y5, x3)}.

Clearly, the first atom in the conclusion may be deleted.
Now consider the source instance I = {S(′bob′, 3, ′db′)} and sup-
pose that we want to evaluate the query

ans(x2) :- L(x1, x2, x3),¬P (x3, x4)

over the target instance, i.e., we want to check if, in some year,
there exists a lecture which has not been assigned to a professor. In
[2, 19], query answering via the “canonical solution” (for details,
see Section 2) is proposed. Depending on whether the st-tgd in
Σ has been simplified or not, we either get J = {L(u1, 3, u2),
L(u3, 3, u4), P (u4,

′db′)} or J ′ = {L(u1, 3, u2), P (u2,
′db′)}

as canonical solution. In the first case, the query yields the result
{〈3〉} whereas, in the second case, we get ∅. 2

Similarly, a unique normal form of the st-tgds is crucial for the
semantics of aggregate queries in data exchange, whose investi-
gation has been initiated recently by Afrati and Kolaitis [1]. Ag-
gregate queries are of the form SELECT f FROMR, where f is an
aggregate operator min(R.A), max(R.A), count(R.A), count(∗),
sum(R.A), or avg(R.A), and where R is a target relation symbol
or, more generally, a conjunctive query over the target schema and
A is an attribute of R. The main contribution in [1] was twofold.
On the one hand, Afrati and Kolaitis defined an interesting and non-
trivial semantics of aggregate queries in data exchange. On the
other hand, they showed that the most important aggregate queries
can be evaluated in polynomial time (data complexity). In partic-
ular for the avg(R.A) operator, this result is highly non-trivial. In
this paper, we shall show how our normalization of schema map-
pings can be fruitfully applied to aggregate queries. Moreover,
we shall extend the tractability results from [1] to more expres-
sive schema mappings, including also equality-generating target-
dependencies (egds) to be discussed next.

So far, we have only mentioned mappings M = 〈S,T,Σ〉,
where Σ is a set of st-tgds. In addition, Σ may contain constraints
on the target instance alone. The most important form of target con-
straints are equality-generating target-dependencies (egds), which
can be considered as a generalization of key dependencies. Egds
are formulae of the form ∀~x (ϕ(~x)→ xi = xj) where ϕ is a CQ
over T and xi, xj are variables in ~x.

EXAMPLE 1.5. We modify the setting from Example 1.1 and
1.2. LetM = 〈S,T,Σ〉with S = {C(·, ·, ·)} and T = {P (·, ·, ·)}
where C and P denote the relational schemas Course (title, course-
area, prof-area) and Prof(name, prof-area, course-area). The P -
relation thus contains information on the area of the professor as

well as on the area(s) of the courses taught by him/her. The set
Σ of st-tgds expresses the following constraints: For every course,
there exists a professor who teaches courses in his/her own area of
expertise and who teaches courses with this combination of course-
and prof-area. Moreover, there exists a professor whose expertise
matches the area of the course and vice versa. We thus define Σ as

Σ = {C(x1, x2, x3)→ (∃y1, y2) P (y1, y2, y2) ∧ P (y1, x2, x3),
C(x1, x2, x3)→ (∃y1)P (y1, x3, x2)}

This set of dependencies is minimal. However, suppose that we
add the egd P (x1, x2, x3) → x2 = x3, expressing that a profes-
sor only teaches courses in his/her own area of expertise. Then
P (y1, y2, y2) can be eliminated from the conclusion of the first st-
tgd. Moreover, the first and the second st-tgd imply each other.
Hence, Σ can be replaced by either Σ′ or Σ′′ with

Σ′ = {C(x1, x2, x3)→ (∃y1) P (y1, x2, x3)} and

Σ′′ = {C(x1, x2, x3)→ (∃y1) P (y1, x3, x2)}. 2

Example 1.5 illustrates that, in the presence of target egds, our
rewrite rules for the st-tgds-only case are not powerful enough. In
order to deal with target egds, we will introduce a collection of fur-
ther rewrite rules. In particular, one of these new rewrite rules will
result in the introduction of source egds to rule out situations where
two sets of st-tgds only differ on source instances which admit no
target instance anyway. Indeed, in Example 1.5, Σ′ and Σ′′ only
differ if x2 6= x3 holds. But this is forbidden by the egd. Hence, Σ
should be replaced by Σ∗ with

Σ∗ = {C(x1, x2, x3)→ x2 = x3,
C(x1, x2, x2)→ (∃y1) P (y1, x2, x2)}.

In summary, we shall be able to prove that our extended set of
rewrite rules again leads to a normal form which is unique up to
variable renaming.

Organization of the paper and summary of results. In Section 2,
we recall some basic notions. A conclusion and an outlook to fu-
ture work are given in Section 7. The main results of the paper are
detailed in the Sections 3 – 6, namely:

• Optimization and normalization of sets of st-tgds. In Section 3,
we give a formal definition of the above mentioned optimality cri-
teria for sets of st-tgds and we present rewrite rules to transform
any set of st-tgds into an optimal one (i.e., minimal w.r.t. to these
criteria). We shall also show that the normal form obtained by our
rewrite rules is unique up to variable renaming. Moreover, we show
that, if the length of each st-tgd is bounded by a constant, then this
normal form can be computed in polynomial time.

• Extension to target egds. In Section 4, the rewrite rule system
for st-tgds is then extended to schema mappings comprising target
egds. Several non-trivial extensions (like the introduction of source
egds) are required to arrive at a unique normal form again.

• Semantics and evaluation of aggregate operators. In Section 5,
we discuss in detail the application of our normalization of schema
mappings to the definition of a unique semantics of aggregate op-
erators in data exchange. Moreover, we extend the tractability of
aggregate queries from [1] to target egds.

• Implementation. In Section 6, we report on first experimental
results with a prototype implementation. It is freely accessible as a
web tool, see www.dbai.tuwien.ac.at/proj/sm.

Due to lack of space, most proofs are sketched. Full proofs of all
results of Sections 3 – 5 are provided in the full paper.

2. PRELIMINARIES
A schema R = {R1, . . . , Rn} is a set of relation symbols Ri each
of a fixed arity. An instance over a schema R consists of a relation
for each relation symbol in R, s.t. both have the same arity. We
only consider finite instances here.

Tuples of the relations may contain two types of terms: constants
and variables. The latter are also called marked nulls or labeled
nulls. Two labeled nulls are equal iff they have the same label.
For every instance J , we write dom(J), var(J), and Const(J)
to denote the set of terms, variables, and constants, respectively,
of J . Clearly, dom(J) = var(J) ∪ Const(J) and var(J) ∩
Const(J) = ∅. If we have no particular instance J in mind, we
write Const to denote the set of all possible constants. We write ~x
for a tuple (x1, x2, . . . , xn). However, by slight abuse of notation,
we also refer to the set {x1, . . . , xn} as ~x. Hence, we may use
expressions like xi ∈ ~x or ~x ⊆ X , etc.

Let S = {S1, . . . , Sn} and T = {T1, . . . , Tm} be schemas
with no relation symbols in common. We call S the source schema
and T the target schema. We write 〈S,T〉 to denote the schema
{S1, . . . , Sn, T1, . . . , Tm}. Instances over S (resp. T) are called
source (resp. target) instances. If I is a source instance and J a
target instance, then 〈I, J〉 is an instance of the schema 〈S,T〉.

Homomorphisms and substitutions. Let I , I ′ be instances. A
homomorphism h : I → I ′ is a mapping dom(I)→ dom(I ′), s.t.
(1) whenever R(~x) ∈ I , then R(h(~x)) ∈ I ′, and (2) for every
constant c, h(c) = c. If such h exists, we write I → I ′. Moreover,
if I ↔ I ′ then we say that I and I ′ are homomorphically equiva-
lent. In contrast, if I → I ′ but not vice versa, we say that I is more
general than I ′, and I ′ is more specific than I .

If h : I → I ′ is invertible, s.t. h−1 is a homomorphism from
I ′ to I , then h is called an isomorphism, denoted I ∼= I ′. An
endomorphism is a homomorphism I → I . An endomorphism is
proper if it is not surjective (for finite instances, this is equivalent
to being not injective), i.e., if it reduces the domain of I .

If I is an instance, and I ′ ⊆ I is such that I → I ′ holds but for
no other I ′′ ⊂ I ′ : I → I ′′ (that is, I ′ cannot be further “shrunk”
by a proper endomorphism), then I ′ is called a core of I . The core
is unique up to isomorphism. Hence, we may speak about the core
of I . Cores have the following important property: for arbitrary
instances J and J ′, J ↔ J ′ iff core(J) ∼= core(J ′).

A substitution σ is a mapping which sends variables to other do-
main elements (i.e., variables or constants). We write σ = {x1 ←
a1, . . . , xn ← an} if σ maps each xi to ai and σ is the identity
outside {x1, . . . , xn}. The application of a substitution is usually
denoted in postfix notation, e.g.: xσ denotes the image of x under
σ. For an expression ϕ(~x) (e.g., a conjunctive query with variables
in ~x), we write ϕ(~xσ) to denote the result of replacing every oc-
currence of every variable x ∈ ~x by xσ.

Schema Mappings and Data Exchange. A schema mapping is
given by a tripleM = (S,T,Σ) where S is the source schema, T
is the target schema, and Σ is a set of dependencies expressing the
relationship between S and T and possibly also local constraints
on S resp. T. The data exchange problem associated with M is
the following: Given a (ground) source instance I , find a target
instance J , s.t. 〈I, J〉 |= Σ. Such a J is called a solution for I
or, simply, a solution if I is clear from the context. The set of all
solutions for I underM is denoted by SolM(I). If J ∈ SolM(I)
is such that J → J ′ holds for any other solution J ′ ∈ SolM(I),
then J is called a universal solution. Since the universal solutions
for a source instance I are homomorphically equivalent, the core
of the universal solutions for I is unique up to isomorphism. It is
the smallest universal solution [11].

In the following, we will often identify a schema mappingM =
(S,T,Σ) with the set of dependencies Σ, without explicitly men-
tioning the schemas, for the sake of brevity.
Equivalence of schema mappings. Different notions of equiva-
lence of schema mappings have been recently proposed by Fagin
et al. [10]. In this paper, we will only consider the strongest one,
namely logical equivalence.

DEFINITION 2.1. [10] Two schema mappings Σ and Σ′ over
the schema 〈S,T〉 are logically equivalent (denoted as Σ ≡ Σ′) if,
for every source instance I and target instance J , the equivalence
〈I, J〉 |= Σ ⇔ 〈I, J〉 |= Σ′ holds. In this case, the equality
SolΣ(I) =SolΣ

′
(I) holds for every source instance I .

Embedded dependencies. Embedded dependencies [8] over a re-
lational schema R are first-order formulae of the form ∀~x

`
ϕ(~x)→

∃~y ψ(~x, ~y)
´
. In case of tuple-generating dependencies (tgds),

both antecedent ϕ and conclusion ψ are conjunctive queries (CQs)
over the relation symbols from R s.t. all variables in ~x actually
do occur in ϕ(~x). Equality-generating dependencies (egds) are
of the form ∀~x (ϕ(~x)→ xi = xj) with xi, xj ∈ ~x. Throughout
this paper, we shall omit the universal quantifiers: By convention,
all variables occurring in the antecedent are universally quantified
(over the entire formula). For a conjunctive query χ (in the an-
tecedent or the conclusion of some dependency), we write At(χ)
to denote the set of atoms of this CQ.

In the context of data exchange, we are mainly dealing with
source-to-target dependencies consisting of tuple-generating de-
pendencies (st-tgds) over the schema 〈S,T〉 (the antecedent is a
CQ over S, the conclusion over T) and target dependencies over
T. In the scope of this paper, target dependencies are restricted
to equality-generating dependencies (referred to as “target egds”).
Moreover, in Section 4, we shall also consider source dependencies
consisting of egds over S (referred to as “source egds”).
Dependency databases. For an embedded dependency τ with an-
tecedent ϕ(~x), the antecedent database of τ is the set of all atoms
in ϕ(~xλ), where λ is a valuation assigning a fresh labeled null to
each variable of ~x. If τ is a tgd with conclusion ϕ(~x, ~y), then its
conclusion database is the set of atoms in ψ(~xλ, ~yλ) with ~x and ~y
sent to fresh labeled nulls by λ. We call an antecedent (resp. con-
clusion) database frozen, if instead of nulls, λ assigns fresh distinct
constants to the variables of the antecedent (resp. conclusion) of τ .
Chase. The data exchange problem can be solved by the chase
[4], a sequence of steps, each enforcing a single constraint within
some limited set of tuples. More precisely, let Σ contain a tgd
τ : ϕ(~x) → (∃~y)ψ(~x, ~y), s.t. I |= ϕ(~a) for some assignment ~a
on ~x. Then we extend I with facts corresponding to ψ(~a, ~z), where
the elements of ~z are fresh labeled nulls. Note that this definition of
the chase differs from the definition in [9], where no new facts are
added if I � ∃~yψ(~a, ~y) is already fulfilled. Omitting this check
is referred to as oblivious [15] chase. It is the preferred version of
chase if the result of the chase should not depend on the order in
which the tgds are applied (see e.g., [2, 19, 1]).

Now suppose that Σ contains an egd ε : ϕ(~x) → xi = xj , s.t.
I |= ϕ(~a) for some assignment ~a on ~x. This egd enforces the
equality ai = aj . We thus choose a null a′ among {ai, aj} and
replace every occurrence of a′ in I by the other term; if ai, aj ∈
Const(I) and ai 6= aj , the chase halts with failure. We write IΣ

to denote the result of chasing I with the dependencies Σ.
Consider an arbitrary schema mapping Σ = Σst∪Σt where Σst

is a set of source-to-target tgds and Σt is a set of target egds. Then
the solution to a source instance I can be computed as follows: We
start off with the instance 〈I, ∅〉, i.e., the source instance is I and

the target instance is initially empty. Chasing 〈I, ∅〉with Σst yields
the instance 〈I, J〉, where J is called the preuniversal instance.
This chase always succeeds since Σst contains no egds. Then J is
chased with Σt. This chase may fail on an attempt to unify distinct
constants. If the chase succeeds, we end up with U = JΣt , which
is referred to as the canonical universal solution CanSolΣ(I) or,
simply CanSol(I). Both J and U can be computed in polynomial
time w.r.t. the size of the source instance [9].

3. NORMALIZATION OF ST-TGDS
In this section, we investigate ways of optimizing sets of st-tgds. In
the first place, we thus formulate some natural optimality criteria.
The following parameters of a set of st-tgds will be needed in the
definition of such criteria:

DEFINITION 3.1. Let Υ be a set of st-tgds. Then we define:

• |Υ| denotes the number of st-tgds in Υ.

• AntSize(Υ) = Σ{|At(ϕ(~x))| : ∀~x
`
ϕ(~x) → ∃~y ψ(~x, ~y)

´
is an st-tgd in Υ}, i.e., AntSize(Υ) is the total number of
atoms in all antecedents of st-tgds in Υ.

• ConSize(Υ) = Σ{|At(ψ(~x, ~y))| : ∀~x
`
ϕ(~x) → ∃~y ψ(~x,

~y)
´

is an st-tgd in Υ}, i.e., ConSize(Υ) is the total number
of atoms in all conclusions of st-tgds in Υ.

• VarSize(Υ) = Σ{|~y | : ∀~x
`
ϕ(~x)→ ∃~y ψ(~x, ~y)

´
is in Υ},

i.e., VarSize(Υ) is the total number of existentially quanti-
fied variables in all conclusions of st-tgds in Υ.

We would naturally like to transform any set of st-tgds into an
equivalent one where all the above parameters are minimal. Re-
call however our discussion on the splitting of st-tgds from Exam-
ple 1.3. As we pointed out there, the splitting of st-tgds is compara-
ble to normal form decomposition of relational schemas. It should
clearly be applied in order to avoid anomalies like the introduction
of obviously irrelevant atoms in the canonical solution as we saw
in Example 1.3, where the set Σ (with two split st-tgds) was cer-
tainly preferable to Σ′ even though |Σ′| < |Σ| and AntSize(Σ′) <
AntSize(Σ) hold. Note that ConSize(Σ′) = ConSize(Σ) in Ex-
ample 1.3. Intuitively, the effect of splitting is that the atoms in
the conclusion of some st-tgd are distributed over several strictly
smaller st-tgds. Thus, our goal should be to find the optimal set of
st-tgds (i.e., where the above mentioned parameters are minimal)
among those sets of st-tgds for which no further splitting is possi-
ble. We now make precise what it means that “no further splitting”
is possible and formally define optimality of a set of st-tgds.

DEFINITION 3.2. Let Σ be a set of st-tgds. We say that Σ is
split-reduced if there exists no Σ′ equivalent to Σ, s.t. |Σ′| > |Σ|
but ConSize(Σ′) = ConSize(Σ).

DEFINITION 3.3. Let Σ be a set of st-tgds. We say that Σ is
optimal if it is split-reduced and if each of the parameters |Σ|,
AntSize(Σ), ConSize(Σ), and VarSize(Σ) are minimal among
all split-reduced sets Σ′ equivalent to Σ.

Of course, given an arbitrary set Σ of st-tgds, it is a priori not
clear that an optimal set Σ′ equivalent to Σ exists, since it might
well be the case that some Σ′ minimizes some of the parameters
while another set Σ′′ minimizes the other parameters. The goal of
this section is to show that optimality in the above sense can always
be achieved and to construct an algorithm which transforms any set
Σ of st-tgds into an equivalent optimal one. To this end, we intro-
duce a rewrite system which consists of two kinds of rewrite rules:

rules which simplify each st-tgd individually and rules which are
applied to the entire set of st-tgds. The following example illus-
trates several kinds of redundancy that a single st-tgd may contain
(and which may be eliminated with our rewrite rules).

EXAMPLE 3.1. Consider the following dependency:
τ : S(x1, x3) ∧ S(x1, x2)→ (∃y1, y2, y3, y4, y5)

P (x1, y2, y1) ∧R(y1, y3, x2) ∧R(2, y3, x2)

∧P (x1, y4, 2) ∧ P (x1, y4, y5) ∧Q(y4, x3)

Clearly, τ is equivalent to the set {τ1, τ2} of st-tgds:
τ1 : S(x1, x3) ∧ S(x1, x2)→ (∃y1, y2, y3)

P (x1, y2, y1) ∧R(y1, y3, x2) ∧R(2, y3, x2)

τ2 : S(x1, x3) ∧ S(x1, x2)→ (∃y4, y5)
P (x1, y4, y5) ∧ P (x1, y4, 2) ∧Q(y4, x3)

Now the antecedents of τ1 and τ2 can be simplified:
τ ′1 : S(x1, x2)→ (∃y1, y2, y3)

P (x1, y2, y1) ∧R(y1, y3, x2) ∧R(2, y3, x2)

τ ′2 : S(x1, x3)→ (∃y4, y5)
P (x1, y4, y5) ∧ P (x1, y4, 2) ∧Q(y4, x3)

Finally, we may also simplify the conclusion of τ ′2:
τ ′′2 : S(x1, x3)→ (∃y4)P (x1, y4, 2) ∧Q(y4, x3)

In total, τ is equivalent to {τ ′1, τ ′′2 }. 2

For the simplifications illustrated in Example 3.1, we define the
rewrite rules 1 – 3 in Figure 1. Rules 1 and 2 replace an st-tgd τ by
a simpler one (i.e., with fewer atoms) τ ′, while Rules 3 replaces τ
by a set {τ1, . . . , τn} of simpler st-tgds. These rules make use of
the following definitions of the core and the components of CQs.

DEFINITION 3.4. Let χ(~u,~v) be a CQ with variables in ~u ∪ ~v
and letA denote the structure consisting of the atoms At(χ(~u,~v)),
s.t. the variables ~u are considered as constants and the variables ~v
as labeled nulls. Let A′ denote the core of A with A′ ⊆ A, i.e.,
there exists a substitution σ : ~v → Const ∪ ~u ∪ ~v s.t. At(χ(~u,
~v σ)) = A′ ⊆ At(χ(~u,~v)). Then we define the core of χ(~u,~v) as
the CQ χ(~u,~vσ).

DEFINITION 3.5. Let χ(~u,~v) be a CQ with variables in ~u∪~v.
We set up the dual graph G(τ) as follows: The atoms of χ(~u,~v)
are the vertices of G(τ). Two vertices are connected if the corre-
sponding atoms have at least one variable from ~v in common. Let
{C1, . . . , Cn} denote the connected components of G(τ). More-
over, for every i ∈ {1, . . . , n}, let ~vi with ∅ ⊆ ~vi ⊆ ~v denote those
variables from ~v, which actually occur in Ci and let χi(~u,~vi) de-
note the CQ consisting of the atoms in Ci. Then we define the
components of χ(~u,~v) as the set {χ1(~u,~v1), . . . , χn(~u,~vn)}.

The splitting rule (i.e., Rule 3 in Figure 1) was already applied in
Example 1.3. Rule 2 involving core computation of the antecedent
was applied in Example 1.1, when we reduced L(x1, x2, x3) ∧
L(x4, 3, x5)∧P (x5, x6) to its coreL(x4, 3, x5)∧P (x5, x6). Like-
wise, in Example 3.1, the simplification of τ1 and τ2 to τ ′1 and τ ′2 is
due to Rule 2. Analogously, Rule 1 involving core computation of
the conclusion allowed us to reduce L(y1, y2, y3)∧L(x1, 3, y4)∧
P (y4, x2) in Example 1.2 to L(x1, 3, y4) ∧ P (y4, x2). In Exam-
ple 3.1, Rule 1 was applied when we replaced τ ′2 by τ ′′2 .

The following example illustrates that additional rules are re-
quired in order to remove an st-tgd or a part of an st-tgd whose
redundancy is due to the presence of other st-tgds.

EXAMPLE 3.2. Consider the set Σ = {τ ′1, τ ′′2 , τ3}, where τ ′1
and τ ′′2 are the st-tgds resulting from the simplification steps in Ex-
ample 3.1 and τ3 is given below:

Rewrite rules to simplify a set of st-tgds

Rule 1 (Core of the conclusion, see Definition 3.4).
τ : ϕ(~x)→ (∃~y)ψ(~x, ~y) =⇒
τ ′ : ϕ(~x)→ (∃~y)ψ(~x, ~yσ),
s.t. ψ(~x, ~yσ) is the core of ψ(~x, ~y).

Rule 2 (Core of the antecedent, see Definition 3.4).
τ : ϕ(~x1, ~x2)→ (∃~y)ψ(~x1, ~y) =⇒
τ ′ : ϕ(~x1, ~x2σ)→ (∃~y)ψ(~x1, ~y),
s.t. ϕ(~x1, ~x2σ) is the core of ϕ(~x1, ~x2).

Rule 3 (Splitting, see Definition 3.5).
τ : ϕ(~x)→ (∃~y)ψ(~x, ~y) =⇒ {τ1, . . . , τn}, s.t.
{χ(~x, ~y1), . . . , χ(~x, ~yn)} are the components of ψ(~x, ~y)
and τi : ϕ(~x)→ (∃~yi)χ(~x, ~yi) for i ∈ {1, . . . , n}.

Rule 4 (Implication of an st-tgd).
Σ =⇒ Σ \ {τ}
if Σ \ {τ} |= τ .

Rule 5 (Implication of atoms in the conclusion).
Σ =⇒ (Σ \ {τ}) ∪ {τ ′}
if τ : ϕ(~x)→ (∃~y)ψ(~x, ~y)
and τ ′ : ϕ(~x)→ (∃~y ′)ψ′(~x, ~y ′),
s.t. At(ψ′(~x, ~y ′)) ⊂ At(ψ(~x, ~y))
and (Σ \ {τ}) ∪ {τ ′} |= τ .

Figure 1: Redundancy elimination from a set of st-tgds.

τ ′1 : S(x1, x2)→ (∃y1, y2, y3)
P (x1, y2, y1) ∧R(y1, y3, x2) ∧R(2, y3, x2)

τ ′′2 : S(x1, x3)→ (∃y4)P (x1, y4, 2) ∧Q(y4, x3)

τ3 : S(2, x)→ (∃y)R(2, y, x)

The tgd τ3 generates only a part of the atoms that τ ′1 does, and
fires in strictly fewer cases than τ ′1. Hence, τ3 may be deleted.
Moreover, considering the combined effect of the rules τ ′1 and τ ′′2 ,
which fire on exactly the same tuples, and a substitution {y1 ←
2, y2 ← y4}, we notice that the first two atoms in the conclusion
of τ ′1 are in fact redundant. It is indeed possible to reduce τ ′1 to
τ ′′1 : S(x1, x2)→ (∃y3)R(2, y3, x2).
In total, Σ may be replaced by Σ′ = {τ ′′1 , τ ′′2 }. 2

Rules 4 and 5 in Figure 1 allow us to eliminate such redundan-
cies from a set Σ of st-tgds: By Rule 4, we may delete an st-tgd
τ from Σ, if τ is implied by the others, like τ3 in Example 3.2.
Rule 5 allows us to replace a rule τ by a strictly smaller rule (with
fewer atoms in the conclusion) if τ is implied by τ ′ together with
the remaining st-tgds in Σ (cf. the replacement of τ ′1 with τ ′′1 in Ex-
ample 3.2 above). Figure 2 illustrates the elimination of redundant
atoms through Rules 1, 2, 4 and 5 in a set Σ = {τ1, τ ′2, τ3} of tgds
from Examples 3.1 and 3.2.

In principle, the implication of a tgd by a set of dependencies can
be tested by a procedural criterion based on the chase [4]. For our
purposes, the following, declarative criterion is more convenient.

LEMMA 3.1. Consider an st-tgd τ : ϕ(~x)→ (∃~y)ψ(~x, ~y) and
a set Σ of st-tgds. Then Σ |= τ holds iff there exist (not necessarily
distinct) st-tgds τ1, . . . , τk in Σ, s.t. all st-tgds τ, τ1, . . . , τk are
pairwise variable disjoint and the following conditions hold:
(a) For every i ∈ {1, . . . , k}, there exists a substitution λi : ~xi →
Const ∪ ~x, s.t. At(ϕi(~xiλi)) ⊆ At(ϕ(~x)).
(b) There exists a substitution µ : ~y → Const ∪ ~x ∪

Sk
i=1 ~yi, s.t.

At(ψ(~x, ~yµ)) ⊆
Sk
i=1 At(ψi(~xiλi, ~yi)).

S(x1, x3)→ (∃y4, y5)

S(x1, x3) ∧ S(x1, x2) → (∃y1, y2, y3)
Rule 2

Lemma 3.1 Rule 4

P (x1, y2, y1) ∧R(y1, y3, x2) ∧R(2, y3, x2)

Rule 5

S(2, x)→ (∃y)R(2, y, x)

τ1 :

τ ′
2 :

τ3 :

Rule 1

P (x1, y4, y5) ∧ P (x1, y4, 2) ∧Q(y4, x3)

Figure 2: Tgd optimization. Rectangles mark eliminated
atoms, arrows show justifications for elimination.

Note that Rule 5 generalizes Rule 1 and, in principle, also Rule
4. Indeed, if we restrict Σ in Rule 5 to the singleton Σ = {τ},
then the replacement of τ by τ ′ means that we reduce ψ(~x, ~y) to
its core. Moreover, Rule 5 allows us to eliminate all atoms from the
conclusion of τ iff τ may be deleted via Rule 4. Clearly, the dele-
tion of the conclusion of τ essentially comes down to the deletion
of τ itself. The correctness of Rules 1 – 5 is easily established.

LEMMA 3.2. The Rules 1 – 5 in Figure 1 are correct, i.e.: Let
Σ be a set of st-tgds and τ ∈ Σ. Suppose that Σ is transformed
into Σ′ by applying one of the Rules 1 – 5 to τ , i.e.:

– τ is replaced by a single st-tgd τ ′ (via Rule 1,2,5),
– τ is replaced by several st-tgds τ1, . . . , τn (via Rule 3),
– or τ is deleted (via Rule 4).

Then Σ and Σ′ are equivalent.

The following notion of a “proper instance” of an st-tgd plays
an important role for proving that our Rules 1 – 5 lead to a unique
normal form. A proper instance of an st-tgd τ is obtained from τ by
leaving the antecedent unchanged and by eliminating at least one
of the existentially quantified variables in the conclusion of τ .

DEFINITION 3.6. Let τ : ϕ(~x) → (∃~y)ψ(~x, ~y) be an st-tgd.
We call an st-tgd τ ′ a proper instance of τ , if there exists a strict
subset ~y ′ ⊂ ~y and a substitution σ : ~y → Const ∪ ~x ∪ ~y ′, s.t. τ ′

is of the form τ ′ : ϕ(~x)→ (∃~y ′)ψ(~x, ~yσ).

EXAMPLE 3.3. In the following three tgds, each next tgd is a
proper instance of the previous ones:

τ1 : S(x1, x2)→ (∃y1, y2)Q(x1, y1, y2)

τ2 : S(x1, x2)→ (∃y1)Q(x1, y1, y1)

τ3 : S(x1, x2)→ Q(x1, x2, x2)

Moreover, we observe that τ2 |= τ1 and τ3 |= τ2 holds. 2

The importance of “proper instances” to our investigations comes
from the following properties:

LEMMA 3.3. Let τ and τ ′ be st-tgds, s.t. τ ′ is a proper instance
of τ . Then the following properties hold:
(1) τ ′ |= τ .
(2) Suppose that τ is reduced w.r.t. Rule 1. Then τ 6|= τ ′.

LEMMA 3.4. Let τ be an st-tgd and let Σ be a set of st-tgds.
Moreover, suppose that τ is reduced w.r.t. Rules 1 – 3.

If Σ |= τ , then one of the following two conditions is fulfilled:
Either there exists a single st-tgd τ0 ∈ Σ, s.t. τ0 |= τ or there exists
a proper instance τ ′ of τ , s.t. Σ |= τ ′.

PROOF. (Idea) The intuition underlying this lemma is that we
cannot stitch together the conclusion of a reduced st-tgd τ (which
consists of a single connected component!) by two other st-tgds.
Two st-tgds produce two connected components, which first have
to be created out of the conclusion of τ by instantiating at least one
variable in ~y to a constant resp. a variable in ~x.

LEMMA 3.5. Suppose that an st-tgd τ ∈ Σ is reduced w.r.t.
Rules 1 – 3 and that τ cannot be deleted via Rule 4. If there exists
a proper instance τ ′ of τ , s.t. Σ |= τ ′ holds, then there exists an
st-tgd τ ′′, s.t. τ may be replaced by τ ′′ via Rule 5.

PROOF. (Sketch) By Σ |= τ ′, there exist τ1, . . . , τk in Σ, s.t.
conditions (a) and (b) of Lemma 3.1 are fulfilled. Let λ1, . . . , λk
denote the substitutions in condition (a). By (b), there exsits a sub-
stitution µ, s.t. τ ′ : ϕ(~x) → (∃~y ′)ψ′(~x, ~y ′) and At(ψ′(~x, ~y ′µ))

⊆
Sk
i=1 At(ψi(~xiλi, ~yi)).

Note that Σ \ {τ} 6|= τ ′ since, otherwise also Σ \ {τ} |=
τ by Lemma 3.3, part (1) and, therefore, τ could be deleted by
Rule 4. Hence, at least one of the τi coincides with τ (up to
variable renaming). Then the CQ ψ′′(~x, ~y ′′) of τ ′′ : ϕ(~x) →
(∃~y ′′)ψ′′(~x, ~y ′′) is obtained as the conjunction of those atoms
A(~x, ~y) ∈ At(ψ(~x, ~y)), such thatA(~xλi, ~y) ∈ At(ψ′(~x, ~y ′µ))∩
At(ψi(~xiλi, ~yi)) for some τi that coincides with τ . Clearly, we
have At(ψ′′(~x, ~y ′′)) ⊂ At(ψ(~x, ~y)) since, otherwise, τ |= τ ′,
which contradicts Lemma 3.3, part (2). Hence, τ may be replaced
by τ ′′ via Rule 5.

We now define a normal form of st-tgds via the rewrite rules of
this section. We will then show that this normal form is unique up
to isomorphism in the sense defined below.

DEFINITION 3.7. Let Σ be a set of st-tgds and let Σ′ be the
result of applying the Rules 1 – 5 of Figure 1 exhaustively to Σ.
Then we call Σ′ the normal form of Σ.

DEFINITION 3.8. Let τ1 and τ2 be tgds with τ1 : ϕ1(~x1) →
(∃~y1)ψ1(~x1, ~y1) and τ2 : ϕ2(~x2) → (∃~y2)ψ2(~x2, ~y2). We say
that τ1 and τ2 are isomorphic if τ2 is obtained from τ1 via variable
renamings η : ~x1 → ~x2 and ϑ : ~y1 → ~y2.

Let Σ1 and Σ2 be two sets of tgds. We say that Σ1 and Σ2

are isomorphic if |Σ1| = |Σ2|, every τ1 ∈ Σ1 is isomorphic to
precisely one τ2 ∈ Σ2 and every τ2 ∈ Σ2 is isomorphic to precisely
one τ1 ∈ Σ1.

We start by showing for two single st-tgds τ1 and τ2 that logical
equivalence and isomorphism coincide provided that the st-tgds are
reduced via our rewrite rules. This result will then be extended to
sets Σ1 and Σ2 of st-tgds.

LEMMA 3.6. Let τ1 and τ2 be two st-tgds and suppose that τ1
and τ2 are reduced w.r.t. Rules 1 – 3. Then τ1 and τ2 are isomor-
phic, iff τ1 and τ2 are equivalent.

PROOF. (Sketch) The “⇒”-direction follows immediately from
Lemma 3.1. For the “⇐”-direction, let τ1 and τ2 be equivalent st-
tgds with τ1 : ϕ1(~x1, ~x2) → (∃~y)ψ1(~x1, ~y) and τ2 : ϕ2(~u1, ~u2)
→ (∃~v)ψ(~u1, ~v).

By Lemma 3.1, there exist substitutions λ and ρ, s.t.

λ : ~x1 ∪ ~x2 → Const ∪ ~u1 ∪ ~u2, and
ρ : ~u1 ∪ ~u2 → Const ∪ ~x1 ∪ ~x2, such that
At(ϕ1(~x1λ, ~x2λ)) ⊆ At(ϕ2(~u1, ~u2)) and
At(ϕ2(~u1ρ, ~u2ρ)) ⊆ At(ϕ1(~x1, ~x2)).

By exploiting the equivalence of τ1 and τ2 and the fact that these
st-tgds are reduced w.r.t. Rule 2, we can show that the antecedents
of τ1 and τ2 are isomorphic (i.e., the above inclusions are in fact
equalities). Moreover, by exploiting that the st-tgds are reduced
w.r.t. Rule 1, we may conclude that τ1 and τ2 are isomorphic.

THEOREM 3.1. Let Σ1 and Σ2 be equivalent sets of st-tgds,
i.e., Σ1 |= Σ2 and Σ2 |= Σ1. Let Σ′1 and Σ′2 denote the normal
form of Σ1 resp. Σ2. Then Σ′1 and Σ′2 are isomorphic.

PROOF. (Idea) Clearly, for an arbitrary τ1 ∈ Σ1 we have Σ2 |=
τ1. By making use of Lemma 3.4 and 3.5, we can show that τ1
must be implied by a single st-tgd τ2 ∈ Σ2. The basic idea of this
proof is the following: Suppose to the contrary that τ1 is implied by
two or more st-tgds from Σ2. Since also Σ1 |= Σ2 holds, we can
construct two or more st-tgds τ, τ ′, . . . in Σ1 which imply τ1. But
then, by Lemma 3.4, these st-tgds also imply a proper instance of τ1
and, therefore, by Lemma 3.5, Rule 5 is applicable to τ1, which is
a contradiction. Likewise, every τ2 ∈ Σ2 is implied by exactly one
st-tgd in Σ1. It remains to show that every τ1 ∈ Σ1 is equivalent
to some τ2 ∈ Σ2 and vice versa. Finally, by Lemma 3.6, logical
equivalence and isomorphism of single st-tgds τ1 and τ2 coincide
if the st-tgds are reduced w.r.t. Rules 1 – 3.

We now consider the complexity of computing the normal form
of a set of st-tgds. Of course, the application of any of the Rules 1,
2, 4, and 5 is NP-hard, since they involve CQ answering. However,
below we show that if the length of each st-tgd (i.e., the number of
atoms) is bounded by a constant, then the normal form according
to Definition 3.7 can be obtained in polynomial time.

THEOREM 3.2. Suppose that the length (i.e., the number of at-
oms) of the st-tgds under consideration is bounded by some con-
stant b. Then there exists an algorithm which reduces an arbitrary
set Σ of st-tgds to normal form in polynomial time w.r.t. the total
size ||Σ|| of (an appropriate representation of) Σ.

PROOF. (SKETCH) First, the total number of applications of
each rule is bounded by the total number of atoms in all st-tgds
in Σ. Indeed, Rule 4 deletes an st-tgd. The Rules 1, 2, and 5 delete
at least one atom from an st-tgd. Rule 3 splits the conclusion of
an st-tgd in 2 or more parts. Hence, also the total number of ap-
plications of Rule 3 is bounded by the total number of atoms in Σ.
Finally, the application of each rule is feasible in polynomial time
since the most expensive part of these rules is the CQ answering
where the length of the CQs is bounded by the number of atoms in
a single st-tgd.

The restriction on the number of atoms in each st-tgd is used in
the above proof only in order to show that each rule application is
feasible in polynomial time. The argument, that the total number
of rule applications is bounded by the total number of atoms in all
st-tgds in Σ applies to any set Σ of st-tgds. We thus get:

COROLLARY 3.1. The rewrite rule system consisting of Rules 1
– 5 is terminating, i.e., Given an arbitrary set Σ of st-tgds, the non-
deterministic, exhaustive application of the Rules 1 – 5 terminates.

It can be shown that the unique normal form produced by our
rewrite rules is indeed optimal.

THEOREM 3.3. Let Σ be a set of st-tgds, s.t. Σ is in normal
form. Then Σ is optimal according to Definition 3.3.

We conclude this section by two remarks on the splitting rule:
(1) The purpose of the splitting rule is to enable a further simplifi-
cation of the antecedents of the resulting st-tgds. Of course, it may
happen that no further simplification is possible, e.g.: Let Σ =
{R(x, y) ∧ R(y, z) → S(x, z) ∧ T (z, x)}. Splitting yields Σ′ =
{R(x, y) ∧ R(y, z) → S(x, z);R(x, y) ∧ R(y, z) → T (z, x)},
which cannot be further simplified. In cases like this, one may ei-
ther “undo” the splitting or simply keep track of st-tgds with identi-
cal (possibly up to variable renaming) antecedents in order to avoid
multiple evaluation of the same antecedent by the chase.
(2) Definition 3.2 gives a “semantical” definition of “split reduced”
while the splitting rule is a “syntactical” criterion. The following
lemma establishes the close connection between them.

LEMMA 3.7. Let Σ be a split-reduced set of STDs and let Σ∗

denote the normal form of Σ. Then, for every possible sequence of
rewrite rule applications, this normal form Σ∗ is obtained from Σ
without ever applying Rule 3 (i.e., splitting).

4. EXTENSION TO TARGET EGDS
We now extend our rewrite rule system to schema mappings with
both st-tgds and target egds. Again, we will be able to show that the
resulting normal form is unique up to variable renaming and that it
has similar optimality properties as in the st-tgd-only case.

An important complication introduced by the egds has already
been hinted at in Section 1, namely the equivalence of two sets of
st-tgds may be affected by the presence of egds:

EXAMPLE 4.1. (Example 1.5 slightly extended).
Σst = {C(x1, x2, x3)→

(∃y1, y2) P (y1, y2, y2) ∧ P (y1, x2, x3)

C(x1, x2, x3)→ (∃y1)P (y1, x3, x2)

C(x1, x2, x2)→ Q(x1)}

Σ′st = {C(x1, x2, x3)→ (∃y1) P (y1, x2, x3)
C(x1, x2, x3)→ Q(x1)}

Σt = {P (x1, x2, x3)→ x2 = x3}
We have Σst ∪ Σt ≡ Σ′st ∪ Σt. Moreover, both Σst and Σ′st are
in normal form w.r.t. the Rules 1 – 5 from Section 3. However,
Σst 6≡ Σ′st holds. 2

In contrast, the equivalence of two sets of target egds is not in-
fluenced by the presence of st-tgds, as the following lemma shows.

LEMMA 4.1. Suppose Σ = Σst ∪ Σt and Υ = Υst ∪ Υt be
two logically equivalent sets of st-tgds and target egds. Then, Σt
and Υt are equivalent.

PROOF. W.l.o.g. assume that there exists an ε : ϕ(~x)→ σ(~x) ∈
Υt s.t. Σt 6|= ε. That is, the set L = At(ϕ(~x))Σt of atoms of the
antecedent of ε chased with Σt does not satisfy ε. However, it does
satisfy Σt. Now, consider the pair of instances 〈∅, L〉. Since L |=
Σt, 〈∅, L〉 |= Σ and 〈∅, L〉 6|= Υ, which is a contradiction.

Recall that we are only considering logical equivalence of depen-
dencies here. The study of weaker notions of equivalence [10]
which only take attainable target instances into account (which is
not the case for L in the above proof) are left for future work.

Our primary goal is the definition of a unique normal form of the
st-tgds also in the presence of target egds. The first step towards

Procedure PROPAGATE
Input: A set of st-tgds and target egds Σ = Σst ∪ Σt
Output: Sets of source egds Σs and rewritten st-tgds Σ∗st

1. Set Σs = Σ∗st = ∅;
2. for each st-tgd τ : ϕ(~x)→ (∃~y)ψ(~x, ~y) in Σst do

/* (a) initialization of source and target instance */
IS := At(ϕ(~x));
IT := ∅;
I := IS ∪ IT ;

/* (b) chase with Σ = Σst ∪ Σt */
J := IΣ;

/* (c) transform st-tgd τ into τ ′ */
let J = JS ∪ JT , s.t. JS is an instance over S

and JT is an instance over T;
let J∗ = core(JT), where the variables that occur

in JS are considered as constants.
τ ′ :=

`V
A∈JS

A
´
→ (∃~y)

V
B∈J∗ B;

Σ∗st := Σ∗st ∪ {τ ′};
/* (d) generate source egds */

Compute a substitution λ s.t. At(ϕ(~xλ)) = JS ;
for each pair of variables xj , xk ∈ ~x do

if xjλ = xkλ then
Σs := Σs ∪ {ϕ(~x)→ xj = xk};

end for;

Figure 3: Procedure Propagate.

this goal is to incorporate the effects of egds into st-tgds. As we
have already seen in Section 1, this may require the introduction of
source egds. Source instances contain no variables. Hence, there
will be no source chase. The source egds are only meant to capture
the failure conditions which cannot be detected otherwise after the
rewriting of the st-tgds.

In Figure 3, we present the procedure PROPAGATE, which prop-
agates the effect of the target egds into the st-tgds and thereby pos-
sibly generates source egds. The idea of this procedure is that, for
every st-tgd τ , we identify all egds that will “fire” whenever τ does.
Moreover, we want that all equalities enforced by these egds should
already be enforced in the st-tgd. Note that the chase in step 2.(b)
is not the usual chase in data exchange. Here we chase all of I
(consisting of both a source and a target instance) with Σ in order
to propagate backwards the effect of the target egds. We are as-
suming that the st-tgds contain only variables. Hence, the chase
in step 2.(b) will never fail – it only equates variables. Of course,
if st-tgds were also allowed to contain constants, then the chase in
step 2.(b) could fail. In this case, we would simply delete τ and
generate a source dependency of the form ϕ(~x) → ⊥ to indicate
that the st-tgd τ must never fire.

EXAMPLE 4.2. We now apply the PROPAGATE procedure to
Σ = Σst ∪ Σt from Example 4.1. We start the loop with τ :
C(x1, x2, x3)→ (∃y1, y2) P (y1, y2, y2) ∧ P (y1, x2, x3).

(a) I := {C(x1, x2, x3)}.
(b) Chasing I with Σst yields I ′ = {C(x1, x2, x3), P (y′1, y

′
2, y′2),

P (y′1, x2, x3), P (y′′1 , x3, x2)}. We apply the egd in Σt to get I ′′ =
{C(x1, x2, x2), P (y′1, y

′
2, y
′
2), P (y′1, x2, x2), P (y′′1 , x2, x2)}. The

third st-tgd in Σst is now applicable and we get J = IΣ = {C(x1,
x2, x2), P (y′1, y

′
2, y
′
2), P (y′1, x2, x2), P (y′′1 , x2, x2), Q(x1)}.

(c) We have J = JS ∪ JT with JS = {C(x1, x2, x2)} and JT =
{P (y′1, y

′
2, y
′
2), P (y′1, x2, x2), P (y′′1 , x2, x2), Q(x1)}. Core com-

putation of JT yields J∗ = {P (y′1, x2, x2), Q(x1)}. Hence, τ is

transformed into τ ′ : C(x1, x2, x2)→ ∃y′1 P (y′1, x2, x2)∧Q(x1).
(d) We compute the substitution λ = {x3 ← x2}, which maps the
only atom C(x1, x2, x3) in ϕ(~x) into JS = {C(x1, x2, x2)}. We
thus get one source egd C(x1, x2, x3)→ x2 = x3.
After the first iteration of the loop, we thus have
Σ∗st = {C(x1, x2, x2)→ ∃y′1 P (y′1, x2, x2) ∧Q(x1)} and
Σs = {C(x1, x2, x3) → x2 = x3}. The remaining two iterations
only yield isomorphic st-tgds and source egds. 2

The PROPAGATE procedure never increases the antecedents of
the st-tgds. Hence, the cost of the join-operations when computing
a canonical solution is not affected. On the other hand, the size
of the conclusions is normally increased by this procedure. Note
however that all atoms thus accumulated in the conclusion of some
st-tgd τ would be generated in a target instance anyway, whenever
τ fires. Moreover, we will ultimately delete redundant atoms in the
conclusion of all st-tgds via Rules 1 and 5 from the previous sec-
tion. However, for the time being, it is important to have all these
atoms present. This ensures that dependencies resulting from the
PROPAGATE procedure possess the following essential properties.

LEMMA 4.2. Consider a set Σ = Σst ∪ Σt of st-tgds Σst and
target egds Σt. Moreover, let the result of PROPAGATE(Σst,Σt)
be denoted by (Σs,Σ

∗
st). Then, the following conditions hold:

(1) For every st-tgd τ ∈ Σ∗st: the chase of the frozen antecedent
database of τ with Σst ∪ Σt is successful.

(2) For every source instance I: if I 6|= Σs then the chase of I with
Σst ∪ Σt fails.

PROOF. (1) After the successful completion of the chase in step
2.(b) of the PROPAGATE procedure, all necessary unifications in
the antecedent relations have been performed. Hence, the instance
〈At(ϕ(~x)), At(ψ(~x, ~y)) 〉 for an st-tgd ϕ(~x) → (∃~y)ψ(~x, ~y) in
Σ∗st satisfies both Σst and Σt. Freezing the variables in At(ϕ(~x))
(i.e., considering them as constants) makes no difference.
(2) An inspection of steps 2.(b) and (d) of the PROPAGATE proce-
dure reveals that Σs enforces only those equalities which are im-
plied by Σst ∪ Σt. Therefore, a violation of Σs means that also
Σst ∪ Σt is violated.

LEMMA 4.3. Let Σ = Σst ∪ Σt, and let (Σs,Σ
∗
st) denote

the result of PROPAGATE(Σst,Σt). Moreover, let τ ∈ Σ∗st with
τ : ϕ(~x) → ∃(~y) ψ(~x, ~y), and let I be a source instance with
I ⊆ At(ϕ(~x)), i.e., I is obtained as an arbitrary subset of the
frozen antecedent database At(ϕ(~x)) of τ .

Then the chase of I both with Σ = Σst ∪ Σt and with Σ∗ =

Σs ∪ Σ∗st ∪ Σt succeeds. Moreover, core(IΣ) = core(IΣ∗).

PROOF. By condition (1) of Lemma 4.2, the chase with Σ and
with Σ∗ succeeds on the frozen antecedent databaseAt(ϕ(~x)) of τ .
Hence, the chase clearly succeeds also for any subset of At(ϕ(~x)).
The equality core(JΣ) = core(JΣ∗) immediately follows from
the correctness of the PROPAGATE procedure, see Lemma 4.5.

By the above lemmas, the PROPAGATE procedure incorporates
some of the effects of the target egds into the st-tgds. Nevertheless,
as the following examples shows, additional measures are needed
for a unique normal form of the st-tgds in the presence of egds:

EXAMPLE 4.3. Let Σ1 = {ε, τ1} and Σ2 = {ε, τ2} with
ε : R(x1, x2, x3) ∧R(x1, x4, x5)→ x3 = x5

τ1 : S(x1, x2) ∧ S(x1, x3)→ ∃y R(x1, x2, y) ∧R(x1, x3, y)
τ2 : S(x1, x2)→ ∃y R(x1, x2, y)

Rewrite Rules in the Presence of Egds

Rule E1 (General implication).
Σ =⇒ Σ \ {δ}
if Σ \ {δ} |= δ.

Rule E2 (Restriction of an antecedent to subsets).
Σ =⇒ (Σ \ {τ}) ∪ {τ1, . . . , τn}
if τ : ϕ(~x)→ (∃~y)ψ(~x, ~y)
and (Σ \ {τ}) ∪ {τ1, . . . , τn} |= τ
and for each i ∈ {1, . . . , n}
τi : ϕi(~xi,)→ (∃~yi)ψi(~xi, ~yi),
s.t. ∅ ⊂ At(ϕi(~xi)) ⊂ At(ϕ(~x))
and ψi(~xi, ~yi) = core(At(ϕi(~xi))

Σ).

Figure 4: Rewrite rules in the presence of egds.

Applying PROPAGATE to Σ1 = {ε, τ1} or Σ2 = {ε, τ2} neither
produces source egds nor changes the τi’s. However, it is easy to
verify that Σ1 and Σ2 are equivalent. We only show that Σ2 |= τ1.
Let 〈S, T 〉 be an arbitrary pair of source and target instance with
〈S, T 〉 |= Σ2, s.t. the antecedent of τ1 is satisfied by atoms S(a, b)
and S(a, c) in S. Chasing these atoms with τ2 yields R(a, b, y)
and R(a, c, y′). The egd ε is applicable to these atoms and en-
forces the equality y = y′. Hence, T contains atoms R(a, b, y)
and R(a, c, y), thus satisfying the conclusion of τ1. 2

In Figure 4, we define two more rewrite rules. Rule E1 allows the
deletion of implied dependencies analogously to Rule 4 of Section
3. However, since we are now dealing with st-tgds and egds, the
declarative implication criterion from Lemma 3.1 no longer works.
Instead, we take the chase-based procedure by Beeri and Vardi [4],
applicable to any embedded dependencies that cannot cause an in-
finite chase (which is clearly the case when all tgds are st-tgds).

LEMMA 4.4. [4] Let Σ be a set of acyclic tgds and egds and let
δ be either a tgd or an egd. Let ϕ(~x) denote the antecedent of δ
and let T denote the database obtained by chasing At(ϕ(~x)) with
Σ. The variables in ~x are considered as labeled nulls. Then Σ |= δ
iff T |= δ holds.

Rule E2 generalizes the Rule 2 from Section 3 in that it aims at
the restriction of the antecedent ϕ(~x) of an st-tgd to one or more
strict subsets of At(ϕ(~x)). Let ϕi(~xi) be such a conjunction of
atoms with At(ϕi(~xi)) ⊂ At(ϕ(~x)). Then we compute the cor-
responding conclusion by chasing the frozen antecedent database
At(ϕi(~xi)) with Σ followed by the core computation (precisely as
in Rule 1). By Lemma 4.3, the chase succeeds and, by construc-
tion, each of the resulting rules τi is implied by Σ. Moreover, the
termination of applications of Rule E2 is due to a simple multi-
set argument on the strictly shrinking number of atoms in the an-
tecedent. In total, we state the following correctness property of
the transformations defined in this Section:

LEMMA 4.5. The PROPAGATE procedure as well as the rewrite
rules E1 and E2 in Figure 4 are correct, i.e.:

(1) Let Σ = Σst ∪ Σt and let the result of PROPAGATE(Σst,Σt)
be (Σs,Σ

∗
st). Then Σ ≡ Σ′ for Σ′ = Σs ∪ Σ∗st ∪ Σt.

(2) Let Σ be a set of dependencies and let Σ′ be the result of apply-
ing one of the rules E1 or E2 to Σ. Then Σ ≡ Σ′.

PROOF. (Sketch) (1) PROPAGATE leaves Σt unchanged. More-
over, Lemma 4.2, part (2), implies Σ |= Σs. It thus remains to show
Σ |= τ ′ for evey τ ′ ∈ Σ∗st and Σ′ |= τ for evey τ ∈ Σst. These

relationships are proved by inspecting the loop in PROPAGATE pro-
cedure (in particular, step 2.b) and checking that the implication
criterion of [4] recalled in Lemma 4.4 is fulfilled.
(2) The correctness of Rule E1 is analogous to the correctness of
Rule 1 in Lemma 3.1. Now suppose that Σ′ is the result of an appli-
cation of Rule E2. The implication τ |= τi holds by construction,
for every i ∈ {1, . . . , n}. Hence, we clearly have Σ |= Σ′. Con-
versely, we also have Σ′ |= Σ, since this condition is part of the
definition of Rule E2.

The PROPAGATE procedure plus the rules E1 and E2 are indeed
all ingredients we need to transform the st-tgds in two equivalent
sets Σ = Σst ∪Σt and Υ = Υst ∪Υt in such a way that resulting
sets Σ∗st and Υ∗st of st-tgds are equivalent.

THEOREM 4.1. Let Σ = Σst ∪ Σt and Υ = Υst ∪ Υt be
two logically equivalent sets consisting of st-tgds and target egds.
Moreover, let (Σs,Σ

′
st) = PROPAGATE(Σst,Σt) and (Υs,Υ

′
st) =

PROPAGATE(Υst,Υt), and suppose that Σ∗st and Υ∗st have been
obtained by further reducing Σ′st and Υ′st respectively w.r.t. the
rules E1 and E2. Then Σ∗st and Υ∗st are equivalent.

PROOF. We have to show that Υ∗st |= σ for every σ ∈ Σ∗st
(and, symmetrically, Σ∗st |= τ for every τ ∈ Υ∗st). For an arbitrary
σ ∈ Σ∗st, let Σ̄σ denote the set of st-tgds whose antecedents are the
proper subsets of σ and whose conclusions are obtained by chasing
the corresponding antecedent database with Σ∗st ∪ Σt (i.e., we get
st-tgds analogous to the τi’s in Rule E2). Then it can be shown that
there exists a subset Tσ ⊆ Υ∗st, s.t. Tσ∪Σs∪Σ̄σ∪Σt∪Σ∗st\{σ} |=
σ and every τ ∈ Tσ fulfills the following properties:

1. The antecedent ϕτ (~xτ) of τ is homomorphically equivalent
to the antecedent ϕσ(~xσ) of σ;

2. there exists a substitution λ, such that ϕτ (~xτλ) = ϕσ(~xσ).
That is, the antecedent of τ can be mapped onto the entire
antecedent of σ;

3. τ is not equivalent to any dependency in Σst \ {σ}.

By symmetry, for every τ ∈ Υ∗st there exists a Sτ ⊆ Σ∗st with the
analogous properties. It can be further shown that all these sets Tσ
and Sτ are singletons and there exists a one-to-one correspondence
between them in the following sense: τ ∈ Tσ iff σ ∈ Sτ . From
this, we can ultimately conclude that τ |= σ and σ |= τ , which
clearly implies Υ∗st |= σ and Σ∗st |= τ .

Intuitively, the effect of the PROPAGATE procedure followed by
the Rules E1 and E2 is to fully incorporate the effect of the egds on
the antecedent and conclusion of the st-tgds into the st-tgds them-
selves. We can then apply all the rewrite rules from Section 3 to
Σ∗st and Υ∗st to get further simplified, isomorphic sets of st-tgds. In
summary, we get the following normal form:

DEFINITION 4.1. Consider a set Σ = Σst ∪ Σt of st-tgds Σst
and target egds Σt and let the result of PROPAGATE(Σst,Σt) be
denoted by (Σs,Σ

′
st) Moreover, let Σ∗st denote the set of st-tgds

resulting from Σ′st by exhaustive application of the rules E1, E2 as
well as the rules 1–5 from Section 3 and let Σ∗s denote the result of
exhaustive reduction of Σs via rule E1. Then we call 〈Σ∗s ,Σ∗st,Σt〉
the normal form of Σ.

THEOREM 4.2. Let Σ = Σst∪Σt and Υ = Υst∪Υt be equiv-
alent sets consisting of st-tgds and target egds and let 〈Σ∗s ,Σ∗st,Σt〉
and 〈Υ∗s ,Υ∗st,Υt〉 be the corresponding normal forms. Then the
equivalences Σ∗st ≡ Υ∗st and Σt ≡ Υt hold. Moreover, Σ∗st and
Υ∗st are isomorphic.

PROOF. (1) The equivalence Σt ≡ Υt was shown in Lemma 4.1.
The equivalence Σ∗st ≡ Υ∗st is due to Theorem 4.1 and the correct-
ness of the Rules 1 – 5 proved in Lemma 3.2. Moreover, it follows
immediately from Theorems 4.1 and 3.1 that Σ∗st and Υ∗st are iso-
morphic.

A normal form of the (source or target) egds is not important for
our purposes since we will show in Theorem 5.1 that the unique
(up to isomorphism) canonical solution only depends on the nor-
malization of the st-tgds – the equivalence of the source egds and
the syntactic representation of the egds are irrelevant.

To sum up, our normal form according to Definition 4.1 guar-
antees that the st-tgds are unique up to isomorphism. Moreover,
they are optimal according to the optimality criteria from Section
3 among all st-tgds where the effect of the egds has been fully in-
corporated, i.e., if two sets Σst ∪ Σt and Σ′st ∪ Σt are equivalent
then Σst and Σ′st are equivalent as well. However, if we lift the
restriction of incorporating the egds into the st-tgds then additional
possibilities of optimization may arise. The PROPAGATE proce-
dure seems advantageous in any case since it applies to an st-tgd
τ all egds and st-tgds that inevitably follow the application of τ
on any source instance. The situation with Rule E2 is more com-
plex. In Example 4.3, we have seen that Rule E2 may help to elimi-
nate atoms (in this case, both in the antecedent and the conclusion)
whose redundancy cannot be detected by any of the Rules 1 – 5.
However, there may also be situations where the total number of
atoms in antecedent and conclusion increase when Rule E2 is ap-
plied (it is however guaranteed that every st-tgd thus generated is
strictly smaller than the original one). Exploring the potential of
further optimization is left for future work.

5. AGGREGATE QUERIES
We now study the semantics and evaluation of aggregate queries in
data exchange, i.e., queries of the form SELECT f FROMR, where
f is an aggregate operator min(R.A), max(R.A), count(R.A),
count(∗), sum(R.A), or avg(R.A), and where R is a target rela-
tion symbol or, more generally, a conjunctive query over the target
schema and A is an attribute of R. For this purpose, we first recall
some basic notions on query answering in data exchange as well as
some fundamental results on aggregate queries from [1].

Certain Answers. Though any target database satisfying the sche-
ma mapping and local constraints is called a “solution”, a random
choice of a candidate for materializing a target database is not sat-
isfactory: query answering in data exchange cannot be reduced to
evaluating queries against random solutions. The widely accepted
approach is based on the notion of certain answers:

DEFINITION 5.1. Let Σ be a schema mapping over the schema
〈S,T〉, and let I be an instance over S. Then, the certain answer
for a query q over T and for the source instance I are

certain(q, I,W(I)) =
\
{q(J)|J ∈ W(I)},

whereW(I) is the set of possible worlds for I and Σ.

Several proposals can be found in the literature [9, 13, 19, 20] as to
which solutions should be taken as possible worldsW(I). Typical
examples are the set of all solutions, the set of universal solutions,
the core of the universal solutions, or the CWA-solutions. For con-
junctive queries, all these proposals lead to identical results.
Aggregate Certain Answers. Afrati and Kolaitis [1] initiated the
study of the semantics of aggregate queries in data exchange. They
adopted the notion of aggregate certain answers for inconsistent
databases of Arenas et al. [3] to data exchange:

DEFINITION 5.2. [1] Let query q be of the form SELECT f
FROM R, whereR is a target relation symbol or, more generally, a
first-order query over the target schema T, and f is one of the ag-
gregate operators min(R.A), max(R.A), count(R.A), count(∗),
sum(R.A), or avg(R.A) for some attribute A of R. For all aggre-
gate operators but count(∗), tuples with a null value in attribute
R.A are ignored in the computation.

• Value r is a possible answer of q w.r.t. I andW(I) if there
is an instance J ∈ W(I) such that f(q)(J) = r.

• poss(f(q), I,W(I)) denotes the set of all possible answers
of the aggregate query f(q) w.r.t. I andW(I).

• The aggregate certain answer agg-certain(f, I,W(I)) of the
aggregate query f(q) w.r.t. I andW(I) is the interval

[glb(poss(f(q), I,W(I))), lub(poss(f(q), I,W(I)))] ,

where glb and lub stand, respectively, for the greatest lower
bound and the least upper bound.

Semantics of aggregate queries via endomorphic images. A key
issue in defining the semantics of queries in data exchange is to
define which set of possible worlds should be considered. In [1],
Afrati and Kolaitis showed that all previously considered sets of
possible worlds yield a trivial semantics of aggregate queries. They
therefore introduced a new approach via the endomorphic images
of the canonical solution. Let Endom(I,M) denote the endomor-
phic images of the canonical universal solution J∗ = CanSol(I),
i.e.: J ∈ Endom(I,M) if there exists an endomorphism h : J∗ →
J∗, s.t. J = h(J∗). It was shown in [1] that choosing W(I) =
Endom(I,M) leads to an interesting and non-trivial semantics of
aggregate queries. However, in general, the semantics definition
depends on the concrete syntactic representation of the st-tgds.

EXAMPLE 5.1. Consider two schema mappings M1 = 〈S,
T,Σ1〉 and M2 = 〈S,T,Σ2〉, with source schema S = {P},
target schema T = {R}, and the following st-tgds:

Σ1 = {P (x)→ (∃y)R(1, x, y)} and
Σ2 = {P (x)→ (∃y1 . . . yn)R(1, x, y1) ∧ · · · ∧R(1, x, yn)}

Clearly, Σ1 and Σ2 are logically equivalent. However, for the
source instance I = {P (a)}, M1 and M2 yield two different
canonical solutions J1 = {R(1, a, y)} and J2 = {R(1, a, y1),
. . . , R(1, a, yn)}. Let A denote the name of the first attribute of
R. Then all of the three aggregate queries count(R.A), count(∗),
and sum(R.A) have the range semantics [1, 1] inM1 and [1, n] in
M2, i.e.:M1 admits only one possible world and the three aggre-
gate queries evaluate to 1 in this world. In contrast,M2 gives rise
to many possible worlds with {R(1, a, y)} being the smallest and
{R(1, a, y1), . . . , R(1, a, yn)} being the biggest. Thus, the three
aggregate queries may take values between 1 and n. 2

In order to eliminate the dependence on the concrete syntactic
representation of the st-tgds, we have defined a new normal form
of st-tgds in Definition 4.1. Below, we show that we thus get a
unique canonical solution also in the presence of target egds.

THEOREM 5.1. LetM = 〈S,T,Σst ∪ Σt〉 be a schema map-
ping and let Σ∗s ∪Σ∗st ∪Σt be the normal form of Σst ∪Σt. More-
over, let I be a source instance and J∗ the canonical solution for I
underM obtained via an oblivious chase with Σ∗st followed by a
chase with Σt in arbitrary order. Then J∗ is unique up to isomor-
phism. We denote J∗ as CanSol∗(I).

PROOF. (Sketch) By Theorem 4.2, the normal form of the st-
tgds is unique up to isomorphism. Hence, also the result of the
oblivious chase with the st-tgds is unique up to isomorphism. Fi-
nally, also the chase with equivalent sets of egds produces isomor-
phic canonical universal instances. This property is proved by in-
duction on the length of one of the chase sequences.

To obtain a unique range semantics of the aggregate functions
min, max, count, count(∗), sum, and avg, we therefore propose
to follow the approach of [1], with the only difference that we take
the unique target instance CanSol∗(I) from Theorem 5.1.

We conclude this section by extending also the tractability results
from [1] to schema mappings with target egds.

THEOREM 5.2. LetM = 〈S,T,Σst ∪ Σt〉 be a schema map-
ping, let R be a CQ over T or a relation symbol in T, let A be an
attribute inR and f an aggregate operator min(R.A), max(R.A),
count(R.A), count(∗), sum(R.A), or avg(R.A).

The problem of aggregate query evaluation (i.e., given a source
instance I , compute agg-certain(f, I,Endom(I , J∗)) with J∗ =
CanSol∗(I)) is in PTIME in each of the following cases:

(1) R is a CQ and f ∈ {min(R.A), max(R.A), count(R.A),
count(∗)}.
(2) R is a CQ and f = sum(R.A) and A is an attribute with non-
negative values only.

(3) R is a target relation symbol and f = avg(R.A).

PROOF. (Sketch) Case (1) and (2) are immediate since the con-
siderations in [1] are not affected by the egds. For case (3), the
algorithm of [1] can be extended to schema mappings with egds by
applying the Rigidity Lemma of [11].

6. IMPLEMENTATION
We have performed a preliminary implementation of the optimiza-
tion and normalization algorithms presented in Sections 3 and 4.
The chart in Figure 5 shows typical running times of the algorithm
on randomly generated mappings of varying size.

6 8 10 12 14 16 18

Avg. # atoms in the antecedent / conclusion

0

5

10

15

20

25

30

P
ro

ce
ss

in
g

ti
m

e,
 s

ec
.

100 tgds, 6 tables per schema

50 tgds, 6 tables / schema

50 tgds, 12 tables / schema

Figure 5: Performance of the optimization

In the experiments illustrated in Figure 5, random mappings con-
sisting of 50 resp. 100 tgds with varying average number of atoms
in the antecedent and conclusion were optimized. Intel MacBook
with 2 GHz clock speed and 2 GB RAM was used as a test station.

The current design of the optimization tool is rather straightfor-
ward, and thus the reported performance must be seen as a base-
line. We have evaluated the algorithm in several scenarios: Figure 5
presents the case where mappings are unrealistically “dense” (e.g.,

100 different st-tgds relate the schemas with only 6 tables each).
Such situations are disadvantageous, e.g., for the Rules 4 and 5,
as for every tgd with sufficiently large antecedent, there are with
high probability other tgds with “compatible” antecedents which
thus may potentially imply some of its conclusion atoms. More-
over, starting from a certain size, tgds necessarily include self-joins
which affects the performance of all transformation rules.

It is currently possible to optimize the mappings of up to 100 st-
tgds with an average of 15 atoms in the antecedent resp. conclusion
over such “dense” schemas — see the leftmost curve in Figure 5.
Doubling the number of relations in the schema (and, hence, reduc-
ing the “density”) resulted in a considerable performance improve-
ment (cf. the two solid curves).

Target egds have proven to be a significant source of complexity
for the algorithm. Indeed, the PROPAGATE procedure yields depen-
dencies with a large number of atoms in the conclusion, which, due
to the effect of egds, become connected via shared variables. Thus,
on large “dense” schema mappings, the Rules E1 and E2 require
evaluation of conjunctive queries with several hundreds of atoms,
pushing the running times up the order of several minutes on the
mappings with 100 egds and tgds.

However, with a more realistic correspondence between the num-
ber of dependences and the size of the schemas, a significantly bet-
ter performance was achieved. For instance, with the ratio of 3
st-tgds per relation, our normalization tool could tackle mappings
of up to 500 tgds with an average of 15 atoms in the antecedent
resp. conclusion within 30 seconds (not shown in the chart). Sim-
ilar running times were attained with a “data integration” scenario
featuring a small target schema (6 relations), and a larger source
schema in which the number of relations increased proportionally
to the number of st-tgds, which had an average of 15 atoms in the
antecedent and an average of 3 atoms in the conclusion. The same
trend also holds in the presence of target egds. Thus, the normal-
ization of up to 100 egds and 200 tgds with an average of 15 atoms
per antecedent resp. conclusion was feasible within one minute.

To summarize, even without fine tuning, the presented algorithms
allow to optimize schema mappings consisting of hundreds of de-
pendencies. At the same time, there is certainly a large room for im-
provements left, e.g., well-known optimization techniques for eval-
uation and minimization of conjunctive queries [17] suggest them-
selves, especially for normalizing schema mappings with egds.

7. CONCLUSION
In this paper, we have initiated the study of a theory of schema
mapping optimization. We have thus formulated several natural
optimality criteria and we have presented a rewrite rule system for
transforming any set of st-tgds into an equivalent optimal one. We
have also shown that the optimal form is unique up to variable re-
naming. The rewrite rule system was then extended to schema map-
pings including target egds where we again managed to prove the
uniqueness of the normal form. The normalization of schema map-
pings was finally applied to aggregate queries in data exchange. A
prototype implementation is freely available on the web.

As future work, we envisage several extensions of our results:
Above all, the case of schema mappings including target egds has
to be further investigated. We have presented a rewrite rule system
which carries out several natural simplifications and which yields
a unique normal form. However, in contrast to the st-tgds-only
case, a detailed analysis of the properties of our normal form in
the presence of egds is missing. In particular, the ultimate goal
of proving the optimality w.r.t. the criteria defined for the st-tgds-
only case (and possibly modifying or extending these criteria in the
presence of egds) is a challenging goal for future work.

We have considered two sets of dependencies as equivalent if
they are logically equivalent. As pointed out in [10], weaker no-
tions of equivalence such as “data exchange equivalence” and “con-
junctive query equivalence” may sometimes be more appropriate.
We want to extend our normal forms to these forms of equivalence.

8. REFERENCES
[1] F. N. Afrati and P. G. Kolaitis. Answering aggregate queries

in data exchange. In Proc. PODS’08, pages 129–138. 2008.
[2] M. Arenas, P. Barceló, R. Fagin, and L. Libkin. Locally

consistent transformations and query answering in data
exchange. In Proc. PODS’04, pages 229–240. ACM, 2004.

[3] M. Arenas, L. E. Bertossi, J. Chomicki, X. He, V. Raghavan,
and J. Spinrad. Scalar aggregation in inconsistent databases.
Theor. Comput. Sci., 3(296):405–434, 2003.

[4] C. Beeri and M. Y. Vardi. A proof procedure for data
dependencies. J. ACM, 31(4):718–741, 1984.

[5] P. A. Bernstein, T. J. Green, S. Melnik, and A. Nash.
Implementing mapping composition. VLDB J.,
17(2):333–353, 2008.

[6] P. A. Bernstein and S. Melnik. Model management 2.0:
manipulating richer mappings. In Proc. SIGMOD’07, pages
1–12. ACM, 2007.

[7] A. K. Chandra and P. M. Merlin. Optimal implementation of
conjunctive queries in relational data bases. In Proc.
STOC’77, pages 77–90. ACM Press, 1977.

[8] R. Fagin. Horn clauses and database dependencies. J. ACM,
29(4):952–985, 1982.

[9] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data
exchange: semantics and query answering. Theor. Comput.
Sci., 336(1):89–124, 2005.

[10] R. Fagin, P. G. Kolaitis, A. Nash, and L. Popa. Towards a
theory of schema-mapping optimization. In Proc. PODS’08,
pages 33–42. ACM, 2008.

[11] R. Fagin, P. G. Kolaitis, and L. Popa. Data exchange: getting
to the core. ACM Trans. Dat. Syst., 30(1):174–210, 2005.

[12] A. Y. Halevy, A. Rajaraman, and J. J. Ordille. Data
integration: The teenage years. In Proc. VLDB’06, pages
9–16. ACM, 2006.

[13] A. Hernich and N. Schweikardt. CWA-solutions for data
exchange settings with target dependencies. In Proc.
PODS’07, pages 113–122. ACM, 2007.

[14] T. Imielinski and W. L. Jr. Incomplete information in
relational databases. J. ACM, 31(4):761–791, 1984.

[15] D. S. Johnson and A. C. Klug. Testing containment of
conjunctive queries under functional and inclusion
dependencies. J. Comput. Syst. Sci., 28(1):167–189, 1984.

[16] P. G. Kolaitis. Schema mappings, data exchange, and
metadata management. In Proc. PODS’05, pages 61–75.

[17] I. K. Kunen and D. Suciu. A scalable algorithm for query
minimization. Tech. report, University of Washington, 2002.

[18] M. Lenzerini. Data integration: A theoretical perspective. In
Proc. PODS’02, pages 233–246. ACM, 2002.

[19] L. Libkin. Data exchange and incomplete information. In
Proc. PODS’06, pages 60–69. ACM Press, 2006.

[20] L. Libkin and C. Sirangelo. Data exchange and schema
mappings in open and closed worlds. In Proc. PODS’08,
pages 139–148. ACM, 2008.

[21] Y. Sagiv and M. Yannakakis. Equivalences among relational
expressions with the union and difference operators. J. ACM,
27(4):633–655, 1980.

