Comparing Stars: On Approximating Graph Edit Distance -

Zhiping Zeng’, Anthony K.H. Tung', Jianyong Wang’, Jianhua Feng’, Lizhu Zhou®
¥ Tsinghua University, Beijing, 100084, P. R. China

clipse.zeng@gmail.com, {jianyong, fengjh, dcszlzy@tsinghua.edu.cn
"National University of Singapore, Singapore

atung@comp.nus.edu.sg

ABSTRACT

Graph data have become ubiquitous and manipulating them
based on similarity is essential for many applications. Graph
edit distance is one of the most widely accepted measures
to determine similarities between graphs and has extensive
applications in the fields of pattern recognition, computer vi-
sion etc. Unfortunately, the problem of graph edit distance
computation is NP-Hard in general. Accordingly, in this pa-
per we introduce three novel methods to compute the upper
and lower bounds for the edit distance between two graphs
in polynomial time. Applying these methods, two algorithms
ApPPFULL and APPSUB are introduced to perform different
kinds of graph search on graph databases. Comprehensive
experimental studies are conducted on both real and syn-
thetic datasets to examine various aspects of the methods
for bounding graph edit distance. Result shows that these
methods achieve good scalability in terms of both the number
of graphs and the size of graphs. The effectiveness of these
algorithms also confirms the usefulness of using our bounds
in filtering and searching of graphs.

1. INTRODUCTION

In the modern society, graph data are becoming ubig-
uitous, and graph data models have been studied in the
database community for semantic data modelling, hyper-
text, multimedia, chemical and biological information sys-
tem. For example, World Wide Web can be considered as
a graph whose vertices correspond to static pages and edges
correspond to links between pages[7]; in chem-informatics, la-
belled graphs are suited to express the connectivity of chemi-
cal compounds|[29]; in bioinformatics, collections of DNA seg-
ments in a cell which interact with each other and with other
substances in the cell can be formatted as gene regulatory
networks[5, 6, 15].

*This work was supported in part by National Natural Sci-
ence Foundation of China under grant No. 60833003, 973
Program under Grant No. 2006CB303103, an HP Labs Inno-
vation Research Program award, and a research award from
Google, Inc.

Permission to copy without fee all or part of this materigranted provided
that the copies are not made or distributed for direct comialeadvantage,
the VLDB copyright notice and the title of the publicatiortdts date appear,
and notice is given that copying is by permission of the Veayde Data
Base Endowment. To copy otherwise, or to republish, to postesvers
or to redistribute to lists, requires a fee and/or speciaijssion from the
publisher, ACM.

VLDB ‘09, August 24-28, 2009, Lyon, France

Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0am/

Due to the extensive applications of graph models, vast
amounts of graph data have been collected and graph databases
have attracted significant attention in the academic commu-
nities. In recent years, various approaches have been pro-
posed to deal with a variety of graph-related research prob-
lems. For example, a variety of effective algorithms have been
devised to mine graph patterns(e.g., frequent patterns) from
graph databases[33], to index graph databases for efficiently
processing graph search[13, 37, 9] and to perform keyword
search over graph databases[14, 17, 30].

With the rapidly increasing amounts of graph data(e.g.,
chemical compounds and social network data), supporting
scalable graph search over large graph databases becomes an
important database research problem. Because of the techni-
cal limitation of processing graph search using conventional
database technologies, enormous efforts [26, 13, 35, 9, 37]
have been put into constructing practical graph searching
methods.

Given a graph database consisting of n graphs, D = {¢1, g2,
-+ ,gn}, and a query graph ¢, almost all existing algorithms
of processing graph search can be classified into the following
three categories:

1. full graph search: find all graphs g; in D s.t. g; is the
same as ¢ [4];

2. subgraph search: find all graphs g; in D containing ¢
[5, 26, 27, 37] or contained by ¢[9].

3. similarity search: find all graphs g; in D s.t. g; is
similar to ¢ within a user-specified threshold based on
some similarity measures [23, 31].

As can be seen, manipulating graph data based on struc-
tural similarity is essential for many applications [36, 2, 3].
A number of graph similarity measures therefore have been
proposed [20, 8, 10, 24]. Among these, graph edit dis-
tance has been widely accepted as a similarity measure for
representing the distances between attributed graphs. Infor-
mally speaking, graph edit distance defines the similarity of
two graphs by the minimum amount of distortion which is
needed to transform one graph into the other. In contrast
with other measures, graph edit distance does not suffer from
any restriction and can be applied to any type of graphs. Fur-
thermore, graph edit distance is known to be error-tolerant
with the ability to find graphs that are of interest to users
even in the presence of noises and errors in the database.

Graph edit distance plays a significant role in the manage-
ment of graph data and a variety of other applications such as
graph classification, computer vision, pattern recognition and
etc. For example, a familiar problem in computer vision is

to recognizing specific objects within an image[16](e.g., face
identification and symbol recognition). In this case, a rep-
resentative graph is generated from the image according to
structural characteristics, and vertex labels may be assigned
based on characteristics of the region to which each vertex
corresponds. After then, this representative graph is com-
pared to a database of prototype or model graphs to identify
and classify the object of interest. In this context, graph edit
distance provides a good measure for comparing graphs.

Unfortunately, the main drawback of graph edit distance
is its exponential computational complexity in terms of the
number of graph vertices. As will be shown in Section 2,
the problem of graph edit distance is NP-hard in general.
The direct computation of graph edit distance involving large
graphs is therefore expensive and will take unacceptable time.
Because of this, a few algorithms have been proposed to com-
pute upper and lower bounds for the graph edit distance, each
having their own disadvantages. Justice et al. [16] gave a so-
lution providing the lower bound in O(n7) time and the upper
bound in O(n?) time. The computation of the lower bound is
expensive, and their method for obtaining the upper bound
will consider only vertex edit term, i.e., without considering
structural information in graphs. This solution is therefore
not applicable in practice. The other methods [22, 32] can-
not provide lower bounds, and use heuristic algorithms to
find unbounded suboptimal values. All their computation
complexities are hard to analyze and not presented in related
papers.

Accordingly, in this paper we address the problem of ob-
taining upper and lower bounds of graph edit distance effi-
ciently. In summary, the contributions of this paper are:

e We give a formal proof that the problem of graph edit
distance computation is NP-Hard.

e We introduce a notion of star representations for graph
structures and propose three novel methods to obtain
lower and upper bounds of edit distance between two
graphs in polynomial time.

e Based on these efficiently computable bounds, we de-
velop two algorithms APPFULL and ApPpPSUB for per-
forming approximate full graph search and approximate
subgraph search respectively.

e Comprehensive experimental studies are conducted to
evaluate the scalability and effectiveness of our algo-
rithms.

The rest of this paper is organized as follows. Section 2
will formalize the problem of graph edit distance computa-
tion together with computational complexity analysis on the
problem. Related work will be discussed in Section 3. In Sec-
tion 4, three efficiently computable methods are introduced
for obtaining lower and upper bounds of graph edit distance.
Section 5 investigates the applications of these bounds in
performing graph search over graph databases, followed by
a comprehensive experimental studies reported in Section 6.
Section 7 concludes the paper.

2. PRELIMINARIES

In this section, we will first formalize the problem of graph
edit distance computation and then perform some computa-
tional complexity analysis for the problem. Table 1 summa-
rizes the major notations that we will use in this paper.

Symbols | Description
deg(v) {u|(u,v) € E}|, the degree of v
0(g) maxX,cv(q) deg(v)
A(g1,g2) | the edit distance between graphs g1 and g2
Ly (g1,92) | the lower bound of A(g1, g2)
7(g1,92) | the suboptimal value of A(g1, g2)
p(g1,92) | the refined suboptimal value A(g1, g2)

Table 1: Main Notations Used in this Paper

2.1 Problem Formulation

In this paper, we consider simple graphs which does not
contain self-loops, multi-edges and edge labels. An wundi-
rected attributed graph, denoted by g, can be represented
by a 3-tuple g = (V, E, 1), where V is a finite set of vertices,
E CV xV is a set of vertex pairs, and [: V — 2 1 is a
function assigning labels to vertices. In general, we will use
F;, Vi and [; to represent the edges, nodes and label assign-
ing function of a graph g;. Without explicit statement, the
term graph we refer to in the rest of this paper means an
undirected attributed graph.

A graph ¢ is subgraph isomorphic to another graph
g2(denoted by g1 C g2) iff there exists an injection f: Vi —
V2 such that for any vertex v € Vi, f(v) € Va Ali(v) =
l2(f(v)), and for any edge (u,v) € E1 iff (f(u), f(v)) € Ea.
Moreover, if g1 and g2 are subgraph isomorphic to each other,
they are said to be graph isomorphic (denoted by g1 = g2).

Informally speaking, an edit operation on a graph g is
an insertion or deletion of a vertex/edge or relabelling of a
vertex. A vertex can be deleted only on the condition that
no edge is connected to the vertex?, and the costs of differ-
ent edit operations are assumed to be equal in this paper.
Essentially, a vertex deletion can be considered as a vertex
relabelling by changing its label from o € ¥ to € where € is a
special label indicating that the vertex is virtual. Symmet-
rically, a vertex insertion can be considered as relabelling a
vertex’s label from € to o. Let p; denote an edit operation, an
alignment P is an edit operation sequence (p1,p2,...,Pm)
which can transform a graph g; into another graph ¢’. If ¢
is graph isomorphic to another graph g2, we say g1 can reach
g2 through P. Alignments which can make g; reach g2 are
not unique, and optimal alignments between g1 and g» are
alignments containing a minimum number of edit operations.

DEFINITION 2.1. (Graph Edit Distance)(GED) The
edit distance between g1 and g2, denoted by A(g1,g2), is the
number of edit operations in the optimal alignments that make
g1 reach ga.

2.2 Computational Complexity Analysis

In the above, the formulation and properties of the GED
problem have been introduced. Next, we investigate its com-
putational complexity. Justice et al.[16] used the adjacency
matrix representation to formulate a BLP(binary linear pro-
gram, a linear program where all variables are either 0 or
1) to solve the GED problem. Because solving a BLP is

'Y is an alphabet consisting of all labels.

2In a graph, each node can connect to many other nodes
via many edges. If we allow deletion of a node with edges
attached, the question to ask is what happen to these edges.
We can’t leave them dangling. But if we assume they are also
deleted, this bring about imbalance treatment when deleting
nodes of different degrees and also between deleting a node
and an edge (which does not affect any nodes).

NP-Hard [11] in general, it is likely that GED problem is
NP-Hard as well. We confirm this possibility here.

LEMMA 2.1. Given two graphs g1 and g2, A\(g1,92) > ||E2|—
[EL] + [[Va] = [Val.

PrROOF. Given that the edit operations had transformed
g1 to g2, then the transformed graph of gi must have the
same number of nodes and edges as g2. It should be easy to
see that at least ||E2| — |E1|| + ||V2]| — |V4]| edit operations
are needed to do so. [

LEMMA 2.2. Given two graphs g1 and g2 where |Vi| <
[Va| and |Ei| < |E2|, g1 is subgraph isomorphic to g2 iff
Algr, g2) = (|E2| = [Ex]) + (V2| — [Val).

PRrROOF. Necessity: if g1 is subgraph isomorphic to g2,
then there exists an injection 7 that satisfies the required
condition. We define V = {u|3v € Vi,n(v) = u} and E =
{(m(uw),n(v))|(u,v) € E1}. Since 7 is injective, V C Vo, E C
E, |E| = |E1| and |V| = |Vi] must hold. Suppose P is an
alignment which removes all edges in F2—E and all vertices in
V2 —V, then g2 can reach gi through P. Based on Lemma 2.1,
P is an optimal alignment which makes g2 reach gi, thus
g1, 92) = (|E2| = [Ex]) + (V2| = [Vi]).

Sufficiency: assume P is an alignment that makes g
reach gi1. In order to converge g2 to g1 by performing P on
g2 possess the identical number of edges and vertices, at least
(|E2|—|E1|)+(|V2]—|V4]) delete operations exist in P. Thus,

if P is an optimal alignment containing (| E2|—|E1])+(|Va|—|V4])

edit operations, neither insertion nor vertex relabelling exists
in P. The graph isomorphism from ¢ to g’ is therefore a
subgraph isomorphism from g; to gz, i.e., g1 C g2. O

Therefore, graph edit distance can also be used to deter-
mine the subgraph isomorphism which is NP-Complete [11].
Then we can derive the following lemma.

LEMMA 2.3. GED problem is NP-Hard.

PRrOOF. For two graphs g1 and ga, if |[V1| > |V2| or |Eq| >
|E2|, we can quickly state that g1 cannot be subgraph isomor-
phic to g2 because it is impossible to find such a subgraph
isomorphism. In the case of |Vi| < |Va| and |E1| < |E2l,
based on Lemma 2.2, the subgraph isomorphism between g1
and g2 which is NP-Complete [11] can be reduced to GED
problem in polynomial time. GED problem is therefore NP-
Hard. O

According to Lemma 2.3, it is prohibitively difficult to
compute the graph edit distances for large graphs. There-
fore, we intend to compute the upper and lower bounds of
graph edit distance in the rest of this paper.

3. RELATED WORK
3.1 Graph Edit Distance

There are a number of existing studies addressing the graph
edit distance computation problem [22, 25]. All of them fall
into two categories: exact algorithms and heuristic algo-
rithms.

The most widely used method for computing exact graph
edit distance is based on the well-known A * algorithm[12],
and Kaspar Riesen et al. used bipartite heuristic to speed up
the computation procedure[25]. However, as stated in [22], in
practice this kind of algorithms are practical for computing

the edit distance of graphs typically possessing 12 vertices
or less. Exact algorithms therefore cannot be applied in the
applications involving large graphs, and plenty of heuristic
algorithms are devised to compute lower bound and upper
bound for GED with unbounded errors.

Exploiting the strategy of the A* algorithm, Michel Neuhaus
et al. proposed a heuristic algorithm [22] by maintaining only
a fixed number of nodes with the lowest cost and introducing
an additional weighting factor favoring long partial edit paths
over shorter ones. In the community of pattern recognition,
the GED problem is named as graph matching. From the
standpoint of information theory, it is seeking the matched
configuration of vertices that has maximum a posteriori prob-
ability w.r.t. the available vertex attribute information. As
graph matching algorithms aim to optimize a global MAP
criterion[32, 21], some heuristic algorithms are devised based
on this framework[21, 32]. However, it is hard to analyze the
computation complexities of the above heuristic algorithms,
and the suboptimal solutions provided by them are also un-
bounded.

Meanwhile, the authors in [1] and [16] formulated the GED
problem as a BLP problem. The adjacency matrix AY for g
is given by A9={a; ;}, where a;,; = 1 if there is an edge con-
necting vertices i and j, otherwise a;; = 0. For two graphs
g and h, assume |V (g)|=n and |V (g)|>|V (h)|, then vertices
with the special label € are inserted into h such that h will
contain n vertices. Let P={P;;} be an nxn permutation
matrix and C={C; ; } be an nxn label matrix, where C; ; = 1
if 1g(vi) = ln(uj)(vi € V(g),u; € V(h)), otherwise C;,; = 0.
Next, let P be an orthogonal matrix having the property
PPT=PTP=T where I is the identity matrix. For each per-
mutation matrix P, the cost of transforming g to h using P,
C(g,h, P), is defined as

Clg,h, P) =)

=17

CiiPas + 3l|A7 — PA"PTs (1)
1

where ||.||1 denotes the L1 norm.The edit distance between
g and h can be formulated as

Ag, h) = min C(g, h, P) (2)

Now, the problem of graph edit distance is equivalent to
find an optimal permutation matrix P* to minimize C(g, h, P).
Since finding this optimal permutation matrix is NP-hard,
mathematical transformation is done to convert this non-
linear optimization problem into a linear one. Upon such
a transformation, a lower bound of A can be obtained in
O(n") time by extending the domain of P from {0,1} to
[0,1]. Moreover, an upper bound of A can also be obtained
in O(ns) time with considering only vertex edit term, i.e.,
connectivity information is not considered during the com-
putation of the upper bound. Accordingly, this upper bound
will not be tight. More details about this solution can be
found in [16].

Our method proposed later uses a completely different
technique to find the permutation matrix P which captures
the mapping between the nodes and edges of g and h. Upon
determining P however, Equation 1 will then be adopted to
find the edit distance of the computed mapping. We will
show later in our experiments that our technique for com-
puting this mapping can produce a tighter bound on the
actual edit distance than BLP while being 1000 to 10,000
times faster.

3.2 Graph Search

Meanwhile, there are a wealth of literature concerning the
problem of graph search, and a large number of algorithms
have been devised. Due to the complexity of (sub)graph
isomorphism, people usually exploit the feature-based index-
ing approach in practical graph search systems to improve
the performance. In content-based image retrieval, Petrakis
et. al represent each graph as a vector of features and in-
dexed these graphs in a multidimensional space using R-
trees[23]. Instead of casting graphs to vectors, a metric in-
dexing scheme is proposed which organizes graphs hierarchi-
cally by means of their mutual distances[4]. All the above
systems are designed to address the full graph search prob-
lem.

For subgraph search systems, almost all of them exploit
path-based or graph-based indexing approach. Graph-
Grep|26] is a famous representative of path-based approach.
Srinivasa et al. build multiple abstract graphs[27], gIn-
dex[34] uses the discriminative frequent structures, C-Tree[13]
adopts graph closure, SAGA [28] employs pathway fragments,
cIndex[9] adopts contrast subgraphs while Tree4+ A [37]
exploits frequent tree-features(Tree) and a small number of
discriminative graphs(A).

Because of noises that are usually present in graph databases,
a common problem in graph search is: “what if there is no
match or very few matches for a given query?”[35]. In this
scenario, similarity search becomes an appealing and nat-
ural choice. There are also a number of systems support-
ing similarity search over graph databases. For example, a
three-tier algorithm for full graph similarity search is intro-
duced by Raymod et al.[24] whose similarity is based on maz-
imum common edge subgraph; He et al. in [13] exploits ap-
proximate graph edit distance computed through heuristic
neighbor biased mapping methods; the similarity measure
proposed in [28] consists of three components, StructDist,
NodeMismatches and NodeGaps; while Grafil[35] supports
approximate subgraph search by allowing edge relaxations.

4. GRAPH EDIT DISTANCE EVALUATION

In this section, we present methods to efficiently obtain the
lower and upper bounds of edit distance between two graphs.

4.1 Graph Transformation

The key idea of this paper is to transform a graph structure
to a multiset of star structures. This transformation retains
certain structural information of the original graph structure.

4.1.1 Sar Sructure

DEFINITION 4.1. (Star Structure) A star structure s is
an attributed, single-level, rooted tree which can be repre-
sented by a 3-tuple s=(r,L,l), where v is the root verter,
L is the set of leaves and [is a labeling function. Edges ez-
ist between r and any vertex in L and no edge exists among
vertices in L.

In a star structure, the root vertex is the center and vertices
in L can be considered as satellites surrounding the center.
For any vertex v; in a graph g, we can generate a corre-
sponding star structure s; in the following way: s;=(v;, L;,)
where Li={u|(u,v;) € E}. Accordingly, we can derive n star
structures from a graph containing n vertices. Thus, a graph
can be mapped to a multiset® of star structures. We call this

3NOT “set” here, since multiple star structures could appear.

multiset the star representation of the graph g, denoted
by 5(g)-

4.1.2 Sar Edit Distance

Due to the particularity of star structures, edit distance
between two star structures can be computed easily as shown
below.

LEMMA 4.1. (Star Edit Distance) Given two star struc-
tures s1 and Sz,
)\(817 82) = T(’/‘l7 Tz) + d(L17 LQ)

where

T(ﬁ,?‘z) = {(1) Zf l(rl) = l(?”g),
d(L1, L2) = |[L1] — |La|| + M(L1, L2)
M(L17 L2) = maX{NlLl |7 |\I’L2 |} - |\I’L1 N \I’L2|

otherwise.

Wy, is the multiset of vertex labels in L.

PROOF. This proof is simple and we omit it here. [

Based on the above lemma, the main cost for computing
edit distance between two star structures is the multiset in-
tersection operation. To speed up this operation, a total
order should be defined on ¥. For instance, we can attach
distinct integers to distinct vertex labels. After that, a mul-
tiset can be sorted in ascending order with computational
complexity O(nlogn). Note that, this sort operation can be
accomplished during the preprocessing of input databases.
ALGORITHM 1 illustrates an efficient method to compute the
intersection of two multisets in which elements are sorted
in ascending order. The analysis of this algorithm is quite
simple, and its computational complexity is O(n).

Algorithm 1 M1 - Multiset Intersection

Input: two sorted vectors A and B

Output: C - the elements appear in both A and B
1.i«0,j« 0

2. while ¢ < |A| and j < |B| do

3. if A[i] = B[j] then

4. C — CUA[i];

5. it++,j++;

6

7

8

9

else if A[i] < B[j] then
i++;
else if A[i] > B[j] then
. J++;
10. end if
11. end while
12. return C;

4.2 Lower Bound of Edit Distance

Based on the star representation of graphs, a polynomial
time computable distance L, is introduced in this subsection
to give a lower bound for graph edit distance.

4.2.1 Mapping Distance

We first define the distance between two multisets of star
structures. Subsequently, we will define the mapping dis-
tance between two graphs based on their star representations
which are multisets.

DEFINITION 4.2. Given two multisets of star structures Si
and S with the same cardinality, and assume P:S1—5% is a

B

DC
91
AVB

c oe
92
Figure 1: Computing ((S1,S52): A Bipartite Graph
Matching Problem

~o -
~~~~~~~

Figure 2: Mapping between Nodes of Two Graphs
in an Optimal Alignment

bijection. The distance ¢ between S1 and Sz is

¢(S1,52) = min > A(si, P(s1))

s, €81

The computation of {(S1,S2) is equivalent to solving the
assignment problem, which is one of the fundamental combi-
national optimization problems aim at finding the minimum
weight matching in a weighted bipartite graph. Given two
set of vertices V and V' in a weighted graph, the problem
aims to find a set of edges E such that each vertex in V is
linked to exactly one vertex in V' such that the sum of weight
for edges in |E| is minimized. In our case, these two sets of
vertices are the two multisets of star structures S; and So
and the weight of the edge that connects one star in S; to
another star in S is the edit distance between the two stars.
Figure 1 shows an example to illustrate the bipartite graph
matching problem that must be solved in order to compute
¢(S(g1),S(g2)). Given two graph g1 and g2 on the left of
the figure, their corresponding multisets of star structures
are shown on the right hand side of the figure. In this case,
we show the optimal matching between the stars as solid line
while other edges joining the stars are shown as dotted line.

Note that in Figure 1, the two graphs have different num-
ber of nodes and hence an additional node labelled as €
was added in S. We will now address this issue. Assume
[Vi| = V2] =k >0, |S(g91)] — |S(g2)| = k must hold. In order
to make them have the same number of vertices, k vertices
with the label € are inserted into g2. We call this process the
normalization of g2 w.r.t. gi. Because vertex insertion can
be considered as vertex relabelling from e to o, this normal-
ization will not change the edit distance between g1 and ga.
After this normalization, S(g1) and S(g2) possess the same

cardinality, and the mapping distance between two graphs
can be defined upon the distance of their star representa-
tions.

In order to solve the bipartite graph matching problem, we
first create an nxn matrix in which each element represents
the edit distance between the ith star in S(g1) and the jth
star in S(g2). The Hungarian algorithm[18] is then ap-
plied on this square matrix to obtain the minimum cost in
O(n?) time. We now formally define the mapping distance
between two graphs.

DEFINITION 4.3. (Mapping Distance) The mapping dis-
tance (g1, g2) between g1 and g2 is defined as:

(g1, 92) = ¢(S(g1), S(g2))

Intuitively, the optimal mapping for computing the map-
ping distance between S(g1) and S(g2) is trying to approx-
imate the mapping between the nodes of g; and g2 in an
optimal alignment. Figure 2 shows the mapping between
the nodes of the two graphs that are shown in Figure 1 when
they are optimally aligned. In this case, the optimal mapping
computed on the bipartite graph is in fact the same as the
mapping in the optimal alignment. Note that since the map-
ping in the bipartite graph takes only each node and their
neighbors into consideration, there are in fact less constraints
on the output when determining the optimal mapping in the
bipartite graphs compared to determining the optimal map-
ping between the two graphs. Because of this, it is possible to
compute a lower bound of the edit distance for g; and g2 by
utilizing (g1, g2). We will prove this lower bound formally
in the next section.

Furthermore, since the mapping computed on the bipartite
graph might not be the same as the mapping computed for
the optimal alignment between g1 and g2, the number of
edit operations that convert g; into g2 based on the bipartite
graph mapping? will either be the same or higher than the
actual edit distance between the two graphs. Later on in this
paper, we will utilize this observation to compute an upper
bound on the edit distance between two graphs.

4.2.2 Lower Bound of Graph Edit Distance

LEMMA 4.2. Let g1 and g2 be two graphs, then the map-
ping distance p(gi,g2) between g1 and g2 satisfies the follow-
mg:

p(g1,92) < max{4, [max{d(g1),6(g2)]} + 1]} - A(g1, 92)

PROOF. Let P=(p1,p2,...,pr) be an alignment transform-
ing g1 to g2. Accordingly, there is a sequence of graphs
gi=ho—hi1—... —hr=g2, where h;_1—h; indicates that h; is
the derived graph by performing p; over h,—; for 1<i<k. As-
sume there are k1 edge insertion/deletion operations, k2 ver-
tex insertion/deletion operations and k3 vertex relabellings
in P, then ki+ka+ks=k. Next, we will analyze each kind of
edit operations in detail.

1. Edge Insertion/Deletion: while an edge is inserted
between two vertices v; and v; in the graph h,,, only
two star structures rooted by v; and v; are affected. For
the star rooted by v;, a new vertex v; and a new edge
(vi,v;) are newly inserted into this star structure after
the edge insertion, as illustrated in Figure 3. Likewise,

4This can be computed using Equation 1 in Section 3.1.



the same effect is incurred by the star structure rooted
at v;. Thus, we can know that p(hm,hm+1) < 2 X
2 = 4. Likewise, one edge deletion has the same affect.
Therefore, in the case of performing one edit operation
of inserting or deleting an edge on hm, w(hm, Am+1) <

Figure 3: Star changes incurred by edge insertion

2. Vertex Insertion/Deletion: In the case of vertex in-
sertion, since the newly inserted vertex vg has no edge
attached, it is equivalent to changing a vertex’s label
from € to . Thus, in the case of inserting one vertex,
w(hm, hmy1) = 1. The same result can be induced in
case of deleting one vertex due to the complementary.

3. Vertex Relabeling: Assume a vertex vg’s label is changed
from o1 to o2. Obviously, the star rooted by vy and
deg(vo) stars which possess vo as their leaves are af-
fected by this relabelling. For each such star, only the
label of vo is changed. Therefore, for one vertex rela-
belling operation, u(hm, hm+t1) < 1 X (deg(vo) + 1).

Above all, we will get the following inequality

(g1, 92) < 4- k41 ke + (max{5(g1),6(g2)} + 1) - ks
< max{4, [max{d(g1),6(g2)} + 1]} - (k1 + k2 + ks)
< max{4, [max{d(g1),0(g2)} + 1]} - A(g1, 92)

This completes the proof. O
Based on Lemma 4.2, p provides a lower bound Ly, of A,
ie.,

(g1, g2)
max{4, [max{d(g1),0(g2)} + 1]}

Before applying Hungarian algorithm, an n X n matrix must
be constructed and the computational complexity for com-
puting edit distances among star structures is ©(n), thus the
cost of this construction is @(n?). Since the computational
complexity of Hungarian algorithm is O(ns)7 both p and Ly,
therefore can be computed in ©(n?) time.

4.3 Upper Bound of Edit Distance

In previous subsection, L,, is devised as a lower bound
for the graph edit distance A. Next, we will introduce two
algorithms to compute upper bounds for A\ in this section.

The first upper bound comes naturally during the compu-
tation of y introduced in Section 4.2.1. As mentioned, since
the optimal mapping that is computed for the bipartite graph
in Section 4.2.1 is done by considering only each vertex and
it’s neighbors, there is in fact less constraints compared to
when computing the edit distance between their correspond-
ing graphs. Assuming that the output from the Hungarian
algorithm in Section 4.2.1 leads to a mapping P from V(g)
to V(h), we can simply use Equation 1 from Section 3.1 to
compute C(g,h, P), denoted as 7(g,h). Apparently, since

Ag1,92) = Lin(g1,92) =

the mapping might not be optimal 7(g,h)>A(g,h), the ac-
tual edit distance between g and h. Because C(g,h, P) can
be solved in ©(n?) time, 7(g, h) is therefore an upper bound
of A(g,h) that can be computed in ©(n?) time.

While 7(g,h) gives an initial upper bound on the edit
distance, it is possible to perform an iterative refinement
approach on the bipartite graph mapping in order to im-
prove the approximate upper bound. The main idea is that
given any two nodes u; and w2 in g and their correspond-
ing mapping f(u1) and f(u2) in h (assuming f is the map-
ping function corresponding to P), we swap f(u1) and f(u2)
if this reduces the edit distance. As such, for any pair of
(u1,u2) € V(g), a new mapping function f’ can be defined
as following;:

fw) ifu##u and u # ug
flu) = q flu2) ifu=mu
flur) ifu=ue

Let P’ denote the permutation matrix corresponding to f’.
Because there are C2 pairs of vertices in V' (g), for a mapping
function f there will be C2 newly generated permutation
matrices. For each P’ we can obtain a new value C(g, h, P’).
Assume Py is the permutation matrix which results in the
minimum value of C(g, h, P'), i.e.,

Py = arg n}lai,n Cl(g,h, P")

If C(g, h, Py)<C(g, h, P), then we get a closer upper bound
of M(g,h). After that, we assign P to be Py and continue
performing the refinement on P until C(g, h, Po)>C(g, h, P).
ALGORITHM 2 illustrates this iterative refinement approach
in detail.

Algorithm 2 REFINE(g,h,P)

Input: two graph structures g and h
Input: a permutation matrix P of g and h
Output: refined suboptimal distance of g and h
1. dist — C(g, h, P);

2. min « dist;
3. for any pair (u;,u;) € V(g) do
4. get P’ based on u; and uj;
5. if min > C(g, h, P’) then
6
7
8
9

min — C(g, h, P');
Prin +— Pl?
end if
. end for
10. if min < dist then
11.  min «—REFINE(g, h, Pmin)
12. end if
13. return min;

Because the optimization problem shown in Equation (2)
is not a linear optimization problem, REFINE will only find
a local optimal solution. p is therefore also an upper bound
of A as well as 7. The relationships between L,,, 7, p and A
can thus be represented by the inequality L,, < A < p < T.
In addition, because p is always no less than A, REFINE is
guaranteed to terminate. Because REFINE is an iterative
algorithm, its computational complexity is difficult to an-
alyze. However, the value of 7 will not exceed the total num-
ber of vertices and edges residing in these two graphs, i.e.,
7 <2 x (n+0.5n%) = 2n + n? where n is the vertex number
in involved graphs. REFINE is therefore guaranteed to be ter-
minated in 2n +n? steps. Moreover, the cost for each step is
C? x n?, as such the computational complexity REFINE is at
most O(n%). Note that, the above run time complexity of p



is a theoretical extreme case. In practise, it performs better
and will converge after small number of iterations.

5. APPLICATIONSIN GRAPH SEARCH

Next, we will look at how the bounds developed in previ-
ous section can be utilized to perform various types of graph
searching. As described in Section 2, graph edit distance
can be used to measure structural similarity and also deter-
mine subgraph isomorphism. All three kinds of graph search
listed in Section 1 can therefore be done using graph edit
distance as a similarity measure. However, the problem of
GED computation is NP-Hard, and the exact computation is
very expensive. In this case, we exploit the upper and lower
bounds of edit distance to improve the search performance
by filtering out graphs that definitely will not be in the an-
swer set and thus avoid the expensive graph edit distance
computation.

5.1 Approximate Full Graph Search

Because of the existence of noise in graph databases, graph
search with approximation is more preferable. To the best
of our knowledge, while there are studies dealing with sim-
ilarity search over graph databases using specific similarity
measures, no algorithm has been proposed in which graph
edit distance is used as the similarity measure. Here, we will
use the three bounds of A that we have developed earlier to
develop an effective algorithm APPFULL for performing ap-
proximate full graph over graph databases using graph edit
distance as the similarity measure.

As shown in ALGORITHM 3, a multi-level composition strat-
egy based on L,,, 7 and p is adopted in ApPFULL. Given
a query graph g and the edit distance threshold w, for each
graph g in graph database D, L, (g, q) is first used to filter g
if Ly, is greater than w (lines 2-4), because A > w must hold
in the case of Ly, > w. Subsequently, if 7(g,¢) < w, we know
that the edit distance between g and ¢ must be no greater
than w, and g can therefore be reported as a result(lines 5-8).
If g passes the above two tests, then p is exploited further.
Like in the case of 7, if p(g, ¢) < w, A(g,¢) must be no greater
than w and g can be output as a result (lines 9-12). Finally,
if g passes all the above three tests, then A(g,q) must be
computed(lines 13-15). The order of the above three tests is
quite significant because the costs of their computation are
different. Among three of them, the computation of L,, is
the most efficient, while the computation of p is the most
expensive. Therefore, if g does not pass an earlier test, the
rest of the expensive tests are avoided. This arrangement of
tests therefore makes APPFULL more efficient. In addition,
from APPFULL, we can see that, the expensive computation
of A is only conducted for graphs that pass all the three tests
and a large number of A computation are therefore avoided.
The performance of APPFULL will be evaluated in the exper-
imental study section.

5.2 Approximate Subgraph Search

We next look at the approximate subgraph search prob-
lem[13, 37, 35, 9]. Note that, in the condition of subgraph
matching, edit operations are a litter different. According
to Lemma 2.2, if g; is subgraph isomorphic to g2, no vertex
relabelling will exists in the optimal alignment that make g2
reach gi. When vertex relabelling is not allowed, the edit
distance between two star structures is therefore redefined
(recall from Lemma 4.1) as follows:

)\'(31, 82) = T/(Sl7 82) —+ d(Ll, Lg)

Algorithm 3 ApPFULL - Approximate Full Graph Search

Input: A query graph ¢ and a graph database D
Input: Distance threshold w
Output: All graphs g in D s.t. A(g,¢) <w

1. for each graph g € D do

2 if Lm(g,q) > w then
3 continue;

4 end if

5. if 7(9,9) < w then

6. report g as a result;
7 continue;

8 end if

9 if p(g,q) < w then
10. report g as a result;
11. continue;

12.  end if

13.  if A(g,q9) < w then
14. report g as a result;
15.  end if

16. end for

where

24 |L L if [ l
Tl(Sl,Sz): +| 1|+| 2| L (7'1).7é (7”2),
0 otherwise.
Accordingly, without vertex relabelling in the edit opera-
tions, we can induce the following lemma from the analysis
illustrated in Lemma 4.2:

LEMMA 5.1. Let g1 and g2 be two graphs, if no vertex re-
labelling is allowed in the edit operations, p'(gi,g2) < 4 -
X (g1, g2), where u' and X' are mapping and edit distances in
the case of no vertex relabelling.

PRrOOF. This proof can be easily obtain by considering
only the first two cases shown in the proof of Lemma 4.2. [

Therefore, in the condition of no vertex relabelling, a lower
bound L, of X can therefore be introduced, )\'EL;,L:%.

In [35], Yan et al. introduced Grafil for performing ap-
proximate subgraph search by allowing edge relaxations(no
vertex relabelling). Assuming that gs is the maximal com-
mon subgraph between a query graph g: and a data graph
g2 , the number of edge relaxations in Grafil is defined as
|E1|—|Es|. Note that, the definition of edge relaxation im-
plicitly implies that no vertex relabelling is allowed. This
similarity measure, however, does not take the vertex mis-
matches into account. For example in Figure 4, graph b) is
visually more similar to ¢) compared to a). However both
graphs a) and b) have the same edge relaxation of 3 to c).
When edit distance is applied instead, b) is more similar to
c¢) with an edit distance of 3 compared to a) which is an edit
distance of 5 away from c) fitting what can be perceived visu-
ally. We therefore introduce the following similarity measure
based on the graph edit distance to overcome this weakness
of edge relaxation.

DEFINITION 5.1. A graph g1 is said to be 0-subgraph iso-
morphic to g2 if there exists a graph g3 s.t. g3Cg2 and
N(g1,93)<0.

Thus, in Figure 4, a) is a 6-subgraph of ¢), while b) is a
4-subgraph of ¢). Given a query g1 and a graph database D,
the problem of 0-subgraph search is to find out all graphs
g2 in D of which g; is a #-subgraph.



10000

200

1000

100

i
13
o

10

[N
o
o

0.1

Average Runtime(sec)
Average Error(%)

o
o

0.01

0.001

0.0001
6 7 8

Size of Query Graph
a) Runtime

Size of Query Graph
b) €1

Average Bound
N
T
1

XX
I

X

5>

e

(X

Size of Query Graph
c) e2

Figure 5: Comparison with Exact

B F B B
3) b) ¢)

Figure 4: Difference between edit distance and edge
relaxations: Both graphs, a) and b) have edge relax-
ations of 3 to ¢). However, the edit distance between
a) and c) is 5 while the edit distance between b) and
c) is 3.

Furthermore, assuming £ = |Ez| — |E1| + |V2| — |Vi|, then

N (g1,92) < X(g1,93) + X (g3, 92)
= |B2| — |Bs| + |Va| — V3| + X' (g1, 93)
= |B2| — |Ex| + V2| = [Vi] + 2X (g1, g3)
=L+2)N(g1,93)

Thus, if g1 is a f-subgraph of g2, X' (g1, g2) < £ + 20 must
hold. Accordingly, we devise a filtering algorithm APPSUB
to perform #-subgraph search, in which L/, is used as a filter:
if L;,(g1,92) > L + 26, g2 can be safely filtered.

LEMMA 5.2. If g1 is subgraph isomorphic to g2 within n
edge relaxations, g1 must be a 2n-subgraph of ga.

Proor. We will prove by induction.

Let g3 be the maximal common subgraph of g1 and g2, we
will show that if |Vi| — |V3| = k, at least k edges in E1 — F3
are needed to ensure that g, connected. If |Vi| — |V3| =1,
apparently one such edge is needed to do so. Assume the
above statement is true when £k = i—1. In the case of k = i, at
least one edge is needed to make the newly introduced vertex
connects to the other vertices. As such, k edges are therefore
needed in the case of k = i. Assume |Vi| — |V3| = n + 1,
then at least n + 1 edges exist in F1 — F3. However, g; is
a subgraph of g» within n edge relaxations, |Ei| — |E3| < n
holds. Thus, [Vi| — V3] < n and X (g1,93) < 2n. ¢1 is
therefore 2n-subgraph isomorphic to g2. [

According to the above lemma, for the same query ¢ and
graph database D, the result set returned by performing 2n-
subgraph search is a superset of the result set returned by

performing Grafil within n edge relaxations. Later on in the
experiment, we will show that using 2n-subgraph search will
in fact return much fewer candidates for exact edge relaxation
computation compare to the greedy filter approach that is
adopted by Grafil.

To the best of our knowledge, almost all existing algo-
rithms of subgraph search adopted the feature-based index-
ing framework which requires the search for features which
can involve expensive data mining processes. APPSUB that
is introduced here do not need index and can filter graphs
without performing pairwise subgraph isomorphism determi-
nation. In addition, APPSUB inherently supports both two
kinds of subgraph search, i.e., traditional subgraph search|[37]
and containment search[9]. In comparison to traditional sub-
graph search that retrieves all the graphs containing the
query g, containment search returns all the graphs contained
by q. However, for existing subgraph search systems, two dis-
tinct index structures must be maintained to support these
two kinds of subgraph search[9]. The performance of ApP-
SUB is investigated in Section 6.

6. EXPERIMENTAL STUDY

In this section, we present our experimental study on both
real and synthetic datasets. We first compared three meth-
ods for obtaining lower and upper bounds of A with the exact
graph edit distance computation algorithm. After that, ex-
periments were conducted to evaluate the scalability of these
methods in terms of the number of graphs and the size of
graphs. Finally, a variety of experiments were also conducted
to examine the performance of the two graph search algo-
rithms which apply these bounds, i.e., APPFULL and App-
SuB.

Parameter | Description
D the number of graphs produced
T average graph size
\% the number of vertex labels used

Table 2: Parameters of Synthetic Data Generator

In our study, all experiments were performed on a 2.40GHz
Inter(R) Pentinum(R) PC with 512MB of main memory, run-
ning Debian Linux. All programs were implemented in C++
using the GNU g++ compiler with -O2 optimization. Two
kinds of datasets were used through our experimental study:
one real dataset and a series of synthetic datasets.

Real dataset. The real dataset used here is the AIDS an-
tivirus screen compound dataset from the Developmental



Theroapeutics Program in NCI/NIH which is available pub-
licly®. Tt has been widely used in a large number of existing
studies[35, 9, 37], and contains 42,687 chemical compounds,
among which 422 of them belong to CA, 1081 are of CM and
the remaining are in class CIL.

Synthetic datasets. Synthetic datasets were produced by a
graph data generator kindly provided by Kuramochi and
Karypis. This generator allows the user to specify various
parameters, and only three of them related to our experi-
ments are shown in Table 2. For other parameters, we used
the default values provided by this generator. For more de-
tails about this generator please refer to [19].

6.1 Comparison with theExact Algorithm and
BLP

We first conduct experiments to compare the runtime four
algorithms for computing L, 7, p and A. Here, X is provided
by an exact graph edit distance computation algorithm Ex-
ACT based on the well-known A* algorithm.

As stated in [22], EXACT is only able to compute the edit
distances of graphs typically containing 12 vertices at most
in practice. Accordingly, 1000 graphs were produced by the
synthetic generator by setting D=1k, T'=10 and V=4. From
these 1000 graphs, ten graphs each of which contains 10 ver-
tices were randomly selected to form the graph database D.
Meanwhile, six query groups were constructed each of which
contains 10 graphs. All graphs in the same query group have
the same number of vertices, and the number of vertices re-
siding in each graph among different groups varies from 5 to
10.

Figure 5 a) depicts the average runtime for calculating
four different distances between a query graph and the graph
database D. The X-axis shows the number of vertices con-
tained in the query graph, and the Y-axis shows the corre-
sponding average runtime in log scale. From this figure we
can observe that the computation of A is much more expen-
sive than that of the other three distances, and the other
three algorithms are more than 10,000 times faster than Ex-
ACT.

Next, we look at the tightness of L.,, 7 and p with respect
to A. In order to measure the tightness, two measures were
introduced. The first one is e; defined as @ x 100% with d
being L,,, T or p. However, this measure has a problem that
the range of e1 over Ly, is [0,1] while the range of e1 over T
and p is [0,+00]. Thus, we introduced the second measure
es which is defined as maac{%7 %} The measure ez is more
well known as the approximation ratios for approximation
algorithms. Figure 5 b) and c) depict the data of e; and ez
respectively. From these figures, we can see that p is always
a tighter approximation of A than 7 which is consistent with
our theoretical analysis.

We also compare out methods with the bounds provided
by the BLP algorithm. We randomly choose 1k graphs from
AIDS dataset as model graphs, and choose 10 graphs with the
same number of vertices to form a query group. As shown
in Figure 6, although the lower bound L-BLP provided by
BLP is tighter than L,,, Ly, is must faster than L-BLP by
about 1000 to 10,000 times. Meanwhile, the upper bound
p is much tighter than the upper bound, U-BLP provided
by BLP, although it computation is 2-4 times slower than
U-BLP. In conclusion, we can see that our method provide
a pair of upper and lower bounds that is tighter than those
provided by BLP and at a cost that is much lower.

Shttp://dtp.nci.nih.gov/docs/aids/aids_data.html

6.2 Scalability Study

We then conducted experiments to evaluate the scalabil-
ity of three bounding algorithms in terms of the number of
graphs and the size of graphs.

6.2.1 Scalability over Synthetic Dataset

On the one hand, we conducted experiments to evaluate
their scalability over synthetic datasets. First, the scalability
in terms of the number of graphs were examined. By setting
T=80,V=50 and varying D from 100 to 1000, a series of
synthetic datasets were produced as graph databases. And
then, 10 query graphs were generated by setting D=10 to
compose a query group. Figure 7 a) shows the average run-
time for computing L.,,, 7 and p over graph databases with
different cardinalities. Based on this figure, we can observe
that all three bounding algorithms show good scalability in
terms of the number of graphs. Second, experiments were
conducted to evaluate their scalability in terms of the size
of graphs. By setting D=10, V=50 and varying T from 50
to 100 in steps of 10, six query groups were produced each
of which contains 10 graphs. At the same time, a synthetic
dataset containing 1000 graphs were generated as the graph
database. Figure 7 b) illustrates the total runtime for calcu-
lating different distances between the query group and the
graph database. From Figure 7 b) we can see that these three
algorithms also have good scalability in terms of the size of
graphs.

6.2.2 Scalability over AIDS Dataset

On the other hand, we also examined their scalability over
the real dataset. First, 10 graphs were randomly selected
from the AIDS dataset as query graphs, and a series of
graph databases were generated by randomly choosing spe-
cific number of graphs from the AIDS dataset. Figure 8 a)
illustrates the average runtime for computing different dis-
tances for a query graph in different graph databases. As
shown in Figure 8, all these three algorithms scale linearly
in terms of the number of graphs over AIDS dataset. After
that, by varying the size of query graphs, experiments were
conducted to evaluate the scalability in terms of the size of
graphs. In this case, 1000 graphs were randomly selected
from AIDS dataset as the graph database. For each query
group, it contains 10 graphs containing the same number of
vertices, which were also randomly selected from the AIDS
dataset. Figure 8 b) depicts the average runtime from which
we can observe that these bounding algorithms also scale
linearly in terms of the size of graphs over real dataset.

Consequently, all three bounding algorithms have good
scalability in terms of the number of graphs and the size
of graphs over both synthetic and real datasets.

6.3 Graph Search Performance

Having examined the scalability of bounding algorithm, we
then investigate the performance of two graph search algo-
rithms applying these bounds.

6.3.1 Approximate Full Graph Search Performance

Applying Ly,, 7 and p, APPFULL shown in ALGORITHM 3
is introduced to perform approximate full graph search over
graph databases. In this subsection, we investigate its perfor-
mance in terms of the number of expensive A\ computations.
In order to compare the effectiveness of different bounds, we
implemented two variants of APPFULL by exploiting differ-
ent bounds. For instance, the legend “L,,” denotes a vari-



100000

T T 1000 : : 5 :
Ly ——
L-BLP ---x--- U, Ly ——
10000 o -eE e s E gL T 5
7 U-BLP e oo™ p -me- =
g X > o’
g 10003~ 1s 5 .
£ ] g sf o 1
s ] 7] o
& 100 4 e £ -
(] c =
[= =1 =1 2+ o .
©
o 10 & @ o
>
< e
1 1+ B m
01 Il Il Il Il Il Il 0 - Il Il Il Il Il Il
30 35 40 45 50 55 60 65 1 2 3 4 5 6 7 8 10 1 2 3 4 5 6 7 8 9 10
Size of Query Graphs Number of Graphs(100) Number of Graphs(100)
a) Runtime a) Number of graphs a) Number of graphs
400 T T 1000 T T 1000 ;
Ly ——
350 |- L*BLB mm X - r'rl1 mm X Lr? RV
porE poa 1 pe @
2 300 [ UBLP we JU—— P
o O s e s ()
3 — . 5  100f 1 & 100} ) .a- 4
g 250 o 18 PR 8 v o -
3 200 o g g P R= TSN N | = R
g £ £
150 4
g 10 1w
z

40

45

50

55

Figure

Size of Query Graphs

b) Bound

6: Comparison with BLP

6

7

Size of Graph(10)
b) Size of graphs

Figure 7: Sca. over SYNTH

60

65

70

Size of Graphs

b) Size of graphs

Figure 8: Sca. over AIDS

80

ant of APPFULL using only L., without 7 and p, the legend
“Lm~+71" denotes a variant of APPFULL using L,, and 7 but
without p. The results are depicted in Figure 9, the X-
axis shows the distance thresholds used in the search, and
the Y-axis shows the average number of expensive A com-
putations incurred in different algorithms. Apparently, it is
always preferable to filter as many graphs as possible before
performing the expensive A\ computation.

For the experiments conducted on the real dataset, 10
and 1000 graphs were randomly selected from AIDS dataset
to form query graphs and the graph database respectively.
While for synthetic datasets, the query graphs and the graph
database were produced by the synthetic generator using pa-
rameters D=10 and D=1000 respectively. From Figure 9 we
can see that APPFULL outperformed the other two variants,
i.e., the application of upper bounds make APPFULL effec-
tive. In addition, APPFULL also outperformed “L,,+77, i.e.,
the introduction of p makes APPFULL more effective. For
example, running on the AIDS dataset with distance thresh-
old 50, about 970 and 432 A computations were needed in
“Ly” and “L, 477 respectively, while in APPFULL only 330
A computations were needed. In addition, the runtime of
APPFULL is negligible in comparison with the expensive ac-
curate edit distance computation. Without computing A,
APPFULL takes less than 1 second per query on both real
and synthetic graph databases.

6.3.2 Approximate Subgraph Search Performance

We next compare the performance of APPSUB to Grafil[35].
Since the computation of exact edge relaxation requires iden-
tifying the maximal common subgraph, an NP-Hard prob-
lem. Grafil adopts an approximation method that first gen-
eral a set of candidate graphs that satisfy the similarity
search threshold before performing exact edge relaxation com-
putation on these candidate graphs. We will compare to this

approximation method in terms of the number of candidate
graphs that will be generated for exact edge relaxation com-
putation®. We exploited the same experimental settings used
in [35] with the exact dataset and queries provided by the au-
thors. Two query group Q16 and Q20 are used in the test.
Here, a query group Q.. denote a set of query graphs that
have m edges. Note that, we approximated the experimental
data of Grafil from Figure 13 and Figure 14 shown in [35]
directly.

Figure 10 depicts the performance comparison between
ApPSUB and Grafil. The Y-axis shows the average num-
ber of candidate graphs returned by each algorithm, and the
X-axis shows the edge relaxation ratio used in Grafil. To
compare the performance of Grafil and APPSUB, we doubled
the approximation ratio used in APPSUB. For example, if 2
edges is used in Grafil as the edge relaxation ratio, APPSUB
performed the 4-subgraph search correspondingly.

Based on Figure 10, we can see that although the result
set returned by performing 2n-subgraph search is a superset
of the set of graphs with exact edge relaxation less than n,
APPSUB outperformed Grafil when n > 3. This implies that
the approximation method used in Grafil generate many false
candidates that have edge relaxation of more than n from the
query graphs. Note that each graph in the graph database
being queried contain , about 30 edges on average and a
relaxation of 4-6 edges is not really a lot for graphs to be
handled here.

From Figure 10, we also observed that the curve for App-
SUB is almost straight. This is caused by the inherent nature
of APPSUB. According to the theory introduced just before

5We have already illustrate the problem of using edge re-
laxation as a graph similarity measure in Figure 4. However,
since we are unable to find any work that allow us to perform
approximate subgraph search based on edit distance, we are
confined to compare against Grafil based on edge relaxation.



1000 T T
c
S
g
>
o
£
s}
o
o X, N
° N
# 500} T RS
400 - T
300 Il Il Il Il Il ]
20 25 30 35 40 45 50
Distance Threshold
(a) AIDS dataset
10000
1000 | B
5 / e
5 100 | E
Q . N
£ % *
8
= 10F TN
s T
* Lm & ‘Xx
1k LT ------ e
AppFull ---x--- E
01 Il Il Il Il Il Il Il

5 10 15 20 25 30 35 40 45
Distance Threshold

(b) Synthetic dataset

Figure 9: Performance of AppFull

Lemma 5.2, a graphs g is filtered out on the condition that
L. (g,q) > L+ 20.

Note that for a graph g and a query ¢, no matter what
value of edge relaxation is set, the values of L., and £7 do
not changed. This mean that only the value of the edge
relaxation threshold, € will change in the inequality. Rewrit-
ing this inequality to L., (g,q) — £ > 20, we can see that if
the value of L;,(g,q) — L is large, then a small change of 6
will not affect the result of this inequality. For example, if
L. (g,q) — L = 30, for the value of 6 from 0 to 14, the graph
g will always be filter out. In our experiment, the values of 0
only change from 1 to 5, which is a quite small change. Thus,
it will not affect the filtering result drastically.

7. CONCLUSION AND DISCUSSION

In this paper, three novel distances, L,,, 7 and p, are in-
troduced to lower and upper bound the graph edit distance
A in polynomial time. The relationships of them can be rep-
resented by the inequality L,, < A < p < 7, and their com-
putation complexities are shown in Table 3. In comparison
to the exact computation of graph edit distance, these three
bounding algorithms are more efficient and have good scala-
bility in terms of the number of graphs and the size of graphs.
Applying these efficiently computable bounds, two effective
algorithms APPFULL and APPSUB are proposed to perform
various kinds of graph searching. The good performance of
these graph search algorithms demonstrated by the experi-
mental results also confirms the effectiveness of these three
bounds.

So far, our discussion focuses on undirected graphs. For-
tunately, our proposed algorithms can be easily extended to

"Recall that £ is equal to |Ea|—|E1|+|Va|—|V4]

2500 T T
” Grafil —e—
5 AppSub ---x---
% 2000} E
=
<
]
S 1500} 4
=]
=
<]
8]
% 1000 -
@
Q
§ 500 - 1

0 Il Il Il Il
0 1 2 3 4 5 6
Number of Edge Relaxation
(a) Qe

1000 T T
" Grafil —e—
5 AppSub ---x---
z 80| i
c
£ /“
]
€ 600} i
=]
=4
3
O
%5 400 E
@
Qo
é 200 - B

0 Il Il Il Il
0 1 2 3 4 5 6
Number of Edge Relaxation
(b) Q20

Figure 10: Performance of AppSub

Distance | Complexity || Distance | Complexity
L, o(n?) T o(n?)
p O(n") A NP-Hard

Table 3: Complexity of Different Distances

directed graphs. For directed graphs, a directed star struc-
ture § can be represented by a 4-tuple § = (r,I,O,l), where
I is the set of vertices from which there are edges to r and
O is the set of vertices to which there are edges from r. Ac-
cordingly, star edit distance can be newly defined as

)\(§17 §2) = T(’/‘l7 Tz) + d(—[h .[2) + d(017 02)

Based on this new definition, L,,, 7 and p can be easily
applied to directed graphs.

8. REFERENCES

[1] H. A. Almohamad and S. O. Duffuaa. A linear
programming approach for the weighted graph
matching problem. IEEE Trans. PAMI, 15(5):522-525,
1993.

[2] N. Augsten, M. Bohlen, and J. Gamper. Approximate
matching of hierarchical data using pg-grams. In
Proceedings of the 31st international conference on
Very large data bases, pages 301-312, 2005.

[3] N. Augsten, M. Bohlen, and J. Gamper. An
incrementally maintainable index for approximate
lookups in hierarchical data. In Proceedings of the 32nd
international conference on Very large data bases,
pages 247-258, 2006.

[4] S. Berretti, A. D. Bimbo, and E. Vicario. Efficient
matching and indexing of graph models in



[5]

(6]

[7]

8]

[9]

(16]

(17]

(18]
(19]

20]

(21]

(22]

content-based retrieval. IEEE Trans. PAMI,
23(10):1089-1105, 2001.

C. Borgelt and M. R. Berthold. Mining molecular
fragments: Finding relevant substructures of molecules.
In ICDM ’02.

J. M. Bower and H. Bolouri. Computational Modeling
of Genetic and Biochemical Networks (Computational
Molecular Biology). 2004.

A. Broder, R. Kumar, F. Maghoul, P. Raghavan,

S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener.
Graph structure in the web:experiments and models.
In WWW ’00.

H. Bunke and K. Shearer. A graph distance metric
based on the maximal common subgraph. Pattern
Recognition Letters, 19(3-4):255-259, 1998.

C. Chen, X. Yan, P. S. Yu, J. Han, D.-Q. Zhang, and
X. Gu. Towards graph containment search and
indexing. In VLDB ’07.

M.-L. Fernandez and G. Valiente. A graph distance
metric combining maximum common subgraph and
minimum common supergraph. Pattern Recognition
Letters, 22(6-7):753-758, 2001.

M. R. Garey and D. S. Johnson. Computers and
Intractability; A Guide to the Theory of
NP-Completeness. 1990.

P. Hart, N. Nilsson, and B. Raphael. A formal basis for
the heuristic determination of minimum cost paths.
IEEE Trans. SSC, 4(2):100-107, 1968.

H. He and A. Singh. Closure-tree: An index structure
for graph queries. ICDE’06.

H. He, H. Wang, J. Yang, and P. S. Yu. Blinks: ranked
keyword searches on graphs. In SIGMOD ’07.

H. Hu, X.Y., Y. Hang, J. Han, and X. J. Zhou. Mining
coherent dense subgraphs across massive biological
network for functional discovery. Bioinformatics,
1(1):1-9, 2005.

D. Justice and A. Hero. A binary linear programming
formulation of the graph edit distance. IEEE Trans.
PAMI, 28(8):1200-1214, 2006.

V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan,
R. Desai, and H. Karambelkar. Bidirectional expansion
for keyword search on graph databases. In VLDB ’05.
H. W. Kuhn. The hungarian method for the assignment
problem. Naval Research Logistics, 2:83-97, 1955.

M. Kuramochi and G. Karypis. Frequent subgraph
discovery. In ICDM ’01.

B. T. Messmer and H. Bunke. A new algorithm for
error-tolerant subgraph isomorphism detection. IEEE
Trans. PAMI, 20(5):493-504, 1998.

R. Myers, R. C. Wilson, and E. R. Hancock. Bayesian
Graph Edit Distance. IEEE Trans. PAMI,
22(6):628-635, 2000.

M. Neuhaus, K. Riesen, and H. Bunke. Fast
suboptimal algorithms for the computation of graph
edit distance. In SSSPR 06.

E. G. M. Petrakis and C. Faloutsos. Similarity
searching in medical image databases. I[EEE
Transactions on Knowledge and Data Engineering,
9(3):435-447, 1997.

J. Raymond, E. Gardiner, and P. Willett. RASCAL:
Calculation of Graph Similarity using Maximum
Common Edge Subgraphs. The Computer Journal,

[25]

[26]

[27]

28]

29]

[30]

[31]

32]

33]
34]

[35]

[36]

37]

45(6):631-644, 2002.

K. Riesen, S. Fankhauser, and H. Bunke. Speeding up
graph edit distance computation with a bipartite
heuristic. In MLG ’07.

D. Shasha, J. T. L. Wang, and R. Giugno.
Algorithmics and applications of tree and graph
searching. In PODS "02.

S. Srinivasa and S. Kumar. A platform based on the
multi-dimensional data modal for analysis of
bio-molecular structures. In VLDB ’03.

Y. Tian, R. C. McEachin, C. Santos, D. J. States, and
J. M. Patel. Saga: a subgraph matching tool for
biological graphs. Bioinformatics, 23(2):232-239, 2007.
N. Trinajstic, J. V. Knop, W. R. Muller, K. Syzmanski,
and S. Nikolic. Computational Chemical Graph Theory:
Characterization, Enumeration and Generation of
Chemical Structures by Computer Methods. 1991.

S. Trissl and U. Leser. Fast and practical indexing and
querying of very large graphs. In SIGMOD ’07.

P. Willett, J. Barnard, and G. Downs. Chemical
similarity searching. J. Chem. Inf. Comput. Sci,
38(6):983-996, 1998.

R. C. Wilson and E. R. Hancock. Structural matching
by discrete relaxation. IEEE Trans. PAMI,
19(6):634-648, 1997.

X. Yan and J. Han. gspan: Graph-based substructure
pattern mining. In ICDM’02.

X. Yan, P. S. Yu, and J. Han. Graph indexing: a
frequent structure-based approach. In SIGMOD 0.
X. Yan, F. Zhu, P. S. Yu, and J. Han. Feature-based
similarity search in graph structures. ACM TODS,
31(4), 2006.

R. Yang, P. Kalnis, and A. K. H. Tung. Similarity
evaluation on tree-structured data. In SIGMOD ’05.
P. Zhao, J. X. Yu, and P. S. Yu. Graph indexing: Tree
+ delta >= graph. In VLDB ’07.



