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Abstract. Ontology matching is a promising step towards the solution
to the interoperability problem of the Semantic Web. Instance-based
methods have the advantage of focusing on the most active parts of
the ontologies and reflect concept semantics as they are actually being
used. Previous instance-based mapping techniques were only applicable
to cases where a substantial set of instances shared by both ontologies.
In this paper, we propose to use a lexical search engine to map instances
from different ontologies. By exchanging concept classification informa-
tion between these mapped instances, an artificial set of common in-
stances is built, on which existing instance-based methods can apply.
Our experiment results demonstrate the effectiveness and applicability
of this method in broad thesaurus mapping context.

1 Introduction

The problem of semantic heterogeneity and the resulting problems of interoper-
ability and information integration have been an important hurdle to the reali-
sation of the Semantic Web. Different communities use different ontologies and
are unable to intercommunicate easily. Solving matching problems is one step
to the solution of the interoperability problem. To address it, the Database and
Semantic Web communities have invested significant efforts over the past few
years [1,2,3].

Instance-based ontology matching techniques determine the similarity be-
tween concepts of different ontologies by examining the extensional informa-
tion of concepts [4,5], that is, the instance data they classify. The idea behind
such instance-based matching techniques is that similarity between the exten-
sions of two concepts reflects the semantic similarity of these concepts. A first
and straightforward way is to measure the common extension of the concepts
— the set of objects that are simultaneously classified by both concepts [6,7].
This method has a number of important benefits. Contrary to lexical methods,
it does not depend on the concept labels, which is particularly important when
the ontologies or thesauri where written in a multi-lingual setting. Moreover,
as opposed to structure-based methods, it does not depend on a rich ontology
structure; this is important in the case of thesauri, which often have a very weak,
and sometimes even almost flat structure.

However, measuring the common extension of concepts requires the existence
of sufficient amounts of shared instances, something which is often not the case.
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Therefore, in this paper, we aim at enriching one ontology by instances from the
other ontology which it should be mapped to and vice versa. Such enrichment is
carried out through mappings between instances, that is, similar instances should
be classified to the same or similar concepts. In this way, an artificial common
ontology extension is built so that many current instance-based methods, such
as those in [7], can apply.

Research questions. In this paper, we are experimenting to answer the following
research questions:

1. Can an ontology be automatically enriched by instances from another ontol-
ogy using the similarity between instances?

2. Can the artificially built dually classified instances produce reasonable map-
pings between two enriched ontologies?

Method and experiments. We use the Lucene search engine1 to match instances
from two different ontologies. For each instance it of an ontology T , the most
similar instance is from the to-be-mapped ontology S is automatically classified
to the concepts which it also belongs to. After the enrichment, we preserve
the instances of each concept from both thesauri, which include their original
instances and the ones populated from the ontology to be mapped. Based on such
artificially built extensional information of concepts, we calculate a similarity
(in our case, the simple Jaccard similarity) to measure the overlap between
the extensions of two concepts, which in the end leads to mappings between
them, i.e., the higher similarity, the higher probability they should be mapped.

We applied this method on two different cases of thesaurus mapping, a special
but frequent mapping problem:

1. mapping GTT and Brinkman whose instances are all books from the Na-
tional Library of the Netherlands. These are homogeneous instances with
the same meta-data fields.

2. mapping GTT/Brinkman and GTAA. The latter thesaurus is used to anno-
tate broadcast materials in the Dutch archive for Sound and Vision. These
are heterogeneous instances with different meta-data descriptions.

Evaluation. We first measure the quality of the instance mappings, using the
first case and then evaluate the concept mappings in both cases to check the
effectiveness and applicability of our method to both homogeneous and hetero-
geneous collections.

Relation to our previous work. In [7], the similarity between two concepts is
measured based on the overlap of their instance sets. This method relies on the
existence of a set of common instances and therefore limits itself not applica-
ble if there are no common instances. In [8], all instances of each concept are

1 http://lucene.apache.org/

http://lucene.apache.org/
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aggregated to form a unified representation of this concept. A probabilistic clas-
sifier is trained to model the correlation between the similarity between such ag-
gregated representations and the mapping between two concepts. In this paper,
we directly use the similarity between individual instances and assume similar
instances should be classified to similar concepts. An artificial set of common
instances will be built, based on which the similarity between concepts is mea-
sured by applying the methods used in [7]. This is an extension of the work done
in [7]2 and in parallel with the learning method used in [8].

The rest of the paper is structured as following: Section 2 describes the two
application problems in more details. Section 3 introduce our method of using
instance mappings to derive concept mappings, including how to use the lexical
search engine, Lucene, to achieve instance mappings. In Section 4, we present the
results of our experiments. Section 5 introduces some related work, and finally,
Section 5 concludes this paper and discusses the future work.

2 Application Problems

Our research has been motivated by practical problems in the Cultural Heritage
domain, an interoperability problem within National Library of the Netherlands
(Koninklijke Bibliotheek, or KB), and the problem of unified access to two het-
erogeneous collections, one from the KB, one from the Dutch archive for Sound
and Vision (Nederlands Instituut voor Beeld en Geluid, or BG).

2.1 Homogeneous Collections with Multiple Thesauri

Our first task is to match the GTT and Brinkman thesauri, which contain 35K
and 5K concepts respectively. The average concept depths are 0.689606 and
1.03272 respectively.3 Both thesauri have similar coverage but differ in granu-
larity. These two thesauri are individually used to annotate two book collections
in KB: the Scientific Collection annotated mainly by GTT concepts and the
Deposit Collection annotated mainly by Brinkman concepts.

In order to improve the interoperability between these two collections, for
example, using GTT concepts to search books annotated only with Brinkman
concepts, we need to find mappings between these two thesauri.4 Among nearly
1M books whose subjects are annotated by concepts from these two thesauri,
307K books are annotated with GTT concepts only, 490K with Brinkman con-
cepts only and 222K with both. The books in both collections are described
using the same metadata structure, more specially, using an extension of the
Dublin Core metadata standard.5

2 See Section 4.2 for detailed comparison.
3 Nearly 20K GTT concepts have no parents.
4 Descriptions of different scenarios of using mappings, the requirements on mappings

and various evaluation methods can be found in [9].
5 http://dublincore.org/documents/dces/

http://dublincore.org/documents/dces/
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2.2 Heterogeneous Collections with Multiple Thesauri

Our second task is to match the Brinkman thesaurus from the KB to the GTAA
thesaurus, which is used to annotate the multimedia collection in the BG. The
BG serves as the archive of the Dutch national broadcasting corporations. All
radio and television programmes that are broadcast by these corporations are
continuously added to the archive. Besides over 700K hours of material, the BG
also houses 2M still images and the largest music library of the Netherlands.
Each object in the BG collection is annotated by one or several concepts from
the GTAA thesaurus. The GTAA thesaurus contains 160K concepts in total,
including 3868 from the subject facet which are interesting to map with the KB
thesauri. The concept hierarchy of the subject facet has an average depth of
1.30817.

Mapping GTAA to one or both of the KB thesauri is very interesting from
a Cultural Heritage (CH) perspective, as interoperability across collections has
become an urgent practical issue in this domain. For example, one could be in-
terested to search for some broadcasts from the BG about the author of the book
he is reading in the KB. Aligning these thesauri with which the collections are
annotated provides a promising solution to achieve this interoperability. Differ-
ent from the KB case, the meta-data structure of instances differs significantly
across collections.

In both cases, each of the thesauri to be mapped contains a large amount of
concepts, which many current matching tools could not even load. The concepts
within the thesaurus are poorly structured or rather in a nearly flat list, which
makes the structural matching techniques not really applicable. Luckily, the
instances of those concepts are available which allows us to apply instance-based
methods, as done in our previous work [7,8]. In this paper, we continue exploring
the instance-based method at the meta-data level.

3 Method: From Instance Mappings to Concept
Mappings

Our task is to map two thesauri, each of which is used to annotate a collection
of objects (books or multimedia materials). Thesaurus concepts are used to
annotated the subject of these objects and we consider an object is annotate
by a concept as the instance of this concept. Each object may be annotated by
multiple concepts, therefore, one object can be the instance of multiple concepts.

On top of their subject feature, instances also have other features, such as
title, abstract, creator, etc. These features together uniquely represent an in-
stance. All instances are virtually projected into a space where the distance
between them can be measured, e.g., using the Euclidean distance in the feature
space.

Instances that are close in this space could potentially be classified to similar
concepts. Based on this hypothesis, for one concept in one ontology, if instances in
the other ontology are similar to its own instances, we can add those instances as
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its virtual instances. Therefore, these instances can be seen as common instances
shared by this concept and those they really belong to, i.e., the concept(s) in the
other ontology. Once this artificial set of common instances is built, the existing
instance-based methods can be applied to generate concept mappings.

Let us formally describe the (rather simple) idea: let S (for source) and T
(for target) be two thesauri we want to map, and Is and It be their finite sets of
instances. Let anns(i) = {C ∈ S | i ∈ ext(C)} be the annotation of an instance
i, which contains a set of concepts from S. These concepts have instance i in
their extension ext(C).

Suppose we have a similarity function sim between instances (across Is and
It). For each instance i ∈ Is, we look for an instance j ∈ It which is the most
similar to i. That is,

j = argmax
t

sim(t, i).

We can now simply add j to the extension of all concepts C ∈ anns(i). The
same process is carried out in both directions. This way, we create a virtual
dually annotated corpus. This section remains to explain how we calculate the
similarity between instances, and to recall how we calculate concept mappings
from dually annotated corpora.

3.1 Matching Instances

Based on the above hypothesis, we use the Lucene search engine to achieve
instance mappings. Lucene is a high-performance and scalable information re-
trieval library through which any piece of textual data can be indexed and made
searchable. Indexing with Lucene can be divided into three main phases: (i) con-
verting data to text, (ii) analysing the text and (iii) saving the text to an index.
We feed instance data in Lucene, stored in the form of a Document. A Lucene
document (LD) consists of a collection of fields. Every field contains the content
of the corresponding instance features, such as “title,” “abstract,” “creator,” etc.
Additionally, each instance has a “subject” field which contains the labels or
unique identifiers of the concepts they belong to. Lucene allows keyword-based
search and search results (on the form of LDs) are collected within Lucene Hits.
Each LD contained in the Hits, has an associated score value (between 0 and 1)
that indicates its similarity to the search key. Lucene scoring schema is based
on the Vector Space Model [10] of information retrieval. The benefits of using
Lucene are very fast response time, shown in [11], and complexity almost hidden
to the users.

The instance matching process is as follows. Let Is and It be the two instance
sets of two ontologies, e.g., two book collections annotated by the GTT and
Brinkman thesauri. First we populate the Lucene database (Ldb) with a collec-
tion Is. Each instance is stored as a LD with its fields containing information
about this instance. Since Lucene operates on a lexical level, we use the textual
representations of fields where possible, such as “title,” “subject,” “abstract,”
“descriptions,” etc.
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Then we execute a query for every instance it in the other collection It. The
Lucene search engine allows us to search for information in specific fields of
the documents, by specifying one or more keywords and one or more Fields to
search within. We can use words in, for example, the “title” field of instance it as
keywords and search the “title” fields of all LDs in the Ldb. It is also possible to
carry out cross-field queries. That is, for example, using words in the “title” field
to search the “subject” or “abstract” fields, or vice versa. We can also construct
queries by concatenating multiple fields. In this construction we create Lucene
documents with a single field containing the concatenation of certain fields, for
instance the “title” and “subject” fields. Then we execute single-field queries to
match these concatenations with each other.

For every query Lucene returns a list of hits, which is ordered by relevance.
We take the most similar instance and observe which concepts it belongs to, i.e.,
concepts in the “subject” field. We then classify instance it as an instance of these
concepts, by adding these concepts into its “subject” field.6 The same process
is carried out from collection Is to It, i.e., populating the Ldb with collection
It and enriching the instances of collection Is. In the end, each instance in both
collections will be classified against concepts from both thesauri, which means
an artificial set of common instances is created.

If instances in different collections are homogeneously structured, i.e., the
same features are available across different collections, such as the two collec-
tions in the KB, we can use Lucene to directly map instances. However, in more
cases, different collections have different structures to represent/store their in-
stances, such as the different collections in the KB and the BG. Similarly, we
can feed different collections to the Lucene database, using their own features.
However, we need to specify corresponding query fields in order to run Lucene
queries and map instances afterwards. Different from constructing queries for
the homogeneous case, when it is clear that two fields are good for query, such
as “title” to “title” or “title” to “subject,” in the heterogeneous case, we need
to anticipate these potentially good pairs of fields. Readers are referred to [8] for
different ways of automatically choosing such pairs.

3.2 Matching Concepts

Once the artificial common instance set is built, we can apply existing instance-
based techniques to compute mappings between concepts. Our previous work
has shown simple measures of similarity between instances suffice to produce
sensible mappings [7]. In this paper, we use the Jaccard similarity measure to
determine whether two concepts can be mapped or not. Specifically, each con-
cept corresponds to a set of instances which are annotated by this concept. For
all possible pairs of concepts, we measure the Jaccard similarity between their
instance sets. This is a measure of similarity between the extensional semantics
of those concepts. Pairs of concepts with a high Jaccard similarity are considered
as a mapping.
6 By adding concepts into the “subject” field of an instance, this instance will be

considered as an instance of each added concepts.
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There are two parameters which need to be taken into account:

1. The minimum similarity: a threshold that determines how similar the two
concepts must be in order to define a mapping between them.

2. The minimal number of instances shared by two concepts. If a concept has
very few instances, using these instances to determine its extensional seman-
tics is not sufficient. Sometimes, it may mislead the similarity judgement. For
example, if two concepts each have one instance and by chance this instance
is shared. This will result in a Jaccard measure of 1, but it should actu-
ally carry less weight than the case that two concepts have 1000 instance in
common and a few not.

These two parameters in practice are set in an empirical way. Based on some
evaluation criteria, we can set them up to optimise the performance. Note, this is
obviously a biased solution, as the evaluation criteria may vary due to different
mapping usage scenarios, see [9] for more details.

4 Experiment and Evaluation

We will study the following questions:

1. How good is our method for finding similar instances?
2. How does our proposed method perform on homogeneous data collections?
3. How does our proposed method perform on heterogeneous data collections?

4.1 Evaluation of the Quality of Instance Mappings

In the KB case, we have 222K books which have been previously dually anno-
tated with two thesauri to be matched. This gives us an opportunity to evaluate
whether similarity of the descriptions of instances (books) indeed leads to valid
instance mappings.

For this purpose, we split the original dually annotated instance set into two
parts, noted as IG and IB. By hiding the GTT annotation of each book in IB

and the Brinkman annotation of the books in IG, we created two collections
annotated by only one thesaurus.

We first populated the Lucene database (Ldb) with IG and using the method
introduced in Section 3.1, each instance in IB finds the most similar book in IG

and adopts this book’s GTT annotation as its new GTT annotation. Similarly,
each book in IG also borrows the Brinkman annotations from the most similar
book in IB . By comparing its original manually created annotation and this new
GTT/Brinkman annotation automatically obtained from the mapped instance,
we can evaluate the basic hypothesis of our method.

We calculated the similarity of the original annotations with the artificial ones
built from the instance mappings. As the Jaccard similarity is the most common
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Table 1. Performance of using different query configurations

Query fields Sima

title 0.244

title, subjects 0.324

title, subjects (cross query) 0.318

title, subjects (concatenated) 0.310

way of comparing sets, we use it again for this purpose,7 more concretely: the
quality of a prediction for each book in IG and IB is calculated as following:

sima =
|Sm ∩ Sn|
|Sm ∪ Sn| (1)

where Sm is the manual (original) annotation and Sn is the annotation built by
the instance mapping. Clearly, a higher similarity implies a higher chance for
this method to produce a reasonable set of common instances. We then take the
average of this Jaccard similarity over all dually annotated books as the final
measure. Different ways of query configurations, as discussed in Section 3.1,
perform differently, shown in Table 1.

From Table 1, we can see that the new annotations obtained by querying the
“title” and “subject” fields separately, on average, are the most similar to the
original manual ones, with a Jaccard measure of 0.324. This may seem to be a
low value, but the following experiments will show that the predicative power
of these (now artificially dually annotated) instances is almost as high as of the
original ones. It is also worth noting that the values given in Table 1 only refer
to the original annotations which are, in our experience, also not necessarily per-
fect, and often incomplete. This means that this measure may under-estimate
the correctness of the new annotations. A proper manual evaluation of this is
impossible due to the size of the corpus, and the specialised nature of the anno-
tation task in a library.

4.2 Mapping Thesauri over Homogeneous Collections

In order to evaluate our proposed mapping method for thesauri over homoge-
neous collections we repeat the experiments of [7] to map Brinkman and GTT,
but now based on the full set of instances (not just the doubly annotated corpus).
We used Jaccard similarity measure to generate mappings based on instances.
We applied this measure on the real singly annotated datasets. In this case, IG

and IB contain 307K and 490K book instances, respectively.

7 The reader should not confuse our use of the Jaccard measure to calculate similarity
of concepts, and to evaluate the quality of the artificial annotations. Here, the Jac-
card similarity measures how similar the artificial annotation is to the original one,
while in the former case, the Jaccard similarity measures the overlap of the common
extension of two concepts.
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Table 2. Comparison with results from the real dually annotated dataset, where the
recovered mappings are those found by our method which are also found from the
real dually annotated dataset and the percentage in the bracket is the corresponding
proportion.

Query fields Recovered mappings New mappings

title 426 (31%) 15

title, subjects 549 (40%) 390

title, subjects (cross query) 640 (47%) 564

title, subjects (concatenated) 1140 (84%) 429

The task to be performed is a book-reindexing scenario, which influences the
way the experiments need to be evaluated.8 The minimal number of instances
shared by two concepts is 10 and the lowest threshold was set to 0.001. The
performance varies with the choice of threshold, as depicted in Fig. 1. In our
case, the Jaccard measure is the one we would like to optimise — a high Jaccard
similarity means the translated annotation covers most of its manual annotation
without introducing many errors.

We can see from this figure that the optimum Jaccard measure is achieved
by taking the threshold around 0.1. Fig. 1 (b) is the performance of mappings
generated from the real dually annotated dataset, which can be seen as an up-
per bound performance of these mappings in this scenario. Mappings generated
from the real singly annotated dataset performs at a similar level to what the
OAEI’2007 participants did on the same dataset.9 This is very encouraging,
because it indicates that our method does not have the constraints on the ex-
istence of the explicit dually annotated instances, and still, performs as well as
the state-of-art tools do.

In Table 2, we compared mappings generated from the real singly annotated
dataset (i.e., 307K books with only GTT annotations and 490K books with
only Brinkman annotations) with those generated from the dually annotated
dataset (i.e., 222K books with both Brinkman and GTT annotations). In the
base case — generate artificial common instances using concatenated “title”
and “subject” — we found 84% pairs which are found from the dually anno-
tated dataset, both using the threshold of 0.1. A manual evaluation has shown
that 97% of the 429 new mappings are correct. This comparison confirms that
our method can to a large extent recover the mappings generated from a dually
annotated dataset if it is available; also the high precision of the new mappings
indicates that our method makes use of the information which was not usable
before. It means that even when dually annotated instances are available, us-
ing our method with singly annotated instances can improve current mapping
results.

8 Technical details can be found in [9].
9 See http://oaei.inrialpes.fr/2007/results/library/ for more details of the re-

sults of OAEI’2007 participants.

http://oaei.inrialpes.fr/2007/results/library/
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(b) Original dual annotated dataset (upper bound)

Fig. 1. Performance evaluated in book-reindexing scenario

4.3 Mapping Thesauri over Heterogeneous Collections

Now we map GTAA with Brinkman using disjoint and heterogeneous collections.
As we introduced earlier, GTAA is used for annotating multimedia materials in
the Dutch archive for Sound and Vision (BG), Brinkman for books in the KB.
In our dataset from the BG collection, there are nearly 60K instances and their
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subjects are annotated against 3593 GTAA concepts. The task here is to map
these GTAA concepts with 5207 Brinkman concepts.

As we discussed earlier in Section 3.1, we first map instances in order to build
an artificial common extension of these concepts. Each collection was fed into
the Lucene database and the query fields were set up manually.

We specify queries on concatenated “kb:title” + “kb:subject” and “bg:title”
+ “bg:subject” +“bg:description.” Each KB instance will be classified to one or
several GTAA concepts through the mapping between instances, and similarly,
each BG instance will be classified to one or several Brinkman concepts. Then,
all instances of one concept were put together as the extensional representation
of this concept. The Jaccard similarity was measured between the instance sets of
all possible pairs of Brinkman and GTAA concepts. All pairs were then ranked by
their Jaccard similarity into an ordered list, with the most promising mappings
on the top.

Ideally, the generated mappings should be evaluated against a reference align-
ment for a global view of the precision and recall. Unfortunately, obtaining a com-
plete list of possible mappings is not practically possible. We therefore compare
the obtained mappings with results from a lexical mapper and then manually
measure the precision of the top K mappings.

Using a simple lexical mapper,10 we obtained 1458 lexical equivalent mappings
between 5207 Brinkman concepts and 3593 GTAA concepts from the subject
facet. One or both concepts of 115 lexical mappings do not have any instances
and therefore cannot be measured by our method.

Moving from the top of the ranked list, we measure the proportion of lexical
mappings, P lexical, and the coverage over all lexical mappings, C lexical. As Fig. 2
(b) shows, when the Jaccard similarity is relatively high, most of the found map-
pings are actually lexical mappings. This proportion decreases with the Jaccard
similarity. At the Jaccard similarity of 0.05, nearly half of the found mappings
are non-lexical pairs. The coverage over all lexical mappings increases slowly up
to around 20%. However, from the 273 lexical mappings that have a Jaccard
similarity above zero (i.e., there are joint instances) 95.6% are ranked among
the top 1000 mappings.

We carried out a manual evaluation on the top 1000 Brinkman–GTAA map-
pings. The purpose is to check whether the precision decreases and how much it
decreases with the increasing number of non-lexical mappings. Among the top
1000 mappings, there are 261 lexically equivalent pairs, which we consider as cor-
rect mappings. The remaining 739 non-lexically equivalent pairs were presented
to a Dutch-speaker, who judged each pair to be a valid mapping or not.

The evaluation results are analysed as follows. For each 10th mapping in the
list, we calculate the precision of all pairs within a window of size 40, 20 to the
left and 20 to the right. This gives a local average precision, P local, which is
sensitive to its location in the list. It indicates, to some extent, the probability

10 This Dutch language-specific lexical mapper makes use of the CELEX
(http://www.ru.nl/celex/) morphology database, which allows to recognise lex-
icographic variants of a word-form, as well as its morphological components.

http://www.ru.nl/celex/
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Fig. 2. Evaluation of mappings between Brinkman and GTAA

for a mapping to be correct in a certain neighbourhood when moving through the
ranked list. The precision of all pairs from the top to the current pair, P global,
is also calculated, which indicates the precision from a more global view.

According to Fig. 2 (a), the global precision slowly decreases when moving
further along the ranked mapping list. Although sensitive to its position in the
ranked list, the local average precision also gradually decreases from 100% to
42.5%. A high precision of 71.6% at the 1000th mapping tell us that the quality
of the returned non-lexical mappings is quite good. The local average precision
at the 1000th mapping is still 42.5%,11 which means that in this neighbour-
hood the mappings have an average probability of 42.5% to be correct. Depicted
in Fig. 2 (b), with the increasing number of non-lexical mappings (from about
5% to nearly 80%), the precision does not decrease dramatically (from 100% to
71.6%). The nice results here illustrate the effectiveness of our method and its
applicability to the heterogeneous case.
11 In order to achieve this measure, the evaluator judged the 20 mappings after the

1000th one.



134 B.A.C. Schopman, S. Wang, and S. Schlobach

Fig. 2 to some extent indicates that lexically equivalent pairs often do not
have similar extensional semantics, especially when used in different collections
or across domains. This is an indication to consider the reliability or limitations
of using lexical mappings in certain applications where extensional semantics
play an important roles, such as retrieving or browsing across collections.

5 Related Work

Ontology matching, as a promising solution to the semantic heterogeneity prob-
lem, has recently become an interesting and important research problem. Many
different matching techniques have been proposed. In order to make use of var-
ious properties of ontologies (e.g., labels, structures, instances or related back-
ground knowledge), existing matching techniques adopt methods from different
fields (e.g., statistics and data analysis, machine learning, linguistics). These
solutions share some techniques and attack similar problems, but differ in the
way they combine and exploit their results. A detailed analysis of the different
matching techniques has been given in [3]. Examples of individual approaches
addressing the matching problem and latest development in this area can be
found on www.OntologyMatching.org.

The most related matching technique to our work is the instance-based meth-
ods, also called extensional matching techniques. The idea behind such tech-
niques is that similarity between the extensions of two concepts reflects the
semantic similarity of these concepts. Many current mapping tools, such as [12],
make very limited use of instances, where instance information are only used
complementarity to other techniques. Instance-based method has not been very
widely investigated until recently [4,5,6,13], where neural networks, machine
learning or statistics were used to model the complex correlation between in-
stances and the semantics of concepts. However, instances are in general simply
used as literals and the instance-based similarity normally results from the set
operations, such as in [7].

A simple instance based method requires the existence of common instances.
However, the explicitly shared instances are often not available, as ontologies
in different applications contain similar but different individuals. As a sufficient
amount of instance data becomes available, it has been proposed to use machine
learning and statistics to grasp the relations between instances themselves. The
similarity between instances using their own information, such as the metadata
of individuals, has recently been investigated in [8]. The method proposed in this
paper is another way of using instance as informative individuals by themselves,
instead of treating them only as simple literals.

6 Conclusion and Future Work

In this paper, we propose to use a lexical search engine to map instances from
different ontologies. By exchanging concept classification information between
these mapped instances, we can generate an artificial set of common instances
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shared by concepts from two ontologies, so that existing instance-based methods
can apply. By comparing mappings between two thesauri, GTT and Brinkman,
generated by explicit dually annotated instances and those by our method us-
ing singly annotated datasets, we have shown the feasibility of our method in
a homogeneous case. Our experiments of mapping Brinkman and GTAA, using
completely different and disjoint collections, have demonstrated this method to
be an effective approach and applicable to a broad mapping context, i.e., het-
erogeneous collections. To the best of our knowledge, this is new, and a very
promising step towards effective semantic interoperability between different col-
lections (e.g. in the Cultural Heritage domain).

In the future, we will further experiment with different query configurations
in the instance mapping step, e.g., the influence of single-field, multi-field and
concatenated-field queries on the generated mappings, whether machine learning
techniques can help map instances without many manual settings, etc.

In the GTT-Brinkman case, a threshold can be decided according to the op-
timal performance of the obtained mappings in a re-indexing scenario. However,
it is not the case for the Brinkman-GTAA case. We will investigate more on how
to find such optimisation tasks for deciding the relevant threshold parameters.

Finally, Lucene uses lexical information for answering queries. This hinders
our method to be applied in a multi-lingual setting. In the future, we will explore
the possibilities to increase the applicability of our method in this direction, such
as using an automatic translation tool to reduce the language barrier.
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