
A Unified Approach for Schema Matching, Coreference
and Canonicalization

Michael Wick
Computer Science

University of Massachusetts
Amherst, MA 01003

mwick@cs.umass.edu

Khashayar
Rohanimanesh
Computer Science

University of Massachusetts
Amherst, MA 01003

khash@cs.umass.edu

Karl Schultz
Computer Science

University of Massachusetts
Amherst, MA 01003

kschultz@cs.umass.edu

Andrew McCallum
Computer Science

University of Massachusetts
Amherst, MA 01003

mccallum@cs.umass.edu

ABSTRACT
The automatic consolidation of database records from many
heterogeneous sources into a single repository requires solv-
ing several information integration tasks. Although tasks
such as coreference, schema matching, and canonicalization
are closely related, they are most commonly studied in iso-
lation. Systems that do tackle multiple integration prob-
lems traditionally solve each independently, allowing errors
to propagate from one task to another. In this paper, we de-
scribe a discriminatively-trained model that reasons about
schema matching, coreference, and canonicalization jointly.
We evaluate our model on a real-world data set of people and
demonstrate that simultaneously solving these tasks reduces
errors over a cascaded or isolated approach. Our experi-
ments show that a joint model is able to improve substan-
tially over systems that either solve each task in isolation
or with the conventional cascade. We demonstrate nearly a
50% error reduction for coreference and a 40% error reduc-
tion for schema matching.

Categories and Subject Descriptors
H.2 [Information Systems]: Database Management; H.2.8

General Terms
Algorithms,

Keywords
Data Integration, Coreference, Schema Matching, Canoni-
calization, Conditional Random Field, Weighted Logic

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’08, August 24–27, 2008, Las Vegas, Nevada, USA.
Copyright 2008 ACM 978-1-60558-193-4/08/08 ...$5.00.

1. INTRODUCTION
As the amount of electronically available information con-

tinues to grow, automatic knowledge discovery is becoming
increasingly important. Unfortunately, electronic informa-
tion is typically spread across multiple heterogeneous re-
sources (databases with different schemas, or web documents
with different structures) making it necessary to consolidate
the data into a single repository or representation before
data mining can be successfully applied. However, data in-
tegration is a challenging problem. Even the task of merging
two databases with similar schemas about the same real-
world entities is non-trivial. An automatic system must be
able to perform coreference (to identify duplicate records),
canonicalization (to pick the best string representation of
the duplicate record), and schema matching (to align the
fields across schemas).

Coreference and other integration tasks have been stud-
ied almost exclusively in isolation, yet the individual prob-
lems are highly correlated. As an example, consider the
two different data records of a person named John Smith
in Table 1. Each data record is represented using a dif-
ferent schema. In this example, knowing that the Contact
attribute from schema A maps to the Phone attribute from
schema B provides strong evidence that the two mentions
are coreferent, indicating that schema matching is a valuable
precursor to coreference. However, knowing that the two
John Smith mentions are coreferent provides strong evidence
about which fields should be matched across the schemas
(for example, the FirstName and LastName attributes
of schema A should be mapped to the Name attribute of
schema B). The high correlation of these two tasks indicate
that a cascaded approach, where one task must be solved
before the other, is likely to lead to gratuitous error propa-
gation.

To motivate the idea further, consider the task of canoni-
calization, the process of creating a single standardized rep-
resentation of a record from several different alternatives.
The result of canonicalization on a set of records is a single
record containing a high density of information about a real-
world entity. Intuitively, these canonical representations of
entities contain valuable evidence for coreference. We would

722

Schema A Schema B
FirstName John Name John Smith
MiddleName R. Phone 1 -(222)-222-2222
LastName Smith
Contact 222-222-2222

Table 1: Two records from different schemas representing the same John Smith

like exploit this entity-level information, yet canonicalization
assumes coreference has already been performed.

In this paper we investigate a unified approach to data
integration that jointly models several tasks and their de-
pendencies. More precisely, we propose a conditional ran-
dom field for simultaneously solving coreference resolution,
record canonicalization, and schema matching. As described
in Section 3.1, one particular feature of our model is that it
automatically discovers the top level canonical schema. We
use first order logic clauses for parameter tying, effectively
combining logic and probability in a manner similar to [24,
7, 19]. Exact inference and learning in these models are
intractable, thus we present approximate solutions to both
these problems. Our approximations prove to be effective
allowing us to achieve almost a 50% reduction in error for
coreference and a 40% error reduction in schema matching
over non-joint baselines.

2. RELATED WORK

2.1 Coreference Resolution
Coreference is a pervasive problem in data integration that

has been studied in several different domains. The ACE
and MUC corpora have helped initiate a line of research on
newswire coreference, beginning with approaches that exam-
ine mention pairs [25, 18, 12] to more complicated models
that reason over entire sets of mentions [7]. Person disam-
biguation, another form of coreference, has also been studied
in detail in [21, 11, 10, 26, 14, 4, 1]. However, these works
only resolve coreference between objects of the same repre-
sentation (e.g., database schema). The coreference problem
we tackle involves objects that contain different represen-
tations, making direct comparisons between these objects
difficult (for example, we may not know in advance that
Phone from schema A maps to Contact in schema B). The
coreference portion of our model factorizes over sets of men-
tions and incorporates first order logic features making it
most similar to Culotta et al. [7].

2.2 Canonicalization
Since records can refer to the same underlying entity in

multiple ways (common aliases, acronyms and abbreviations),
it is often necessary to choose a single and standardized rep-
resentation when displaying the result to a user, or storing it
compactly in a database. Additionally, because the canon-
ical record is constructed from multiple records, it contains
a high density of information about the entity, making it a
convenient source of evidence for coreference resolution.

Canonicalization has played an important role in systems
that perform coreference and database merging. Tradition-
ally, it is performed post hoc and often relies on metrics for
evaluating distances between strings. An example of canon-
icalization in a database merging task is Zhu and Unger

[28], who obtain positive results by learning string edit pa-
rameters with a genetic algorithm. McCallum et al. [17]
extend usual edit distance models with a conditional ran-
dom field, demonstrating more accurate distance evaluations
on several corpora; however, they do not apply their string
distance model to the problem of canonicalization. Other
approaches include Ristad and Yianilos [23], who use expec-
tation maximization to learn the parameters of a generative
model that defines a string in terms of the string edit op-
erations required to create it. This work is extended and
applied successfully to record deduplication by Bilenko and
Mooney [2]. Recently, Culotta et al. [6] describe several
methods for canonicalization of database records that are
robust to noisy data and customizable to user preferences
(e.g., a preference for acronyms versus full words).

2.3 Schema Matching
Schema and ontology mapping are fundamental problems

in many database application domains such as data inte-
gration, E-business, data warehousing, and semantic query
processing. In general we can identify two major challenges
with the schema matching (and ontology mapping) problem:
(1) structural heterogeneity and, (2) semantic heterogeneity.
The former concerns the different representations of infor-
mation where the same information can be represented in
different ways. This is a common problem with heteroge-
neous databases. The latter deals with the intended mean-
ing of the described information. More specifically we can
identify the following differences between schemas [27]: (1)
structural conflicts concerned with different semantic struc-
tures; (2) naming conflicts where different attribute names
may be used for the same type of information, or the same
name for slightly different types of information; (3) conflicts
where different formats maybe used to represent the values
of attributes (for example, different units, different preci-
sion, or different abbreviation styles). This problem has
been extensively studied primarily by the database and ma-
chine learning communities [20, 13, 15, 8, 9, 27] (for a survey
of the traditional approaches refer to [22]).

Our model is able to reason about all three different kinds
of conflicts mentioned above, based on a set of first order
logic features employed by the CRF modeling the task. Our
approach also differs from previous systems in that schema
matching is performed jointly along with coreference and
canonicalization, resulting in a significant error reduction as
we will see in Section 5. One important aspect of our model
is that it will automatically discover the top level canonical
schema for the integrated data as will be demonstrated in
Section 3.1.

3. PROBLEM DEFINITION
We seek a general representation that allows joint reason-

ing over a set of tasks defined on a set of possibly hetero-

723

geneous objects in the world. In our unified data integra-
tion approach we aim for a representation that enables us
to perform inference and learning over two different types of
objects: (1) data records (in relation to the coreference reso-
lution and canonicalization tasks); (2) schema attributes (in
relation to the schema matching task). In abstract terms,
our model finds solutions to this problem in terms of a set
of partitions (clusters) of data records where all the records
within a particular partition are coreferent and canonical-
ized; and also a set of partitions (clusters) of the schema at-
tributes across different databases, where all the attributes
within a schema partition are mapped together. As we will
see shortly, although data record clusters and schema clus-
ters are kept disjoint in terms of the type of objects they
contain, they are tied together through a set of factors that
compute different features associated with each task. Thus,
inference is performed jointly over all three tasks. In the
next section we describe a graphical model representation of
this approach in more detail.

3.1 Model
We use a conditional random field (CRF) [16] for jointly

representing schema matching, coreference resolution, and
canonicalization tasks as follows:

• Let D = {D1, . . . ,Dk} denote a set of k databases. Each
database Di is represented as a 2-tuple Di ≡ 〈Si,Ri〉, where

Si is a database schema, and Ri = {ri
j}

nDi
j=1 is a set of data

records generated using the schema Si. Each schema Si is
represented by a set of attributes {ai

j}nSi
j=1 where ai

j is the

jth attribute of the schema Si. We use S = {S1, . . . ,Sk}
to represent the complete set of schemas, and A = {ai

j}
to denote the complete set of schema attributes across all
schemas.

• Let X = {x1 . . . xn} ∪ A denote a set of observed vari-
ables, where xi is a data record drawn from some database
Dl, and A is the set of all schema attributes {ai

j}.
• Let Xi denote a particular grouping of the observed vari-

ables X constrained by the fact that all the variables in a
cluster Xi denote the same type of the objects (all the ob-
served variables in a cluster Xi are either data record objects,
or schema attribute objects). For clarity we use X r

i to de-
note a cluster of data records, and X s

j to denote a cluster of
schema attributes.

• Let Y = {y1 . . . ym} denote a set of unobserved vari-
ables that we wish to predict. In this paper we focus only
on a particular class of clustering models1 where the vari-
ables yi indicate some compatibility among clusters of X
variables (i.e., clusters X r

i and X s
j). We employ three types

of Y variables: (1) variables that indicate the compatibility
among instances within a cluster of X variables; (2) variables
that indicate the compatibility between a pair of clusters of
the same type (compatibility between two clusters of data
records, or two clusters of schema attributes); (3) variables
that indicate the compatibility between a pair of clusters of
different types (compatibility between a data record cluster
and a schema attribute cluster). Note that this represen-
tation renders an exponential complexity when instantiat-
ing the Y , X r

i , and X s
j variables (e.g., |Y | = O(2|X|), and

|X r
i | = O(2n), and |X r

i | = O(2|A|)).
Let Xi denote a particular grouping of the observed vari-

1In general the inference and learning methods could be ap-
plied to a variety of model structures [5].

ables X constrained by the fact that all variables in a cluster
Xi denote the same type of the objects (all the observed vari-
ables in a cluster Xi are either data record objects, or schema
attribute objects). For clarity we use X r

i to denote a cluster
of data records, and X s

j to denote a cluster of schema at-
tributes. Our goal is to learn a clustering X = {X r

i }∪ {X s
j }

such that all the data records in X r
i are coreferent, and all

the schema attributes in X s
j bear the correct schema match-

ing.
Next, the conditional probability distribution P (Y |X) is

computed as:

P (Y |X) =
1

ZX

Y
yi∈Y

fw(yi,Xi)
Y

yi,yj∈Y

fb(yij ,Xij) (1)

where ZX is the input-dependent normalizer, factor fw pa-
rameterizes the within-cluster compatibility, and factor fb

parameterizes the between-cluster compatibility2. Note that
in our model there are two types of within cluster factors fw:
those measuring the compatibility within a data record clus-
ter (e.g., X r

i), and those measuring the compatibility within
a schema attribute cluster (e.g., X s

i). Similarly, there are
two types of between cluster factors fb: those measuring
the compatibility between a pair of homogeneous clusters
(two data record clusters, or two schema attribute clusters),
and those measuring the compatibility between a pair of
heterogeneous clusters (a data record cluster and a schema
attribute cluster). We also employ a log-linear model of po-
tential functions (i.e., fw and fb):

f(yi, xi) = exp

 X
k

λkgk(yi, xi)

!

This model can be intuitively described as follows: every
possible clustering of the data induces a different set of in-
stantiations of Y variables and possibly gives different as-
signments to them. The conditional distribution P (Y |X)
gives the probability of a configuration Y measured in terms
of a normalized score of how likely that configuration is. We
parameterize this score with a set of potential functions that
evaluate the compatibility of both within-cluster attributes
and between-cluster attributes.

Schema A

Database A Database B

Schema B

Database C

Schema C

A B Cn n n

Figure 1: Three example databases: each database
uses a different schema to generate a set of data
records. Each schema is visually represented as a
collection of color-coded objects of the same shape
(solid rectangles in schema A, dotted lines in schema
B, and hollow rectangles in schema C).

A desirable facet of our model is that it factorizes into
clusters of data rather than pairs (Equation 1). This en-
ables us to define features of entire clusters using first-order

2In the above equation we use the notation Xij to denote a
pair of clusters Xi and Xj .

724

logic features: features that can universally and existentially
aggregate properties of a set of objects [5].

To further illustrate the model consider the simple exam-
ple task demonstrated in Figure 1. There are three databases,
where each database uses a different schema to generate a
set of data records. Each schema is visually represented as
a collection of color-coded objects of the same shape (solid
rectangles in schema A, dotted lines in schema B, and hol-
low rectangles in schema C). Within each schema, different
attributes are color-coded, and similar color across differ-
ent schemas may refer to the same attribute concept. Each
database consists of a number of data records generated us-
ing its own schema (for example, database A contains nA

data records generated using schema A). The goal is to per-
form joint inference among coreference resolution, canoni-
calization, and schema matching.

Figure 2 displays a factor graph of the conditional random
field modeling the above joint task. There are two levels of
clustering processes:

• Schema attribute clusters (top level): Each cluster
in this level consists of a subset of the complete set of schema
attributes. Note that two or more attributes of the same
schema may be placed within the same cluster together with
the attributes of other schemas. For example, one database
may use a schema that has an attribute Name to repre-
sent the full name of a person, while a second database may
use a schema with two different attributes, First Name and
Last Name, for representing the same concept. Intuitively,
we would like to place all three in the same cluster. Some
clusters such as X7 may contain a single schema attribute,
meaning that it does not match to any other schema at-
tributes in the other databases. Note that the set of schema
attribute clusters establishes the top level canonical schema
for the integrated data (lightly shaded clusters).

• Data record clusters (bottom level): Each cluster
represents a set of coreferent data records. Note that every
data record is visually represented as an encapsulation of
the schema from which it was generated. For example clus-
ter X1 consists of a single data record from database A, a
single data record of database B, and two data records from
database C. There may also exists clusters that contain a
set of data records from the same database (for example the
cluster X3) due to duplication errors in that database.

• Factors: Although the clusterings at different levels
are defined over the same type of objects (data records or
schema attributes), they are tied using a set of factors. We
can identify three types of factors in general: (1) factors
that measure compatibility among instances within a clus-
ter (e.g., f1, or f4); (2) factors that measure compatibility
between pairs of clusters of the same type (compatibility
between two clusters of data records such as f12, or two
clusters of schema attributes such as f67); (3) factors that
measure compatibility between pairs of clusters of different
types (compatibility between a data record cluster and a
schema attribute cluster such as f34).

Although omitted from Figure 2 for clarity, there are ad-
ditional canonicalization variables for each attribute in each
coreference cluster. Even though we lack labeled data for
canonicalization, we set these variables using a centroid-
based approach with default settings for string edit param-
eters (insert, delete and substitute incur a penalty of one,
and no penalty is given for copy). This method is shown
in recent work by Culotta et al [6] to perform reasonably

Y5 Y8

Y6 Y7

Y78Y56

Y2Y1

Y13

Y45

Y14

Y48

Y4

Y24

Y23

Y3

Y

X

X

X1 2

3

Coreference and Canonicalization

X

X X

X X

4

5

6 7

8

Schema Matching

f

f

f

f

f

1

4

Y12

12

67

67

Y34
34

Figure 2: Factor graph representation of the model.
There are two clustering processes, one at the level
of schema attributes (top level), and one at the level
of data records (bottom level). Different factors tie
these two processes which allows for joint inference
among different data integration tasks. Note that
for clarity of the figure not all the factor names are
represented. The top level clustering also automati-
cally discovers the top-level canonical schema in the
integrated data (lightly shaded clusters).

well and to capture many of the desirable properties of a
canonical string.

Even though we are able to achieve greater expressiveness
in our model with cluster-wise first order features and high
connectivity, we sacrifice the ability to apply exact inference
and learning methods, since we cannot instantiate all of the
Y variables. In Culotta and McCallum [5], approximate
inference and parameter estimation methods operate with
partial instantiations, where only the difference between two
configurations are sufficient to perform learning. Building
on these techniques, we briefly demonstrate how learning is
performed in this model in the next section.

3.2 Inference and Parameter Estimation
Both the joint model and the individual conditional ran-

dom fields for each subtask are too large to be fully instan-
tiated, making exact training and inference intractable. In
this section we describe in detail our approximate and infer-
ence methods.

3.2.1 Training
To learn the parameters for coreference resolution we fix

the schema matching to ground-truth and fix the canoni-
calization to a reasonable default. Next, we sample pairs
of clusters Ci and Cj and define the binary random variable
yij = 1 if and only if all the mentions in ci and cj are corefer-
ent. Given the fixed schema matching and canonicalization,
and a whole set of cluster pairs with their corresponding
labels, we set the coreference parameters to maximize the
likelihood of the training set by performing gradient descent
(and regularizing with the usual Gaussian prior). A similar

725

Algorithm 1 Joint Inference

1: Input:
coreference clustering C
schema clustering S

2: while Not Converged do
3: C ⇐ GreedyAgglomerative(make-singletons(C), S)
4: S ⇐ GreedyAgglomerative(make-singletons(S), C)
5: end while

procedure is used to set the parameters for schema match-
ing. However, in this case the coreference ground-truth is
held fixed and the label indicates whether or not all the
instances in two schema clusters all match to each other.
Canonicalization is not used for the schema-matching task.
This training method can be viewed as a piecewise psuedo-
likelihood approximation.

3.2.2 Testing
For inference we use a standard greedy agglomerative ap-

proximation to each subtask. The algorithm begins with a
singleton clustering (each instance is in its own cluster) and
greedily merges clusters until no merge scores are above a
stopping threshold τ . Joint inference works in rounds, per-
forming greedy agglomerative first on coreference, and then
on schema-matching. The coreference prediction in roundi

is used to help schema matching in roundi, whereas a schema
matching prediction from roundi is used to help coreference
in roundi+1. This process can be repeated for a fixed num-
ber of iterations.

4. EXPERIMENTS

4.1 Data
Synthetic data: The synthetic data is generated from a

small number (10) of user records collected manually from
the web. These records use a canonical schema contain-
ing attributes such as first name, phone number, email ad-
dress, job title, institution, etc. Next, we created three new
schemas derived from the canonical schema by randomly
splitting, merging, or noisifying the attributes of the canon-
ical schema. For example, one schema would contain a Name
field whereas another would contain two fields, FirstName
and LastName, for the same block of information (perhaps
dropping the middle name if it existed).

In the training data we used the first two schemas and in
the testing data we used one of the schemas from training,
and also the third schema. This way we train a model on one
schema but test it on another schema. For training we used
a small number of user records that were similar in ways such
that random permutations could make coreference, schema
matching, and canonicalization decisions difficult. We first
conformed the records to both schemas, and then made 25-
30 copies of each data record for each schema while randomly
permuting some of the fields to introduce noise.

The testing data was created similarly, but for a differ-
ent set of data records. The random permutations included
abbreviating fields, deleting an entire field, or removing a
random number of tokens from the front and/or the end of
a field. The result of this was a large number of corefer-
ent records, but with the possibility that the disambiguat-
ing fields between different records have been altered or re-
moved.

Real World Data: For our real-world data we man-
ually extracted faculty and alumni listings from 7 univer-
sity websites, of which we selected 8 lists that had differ-
ent schemas. The information in each schema contains ba-
sic user data such as first name, phone number, email ad-
dress, job title, institution, etc., as well as fields unique to
the academic domain such as advisor, thesis title, and alma
mater. For each name that had an e-mail address we used
our DEX [3] system to search the Internet for that person’s
homepage, and if found we would extract another record.
The DEX schema is similar to the university listings data,
bringing the total number of different schemas to 9. Of
the nearly 1400 mentions extracted we found 294 coreferent
entities. Table 2 shows the DEX schema and two of the
faculty listing schemas. There are several schema match-
ing problems evident in table 2, for example Job Depart-
ment from the UPenn schema is a superset of both of the
Job Title fields. Another example, which occurs numerous
times between other schemas, is where the pair of attributes
〈First Name,Last Name〉 from one schema is mapped to the
singleton attribute Name that denotes the full name.

For each of the experiments we took all of the 294 coref-
erent clusters, and randomly selected 200 additional men-
tions that had no coreferent entities. This data was split
into training and testing sets, where the only schema shared
between training and testing was the DEX schema. This
ensures that the possible schema matchings in the training
set are disjoint from the possible schema matchings in the
test set. The data provides us with a variety of schemas
that map to each other in different ways, thus making an
appropriate testbed for performing joint schema matching,
coreference, and canonicalization.

4.2 Features
The features are first-order logic clauses that aggregate

pairwise feature extractions. The types of aggregation de-
pend on whether the extractor is real-valued or boolean. For
real-valued features we compute the minimum, the maxi-
mum, and the average value over all pairwise combinations
of records. For boolean-valued features we compute the fol-
lowing over all pairwise combinations of records: feature
does not exist; feature exists; feature exists for the major-
ity; feature exists for the minority; feature exists for all.

Table 3 lists the set of features used in our experiments. In
cases where we compute features between records in different
schemas, sometimes we only compute the feature between
fields that are aligned in the current schema matching. This
is indicated by the Matched-fields only column in Table 3.
All of these features are used for coreference decisions, but
only substring matching is used for schema matching.

4.3 Systems
We evaluate the following three systems with and with-

out canonicalization for a total of six systems. Canonical-
ization is integrated with coreference inference by interleav-
ing canonicalization with greedy agglomerative merges (ev-
ery time a new cluster is created, a new canonical record is
computed for it). Canonicalization has no affect on schema
matching in isolation and is only relevant when coreference
is involved.

Whenever we use greedy agglomerative inference, we set
the stopping threshold to τ = 0.5. This is a natural choice as
it corresponds to the decision boundary for a binary max-

726

DEX Northwestern Faculty UPenn Faculty

First Name Name Name
Middle Name Job Title First Name
Last Name PhD Alma Mater Last Name

Title Research Interests Job Department
Job Title E-mail Office Address Line

Department Work Phone
Company Name E-mail

Home Phone Number
Office Phone Number

Fax Number
etc ...

Table 2: Three example schemas used in the real-world data.

Description Matched-fields only real/boolean
Unweighted Cosine distance between mentions no real

TFIDF Cosine distance between mentions no real
TFIDF Cosine distance between mentions yes real

Substring match yes boolean

Table 3: pairwise feature extractors

imum entropy classifier. Additionally, the joint inference
method described earlier is run for four rounds for the joint
system.

• Isolation (ISO): this system performs schema match-
ing and coreference in complete isolation from each other.
Greedy agglomerative search is used as an inference method
in each task.

• Cascaded (CASC): the cascaded approach executes
schema matching and coreference in a pipelined fashion, ei-
ther performing schema matching first and then coreference,
or the other way around. The predicted result of the first
task has the potential to influence the second task.

• Joint (JOINT): the joint approach integrates corefer-
ence and schema matching allowing predictions in both tasks
to influence future predictions in the other. The system it-
eratively runs the cascaded approach, allowing predictions
to propagate in both directions between schema matching
and coreference resolution.

5. RESULTS
We compare our joint model of coreference, canonicaliza-

tion, and schema matching to the baselines of the cascaded
and isolated inference (both with and without the benefits
of joint canonicalization). Although we report precision, re-
call, and F1 for both Pairwise and MUC evaluation metrics,
the error reductions discussed in the body of text below are
in terms of Pairwise F1 only. Table 4 displays the impact on
coreference performance and Table 5 shows schema match-
ing. As expected, joint inference between coreference and
schema matching improves performance in both tasks over
the baselines of performing each task in isolation or as a
cascade. Overall, by performing all three tasks jointly, an
error reduction of 49% is realized in coreference over the
cascaded approach and 32.1% over coreference in isolation.
For schema matching, the joint model reduces error by 40%
over both the isolated and cascaded approaches.

5.1 Cascades and Error Propagation
Although the cascaded approach of performing corefer-

ence followed by schema matching performs slightly better
(with canonicalization) or the same (without canonicaliza-
tion) as performing schema matching in isolation, the reverse
is not true. First performing schema matching and then
coreference actually has a negative impact on coreference
performance when compared to just performing coreference
in isolation (regardless of whether or or not canonicalization
is performed). This is not surprising as the schema match-
ing in isolation achieves just 50.9% f1, thus passing a large
amount of error to the subsequent coreference task. This
result helps highlights the potential danger of error propa-
gation in cascade systems.

5.2 Impact of Joint Canonicalization
Canonicalization has a positive impact on performance on

nearly all the systems. The only system it does not affect
is schema matching in isolation since it is not relevant for
that task. Both cascaded systems and both joint systems
improve substantially when introducing factors over canon-
ical coreference records. Even the model that jointly does
coreference and schema matching is improved by canonical-
ization: coreference errors are reduced by 21% and schema
matching errors by 6.5%.

The cascaded approach of first performing schema match-
ing and then coreference actually does worse than having no
schema matching information at all, highlighting the detri-
mental effect of error propagation in a pipeline. The other
cascade of performing coreference first has no effect on the
schema matching

5.3 Synthetic Data Experiments
In addition to the real-world data experiments, we also

applied both joint approach (joint schema matching and
coreference resolution with no canonicalization), and the
cascaded approach to our synthetically generated dataset.
The models used in these experiments are slightly simpler

727

Pair MUC
F1 Precision Recall F1 Precision Recall

ISO 72.7 88.9 61.5 75 88.9 64.9
No Canon CASC 64.0 66.7 61.5 65.7 66.7 64.9

JOINT 76.5 89.7 66.7 78.8 89.7 70.3
ISO 78.3 90.0 69.2 80.6 90.0 73.0

With Canon CASC 65.8 67.6 64.1 67.6 67.6 67.6
JOINT 81.7 90.6 74.4 84.1 90.6 74.4

Table 4: Coreference results: a comparison of coreference in isolation (ISO), in cascade with schema matching
(CASC), and jointly inferred with schema matching (JOINT). The effect of joint canonicalization is also shown
(with canon)

Pair MUC
F1 Precision Recall F1 Precision Recall

ISO 50.9 40.9 67.5 69.2 81.8 60.0
No Canon CASC 50.9 40.9 67.5 69.2 81.8 60.0

JOINT 68.9 100 52.5 69.6 100 53.3
ISO 50.9 40.9 67.5 69.2 81.8 60.0

With Canon CASC 52.3 41.8 70.0 74.1 83.3 66.7
JOINT 71.0 100 55.0 75.0 100 60.0

Table 5: A comparison of schema matching in isolation (ISO), in cascade with coreference (CASC), and
jointly inferred with coreference (JOINT)

since they do not include the canonicalization task, but in-
ference is performed in the exact same manner as described
in Section 3.2.

Schema 1 Schema 2

First Name

Last Name

Middle Name

Position

Company Name

First Name

Last Name

Residence

Mailing Info

Work

Postal Code

Phone

Fax

Email

Street Address

Location

Phone

Fax

Figure 3: An example schema matching produced
by our model using the cascaded approach on syn-
thetic data. The dotted lines represents false pos-
itives, while the thick lines represents the correct
matches, and the thin lines represents the matchings
that were missed. The cascaded approach produces
a lot of wrong matches.

As expected we find that joint model on synthetic data
reduces coreference resolution errors by 42% compared to
the cascaded model. The improvements in schema-matching
can be seen graphically: Figures 3 and 4 show examples of
schema matching produced by the cascaded and joint ap-
proaches respectively. The dotted lines represents false pos-
itives, while the thick lines represents the correct matches
(hits), and the thin lines represents the matchings that were

missed (misses). It can be observed that the cascaded ap-
proach produces a lot of false positive matches. The joint
approach does not produce any false positive compared to
the cascaded approach, while having a relatively low recall.

Schema 1 Schema 2

First Name

Last Name

Middle Name

Position

Company Name

First Name

Last Name

Residence

Mailing Info

Work

Postal Code

Phone

Fax

Email

Street Address

Location

Phone

Fax

Figure 4: An example schema matching produced
by our model using the joint approach on synthetic
data. The thick lines represents the correct matches,
and the thin lines represents the matchings that
were missed. The joint approach does not pro-
duce any false positive compared to the cascaded
approach.

6. CONCLUSIONS
In this paper we have demonstrated a successful method

for performing coreference resolution, record canonicaliza-
tion, and schema matching simultaneously with a condi-
tional random field. Joint inference in this model outper-
formed cascaded and isolated approaches on both synthetic

728

and real-world data despite having to use approximate in-
ference and parameter estimation.

We believe a ripe area of future work would be to explore
less greedy inference methods such as Metropolis-Hastings,
simulated-annealing, or similar stochastic search methods.
Additionally, rank-based learning may be combined with
Metropolis-Hastings to train an even larger model that in-
cludes first-order logic clauses over entire clustering configu-
rations. Finally, extending the model to include other tasks
such as named entity recognition (NER) and record assem-
bly is a natural next step. This could be particularly inter-
esting because exact learning and inference for linear-chain
CRFs (like those used in NER) is tractable, yet the other
components of the model would have to be approximated.

7. ACKNOWLEDGMENTS
This work was supported in part by the Center for In-

telligent Information Retrieval, in part by Lockheed Martin
through prime contract #FA8650-06-C-7605 from the Air
Force Office of Scientific Research, in part by The Central
Intelligence Agency, the National Security Agency and Na-
tional Science Foundation under NSF grant #IIS-0326249,
in part by The Central Intelligence Agency, the National Se-
curity Agency and National Science Foundation under NSF
grant #IIS-0427594, and in part by the Defense Advanced
Research Projects Agency (DARPA), through the Depart-
ment of the Interior, NBC, Acquisition Services Division, un-
der contract number NBCHD030010, and AFRL #FA8750-
07-D-0185. Any opinions, findings and conclusions or rec-
ommendations expressed in this material are the authors’
and do not necessarily reflect those of the sponsor.

8. REFERENCES
[1] J. Artiles, J. Gonzalo, and S. Sekine. The

semeval-2007 weps evaluation: Establishing a
benchmark for the web people search task. In 4th
Workshop on Semantic Evaluations (SemEval-2007),
pages 64–69, Prague, Czech Republic, June 2007.
Association for Computational Linguistics.

[2] M. Bilenko and R. J. Mooney. Learning to combine
trained distance metrics for duplicate detection in
databases. Technical Report AI-02-296, University of
Texas at Austin, 2002.

[3] A. Culotta, R. Bekkerman, and A. McCallum.
Extracting social networks and contact information
from email and the web. In First Conference on Email
and Anti-Spam (CEAS), Mountain View, CA, 2004.

[4] A. Culotta, P. Kanani, R. Hall, M. Wick, and
A. McCallum. Author disambiguation using
error-driven machine learning with a ranking loss
function. In Sixth International Workshop on
Information Integration on the Web (IIWeb-07),
Vancouver, Canada, 2007.

[5] A. Culotta and A. McCallum. Tractable learning and
inference with high-order representations. In ICML
Workshop on Open Problems in Statistical Relational
Learning, Pittsburgh, PA, 2006.

[6] A. Culotta, M. Wick, R. Hall, M. Marzilli, and
A. McCallum. Canonicalization of database records
using adaptive similarity measures. In Proceedings of
the 13th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (KDD), San
Jose, CA, 2007. (19% accepted).

[7] A. Culotta, M. Wick, R. Hall, and A. McCallum.
First-order probabilistic models for coreference
resolution. In Human Language Technology Conference
of the North American Chapter of the Association of
Computational Linguistics (HLT/NAACL), pages
81–88, 2007. (24% accepted).

[8] A. Doan, P. Domingos, and A. Y. Halevy. Reconciling
schemas of disparate data sources: A machine-learning
approach. In SIGMOD Conference, 2001.

[9] A. Doan, J. Madhavan, P. Domingos, and A. Y.
Halevy. Learning to map between ontologies on the
semantic web. In WWW, page 662, 2002.

[10] X. Dong, A. Y. Halevy, E. Nemes, S. B. Sigurdsson,
and P. Domingos. Semex: Toward on-the-fly personal
information integration. In IIWEB, 2004.

[11] O. Etzioni, M. Cafarella, D. Downey, S. Kok,
A. Popescu, T. Shaked, S. Soderland, D. Weld, and
A. Yates. Web-scale information extraction in
KnowItAll. In WWW. ACM, May 2004.

[12] A. Haghighi and D. Klein. Unsupervised coreference
resolution in a nonparametric bayesian model. In
ACL, 2007.

[13] R. Ichise, H. Takeda, and S. Honiden. Rule induction
for concept hierarchy alignment. In Workshop on
Ontology Learning, 2001.

[14] P. Kanani, A. McCallum, and C. Pal. Improving
author coreference by resource-bounded information
gathering from the web. In Proceedings of IJCAI, 2007.

[15] M. Lacher and G. Groh. Facilitating the exchange of
explicit knowledge through ontology mappings, 2001.

[16] J. Lafferty, A. McCallum, and F. Pereira. Conditional
random fields: Probabilistic models for segmenting
and labeling sequence data. In Proc. 18th
International Conf. on Machine Learning, pages
282–289. Morgan Kaufmann, San Francisco, CA, 2001.

[17] A. McCallum, K. Bellare, and F. Pereira. A
conditional random field for discriminatively-trained
finite-state string edit distance. In Conference on
Uncertainty in AI, 2005.

[18] A. McCallum and B. Wellner. Conditional models of
identity uncertainty with application to noun
coreference. In L. K. Saul, Y. Weiss, and L. Bottou,
editors, Advances in Neural Information Processing
Systems 17. MIT Press, Cambridge, MA, 2005.

[19] B. Milch, B. Marthi, S. Russell, D. Sontag, D. L. Ong,
and A. Kolobov. BLOG: Probabilistic models with
unknown objects. In IJCAI, 2005.

[20] N. F. Noy and M. Musen. Anchor-prompt: Using
non-local context for semantic matching, 2003. 1
Ontology Merging and.

[21] B.-W. On, D. Lee, J. Kang, and P. Mitra.
Comparative study of name disambiguation problem
using a scalable blocking-based framework. In JCDL,
pages 344–353, New York, NY, USA, 2005. ACM
Press.

[22] E. Rahm and P. A. Bernstein. A survey of approaches
to automatic schema matching. The VLDB Journal,
10(4):334–350, 2001.

[23] E. S. Ristad and P. N. Yianilos. Learning string edit

729

distance. Technical Report CS-TR-532-96, Princeton
University, 1997.

[24] P. Singla and P. Domingos. Entity resolution with
markov logic. In ICDM ’06: Proceedings of the Sixth
International Conference on Data Mining, pages
572–582, Washington, DC, USA, 2006. IEEE
Computer Society.

[25] W. M. Soon, H. T. Ng, and D. C. Y. Lim. A machine
learning approach to coreference resolution of noun
phrases. Comput. Linguist., 27(4):521–544, 2001.

[26] V. I. Torvik, M. Weeber, D. R. Swanson, and N. R.
Smalheiser. A probabilistic similarity metric for
medline records: A model for author name
disambiguation. Journal of the American Society for
Information Science and Technology, 56(2):140–158,
2005.

[27] F. Wiesman and N. Roos. Domain independent
learning of ontology mappings. In AAMAS, page 846,
2004.

[28] J. J. Zhu and L. H. Unger. String edit analysis for
merging databases. In KDD, 2000.

730

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

