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Abstract ing queries over a mediated schema that unifies multipleceour

Schemas evolve over time to accommodate the changes inschemasc{ata integratior{8, 10]).

the information they represent. Such evolution causes in-  Schema mappings are often specified using high-level declar
validation of various artifacts depending on the schemas, ative formalisms that describe the correspondences batdiée
such asschema mappingsn a heterogenous environment, ferent schemas at a logical level. Suogical mappings can be
where cooperation among data sources depends essentiallyiewed as abstractions for the more compfgysical specifi-
upon them, schema mappings must be adapted to reflecications (e.g., XQuery or XSLT scripts) that operate at thia da
schema evolution. In this study, we explore thapping transformation runtime. Such abstractions are easier tiemn
compositiomapproach for addressing thizapping adapta- stand and to reason about, and still capture most of therm&er
tion problem. We study the semantics of mapping compo- tion needed to generate the physical artifacts. This pbilbg
sition in the context of mapping adaptation and compare of abstract representation, which we follow here, is adbjbe
our approach with the incremental approach of Velegrakis many recent data exchange and integration systems. laylani

et al [21]. We show that our method is superior in terms GAV (global-as-view), LAV (local-as-view), and, more gene

of capturing the semantics of both the original mappings ally, GLAV (global-and-local-as-view) assertions havebesed
and the evolution. We design and implement a mapping in data integration systems for query answering and ravgiti
adaptation system based on mapping composition as well(see [8, 10] for two surveys). Similarly, source-to-targgdle-

as additionaimapping pruningechniques that significantly = generating dependencies (s-t tgds) have been used fofyspgci
speed up the adaptation. We conduct comprehensive experdata exchange between relational schemas [6]; moreostgdhe
imental analysis and show that the composition approach is (XML-style) s-t tgds have been used in tlidio data exchange
practical in various evolution scenarios. The mapping lan- system [18] as the underlying representation for transftions
guage that we consider is a nested relational extension ofbetween XML schemas. Schema mappings can often be derived
the second-order dependencies of Fagin et al [7]. Our work semi-automatically [16, 18] based on the outcome of schema
can also be seen as an implementation of the mapping com-matching algorithms [19].

position operator of the model management framework. Schemas of data sources invariably evolve over time due to

. various reasons. For example, the incorporation of new miatta
1 Introduction captured by an existing schema will require the introdurctid
WheW schema structures. Once sche_mas change_, the mgppings be
they cover the same information domain, as reflected in thp-ad Ween these schemas, together with the physical artifaets t
tion of different schemas for describing the data. Despite t Were generated based on them, may become invalid. A typi-
cal solution is to regenerate the mappings and then regenera

difficulties of dealing with such heterogeneous data, comtjn : : .
among data sources, with the goal of providing a comprehefil® depending artifacts. However, even with the help of map-
Ring generation tools, this process can be costly in terntaiof

sive and cohesive view of the information, has become maie a

more important, for many applications. Schemas and schefi@" effort and expertise, especially for complex schemageM

mappings are two fundamental metadata ingredients thaitare®Ve": there is no guarantee that the regenerated mappiegs pr

the core of such cooperation. Schemas describe the stewidy  S¢Ve the semantics of the original mappings. A better golis
g design algorithms thakusethe original mappings and (semi-
a

to some extent, the semantics of data at the data sourcds, wh? . . . .
schema mappings describe relationships between dataesourédutomaticallyadaptthem into a set of mappings that are valid

Schema mappings can be used to transform data between f{j! resPect to the new schemas and, moreover, reflect the se-
different schemasd@ata exchange or translatiof, 20]), or to mantics (.)f the orlglnall mapplngs.and the schema evolut!hrs T
translate queries over one schema to queries over a differ@CCEsS is callethapping adaptationnder schema evolution.
schema [13, 22]. In particular, they can be used in answer- A comprehensive method fincrementamapping adaptation
was established in [21]. Its main idea is to incrementallgraye

* Supported in part by NSF under grant 11S-0219513, by NIH urgiant  the mappings each time a primitive change occurs in the sourc
LMO08106-01; work partially done while at IBM Almaden ResglaCenter. or target schema. The method, however, has a few drawbacks.
Permission to copy without fee all or part of this materialgisanted provided ~First, when drastic schema evolution occurs (i.e., sigmifice-

b Soppion rones et o s e sy an Srucluring in one of the original schemas) and the new sahem
notice is gi)\//e?\ that copying is by permissior? of the Very eddata Bagg Endow- Version 1S d!rep_tly given, itis unclear how f.eaSIble It isehdtract
ment. To copy otherwise, or to republish, requires a feearsplecial permission  the list of primitive changes that can describe the evotutuch
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Independent data sources are often heterogeneous even




Source”: Source: Target: Source”: Source: Target:

bioinformaticg). We also point out later that the set of primi-
tive changes in [21] is not expressive enough to capture t@mp  Lineltem SUPF’?“ SuppPat: SuppOrder:

evolution. Second, even when such a list of changes can be o o \g“m\SuppOrder Llilnslt;?:ql b :, o
tained, applying the incremental algorithm for each chainge - ) L,s'po’ g, e
this potentially very long list will be highly inefficient. iRally, - [-PartOrder | | PartOrder: SuppOrder®:
there is no guarantee that after repeatedly applying thoighgn, f, po so

the semantics of the resulting mappings will be the desired o o

A more general approach, which has been suggested
[2, 3, 21] is to describe the schema evolution itself as magpi
and to employ mapping composition to derive the adapted m

pings. While attractive in principle, there is so far no cete

(@) (b)
Figure 1:(a) Mapping scenario and evolution. (b) Data example.

Aith an overly simplified relational example that is enough t
P show the motivation for mapping composition and its advgesa
study that demonstrates the practicality of such approd, over the related approaches (Sections 2.1 and 2.2). Metivat

to the many challenges involved, including: how to reprEserLJ)y the need to support XML data, we then present the nested

schema evolution as mappings; what is the right mapping IaFelational model, nested schemas and mapping languaga, upo

guage, wh_at is the sema.nt.ics of such mapping cpmpositicm; @vhich our solutions are based (Section 2.3).
how mappings can be efficiently composed. In this paper, we ac

dress these challenges and offer a systematic study andreoem . .

hensive evaluation of how mapping compaosition can be a;bplig'l The Mapping Adaptation Problem

to solve the mapping adaptation problem. Consider the following example, based on the TPC-H schema,
Main contributions and paper outline I. We study the where an e-commerce application stores information ahqut s
mapping-based representation of schema evolution andtsiadw pliers and the parts they supply irSappPart relation and in-

itis more flexible and expressive than the change-baseésep+ formation about orders and the parts they orderfaat Or der
tation (Section 2); Il. We explore the semantics of mappimg< relation. These two relations are part of the sch&war ce in
position and its application to mapping adaptation (Sesti2  Figure 1(a). The following constraint from schet®aur ce to

and 3); IIl. We show that our prior mapping-based query rewrischemarar get (also shown in Figure 1) expresses the fact that
ing algorithm [22] can be applied to implement the hieracahi orders, together with all their potential suppliers (itegse that
mapping composition that we need for mapping adaptatioo-(Secan supply the relevant parts), must be exported into thgetar
tion 4); 1V. We desigrmapping pruningalgorithms to improve relationSuppOr der :

the performance of mapping adaptation (Section 5), and pro-
vide a comprehensive evaluation of the resulting systemwsh
ing its scalability and practicality (Section 6). Our woskpart In general, we allow the left-hand side of such constraitizee

of a recent effort for building a meta-data management Bystea conjunction of relational atoms over the source, and gyet-i
calledCriollo, jointly started between IBM Almaden Researchhand side to have a conjunction of relational atoms overghe t
and IBM Software Group. get schema. All variables on the left are universally quesati
Related work The ubiquity of schemas and schema mappingalthough not in this example, there may be variables in thbtri

has recently motivated the developing of frameworks foragan hand side that do not appear on the left. Such variables &€ ex
ing such metadata objects. Bernstein et al have introdussld s tentially quantified and are typically used to handle thoagsp

a framework [2, 3], callednodel managementOur work can of the target schema that do not have a correspondence from
be seen as part of this model management framework. Recenthe source schema. This class of assertions are known ad soun
two studies show the limitations of existing mapping larges (open-world) GLAV mappings [10] or s-t tgds [6]. A schema
(GLAV and s-t tgds) for mapping composition, and provide eommapping is a set of such assertions.

position algorithms within a limited context [12] or with an-  Schema evolutionAssume now that the raw data arrive from an
guage extension [7]. Our work uses the results in [7] andieppl external source in the form of tuplég, s, p, o, qty), relating an
them to the hierarchical model and the mapping adaptation coordero and a parp with an available supplier. Rather than split-
text. A more detailed view on how our work relates to existinging and inserting the data into the two relatioBsppPar t and
work on mapping composition and query rewriting is given irPar t Or der , a decision is made by the application to store the
Section 2.2. Besides [21], which we discussed earlier, 11, lincoming tuples, as they are, irLanel t emrelation, which be-
study schema evolution in the object-oriented databas#extd comes the new schenBour ce’ . This reorganization can save
However, the focus there is to recognize schema changes ahd cost of extra data processing, and the cost of maintathi
produce transformations to keep the data up to date. Anoth@ro original relations. However, the mappingthat depends on
closely related work is the EVE [9] system, which is the firsschemaSour ce must now be changed (migrated) to use schema
to define and address the problem of adapting view definitiour ce’ .

when the schema of base relations change. However, the sup-As mentioned, one solution is to regenerate a new mapping
ported changes are limited and evolution can only appedueat thased orSour ce’ andTar get , by re-establishing correspon-

(m) SuppPart(s,p) A PartOrder(p,o) — SuppOrder(s, o)

source side. dences between the schemas (schema matching), and rdgenera
ing the mapping that embodies the actual semantics of the-tra
2 Motivation and Overview formation (mapping generation). We refer to this methocdhas t

blank-sheet approachBesides being costly for large schemas,

In this section we motivate and give an overview of OUbis approach suffers in that the original mapping is notsid

composition-based approach to mapping adaptation. We Stafeqd during the regeneration. Hence, the semantics emié@tde

Lhttp:/ww.hi7.org/;  http://www.ebi.ac.uk/swissprot/ http://iwww.mged.  the or_iginal mapp_ing may be !O_St- A better approach isetese
org/Workgroups/MAGE/mage-ml.htm| the original mapping anddaptit in a way that (1) preserves the




intention of the original mapping, and (2) takes into acdalh lation SuppQr der (?) contains the pairs that the incrementally
the schema changes, so that the adapted mapping is valid wattapted mapping:’ requires to exist irsuppQr der , based on
respect to the new schema. Sour ce’ data. Notably;n® loses the fact thas should also be
Incremental approach and change-based representation related tos’, ando’ should also be related to

(CBR) One such method was established in [21]: the main idea Thus,m’ does not quite capture the intention of the original
is that schemas often evolve in small, primitive, stepfter each mapping, given the new format of the incoming data. Part ef th
such step, the schema mapping can be incrementally adapteddason this happens is that the n8aur ce’ data does not nec-
applying local modifications. We apply their incrementagjal essarily satisfy a join dependency that is explicitly erembih
rithm to our example by evolvin@our ce into Sour ce’ us- the original mappingn. There are other examples where the in-
ing one possible sequence of primitive changes. We refer toemental approach falls short in terms of preserving thease
such a representation of schema evolution (i.e., a list ifiipr tics. Furthermore, the same goes for the blank-sheet agiproa
tive changes) ashange-based representation (CBBased on Indeed, on the previous example, if we just match the common
the changes, we explain how mappings adapted according to attributes ofSour ce’ andTar get , and regenerate the map-
[21] (without giving the full details of that algorithm, wtth also  ping based on this matching, we would obtain the same mapping
operates on a different syntax). m’ as in the incremental approach. A systematic approach, with

e Move SuppPart/ s to becomePar t Or der/ s. The map- Stronger semantic guarantees, is clearly needed.
ping m has a reference tBuppPart/ s in the target side. ) N )
This will be changed to a referenceRar t Or der/ s. Also, 2.2 Our Approach: Mapping Composition and Mapping-
the second source atom must be changed to reflect this new Based Representation (MBR)

attribute in PartOrder. The resulting mapping is: The previous example showed one of the pain points of theincr
(m) SuppPart(p) A\ PartOrder(s,p,0) — SuppOrder(s,0)  maenta| approach: the lack of a precise criterion under wttieh

o Delete SuppPart/p and then Deletethe relation aqapted mapping is indeed the “right” result. The adaptegrma
SuppPart (we merge two steps into one here). Theing was given by the algorithm itself and there wasarriori
atom that involvesSuppPar t is dropped. semantic definition to validate the implementation.

e Rename PartOrder to Lineltem and Add In this paper we take the approach where the schema evolution
Lineltem|i and Linelten gty (we merge three itselfis quantified as a mapping rather than a list of changeis
steps here). The only source atom is changed to refer #gapping-based representation (MB&)schema evolution is a
Li nel t em(with two additional variables). We obtain: more general, more declarative and mpreciserepresentation

(m*) LineItem(ls,s,p, o0, qty) — SuppOrder(s, o) of howdataat the new schema relatesdataat the old schema.

Deficiencies of the incremental approaciThe incremental ap- Arbitrary (non-incremental) schema evolution can be tdlds

proach, designed to handle a few primitive changes, istiméui |ong as such evolution is expressed as a mapping. Morebigr, t

and efficient for such cases: the mapping is minimally chengenables a precise and simple definition of mapping adaptatio

so that it becomes syntactically valid with respect to the nethe compositionbetween the mapping describing the evolution
schema and still reflects the schema correspondences(i&., and the original mapping.

even whens moves fromSuppPar t to Part Or der). How- Back to the example in Figure 1, the obvious mapping from

ever, once we try to apply this algorithm to non-incremeeval  Sour ce’ to Sour ce is the following set of constraints, de-

lution, we are faced with several issues (some of them ajreagdcribing how data irLi nel t emrelates to data iSuppPar t

noted in [21]). First, the algorithm must be reapplied aéach andPart Or der , respectively:

primitive change. This can become inefficient since we often  (e) LineIten(l, s,p,0,q) — SuppPart (s, p)

need a long list of changes to represent non-incremental evo (e;) LineItem(l,s,p,0,q) — PartOrder(p,o)

lution scenarios. Even for our example, we need 6 primitivg, order to obtain the new mapping froBour ce’ to Tar get ,

changes. Moreover, the list of changes may not be given agd mge compos€es, e;} with {m} by simply substituting the refer-

need to be discovered (in the common case when we do notkngWces tdSuppPar t andPar t Or der in m with corresponding
how one schema evolved into another). If we do such discoveg¥ferences tai nel t em

then there may be multiple lists of changes with the sameeffe (. a) 1 o1ten(ty,5,p,01,91) A LineIten(ls, s2, p, 0, g2)
of evolving the old schema into the new one. The work in [21] - Suppbr:ie;‘(s: 0) N

did not study whether their algorithm is confluent (i.e., ez Mappingm® has now the same semantics as the original map-
the resulting mapping is independent of which list of chanige ping m, in the following precise sense: applyifgn®!} to a
given). " . Sour ce’ instance yields the sami&ar get instance as apply-
Furthermore, isomewhat surprisingly, the semantics of thgy first 1¢, ¢,) to the givenSour ce’ instance, followed by
above mappingn* may not be the expected one. Consider thg,\ving {17} to the resultingSour ce instance. This can be
instances in Figure 1(b). The r/mddle instance, urlSeur ce,  gagjiy verified for the data example shown in Figure 1(b).
includes two supplierss(and s') that both supply a certain — gptaining such composition, for schema evolution, is the fo
part () and two orders{ and o) that both ask for the same ¢, of this paper. Several remarks are in order now to better

. ) :
part (p). The left instance, undeBour ce’, consists of WO  gyplain and delineate our current work from existing work on
Li nel t emtuples that are consistent wiour ce data. The mapping composition and query rewriting:

relation SuppQr der (), under Tar get, includes all pairs
that the original mapping: requires to exist irsuppOr der
based onSour ce data: each order is paired with all suppli-
ers since they all supply the relevant part. In contrast,réhe

e Further extensions to the above mapping language are neces-
sary to deal with nested/XML schemas.

¢ While the above composition looks similar to query unfoidin
techniques, mapping composition poses its own set of chal-

2Including move/copy/rename/delete elements and addédetmstraints. lenges. A main difference is the incompleteness of mappings




Source:

that can manifest via the existentially quantified varialiteat Source:
Order: Set of

may occur in the target side. Because of this, GLAV mappings Lineltem: Set of

may not compose [12, 7]. On the other hand, an extension to lineitem ,,_,——»"'Séie!:kélt‘a'f"~~ Taraet
this language that includes second-order functions ssffice g;‘jf;:sy,, oo PATtKEY m
provide composability [7]. We will consider such extension - suppkey e OrderUSSupp: Set of
here, too. = suppliers: Set of wcs)::):)rkcegntact

¢ There are two different semantics that can be associatéd wit upplier: Set o= S e L | [ phone
mappings and, consequently, with composition. The first, L uppkey - W1 foregn supp 3| - ema
which we callrelationship semanti¢ss the one under which Phome .. Contact:Setof
mappings are constraints required to hold between pairs of i nation T+~ 17| S
stances over the source and the target schema. Under this§&jinal mapping “Lemail T

mantics, multiple pairs of instancés, .JJ) and(Z, J') may sat- 7 foreach o in Order,p in o.parts,
isfy the relationship (i.e., we do not have functionalityihe p’ in Part,s in p'.suppliers; in case s.supp—US.supp,
second semantics, which we calinsformation semanticss Wherec mpgili‘éyaft, partkey and i = c.cid
the one under which mappings are viewed as transfor_manonsexis?osp'm OderfJ'SSupp =
from source to target: given a source instard¢cehere is a with os.orderkey =o.orderkey and os.suppcontact.phone =.phone
canonical way of computing (by chasing) a unique target in- and os.suppcontact.email =.email
stanceJ. This transformation semantics follows the data exEvolution mapping
change line of work in [6, 7, 22]_ e1: foreal’c]h l Ilﬂ Li nkel t_em S0 Llrl Supsl ier fon = US’
e We argue that for schema evolution the transformation seman exiggs ereo |_ns ”5%3 ’—Is)ogug'r;)ae%g so-nation =
tics is more useful and more intuitive. In contrast, the rela p’ in Part,s in p’.suppliersi in case s.supp—US._supp,
tionship semantics, which is the focus in [7, 15, 17], is of- where in aofﬂi‘é act artkev and i  e.cid
ten too general and the result of composition is syntadyical ;7 O.ordé’rfey :l.%rd%rllgey &ép_.palrtkec)./ 2 partkey
complex. The transformation semantics, which is our folus,  “and i = so.suppkeyand c.phone =so.phoneand c.email =so.email
more challenging to implement due to the need for minimizas,. similar toe,, but with so.nation£‘US" as source filter, and

tion (as in conjunctive query minimization [4]). i in case s.supp—foreignsupp as target choice selection

e We show that our algorithm given in [22] to rewrite queries  Figure 2:A more complex mapping scenario and evolution.
over a target schema based on a source-to-target mapping can

be tailored to handle mappings (rather than target queiés) as a common data model for both relational schema and XML
show that we obtain a mapping composition algorithm that iSchema. The mapping betweSaur ce andTar get is a sin-
correct for the transformation semantics. gleton set containing onegical mapping(m). In general, a
e Mapping composition poses increased scalability chalengschema mapping/ between two schemasandT will be a set
when compared to usual query rewriting approaches. Thisni, ..., m} of logical assertions ove§ andT" that are called
is due to the fact that mappings between schemas must tggical mappings (or sometimes, mappings).
ten cover the entire schema, while queries usually accdgs on Expanded from the previous example, scheSoar ce de-
parts of a schema and typically produce simple output. Fogcribes data about orders, parts, and suppliers. Eacter
tunately, the mapping composition that is needed for scherg@ntains multiplePar t s, which can be supplied by multiple
evolution can benefit from special optimizations. One osuppl i er s thatare from either ‘US’ or ‘foreign’ countries (de-
our main contributions is to formalize such optimizationsla noted by thechoice type of thesupp element). Thepar t key
make the composition approach practical. foreign key associates parts with orders, whilelsesupp and

e While we concentrate here on mappings that have a directi" € gn-supp foreign keys associate tf@nt act informa-
(source-to-target), the recent work in [17] studies coripostion With the suppliers. _
tion of schema mappings that are given by arbitrary embeddeghemas and typen general, achemas a set of labels (called
dependencies over two schemas. While more general, thE§PtS), €ach with an associatgger, defined by:
framework also poses greater computational challengey: th 7 ::=Str | Int | SetOf 7 | Record[l; : 71,..., ln : Tn]
show several negative results, and give a composition algo- | Choice(ly : 71, .y In : Tn)

rithm that terminates under certain conditions. Schem&ievo Typesint andstr are atomic types (we only list two heredetof
tion is not specifically addressed in their work. types model the repeatable elements of XML Schemaraed
andchoice types represent the “all” and “choiceiodel-groups
2.3 Nested Mapping Framework respectively. In Figure 2, onlgetof andcChoice types are shown
explicitly. We do not consider ordesetof represents unordered
In this section, we introduce nested schemas and illustnate sets, and the “Sequence” model-groups of XML Schema are rep-
mapping language extensions that allow us to handle ewvolutiresented as (unordererBcord types.
scenarios involving XML and hierarchical sources. Thederex Intuitively, a logical mapping implements a group of arrows
sions follow closely the internal schema language and nmappibetween the “mapped” schema elements. Such arrows are also
language that we have developed in our previous work on Cligalledvalue correspondences (8fC's) [16, 18]. The intention
schema mapping generation [18], mapping-based queryteewrdf the above logical mapping: is to map all orders and their
[22], and incremental mapping adaptation [21]. parts, along with the contact information of thkS (only) sup-
Consider the mapping scenario between scheBwag ce pliers of those parts, into the target relati@hder USSupp.
andTar get in Figure 2. The schemas are shown in a nestethis is made precise by the formula that is associated with
relational representation (to be defined shortly) that canded in Figure 2. We abandon the logic-based notation in favor of




and linking “unknown” elements (e.g., encoding that the sam
Student: Set of

Takes” Set of si d value must exist in the two tabl& udent andEnr ol | s,
sid for a source studemtane.) Oftentimes, the necessary function
[name. terms are system generated (via Skolemization algorithms a

B ron_zz Set of via composition itself).
Sl

course Without functions, the above mapping language reduces to
maq: foreach ¢ in Takes mo: foreach ¢ in Takes the language of GLAV mappings (or s-t tgds), in the relationa
exists s in Student exists e in Enrolls case. This language was shown not expressive enough for com-
with s.sid = F¢.name)and with e.sid = F¢.name)and position: the composition of two sequential schema magping
s:name #'na_‘me , ¢-COUTSE Ze.course may not expressible in this same language [12, 7]. However,
e: foreach s in Studente in Enrolis where s.sid =e.sid [7] showed a natural extension, called second-order tgdSQo

exists ¢t in Takeg d hich includes f - di L |
with t.sid =s.sid and t.name =s.nameand t.course =e.course tgds), which includes functions and is compositional. Oapm

ping language is a nested-relatioeatensiorof SO tgds and, in
fact, the two languages coincide in the relational case.

. . . . Figure 2 also illustrates a source evolution scenario: the
a more suitable XQuery-like notation that can easily EPréIchemasour ce is evolved intoSour ce’ . In particular, the

havigation through nested records via record projection.(€ wq|ation Suppl i er now stores thenat i on of each supplier
os.suppcontact.phone), navigation through set-type elements by, 1, ;' |onger employs the choice type. An evolution mapping
using yanables to expllcnly_lter_ate over the sets, as aglthoice consisting of two logical mappings:( and e;) can be estab-
:/lelect_lon :)y exphmt:ase bmdln_gs_. defined by th lished, to describe how data 8our ce’ are related to data in
apping language An expressions defineéd by theé grammar g, ce \We point out that such evolution cannot be expressed

Figure 3:Schema mappinggni, m2} and{e}, using functions.

e u= S5 | x| el, wherex is a variable,S is a schema root, ,¢ , jist of schema changes (for example ghppkey element
[ is a label, anct.l is record projection. Aermis defined as in Sour ce’ corresponds to two elements3our ce, depend-
tu=c| rllf(t)t,hw?e”reF_ IS ]‘:" function symbol. Then a logical j4"on the value ohat i on). Thus, the mapping-based repre-
mapping has the foflowing form. sentation is strictly more expressive than the changeebiage
m :=foreach z1ingi,...,zning, where B resentation of schema evolution.
exists  y1ing),...,yming,, where B Composing the evolution mappi with the original
with. o2 and " ana 2y posing PPiN@1, €2} g

mapping{m} will yield the following mappingn®:

Eachz; in g; (y; in g;) is called agenerator Eachg; (¢7) IS foreach ¢ in Lineltem? in Li nel temso in Suppli er

either: (1) an expression of type setof 7, in which case where i.partkey =I’.partkey and I’.suppkey =so.suppkeyand sq.nation = ‘US’

the variablez; (y;) binds to individual elements of type, or %Osogrdi_g”g dsrol;'gsrtll(gpand e SUDRCONACLBMONE = Bhone

(2) case e—l, wheree is an expression of typenoice(..., [ : ¥ 57 Oslsuipéontact'e%ﬁ%o.'emgﬁ P o-P

7,...), inwhich caser; (y;) binds to the element (if any) of type

7 under the choicé of e. The variable (if any) used ip; (or Coming up with such adaptation of by hand would require

g;) must be defined by a previous generator in the same clauserather good understanding of the schemas and mappings. The

Any schema root used in thereachor existsclause must be a task becomes increasingly challenging with increasingign<

source or target schema root, respectively. Thewvareclauses plex schemas (which are common occurrences in practiced. Th

(B1 andBs) are conjunctions of equalities between souerens  rest of the paper will address the semantic, algorithmicmaad-

(in the case of3;) or targetexpressiongin the case of3,) over tical issues involved in the automatic derivation, by cosipon,

x; or y;, respectively. We also allow equalities or inequalitie®f an adapted mapping suchsas.

with constants (i.e., selections). In tvgh clause, each equality

e; = t; involves a targeeéxpressiore; and a sourceerm¢; ofthe 3 Semantics of Mapping Composition

sameatomictype. _ _ _ _
In the above example, the schema mapging contains no There_ are two p053|_ble semantics that can be. assomate@ with

function symbols. As a different example, consider the swhe Mappings and mapping composition: tieéationship semantics

mapping{m1, ms} shown in Figure 3. There, the function sym-and thetransformation semantics _

bol F appears in botln, andms; the term F{.name) is usedto  The first semantics [7, 15, 17] is a general notion that can

represent a student id that is associated, via F, with treestu be used when mappings describe arbitrary relationshipeseet

namet.name. It is this term that is “assigned” to the targetl  Schemas. More concretely, a mappiffj between a schema

element in the two logical mappings. S and a schemd&’ represents a binary relation between in-
Let M = {m1,...,m;} be a schema mapping consistingstances ovetS and instances ovef’ Inst(M) = {(I,J) |

of a set of logical mappings and Iét,, ..., F,,} be the set (/,J) satisfiesM }. Then, given a mapping/,, from 5, to 55,

of function symbols that appear . Then) defines a con- & mapping\/»s from S; to S3 and a mapping/,3 from S5 to Ss,

straint between instances of the two schemas that holds-whYe say thafl/,; is the composition of/;, and M>3, with respect

ever one can find an interpretation for the functidas. . ., F,,, o the relationship semantic /3 induces thesamebinary re-

so thatall ofny, .. ., m, hold, for the given interpretation. Thus, lation Ins{}/,3) between instances 6f andS; as the binary re-

the meaning is that of a second-order constraint of the forkation thatis the composition of Inst/;2) and InstM23). (The

3Fy...3F,[m1 A ... A my]. We note that the functions that we COmposition of binary relations P and Q is the binary refatio

consider aramotthe traditional user-defined functichsur func-  {(z;2) [ 3y (z,y) € P A (y,2) € Q}.)

tions are special and have a more basic role of explicithyotag The second semantics is applicable when mappings describe
transformations. More concretely, a mapping between a

3Which we did not include here, for simplicity of presentatio schemas and a schem@ represents a transformation that, given




a source instancg generates a canonical target instafé€l).  pair (11, I3) is in the composition of the binary relations asso-
The process of generating (I) involves two steps. First, each ciated with the two schema mappings. This is because there is
logical mappingm in M is skolemizedall the atomic type el- an instancelz, namely the one consisting of tupleX, Alice],
ements that (1) are reachable via record projection frontathe [X, Mary] in Student, and tuples|X, Math|, [X, Art] in
get (i.e.,existy variables ofm, and (2) are not (explicitly) as- Enr ol | s, such tha{;, I) satisfies{m1,ms} and(I, I3) sat-
signed a source term by thth clause, are now assigned a termisfies{e}. The first satisfaction is true under an interpretation of
of the form F'(¢1, ... ,tx), whereF' is a new function symbol, F for which F(Alice) = X andF(Mary) = X. (The second
andty, ..., t; are the source terms that appear iniilita clause satisfaction is obvious.) In contrast, the péir, I}), wherel
of m. Care must be taken so that the atomic elements that amentains just the tuplelsX, Alice, Math] and [ X, Mary, Art],
required to be equal by the targetiereclause ofim are assigned is not in the composition relation. Otherwise, the only way f
the same term. All the new functions are added to the alread¥, ;) to be in the composition relation would be to pi¢k
existing functions of\/. The result of skolemization is a new setsuch thatF'(Alice) = F(Mary) = X and then the other two
M’ of logical mappings. tuples [ X, Alice, Art] and [X, Mary, Math] would also have

The target is then populated from the source instangea to be part ofl}, which is not the case. The above mapping
minimal way, by adding all the elements that aeguiredby correctly distinguishes between the cas€of I3) and the case
M’. The atomic components of the generated elements are ef-(11, I5) by explicitly requiring the existence of the two extra
ther source values or ground function terms (formed withuact tuples (since’'(Alice) = F(Mary)).
source values). Moreover, we perform PNF-based merging as i However, for data transformation purposes, mapjpinig un-
[22]. For an example, consider the &&rt in Figure 2: all of necessarily complex and unintuitive. A typical user willesf ex-
its tuples that have theamepar t key value will be merged into pect to see an “identity” mapping betwe&nandsSs. In fact, the
one, by combining all their supplier sets into one set. Bsalyn  canonical transformation froi$y, to S5 based omn will never as-
we perform grouping bpar t key. In general, such grouping is sign the same id (via F) to two different names. (In the cacalni
done based on all the atomic components of a tuple, and at evéarget instance:(I; ), with I; as aboveF'(Alice) andF (M ary)
level (recursively). Moreover, this grouping is indepemnidaf the  will be two distinctground terms.) Thus, for canonical transfor-
mappings, that is, we could be merging sets of suppliersmgmimation purposes; is not arbitrary but one-to-one. This enables
from different mappings (and sources) as longpast key is  the reduction ofn to:
the same. . . . m': foreach to in Takes

At the end, every ground function term is uniformly replaced exists ¢ in Takes
throughout the target instance, with a distinatl. The final re- with ¢'.sid = F¢2.name)and ¢’.name =t;.nameand ¢'.course =3.course

SU|tM(I).iS uniquely determined (up to rgngming of nulls). Thgy, 5 nutshell, sincé" is one-to-one, the equality f(name) =
construction that we sketched here is similar to the prooéss F(to.name) inm can be replaced b .name =t,.name. Then

chasing with second-order tgds described in [7], with thei-ad ¢ first generatort() overTakes becomes redundant and can
tional PNF-based merging. be eliminated. This step is akin to minimization of conjuvet

The transformation semantics of composition is as fonowﬁueries ([4], see also [5] for the nested case). We noteriteid
Given a mappingl/;, from 5, t0 53, a mappingMas from > . arenot equivalent in general, but they are equivalent under
to S3 and a mapping/;; from S; to Sz, we say that\l13 is the i q transformation semantics.

composition of\/1» and M3, with respect to the transformation = 1o simplicity of the resulting mapping becomes a stronger

semanticsif for every instance, oversy, we have thal/13(11)  argument when schemas and mappings are complex and the re-

ii thehslame (up tolrekr:aming fOf nulls) ﬂﬁzs(Ml?(Ilr)])' Al- quction accomplished by such minimization can be significan
though less general, the transformation semantics has 80 M jihqugh minimization is expensive, its usefulness forasgo

advantages: (1) it is better suited when mappings are iB&NG ogtigate techniques for making the resulting methodfiis e

to describe transformations, and (2) the resulting coniposi  .iant as possible (Section 5).

mapping can be greatly simplified. As a byproduct, the adpte g1y we note that for the example in Figure 1, the schema
mapping, in the case of schema evolution, can be much ClnsernHapping{m“} given in Section 2.2 is the composition with re-

syntax to the original mapping. This is a design issue thatili® g6t 1o hoth semantics (and the same happens for the example

Importantin practice. _ _ _ Figure 2 and the correspondifig:®}). From now on, we focus
Mapping reduction under transformation semanticsConsider on the transformation semantics.

again the evolution scenario in Figure 3. There, the tasgeif
the mappind m1, ms } is evolved into a new targék, consistin . - .
of oneezla'%i{onTake}s’ , that is similar to the(‘:]relatioﬁ'akesg 4 Mapping Composition Algorithm

in Sy but has the extrai d element. The evolution mapping In this section we articulate the observation that the qremyit-
from S, to S3 is {e}. There,si d is used to join students with ing algorithm given in [22] can be used to compose mappings.
enroliments to obtain the related course information. it ba Given the syntactic similarities between mappings andigsgit
shown that the composition of the mappings, with respedieo tis not surprising that we are able to reuse that algorithner@h

relationship semantics, is given by: to rewrite a queryj, over a schemas in terms of a schemd,
m: foreach ¢; in Takesty in Takes where F(t;.name)= F{z.name) based on a schema mappiff >, a set of rulesR;s is gener-
exists ¢’ in Takes ated to compute, for each source instaigea canonical target
with ¢'.sid = F¢1.namejand '.name ; .nameand ¢'.course ¥2.course  instancel,, according to the transformation semantics. Then

This mapping is surprisingly complex, still correct. To @nd can be rewritten into a source quegyby essentially performing
stand this, consider an instangewith tuples[Alice, Math] and  substitution withR;». The same machinery works here, except
[Mary, Art], and an instancé; with tuples[X, Alice, Math], that instead of rewriting a query ovék we rewrite a schema
[X, Alice, Art], [X, Mary, Art], [X, Mary, Math]. Then, the mappingMs; from S; to a third schem#&s. We then show that



the resulting algorithm serves our purpose, that is, theréilgn We remark that it is possible that the above composition-algo
yields a correct compositiah/; 3, with respect to the transforma- rithm starts with schema mappings containing no functibns,
tion semantics. (For query rewriting, the semantics of éverit-  the resulting composition contains functions. This canpeap
teng; is that it computes the “right” answers @f; in particular, because functions can be introduced during the skoleraizati
if g2 is conjunctive,q; can be used to retrieve tloertain an- step in Phase |. Even though our algorithm makes no attempt
swers which is often assumed to be the standard semanticstim de-skolemize the resulting mappings, in general a cample
LAV/GLAV systems). de-skolemization may not be possible (i.e., the functidnstly

We now give a brief review of the rewriting algorithm in [22], increase the expressive power of mappings).
adapted for mapping composition. We assume that we needThe following theorem asserts the correctness of the compo-
to compose two sequential mappindis., from schemaS; to  sition algorithm. The proof uses the fact that the evaluatd
schemaSs, and M3, from schemab, to schemass. The algo- the generated rule®;,, on an instancé;, coincides (up to null
rithm works in three phases. renaming) withM12(1;) (as defined by the transformation se-
Phase I: Rule generationwe first skolemizelf,, into M;, by mantics). HenceMy3(M;2(11)) is the same adlo3(R12(11)),
using the method described in the previous section. We then g for every I;. Next, we use the fact that every step used in the
erate a seR;, of mapping rules for all theetelements o6, that  substitution phase preserves the equivalence of mappirigs)
are referred to inV/],. Considering Figure 2 aneh only, the viewed as constraints. Finally, we use the fact that redogiie-
following rules forPart andPart/suppl i ers of Source serves mapping equivalence under the transformation d@man
are created:

Part =for Iy in Lineltem,so in Supplier Theorem 4.1 If M3 is the result of applying the composition
where lo.suppkey =so.suppkeyand so.nation = ‘US’ algorithm to M5 and Ms3, thenM; 5 is the composition af/;2
return [ partkey =lo.partkey, suppliers 5 K(lo.partkey)] and M3 with respect to the transformation semantics.

SKs(p) =for 1 in Lineltem,s; in Supplier _ ) ] .

where [1.suppkey ?alr-tsklégpkem s1.nation = US' 5 Implementing a Practical Composition-Based
ana p=t1. . .
return [ supp :< US_supp :Sl_suppkey> ] Mapplng Adaptatlon SyStem

In general, a rule defining a set element comprisasianof for-  Although adaptation with the composition algorithm desed
wherereturnqueries (depending on how many logical mappingi Section 4 (referred to as the full adaptation) capturdtebe
refer to that element). Moreover, a set element that is rpt tosemantics, it is of little use unless we can have an efficigsiesn
level (e.g.,Part/suppl i ers) is defined as @arameterized implementation. We now describe the issues involved irdingj
view (e.g.,SKs(p), whereSKs is a new Skolem function sym- a practical mapping adaptation system.

bol that is uniquely associated Rar t / suppl i er s, andp is Figure 4 shows a more complex example of target evolfition
the parameter). In our first rule, for eakhpart key we must that we will use throughout this section. The original magpi
create an instance ¢fart/ suppl i ers (which will contain involves two schemassrc andt gt, and three logical map-
the group of suppliers for the givgmar t key). The creation pings{mi,ms, m3}. Both schemas describe information about
of such instance is then expressed by “invokistX's with the  departments and classest ¢ uses a relational structure while
actual parametédp.par t key. Note how this achieves the PNF-t gt uses a more hierarchical structure. The logical mappings
based merging described earlier. Finally, for each atoteiment are as follows:m; maps classes along with associated students;
that must be output in theturnclause, we use the correspondingn. maps departments alone; and the more compigxmaps
source term that appears in thigh clause of the logical mapping. both department and classes, associated via the interraedia
Phase Il: Substitution The setR;, of rules is then used to lation Of f er By. Thet gt schema is then evolved intogt ’
translateall references t@, that occur inMs; to references to where the original hierarchy of classes and students bezame
S1. This is accomplished by iteratively substituting set edats  flat structure.

(Part, Part/suppli ers, etc.) in the logical mapping)

with their corresponding rule expressions. The set typde®ko 5.1 Deriving Evolution Mappings

functions introduced in the rules play a role only duringnsia-
tion and do not appear in the final logical mappings. Becaus
rule usually has a union of queries, eaghn M3 will be trans-
lated into several logical mappings. We taki; to be the union
of all these logical mappings.

Phase lll: Reduction For each of the logical mappings i3

Bgfore mapping composition can be applied eaolution map-

e ; L

ping must be established. However, schema evolution is rarely
represented as a mapping in practice. Instead, it is eidpref
sented as a list of changes (CBR) or, more often, implicithy e
bedded in the new version of the schema. Still, one can danive
olution mapping from the change list or by comparing the tw

we now perform mapping reduction, along the lines d'scussg\}irsions of the schema. Next, we sketch the algorithm that we

in Section 3. This reduction looks at the equalities in therce imolemented for the semi-automatic generation of an eiaiut
whereclause of the logical mapping. All equalities between func- P 9

tion terms are replaced (recursively) by the equalitieheirtar- mapping, given two schema versions.

guments, whenever the function symbols are the same. Furthsecr\]/g renasfsagrgwfsri]mahI?;\Tgl)eu;;hﬁg?gggécwspggiveéevxhgg the
more, any equality between terms with non-matching fumctio ents with the samabsolutepath in both schemas are estab-

symbols is regarded as unsatisfiable (since such non-mgtch). X ; ;
function symbols will always produce distinct ground terons- tﬁgr?dué?j.gr”g?r’\/smgc%n/ g / %Cg)ﬁsgrhlivggf;u;t Sgéqgg/g:_

der the transformation semantics) and the respectivedbgiap- cen elerr?ents tphat no Ign er corrés ond toyeach other and
ping in M3 is dropped. After all such equalities are processe(&‘fv 9 P

a logical mapping that is not dropped undergoes minimizatio 4Although we focus on target evolution in this section, adl tchniques de-
find its minimal equivalent form. scribed will apply with minor adjustments to source evainti




src:

S(tudent): Setof tgt: gt 5.2.1 Unaffected Mappings

sname. C(lass): SetOf C(lass): SetOf ) ] ]
-t cname 1. €id wesssmasmmaasar kcid We first define the notion of (un)changed schema elementsdbas
Cflass): SetOf e f| ] (T T e on the V(s that are established between the original and the
""jii -] Sttudenty: setor | .} sname evolved schemas (see Section 5.1). uithanged elemenis
oferB Setof sname """ D(ept): SetOf an original schema elementfor which a corresponding ele-
(ferBy): Se DIepty: SetOf -1~ F e mente’ with the same path exists in the evolved schema, and
did ¥ dname----~~" |- addr for which the onlyV C involving e is the “identity” VC' be-
et I o 1 5 £ AN [ B B el tweene ande’. All other elements arehanged elementswhich
Gt SOl AL | g | | v tname are original schema elements whose paths are no longeroralid
dname |-~ * tname .-~~~ Cllass): Setof whose semantics have been dropped, altered, or sharedx+For e
addr . Cl(ass): SetOf | . o przzpll . .
P ample,/ ¢/ S/ snane is a changed element because the path is
) . . B no longer valid in the evolved scherat ’.
m: foreach sinsrc.Scinsrc.C where s.cname =c.cname | | ithm. instead of identifvi Il ch del
exists ¢ intgtC,s' inc.S ~Inour algorithm, instead of identifying all changed elertsen
with s’.sname =s.snameand ¢’.cname =c.cnameand ¢’.term =c.term itis enou_gh to |dent|fy_ only th(_ahange_d set elements(We ig- o
mo: foreach dinsrc.D  exists d' intgt.D nore choiceelements in this discussion; they are treated simi-
with d'.did =d.did and d'.dname =d.dnameand d’.addr =d.addr larly to the way set elements are treated.) A changed seeelem
mg: foreach cinsrc.C,oinsrc.0,d in src.D is defined iqinal el f hat i ith 1
Where c.chame —o.cnameand o.did = d.did is defined as an original element of set type that is either(1)
exists ¢/ intgt.C,d intgt.D,# ind’.T,cl in¢'.Cl changed element itself, or (2) has at least one directlyhagale
where c’.cid =cl’.cid non-set element that is a changed element. For examples is

with ¢’.cname =c.cnameand ¢’.term =c.termand d’.did =d.did and
d’.dname =d.dnameand d’.addr =d.addr and ¢’.tname =o.tname

Figure 4:A more complex evolution scenario

a changed set element. Affected mappingis simply an orig-
inal mapping which uses at least one changed set element. For
our examplem, which uses the changed elemé¥ S in the

addVCs between elements that correspond to each other (e giStsclause, is the only mapping affected. . .
(/C/S/sname = /C/sname)). The user may also specify ar- Unaffected mappings provide the starting point for mapping
bitrary elements in the two schemas as starting points ofimat Pruning: they can be removed from the adaptation workload.
ing. In this way,V’C's between elements with the sametative  Furthermore, their removal may in turn render certain evofu
path (from the two respective starting points) can be eistadt MaPPINGS UNNECESSary (because the participation of those-e
automatically. Finally, a default set of logical mappingéiich 0N mappings in the adaptation does not give rise to any vl
could be further modified by a user) is automatically gereetat "ON-rédundant adapted mapping). However, those unnegessa
from the final set o’ C's, based on an existing generation algoMaPPIngs can not be detected just by checking for changed el-
rithm [18]. The following logical mappings are created faro €Ments. To correctly detect which mappings are necessary, w
example (thevith clauses can be inferred from the's between must first understand the role that each mapping plays during

tgt andt gt and are omitted): comp_qsition, thrqugh the concepts admposability linksand
e1: foreach cin tgt.C exists ¢’ intgt’.C with .. conditional mapping containment
eo: foreach cintgt.C,sinc.S exists ¢’ intgt'.C with ...
e3: foreach din tgt.D exists d'intgt’.D with ... 5.2.2 Composability Links and Conditional Containment
ey: foreach dintgt.D,tind.T exists d’intgt'.D,t ind’.T with ...
es: foreach cintgt.C,dintgt.D,tin d.T,clin t.Cl where cl.cid =c.cid Let us consider performing the full adaptation, without ipiag

exists ¢’ intgt’.C,d"intgt'".D, ¢'ind".T,cl’ in#'.Cl where c/’.cid =¢.cid  pruning, on the evolution example in Figure 4. For each evolu

with ... . . . . )
. . . . tion mapping, the composition algorithm iterates throutjgen-
These mappings enumerate the basic ways in wihithdata can - eators and substitutes each set expression with the rfiférg

map tot gt ' data, based on the structure and constraints of thg,t set. Consider the evolution mapping Its sole generator
schemas. None of these formulas can be removed, although sqRyo|ves the set elemer@, for which a rule with two terms ex-
are seemingly redundant. For examplemapsd ass while e ists one for each of the two mappings andms that “map”
maps bothl ass andSt udent . Howevere, is required since i ¢ Hence, the composition algorithm replacgswith two
only it can map classes Wlth(_)ut associated students. _Wlth RYyical mappings, one for each choice ( or m3). In general,
further information, both mappings are needed for the &I@pt,  he algorithm continues until all generators are trandlatéhe

to avoid losing valid adapted mappings. translation process can thus be visualized as a tree, whete e
root-to-leaf path (branch) corresponds to one of the finadly(f
translated) logical mappings. For each such branch, wedeco
Full adaptation (i.e., composition of the original mappimgh  the set of all of the original mappings that are chosen at some
the evolution mapping) can become inefficient when the selsemsubstitution step along the path.

involved are complex, even when the schema changes are Bé&finition 5.1 A composability link (CL) is a pair:

5.2 Mapping Pruning

atively small. The inefficiency can be easily understoode thfrom {m,...,m,} to m., such thatm. is an evolution
full adaptation adapts all of the original mappings usifgodl mapping, and there is a branch in the translationsaf for
the evolution mappings even though some of the original maghichmg, ..., m, are all the original mappings that were used.

pings are not affected by the changes and therefore reqaire n Generating all the possibl€'Ls can be done efficiently by
adaptation. In this subsection, we present a mapping pgunigimply analyzing the set elements involved in mappingouit
method that filters out not only thenaffectedriginal mappings, performing the actual translation itself. For our example,can
but also the evolution mappings that do not need to parteipa establish the following’Ls:

the adaptation. As a result, it significantly reduces thekiead 5An element/ . . . / BI C1/ o/ . . ./ Cul Alis directly reachablefrom B if
(i.e., mappings to be composed). all C; are record type elements.




Input: original and evolution mappings1,.-i, Mewvo,
the set of changed set elemegisthe set of composability link€'L S,
the set of conditional containmentsC'S,

1. Initialize M, = {}, m. = {}; // final adaptation workloads

2. Initialize M,, = Mri;

3. foreachm € M,.;: I/ remove affected original mappings frohd,,

4. if m.exists usese € E: removem from M,,; break;

5.foreach! € CLS, eachm € I.from:

6. if m € M,: removemn from [.from;

7.foreachl, € CLS:

8. if I1.from is empty: remové; from C L.S; continue;

9. if 1;.to can not be fully translated with .from:

10. remove; from C L.S; continue;

11. foreachls € CLS:if I1 = l2: removels from C LS,

12.foreach (m1, ma, C) € CCS: /l mo containsm; underC

13. foreach (l1,12),1l1,lo € CLS andl;.to = m; andl2.to = ma:

14. contained #rue;

15. foreachm € [;.from: if m.exists not satisfy C': contained =false; break;

16. if contained: remové; from C'LS;

17.foreachl € CLS:

18. M, = M, U l.from; M. = M, U l.to;

a duplicate ofL3; and thefrom clauses ofL;( 12 become insuf-
ficient to translate the respective evolution mappings (&ans-
lating e5 requires a rule fof Y T, which can not be provided
by m1, the only mapping left in thérom clause ofL;). All
these composability links are removed, which leaves us f4th
and L3, involving one original mappingy, and two evolution
mappings,e; andes. Next, ., and Ls are checked for redun-
dancy according to the conditional containments (linesL&p-
We have previously identified that containse; under the con-
dition: v (cetgt.C) 3 (s€c.S). The condition is satisfied since the
only mappingm; in from clauses of_.; and L3 ensures that all
the classes ihgt will have an associated student (seg.exists
in Figure 4). As a result,; is removed. The detection of the
condition satisfaction is standard: we check whether thheca

cal database that can be associated withexists(together with
the correspondinghereclause, when it exists) satisfies the con-
straint.

Finally, the algorithm collects the original and evolutioap-
pings from thefrom andto clauses of the remaining composabil-
ity links: those mappings will be the final workload for adapt

es: Lo from {m3} t0 e5; L1g from {m1,m3} to es tion. Because only.3 remains in our examplehe adaptation
L1y from {mz, ms} t0 e5; L1z from {m1, mz, ms} t0 e5 only needs to compose; with e, a significant reduction from

While C'Ls represent dependencies between original and eupre original workload (three original and five evolution map
lution mappings, they do not capture dependencies among eyings). Although pruned from the workload of adaptatiore th
lution mappings. Consider; ande,;. Without any condition, removed original mappings will still be part of the final atkp
both mappings are necessary sirgemaps classes that do notmappings: they are simply unchanged.
satisfy the condition imposed iy, (i.e., having at least one en-
rolled student). However, if the original mappings papating 6 Experimental Evaluation
in the adaptation guarantee that no class will be emptje-
comes redundant and can be eliminated.

Definition 5.2 A conditional mapping containmentis a triplet
(mq,mo, C) satisfying: for every instancksatisfying constraint

19.return M, , M. (subsets ofM ,,;, Mo, respectively).

Figure 5:Algorithm MappingPruning

e1: Lifrom {m1}10e1; Lo from {m3} 10 e1
ez: Ls from {m} 10 es; Lg from {m1,m3} 10 ea
e3: Ly from {m2} to e3; Ls from {m3} to e3
eq: Ly from {ms3} 10 e4; Lg from {ma, m3} t0 eq

To evaluate the performance of our approach, we implemented
the MACES (Mapping _Adaptation, using_Gmposition, for
Evolving Schemas) system and tested it with a comprehensive
; , , set of synthetic and real life experiments. We show that vthen
c, ml.(l)d'.s a sub(—jmstance Ofnz(I). We also say that, is mapping pruning techniques are incorporated, the systatassc
contained inm; underC. ) ) well with increasing mapping complexity in most of the syatth

“We have developed an algorithm that can detect potential coftenarios and can efficiently adapt mappings in the two eal a
tainment relationships between evolution mappings aloity w pjication scenarios. The system is implemented using Jagta a
the condition under which the containment is valid. The ma|a|| experiments were performed on a Windows XP SP2 machine

idea is to detect mappings whose generators and conditens ¢2 0GHz P4 CPU, JRE 1.4.2, 384MB VM).
all be matched against another mapping, and the extra comdit

in the other mapping naturally becomes the containmentieon@.1 System Scalability
tion. Applying the algorithm to our example, we obtain thé fo
lowing conditional containments:

(e1,e2, V(cetgt.C)3 (s€c.S));

(ea,e5, V (detgt.D)V (t€d.T) 3 (cl€t.Cl) 3 (c€tgt.C) cl.cid = c.cid);
(es,es, V (detgt.D) 3 (ted.T));

The synthetic evolution test case examines the scalahfity
MACES. It covers a range of complexity levels (measured by
schema depth and fanout, explained shortly), where eaeh lev
consists of eight different scenarios. Shown in Figure 6{B3
(e3,e5, ¥V (dEtgt.D)3 (ted.T) 3 (cl€t.Cl) 3 (cctgt.C)cl.cid =c.cid).  scenarios are created from five schem@snd X, representing

.- . : "
The algorithm does not guarantee to detect all possibleieongger%rs'%'gsrl] reg(')?::é "’Ecgﬁhgli‘ns?g?ggf‘%ﬁfpgcg\;g}’g%?;;é
tional containments (i.e., it is not complete). Howeverlaes P 9 ; i 9 ning op

of R and X respectively; andr, representing a schema that has

detect most of the containments that can be utilized by the ma, o ved sianif 4 ; ,
; . . . : gnificantly froniRandX. Ten mappings (directed solid
ping pruning algorithm, which we discuss next. lines) are established®R— X andX—R represent the two original
. . . mappings and the rest represent evolution mappings -¢R’
5.2.3 Mapping Pruning Algorithm andF—X). Each scenario (directed dashed lines) involves three
The mapping pruning algorithm (Figure 5) first identifiestté schemas and two mappings. For example, following dashed lin
original mappings that are unaffected by the change (linéy 3 #4 in the clock-wise direction, we obtain a target macro @vol
and then removes them from the workload as well as from aibn scenario wher® is mapped intoX, and X is subsequently
the composability links (lines 5-6). For our example, andms  evolved intoF. This scenario is also detailed in Figure 6(/&):
will be detected and removed from multiple composabilitk§  contains one central element (relatigs), to which a number of
(e.g.,Ls, L12, etc.). Next, all composability links are examined‘chains” of elementsR;1- Ri2, Ry1- Ro2) are associated, and el-
for the impact of the previous removal (lines 7-11). In ouaex  ements in each chain are linked via referential constraidsn-
ple, after the removal of.; andmg, among the 12 composability sists of one root elemen§), which contains a number of child
links: thefrom clauses ofL, 59,11 become emptyL, becomes elementsig;1, R:1), and each child element itself leads a chain



A Relational Schema (R): XML Schema (X): Flat Schema (F):

Adaptation with Increasing Schema Depth (Fanout = 3)

R,: Set of R,: Set of R;: Set of
»»»»»»»»»» 3 ---'"--@"' PKo PR, 6.0 100
-------- PBy ¥By,
m, Ry Setof | - wB, 50 —
K. e o /
BT 2L VR N /
e By 7 W 40 A1
t Ky -1 - Ryp: Setof 4~ Ri Set of 5 M H
By _,_vKlz r/' By % z 30 % g
Ryp: Set of Tf-vBa _rBa § 2 / /A g g
| Ry: Setof - #Ba gr 20 tgF
‘‘‘‘‘‘‘‘‘‘‘‘ -Fyp 21 = L o 3
Kiz my v Ko T é 1.0 K
By o lwBy Lt ' 4
Ryt Setof |- , \
v Ky . R X 0.0 0
Ry, : Set of 1 '%B 4 2 4 6 8 10 12 14
Fyr S 2 . \ 1 2 / Schema Depth
--------- » K21 \;_\:_w:::: —A— Source Micro Evolution (X2R) —0—Source Macro Evolution (X2R)
H 821 L R 4—"> x —a— Target Micro Evolution (R2X) —@—Target Macro Evolution (R2X)
- «——z=z"
i Ry:Setof 7.7 ==
. PRypisetof T Vm, 30" Ja
Fa 1 \ ‘/ Adaptation with Increasing Schema Fanout (Depth = 3)
K. ’ : . )
Bzz » Scenario 4 (CW): ) 0 1000
22 R2X Target Macro Evolution F
with Depth = 2 & Fanout = 2 B oo /,E

2: (CW) X2R source micro evolution (CCW) R2X target micro evolution
3: (CW) R2X source macro evolution (CCW) X 2R target macro evolution
4: (CW) R2X target macro evolution (CCW) X 2R source macro evolution

(CW): clock wise direction; (CCW): counter clock wise direction

100
1: (CW) X2R target micro evolution (CCW) R2X source micro evolution 80 /
| A

Source Evolution
Time (s)

N -

s b

Target Evolution
Time (s)

Figure 6:Details (A) and overview (B) of the synthetic scenarios.

of elements connected via parent/child relationshipfiattens P
each chain into a single relation, while maintaining the hem Schema Fanout
Of ChalnS. The Ol'lglnal mappln@(_)x) COﬂtaInS manua”y gen_ | —A— Source M\cro Evolution (X2R) —— Source Macro Evolution (X2R)
. . —a— Target Micro Evolution (R2X) —@— Target Macro Evolution (R2X)
erated logical mappings that together fully map the cowadp
ing elements in both schemas. The evolution mappkg ) Figure 7:Evaluation of mapping adaptation.

contains logical mappings that are automatically gendragele-

scribed in Section 5.1. Theomplexity leveis determined by the As shown, the system scales reasonably well with the inzrgas
depth and fanout of the schemas. Depth is the number of set ggmplexity. For a rather complex target macro evolution sce
_ementS within each Cha|n, while fanout is the number of d]a]rhario with schema fanout at 50 (101 |Ogica| mappings and 302
in the schema. In each scenar®andX have the same depth yCs in the original mapping), MACES finishes the adaptation i
and fanout; and the evolved schema has comparable size Wihs than 5 minutes.

the original schemag=(has a proportionally smaller size, while  The results also show that, despite being more complex in

R andX'is as complex aR andX respectively). _ nature, adapting macro evolution is not a lot worse than adap
_Increasing fanout leads to increased number of logical mag;y micro evolution. In the case of target macro evolutiothwi
pings andV’Cs in both original and evolution mappings, whilegee;, schemas, the performance is even better than that of the
increasing depth leads to not only increased number of #giCcorresponding micro evolution. This is due to an optimizati
mappings but also increased complexity of each logical PP techniquerule simplification employed by MACES to simplify
(largerforeachandexistsclauses). Table 1 summarizes the stamapning rules that include union. The simplification is doge
tistics of synthetic scenarios at median complexity levéter  ramoying the terms in the union that are contained in (sulesim
all micro evolution scenarios, a single leaf level VC is afé#, 1,y other terms in the union. The terms that are eliminated ar
affecting a single original logical mapping. For all mack®e  {ne |arger ones (with more generators and conditions, thare m
lution scenarios, all VCs are affected (the worst case sTBRa (egirictive); this results in faster subsequent processfor tar-
affecting all original Ioglc_al mappings. __get micro evolution, most of the logical mappings in the brig
Performance of adaptationFigure 7 evaluates MACES (With 5| mapping are pruned out, yielding mapping rules thataiont
mapping pruning) on a series of evolution scenarios with ifg\er (but larger) terms in the union, with fewer opportiestor
creasing schema depth or fanout. We show the performance,gfe simplification. Rule simplification also explains whyzgpt-
adapting—Rin the case of source evolution (left y-axis, lineafnq soyrce evolution can be faster than adapting targetiéual
scale) and adapting—X in the case of target evolution (right (pecause there are usually more mappings in the evolutign ma
y-axis, log scale). The symmetric cases (i.e., source &80lU ping and rule simplification has more opportunities to efiate
of R—X and target evolution aX—R) will be discussed shortly. larger terms). This irregularity shows that mapping prartias

[ Scenario (Depthx Fanout) | Schema Size] Mappings [# Cs] | to be intelligently tuned to act in synergy with other opization
8% 3 87 13[50] techniques, which is one of our future research interests.
3x25 265 51[152] Minimization cost We consider now the symmetric measure-

Table 1:Statistics for the synthetic scenarios. Schema size iswiie a ments: target evolution k—R and source evolution dR—X.

age number of elements in both original schemas. Mappingstsits For most part, the results are similar to those in Figure #&r&h
are the number of logical mappings alid’s in the original mapping. is one exception: the performance of adaptiigR in target
The statistics are independent of the mapping direckerX or X—R)  evolution with increasing schema depth is worse than that of
or the evolution type (source or target). adapting th&R— X counterparts. After careful analyses, we found



Mapping Scenariol Full Mapping | Saving Mondial Faculty
(Depth x Fanout) | Adaptation | Pruning % Scenario || Micro [ Macro Micro | Macro
Source Micro X2R (4x 3) 132.14 0.09 99.93% Size [Depth, Fanout] 1235, 19] 5714,7]
Target Micro R2X (4x 3) 21.19 0.64 96.98% Original Mappings [#VCs] 15 [53] 11 [61]
Source Micro X2R (3x 10) 267.59 0.31 99.88% Affected VCs [%] || 1[2%] | 37[70%] | 1[2%] | 36 [59%)]
Target Micro R2X (3x 10) 62.66 0.28 99.55% Full Adaptation DNF DNF 1.33 2.09
Source Macro X2R (4 3) 12.32 0.23 98.13% Mapping Pruning|| 1.89 9.19 0.35 1.23
Target Macro R2X (4x 3) 28.47 0.68 97.61% Saving % | >99% | >99% 74% 41%
Source Macro X2R (% 10) 4.90 0.26 94.69% Blank-Sheet Mappings| 14 14 11 13
Target Macro R2X (3« 10) | 85.75 2.79 | 96.75% Missed Mappings|| 1 1 0 10
. - - . Unintended Mappings 0 0 0 5
Table 2:Costs (seconds) of full adaptation and mapping pruning. Unchanged Mappings| 14 10 10 v
Adapted Mappings 1 5 1 11
two main reasons for this. First, unlike increasing fanadtich Benefits ||  93% 67% 91% 52%

mainly leads to increased number of logical mappings to beable 3: Statistics for Mondial and Faculty evolution scenariosd an
adapted, increasing depth leads to both increased numhmgy-of performance (seconds) and benefits of adaptation. Sizeh,dapd
ical mappings and, more significantly, increased compfexft fanout are the average of both original schemas (except fandial,
each logical mapping. Second, the logical mappings thattreswhere the depth is the depth of source XML schema since tigettar
after composing the logical mappings ¥R with the corre- schema is relational and has depth of 1 only). DNF indicdtesatiap-
Sponding target evolution |Ogica| mappings involve demy‘ted tation was not finished within 60 minutes time limit.

elements in the source schema. Hence, these logical mapping . ] . .
contain long chains of source generator dependenciesgne. Sthema in two ways: renaming an element to create the micro-
generator depends on another). We found that, for our ctimen  €volved XML schema and adding a néer r ai n element serv-
plementation of minimizatich the time to minimize such logical N9 as the parent of all geological elements (&.gver ) to cre-
mappings is consistently worse than the time to minimizélogate the.macro-evolved schema._We use this real case toeapres
cal mappings with no dependencies between generators. A§c%nar|os where the data are ingested from XML sources and
result, adapting— R target evolution scenarios at deep schemaz!Pseduently stored into a target relational databasen e
becomes the worst case scenario (worse than source evolutig/IL Sources evolve, the mappings between the sources and the
due to reduced applicability of rule simplification). Innes of relational target mus_t be adapted. . _

actual numbers, at depth 6, the cost of minimization doremat __1 he second case is Faculty, containing a list of schemastabou
the overall cost and exceeds the 60 minutes threshold. an altCS faculty members of six major universitiesThe schemas,
native is to leave these mappings un-minimized. But thisots nWhich are constructed strictly based on the webpages diffe
acceptable since the number of redundant generators tat ret€rms of both schema size (from less than 5 elements to more
after composition is often high. Improving the performante than 20 elements) and how the information is representeg (e.
minimization remains an interesting research issue. some have detailed research profile, others only a shortigesc
Impact of mapping pruning To understand the impact of map-t'on)- A simple unioned schema and a deeply merged schema

ping pruning on the adaptation, we compared the time cost 8f the six are manually created, and the original mappingis e
adaptation with and without pruning (full adaptation). As e tablished between the unioned schema (source) and the dnerge

pected, pruning significantly affects scalability. In ewin sce- SChema (target). The merged schema is then evolved viacestr
narios of medium to high complexity (e.g., ovex 8 or 3x20), tUring operations (macro evolution) or renaming operatigni-

full adaptation failed to finish within the 60 minutes timmltwe ~ Cr0 €volution). This represents common data integratienae
set. Most of the time spent by full adaptation is on mininiat 10S Where multiple data sources are mapped into a target whe
of intermediate logical mappings that result after comimsi the target evolves d_ue to data reorganization or the additfo
Mapping pruning reduces the number of logical mappings to B Sources, mappings between the old sources and the target
composed and to be minimized. Table 2 lists the time costs fg{USt be adapted. _ , , _
both full adaptation and adaptation with pruning for soméhef PerformanceAs shown in Table 3, all adaptations with mapping
scenarios where full adaptation is able to finish. (The fdd@ Pruning finish within a reasonable amount of time, with therMo
tation costs for source macro evolution are significantlgtese dial macro evolution taking the most time at 9.19 seconds Th
than the corresponding costs for source micro evolutiois;ith Performance difference between the Mondial and Facultyasee
because, in the former case, the macro evolved schEjriaag  10S is largely due to the fact that logical mappings in Mohelia
less set elements than the micro evolved scheffjalience the mMore complex than those in Faculty. The improvements from
evolution mappings have less generators and are therefsigre Mapping pruning are again clear in Mondial, saving at le@%6 9

to process.) As shown, mapping pruning can significantly iniD both micro and macro evolutions. In fact, full adaptasiad

prove the performance of adaptation, often by several erder the scenario failed to finish within the time limit (60 minaje
magnitude. The improvements are not so significant in Faculty becaudse al

the schemas are relatively simple, leading to reduced itmgfac
pruning. In general, we expect many real schemas to be more
complex than Mondial-the cost of full adaptation will be wer
We test MACES on two real life mapping cases. The firdnigh if not too high.

case is Mondial [14], a geographical database with both a rBenefits We measured the benefits of mapping adaptation over
lational schema and an XML schema. The original mappingconstructing the mappings using blank-sheet approach. W
is established between the XML schema (source) and the retmnsider the fact that logical mappings created by the blank
tional schema (target). The changes are introduced int&éltte

6.2 Mapping Adaptation with Real Cases

"The six universities are Berkeley, Michigan, North CaraliyIUC, Wash-
8A necessarily exponential-time procedure, in generale@sP = NP). ington, and Wisconsin. Snapshots were taken as of Octolf&r. 20




sheet approach all require user examination (to discard-uniformation semantics, and design@apping pruningechniques
tended mappind} with extra effort devoted to search for map-to improve the performance. Experimental analysis shoWed t
pings not automatically generated (missed mappings). m cooverall approach to be scalable and practical in varioubiton
trast, mappings generated by MACES fall into two categoriescenarios. One of the important challenges remaining isamp
1) unchanged, which do not need to be examined; 2) adaptédy the performance of the minimization that is needed durin
which may need to be examined if the user so chooses. Note tlhamposition.

our mapping adaptation approach does not miss potentilily v
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