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ABSTRACT

Relational schema mappings have been extensively studied
in connection with data integration and exchange problems,
but mappings between XML schemas have not received the
same amount of attention. Our goal is to develop a the-
ory of expressive XML schema mappings. Such mappings
should be able to use various forms of navigation in a doc-
ument, and specify conditions on data values. We develop
a language for XML schema mappings, and concentrate on
three types of problems: static analysis of mappings, their
complexity, and their composition. We look at static anal-
ysis problems related to various flavors of consistency: for
example, whether it is possible to map some document of
a source schema into a document of the target schema, or
whether all documents of a source schema can be mapped.
We classify the complexity of these problems. We thenmove
to the complexity of mappings themselves, i.e., recognizing
pairs of documents such that one can be mapped into the
other, and provide a classification based on sets of features
used in mappings. Finally we look at composition of XML
schema mappings. We study its complexity and show that
it is harder to achieve closure under composition for XML
than for relational mappings. Nevertheless, we find a robust
class of XML schema mappings that have good complexity
properties and are closed under composition.

Categories and Subject Descriptors. H.2.5 [Database
Management]: Heterogeneous Databases—Data trans-
lation; H.2.1 [Database Management]: Logical De-
sign; F.1.1 [Computation by abstract devices]:
Models of Computation—Automata

General Terms. Theory, Languages, Algorithms

Keywords. schemas, mappings, XML, consistency, com-
position, complexity
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1. Introduction

The study of mappings between schemas has been an ac-
tive research subject over the past few years. Understanding
such mappings is essential for data integration and data ex-
change tasks as well as for peer-to-peer data management.
All ETL (extract-transform-load) tools come with languages
for specifying mappings. We have a very good understand-
ing of mappings between relational schemas (see, e.g., re-
cent SIGMOD and PODS keynotes on the subject [9, 23]);
several advanced prototypes for specifying and managing
mappings have been developed and incorporated into com-
mercial systems [29, 32]. There are techniques for using
such mappings in data integration and exchange, and tools
for handling mappings themselves, for example, for defining
various operations on them [8, 9, 14, 17, 23, 27, 31].

But much less is known about mappings between XML
schemas. While commercial ETL tools often claim to
provide support for XML schema mappings, this is typi-
cally done either via relational translations, or by means of
very simple mappings that establish connections between at-
tributes in two schemas. Transformation languages of such
tools tend to concentrate on manipulating values rather than
changing structure. In research literature, most XML schema
mappings are obtained by various matching tools (see, e.g.,
[28, 30]) and thus are quite simple from the point of view
of their transformational power. More complex mappings
were used in the study of information preservation in map-
pings, either in XML-to-relational translations (e.g., [6]) or in
XML-to-XMLmappings, where simple navigational queries
were used in addition to relationships between attributes [19].
One extra step was made in [4] which studied extensions of
relational data exchange techniques to XML, and introduced
XML schema mappings that could use not only navigational
queries but also simple tree patterns binding several attribute
values at once. But even the mappings of [4] cannot reason
about the full structure of XML documents: for example,
they completely disregard horizontal navigation and do not
allow even the simplest joins, something that relational map-
pings use routinely [16, 23, 29].

Our goal is to develop the theory of XML schema map-
pings. We would like to introduce a formalism that will be
an analog of the commonly accepted formalism of source-
to-target dependencies used in relational schema mappings
[5, 16, 17, 18, 23]. We would also like to understand the ba-



sic properties of such mappings, including their complexity,
static analysis questions related to them, as well as operations
on XML schema mappings.

To understand the set of features that need to be modeled
in XML schema mappings, consider two schemas, given by
the DTDs below. The first DTD D1 describes a set of pro-
fessors and their teaching and supervision duties. Teaching
is organized by year; each year two courses are taught. For
supervision duties, students are listed. The rules ofD1 are:

r → prof ∗
prof → teach, supervise

teach → year
year → course, course

supervise → student∗

Element types course and student have no subelements.
We assume that prof, student, year, and course have one
attribute each (name or id for professors and students, course
number for courses).

Now suppose that data stored according toD1 needs to be
restructured according to the DTDD2 that describes courses
and students at a university:

r → course∗, student∗

course → taughtby
student → supervisor

Here we assume that taughtby and supervisor have no
subelements but they have one attribute each (for teacher and
supervisor names); student as before has one attribute, and
course has two, for course number and year.

Simple attribute-to-attribute mappings can establish corre-
spondence between professors inD1 and values of taughtby
attributes inD2 for example. But for more complex relation-
ships (e.g., if a D1-document says that professor x teaches
course c, then a D2-document should say course c has x as
the value of taughtby), we need to define structural corre-
spondences between DTDs that simple mappings between
attributes (or even paths, as in [19]) cannot express.

A proposal made in the study of XML data exchange [4]
was to use the standard notion of tree patterns in a way that
allows us to collect attribute values. For example, we can
specify the following mapping betweenD1 andD2:

student (s)

prof (x)

teach

year (y)

course course
(cn1) (cn2)

supervise

→

r

course course student
(cn1, y) (cn2, y) (s)

taughtbytaughtby supervisor
(x)(x) (x)

It shows how to restructure information about professors
and their teaching and supervision duties underD2. Note that
some nodes of tree patterns carry variables. The semantics of
such amapping is that if we have a documentT that conforms
toD1 and a match for the pattern on the left, then we collect
values x, y, s, cn1, cn2 from that match, and put them in a
document that conforms to D2, structured according to the
pattern on the right.

Even though the constraints used in mappings of [4] are
more expressive than attribute correspondences and even
path-based constraints, they are still quite limited: for ex-
ample, unlike relational mapping constraints, they cannot
take any joins over the source document. In fact, they can-
not even test attribute values for equality. For example, the
following constraint, that does not replicate a course in the
target if the same course was taught by a professor twice, is
not allowed in existing XML mapping formalisms:

student (s)

prof (x)

teach

year (y)

course course
(cn) (cn)

supervise

→

r

course student
(cn, y) (s)

taughtby supervisor
(x) (x)

Another missing feature in existing formalisms is the hori-
zontal navigation. Suppose we know that a professor teaches
two different courses. In a source document, they come in
a certain order (which may correspond, for example, to the
order in which they were taught, or just an order of their
numbers). It is reasonable to expect the document obtained
as the result of the mapping not to reverse this order. That
is, if professor x teaches cn1 and cn2 and they come in this
order, then in the document that conforms to D2 the course
cn2 should appear after cn1 (shown by the

∗−→ edge below):

student (s)

prof (x)

teach

year (y)

course course
(cn1) (cn2)

supervise

cn1 �= cn2

→

r

course course student
(cn1, y) (cn2, y) (s)

taughtbytaughtby supervisor

∗

(x)(x) (x)

Note that this mapping uses two new features: an inequal-
ity comparison (cn1 �= cn2) and horizontal navigation in
both sides of the constraint.

Our goal is to study general and flexible XML schema
mappings that have a variety of features shown above. We
address the following three problems.

1. Static analysis of schema mappings.We illustrate
the problems we consider here by an example. Suppose the
DTD D2 changes to r → courses, students; courses →
course∗; students → student∗. Then the mapping given
in the example in the first figure is inconsistent: it attempts
to make course nodes children of the root, while they must
be grandchildren. In fact no source tree can be mapped
into any target tree. We obviously want to disallow such
mappings, so we study the issue of consistency: whether the
mapping applies to at least one source tree. This problem
was addressed in [4] but only for simple mappings; here
we analyze it for expressive mappings that use all forms of
navigation and joins.

An even more appealing notion of consistency is that ev-
ery source tree can be mapped into some target tree. This
problem has never been addressed previously. In the rela-
tional settings, all mappings without target constraints are
such, but in the case of XML one can easily generate exam-
ples of mappings that apply to some trees but not to all. The



problem – which we call absolute consistency – turns out
to be much harder than the first version of consistency, and
we provide solutions in several common cases.

2. Complexity of schema mappings.We look at the
problem of recognizing pairs of trees (T, T ′) such that T can
bemapped into T ′ by a givenmapping. There are two flavors
of the problem: for data complexity, the mapping is fixed;
for combined complexity, it is a part of the input.

3. Composition of schema mappings. Composition
is a crucial operation for modeling schema evolution, and is
the most studied operation on relational schema mappings.
Key questions addressed in the relational case are the com-
plexity of composition (which is known to be higher than
the complexity of the commonly considered mappings) and
closure under composition. The latter is normally achieved
in the relational case by adding Skolem functions [17]. In ad-
dition to studying the complexity of composition, we show
that closure is much harder to achieve for XML schema
mappings. In fact we identify the set of features that make
it impossible to achieve closure under composition without
going beyondwhat is normally considered in relational map-
pings. We then find a robust class of XML schemamappings
that are closed under composition. These are very close to
non-relational mappings of the Clio tool [32] extended with
Skolem functions.

Organization. Notations are given in Section 2. The
schema mapping language is described in Section 3. Basic
computational problems related to mappings are addressed
in Section 4. Static analysis problems are studied in Sections
5 (consistency) and 6 (absolute consistency). Consistency
and complexity of composition are studied in Section 7, and
closure under composition in Section 8. Concluding remarks
are given in Section 9.

2. Preliminaries

XML documents and DTDs. We view XML docu-
ments over a labeling alphabet Γ of element types and a set
of attributes Att as structures

T = 〈U, ↓,→, lab, (ρa)a∈Att 〉,
where

• U is an unranked tree domain (a finite prefix-closed
subset of N

∗ such that n · i ∈ U implies n · j ∈ U for
all j < i);

• the binary relations ↓ and→ are child (n ↓ n · i) and
next sibling (n · i→ n · (i+ 1));

• lab : U → Γ is the labeling function; and
• each ρa is a partial function from U to V , the domain
of attribute values, that gives the values of a for all the
nodes in U where it is defined.

A DTD D over Γ with a distinguished symbol r (for the
root) and a set of attributes Att consists of a mapping PD

from Γ to regular expressions over Γ − {r} (one typically

writes them as productions � → e if PD(�) = e), and a
mapping AD : Γ → 2Att that assigns a (possibly empty) set
of attributes to each element type. We always assume, for
notational convenience, that attributes come in some order,
just like in the relational case: attributes in tuples come in
some order so we can write R(a1, . . . , an). Likewise, we
shall describe an �-labeled tree node with n attributes as
�(a1, . . . , an).

A tree T conforms to a DTD D (written as T |= D) if its
root is labeled r, the set of attributes for a node labeled � is
AD(�), and the labels of the children of such a node, read
left-to-right, form a string in the language of PD(�).

We shall also refer to a class of nested-relational DTDs;
as the name suggests, they generalize nested relations. In
such DTDs, all productions are of the form � → �̂1 . . . �̂m,
where all �i’s are distinct labels fromΓand �̂i is either �i or �∗i
or �+i or �i? = �i|ε. Moreover, such DTDs are not recursive,
i.e., the graph in which we put an an edge between � and all
the �i’s for each production has no cycles.

Such DTDs are very common in practice (some empiri-
cal studies suggest that they cover about 70% of real-world
DTDs [10]) and it is known that many computational prob-
lems become easier for them [1, 3, 4].

Relational schema mappings. We review the stan-
dard definitions of relational schema mappings, see [9, 16,
23]. Given two disjoint relational schemas S (source) and
T (target), a source-to-target dependency (std) is an ex-
pression of the form ϕs(x̄, ȳ) → ψt(x̄, z̄), where ϕs is a
conjunction of atoms overS andψt is a conjunction of atoms
over T. If we have a source schema instance S and a target
schema instance T , we say that they satisfy the above std if
(S, T ) |= ∀x̄∀ȳ (ϕs(x̄, ȳ) → ∃z̄ ψt(x̄, z̄)). That is, we
assume that new variables on the right are quantified exis-
tentially, and the others are quantified universally. We also
omit quantifiers from our shorthand notation. Intuitively,
new variables z̄ correspond to new values put in the target:
every time ϕs(x̄, ȳ) is satisfied, new tuples are put in the
target to satisfy ψt(x̄, z̄) for some z̄.

A schema mapping is a triple M = (S,T,Σ) where S
and T are source and target relational schemas and Σ is a
set of stds. We define [[M]] as the set of all pairs S, T of
source and target instances that satisfy every std from Σ. If
(S, T ) ∈ [[M]], one says that T is a solution for S underM.

Sometimes one also adds target constraints Σt to the
mapping; then for (S, T ) ∈ [[M]] we in addition require that
T satisfy Σt. In such a case solutions may not exist and it is
natural to ask whether solutions exist for some instance, all
instances, or a specific instanceS. These are essentially vari-
ous flavors of the consistency problem for schemamappings;
in their most general form, they are undecidable, but for some
important classes of relational constraints their complexity
is well understood [24].

One of the main goals in the study of relational schema
mappings is to define various operations on them. Typi-
cally these operations correspond to changes that occur in



schemas, i.e., they model schema evolution. The two most
important and studied operations are composition and in-
verse. While there is still no universally agreed definition
of an inverse of a mapping [5, 18], the notion of compo-
sition is much better understood [8, 14, 17]. If we have
M = (S,T,Σ) and M′ = (T,W,Σ′), the composition
is defined as the relational composition [[M]] ◦ [[M′]]. A
key question then is whether we can have a new mapping,
M ◦ M′ between S and W, so that [[M ◦ M′]] captures
exactly the composition [[M]] ◦ [[M′]]. A positive answer
was provided in [17] for mappings that introduced Skolem
functions, i.e., rules like ϕs(x̄) → ψt

(
(fi(x̄i))i

)
where the

fi’s are Skolem functions and x̄i’s are subtuples of x̄. For
example,R(x1, x2) → T (x1, f(x2)) says that for each tuple
(x1, x2) in the source, a tuple containing x1 and a null needs
to be put in the target, but the null value should be the same
for all tuples with the same value of x2.

Child-based schema mappings. The key idea of
XML schema mappings defined in [4] was to extend the re-
lational framework by viewing XML trees as databases over
two sorts of objects: tree nodes, and data values. Relations
in such representations include edges in the tree and relations
associating attribute values with nodes. In [4], two restric-
tionsweremade. First, only child and descendant edgeswere
considered (essentially it dealt only with unordered trees). A
second restriction was that no joins on data values were al-
lowed over the source.

In the case of relational mappings, joins are very common.
For example, an std like S1(x, y) ∧ S2(y, z) → T (x, z)
computes a join of two source relations by means of reusing
the variable y. In the setting of [4] this was disallowed.

To avoid the syntactically unpleasant formalism of two-
sorted structures, [4] formalized schemamappings by means
of tree patterns with variables for attribute values. Nodes are
described by formulae �(x̄), where � is either a label or the
wildcard , and x̄ is a tuple of variables corresponding to the
attributes of the node. Patterns are given by:

π := �(x̄)[λ] patterns
λ := ε | π | //π | λ, λ lists (1)

That is, a tree pattern is given by its root node and a listing
of its subtrees. A subtree can be rooted at a child of the root
(corresponding to π in the definition of λ), or its descendant
(corresponding to //π). We shall also abbreviate �(x̄)[ε] to
just �(x̄). We write π(x̄) to indicate that x̄ is the list of
variables used in π.

For instance, the source pattern in the first example in the
Introduction can be expressed as π1(x, y, cn1, cn2, s):

prof(x)[teach[year(y)[course(cn1), course(cn2)]],
supervise[student(s)]]

Schema mappings were defined in [4] by means of con-
straints π1(x̄, ȳ) → π2(x̄, z̄) so that no variable from x̄, ȳ
appears in π1 more than once. For example, the mapping
from the Introduction can be expressed in this formalism.
The target pattern π2(x, y, cn1, cn2, s), which permits the
reuse of variables, is:

r[course(cn1, y)[taughtby(x)],
course(cn2, y)[taughtby(x)],
student(s)[supervisor(x)]]

But neither the second nor the third mapping from the
Introduction can be expressed in this syntax as they reuse
variables and make use of horizontal navigation, and both
are prohibited by (1).

3. Schema mapping language

As suggested by our examples (and even translations from
relational schema mappings to XML), it is natural to con-
sider both equality/inequality comparisons and additional
axes (next- and following-sibling) in schema mappings. We
now modify patterns (1) to accommodate these additions.
Adding equality is the easiest: we just allow variable reuse in
patterns. For next- and following-sibling axes, in the defini-
tion of lists of subtrees we replace occurrences of single trees
by sequences specifying precise next- and following-sibling
relationship. Inequalitieswill not be added to patterns; rather
they will be specified separately in mappings.

Extended patterns will be given by the grammar:

π := �(x̄)[λ] patterns
λ := ε | μ | //π | λ, λ lists
μ := π | π → μ | π →∗ μ sequences

(2)

The main difference from (1) is that we replaced π by μ
(sequence) in the definition of λ, and μ specifies a sequence
of patterns together with their horizontal relationships.

As an example, we consider the last mapping from the
Introduction. We now express both left- and right-hand sides
in our syntax. The left-hand side π3(x, y, cn1, cn2, s) is

r[prof(x) [teach[year(y)[course(cn1) →
course(cn2)]],

supervise[student(s)]]]
(3)

The right-hand side π4(x, y, cn1, cn2, s) is

r[course(cn1, y)[taughtby(x)] →∗
course(cn1, y)[taughtby(x)],

student(s)[supervisor(x)]]
(4)

The formal semantics of patterns is defined by means of the
relation (T, s) |= π(ā), saying that π(x̄) is satisfied in a node
s of a tree T when its variables x̄ are interpreted as ā. It is
defined inductively below.

• (T, s) |= �(ā) iff s is labeled � and ā is the tuple of
attributes of s.

• (T, s) |= �(ā)[λ1, λ2] iff (T, s) |= �(ā)[λ1] and
(T, s) |= �(ā)[λ2].

• (T, s) |= �(ā)[μ] iff (T, s) |= �(ā) and there is a child
s′ of s such that (T, s′) |= μ.

• (T, s) |= �(ā)[//π] iff (T, s) |= �(ā) and there is a
descendant s′ of s such that (T, s′) |= π.



• (T, s) |= π → μ iff (T, s) |= π and (T, s′) |= μ where
s→ s′.

• (T, s) |= π →∗ μ iff (T, s) |= π and (T, s′) |= μ for
some following sibling s′ of s.

For a tree T and a pattern π, we write T |= π(ā) iff (T, r) |=
π(ā), that is, patterns are witnessed at the root. This is not a
restriction since we have descendant // in the language, and
can thus express satisfaction of a pattern in an arbitrary node
of a tree. We also denote the set {ā | T |= π(ā)} by π(T ).

To define source-to-target dependencies for schema map-
pings, we also add explicit data value comparisons. When
we write α=(x̄), we mean a formula which is a conjunction
of equalities among variables x̄. Likewise, α�=(x̄) stands for
a conjunction of inequalities and α=, �=(x̄) for a conjunction
of equalities and inequalities.

Definition 3.1. Source-to-target dependencies (abbrevi-
ated as stds) are expressions of the form

π(x̄, ȳ), α=, �=(x̄, ȳ) → π′(x̄, z̄), α′
=, �=(x̄, z̄),

where π and π′ are patterns such that each variable ap-
pears in π exactly once.

Given trees T and T ′, we say that they satisfy the
above stds if for every tuples of values ā, b̄ such that
T |= π(ā, b̄) and α=, �=(ā, b̄) is true, it is the case that
there exists a tuple of values c̄ so that T ′ |= π′(ā, c̄) and
α′

=, �=(ā, c̄) is true.

The restriction that each variable appear exactly once
in π is only important for our classification, as we would
like to look at cases with no equality comparisons between
attribute values over the source (such as in [4]). With
equality formulae, this is not a restriction at all: for ex-
ample, an std r(x, x) → r′(x, x) can be represented as
r(x, x′), x = x′ → r′(x, x′). For fragments where equality
is allowed we shall just reuse variables.

The third example of a mapping from the Introduction can
now be expressed as

π3(x, y, cn1, cn2, s), cn1 �= cn2 → π4(x, y, cn1, cn2, s),

where π3 and π4 are given by (3) and (4).

Now we can define the notions of schema mappings and
their semantics.

Definition 3.2. An XML schema mapping is a triple
M = (Ds, Dt,Σ), where Ds is the source DTD, Dt is
the target DTD, and Σ is a set of stds.

Given a tree T that conforms to Ds and a tree T ′ that
conforms to Dt, we say that T ′ is a solution for T under
M if (T, T ′) satisfy all the stds from Σ. We denote the
set of all solutions under M for T by SolM(T ).

The semantics of M is defined as a binary relation

[[M]] =
{

(T, T ′)
∣∣∣∣ T |= Ds, T ′ |= Dt

T ′ is a solution for T under M
}
.

These mappings naturally generalize the usual relational
mappings. If we have relational schemas S and T, they

can be represented as DTDs DS and DT: for example, for
S = {S1(A,B), S2(C,D)}, the DTD DS has rules r →
s1, s2; s1 → t∗1; s2 → t∗2, as well as t1, t2 → ε, with t1
having attributes A,B, and t2 having attributes C,D. Then
each conjunctive query over a schema is easily translated
into a pattern over the corresponding DTD together with
some equality constraints. For example, S1(x, y), S2(y, z)
will be translated into

r[s1[t1(x, y1)], s2[t2(y2, z)]], y1 = y2.

Of course equalities can be incorporated into the pattern (i.e.,
by r[s1[t1(x, y)], s2[t2(y, z)]]) but as we said, we often pre-
fer to list them separately to make classification of different
types of schema mappings easier. Note also that these pat-
terns use neither the descendant relation nor the horizontal
navigation nor inequalities.

We shall also use abbreviations �(x̄)/�′(ȳ) for �(x̄)[�′(ȳ)]
and �(x̄)//�′(ȳ) for �(x̄)[//�′(ȳ)].

Classification of schema mappings

Source-to-target dependencies used in schemamappings can
use four different axes for tree navigation – child,descendant,
next and following sibling – aswell as equality and inequality.

We denote classes of schema mappings by SM(σ), where
σ is a signature indicating which axes and comparisons are
present in stds. We refer to the usual navigational axes as ↓
(child), ↓∗ (descendant), → (next-sibling), →∗ (following-
sibling). Having = in σ means that we can use formulae
α=, α

′
= in stds (and reuse variables on both sides); having

�= in σ means that we can use formulae α�=, α′
�=, and having

both= and �=means that we can use α=, �= and α′
=, �= in stds.

To simplify notations, we use abbreviations:

• ⇓ for {↓, ↓∗} (vertical navigation);
• ⇒ for {→,→∗} (horizontal navigation);
• ∼ for {=, �=} (data value comparisons).

Under these notations, SM(⇓) is the precisely the class of
mappings studied in [4] (as in [4], we do not restrict vari-
able reuse in target patterns). In this paper we shall look
at other classes, including SM(⇓,⇒), SM(⇓,∼), and the
largest class SM(⇓,⇒,∼). In a few cases we shall provide
more specific information about signatures; then we adopt
the convention that the child axis ↓ is always present.
We also write SM◦(σ) for mappings where stds in Σ do

not mention attribute values, i.e., where all pattern formulae
are of the form �[λ]. These will be useful for establishing
hardness results, telling us that structural properties alone
make certain problems infeasible.

4. Basic properties of mappings

We first look at some basic properties related to satisfiabil-
ity of patterns, the complexity of their evaluation, as well as
the data and combined complexity of schema mappings.



The first problem is the satisfiability for tree patterns. Its
input consists of a DTD D and a pattern π(x̄); the problem
is to check whether there is a tree T that conforms to D
and has a match for π (i.e., π(T ) �= ∅). This problem is
NP-complete; the result is essentially folklore as it appeared
in many incarnations in the literature on tree patterns and
XPath satisfiability (see, e.g., [2, 7, 13, 22]). For the sake of
completeness, we state the result that applies to patterns in
the way they are defined here.

Lemma 4.1. The satisfiability problem for tree patterns
in NP-complete.

We next look at data and combined complexity of evaluat-
ing tree patterns. For data complexity, we fix a pattern π, and
we want to check for a given tree T and a tuple ā whether
T |= π(ā). For combined complexity, the question is the
same, but the input includes T, ā and π.

Since patterns are essentially conjunctive queries over
trees, the data complexity is in DLOGSPACE (and the
bound cannot be lowered in general, since transitive clo-
sures of ↓ and → may have to be computed). And since
they are nicely structured conjunctive queries, the combined
complexity is tractable as well. More precisely, we have:

Proposition 4.2. The data complexity of evaluating tree
patterns is DLOGSPACE-complete, and the combined
complexity is in PTIME.

We next move to the complexity of schema mappings and
again consider two flavors of it.

• Data complexity of schema mappings. For a fixed
mapping M, check, for two trees T, T ′, whether
(T, T ′) ∈ [[M]].

• Combined complexity of schema mappings. Check,
for two trees T, T ′ and a mapping M, whether
(T, T ′) ∈ [[M]].

The data complexity remains low; the combined complex-
ity jumps to the second level of the polynomial hierarchy,
but the parameter that makes it jump there is the number of
variables in stds. If we fix that number, even the combined
complexity is tractable. More precisely, we have:

Theorem 4.3. • The data complexity of schema
mappings is DLOGSPACE-complete.

• The combined complexity of schema mappings is
Πp

2-complete.

• The combined complexity of schema mappings is
in PTIME if the maximum number of variables
per pattern is fixed.

5. Consistency of schema mappings

As we already mentioned, XML schema mappings may
be inconsistent: there are mappingsM so that [[M]] = ∅,

i.e., no tree has a solution. The problem of recognizing such
mappings in SM(⇓) was shown to be EXPTIME-complete
[4]. In addition to consistent mappings, in which some
trees have solutions, we would like to consider mappings in
which every tree has a solution. These are very desirable
for a variety of reasons: not only are we guaranteed to have
possible target documents for every possible source, but the
property is also preserved when we compose mappings.

We start by analyzing consistency. We say that a mapping
is consistent if [[M]] �= ∅; that is, if SolM(T ) �= ∅ for some
T |= Ds. The main problem we consider is the following:

Probem: Cons(σ)
Input: A mappingM = (Ds, Dt,Σ) ∈ SM(σ)

Question: IsM consistent?

If we use SM◦(σ) instead of SM(σ) (i.e., if we use map-
pings in which attribute values are not mentioned at all), we
denote the consistency problem by Cons◦(σ).

Fact 5.1. (see [4]) Both Cons(⇓) and Cons◦(⇓) are
EXPTIME-complete. If we restrict to nested-relational
DTDs in schema mappings, then Cons(⇓) is solvable
in polynomial (cubic) time.

Recall that nested-relational DTDs have rules of the form
� → �̂1 . . . �̂m for distinct �i’s, where �̂i is �i or �i? or �∗i or
�+i .

Our first result shows that in the absence of data compar-
isons, the complexity stays the same.

Theorem 5.2. The problem Cons(⇓,⇒) is solvable in
EXPTIME (and thus it is EXPTIME-complete).

The key observation is that without data comparisons,
Cons(⇓,⇒) is no harder than Cons◦(⇓,⇒), which can
be solved by tree automata techniques (more precisely, by
non-emptiness of a product of tree automata).

Unlike the case of mappings SM(⇓) with downward navi-
gation only, oncewe add even the simplest form of horizontal
navigation (→), we cannot have tractable consistency check-
ing even over nested-relational DTDs:

Proposition 5.3. Cons(⇓,→) over nested relational
DTDs is PSPACE-hard.

We now move to classes of schema mappings that allow
comparisons of attribute values. It is common to lose de-
cidability (or low complexity solutions) of static analysis
problems once data values and their comparisons are con-
sidered [11, 13, 15, 20, 33]. Here we witness a similar
situation. The proofs, however, cannot be simple adapta-
tions of existing proofs which showed undecidability of such
formalisms as FO3 [11] or Boolean combinations of patterns
with data value comparisons [15], or implication of conjunc-
tive queries over trees [13]. The reason is the very “positive”
and “tree-shaped” nature of stds in schema mappings: the



use of negation is limited to the implication in stds (unlike in
[11, 15]) nor can node variables be used in the patterns as in
[13].

Nevertheless, we can prove a very strong undecidability
result: having either descendant or next-sibling, together
with either= or �=, leads to undecidability of consistency.
Theorem 5.4. The following problems are undecidable:

• Cons(↓∗,=);
• Cons(↓∗, �=);
• Cons(→,=);
• Cons(→, �=).

In particular, Cons(⇓,⇒,∼) is undecidable.

This result raises the question whether there is any use-
ful decidable restriction of SM(⇓,⇒,∼). We know from
papers such as [11, 20] that getting decidability results for
static analysis problems that involve data values is a very
nontrivial problem. This time, nested-relational DTDs give
us a decidable restriction, if there are no horizontal axes.

Theorem 5.5. Under the restriction to nested-relational
DTDs:

• the problem Cons(⇓,∼) is NEXPTIME-complete;
• the problem Cons(⇓,⇒,∼) is undecidable.

6. Absolute consistency of schema mappings

We now switch to a stronger notion of consistency. Recall
that a mapping is consistent if SolM(T ) �= ∅ for some T |=
Ds. We say thatM is absolutely consistent if SolM(T ) �=
∅ for all T |= Ds. We consider the problem:

Probem: AbsCons(σ)
Input: MappingM = (Ds, Dt,Σ) ∈ SM(σ)

Question: IsM absolutely consistent?

Reasoning about the complexity of absolute consistency
is significantly harder than reasoning about the consistency
problem. We know that Cons(⇓) can be easily reduced
to Cons◦(⇓). However, eliminating data values does not
work for absolute consistency. Indeed, consider a mapping
with the source DTD r → a∗; a → ε and the target DTD
r → a; a → ε, with a having a single attribute. Let the std
be r/a(x) → r/a(x). This mapping M is not absolutely
consistent: take, for example, a source treewith two different
values of the attribute. But stripping M of data values,
i.e., replacing the std by r/a → r/a, makes it absolutely
consistent.

Thus, we cannot use purely automata-theoretic techniques
for reasoning about absolute consistency, even for downward
navigation. In fact, the above example indicates that to reason
about absolute consistency even in that case, we need to
reason about counts of occurrences of different data values.

Here we settle the problem of absolute consistency in the
case of downward navigation, i.e.,AbsCons(⇓).

We start with a simpler case ofAbsCons◦(⇓), i.e., check-
ing absolute consistency of mappingsM◦ in which all refer-
ences to attribute values have been removed. We show that it
has lower complexity than Cons◦(⇓). For such mappings,
Σ is of the form {πi → π′

i}i∈I , where patterns have no vari-
ables. To check consistency of such a mapping, we need
to check whether there exists a set J ⊆ I so that Dt and
all the π′

j , j ∈ J are satisfiable, while Ds together with the
negations of πk, k �∈ J , are satisfiable. We know that this
problem is EXPTIME-complete [4]. On the other hand, for
checking absolute consistency, we need to verify that there
does not exist J ⊆ I so that Ds and πj , j ∈ J , are satis-
fiable but Dt and π′

j , j ∈ J , are not. Notice that absolute
consistency eliminates the need for checking satisfiability
of negations of patterns. In fact, since satisfiability of pat-
terns and DTDs is in NP, the above shows that absolute
consistency of mappingsM◦ falls into the 2nd level of the
polynomial hierarchy. We can be more precise:

Proposition 6.1. Checking whether M◦ is absolutely
consistent is Πp

2-complete.

Themain result proves decidability of absolute consistency
for schema mappings based on downward navigation:

Theorem 6.2. AbsCons(⇓) is decidable. In fact the
problem is in EXPSPACE and NEXPTIME-hard.

The proof of the result is quite involved and is based on an
analysis of a data structure that counts possible numbers of
occurrences of attribute values. Also, it appears to be hard to
close the gap between EXPSPACE and NEXPTIME. But
the gap is not large: Theorem6.2 indicates that any algorithm
for solving AbsCons(⇓) will run in double-exponential
time, and hencewill be impractical unless restrictions are im-
posed. Restrictions to nested-relational DTDs often worked
for us, but in this case they alone do not suffice, as we shall
see shortly. In addition to nested relational DTDs, we shall
need a restriction to fully-specified stds, introduced in [4]
to obtain tractable algorithms for query answering in data
exchange. Patterns for fully-specified stds are given by the
grammar:

π := �(x̄)[λ], where � ∈ L
λ := ε | π | λ, λ (5)

In other words, (5) disallows wildcard and descendant com-
pared to (1).

The combination of nested-relational DTDs and fully spec-
ified stds gives us tractability, but if we relax these restric-
tions, the complexity goes back to NEXPTIME-hardness:

Theorem 6.3. Over nested relational DTDs and fully
specified stds, the problem AbsCons(⇓) is solvable
in PTIME. However, for nested relational DTDs and
stds that extend fully specified ones by adding either
the wildcard or the descendant, the problem becomes
NEXPTIME-hard.



Cons(⇓) Cons(⇓,⇒) Cons(⇓,∼) Cons(⇓,⇒,∼) AbsCons(⇓)
arbitrary EXPTIME-complete EXPTIME-complete undecidable undecidable in EXPSPACE;
DTDs NEXPTIME-hard

nested relational PTIME PSPACE-hard NEXPTIME- undecidable PTIME, with fully
DTDs (even forCons(⇓,→)) complete specified stds

Figure 1: Summary of consistency results

An abridged summary of the complexity results related to
the consistency problem is given in Fig. 1.

7. Composition: consistency and complexity

We now look at the most commonly studied operation
on schema mappings: their composition. The definition of
the composition is exactly the same as in the relational case
[17], since [[M]] is defined as a binary relation. We define the
composition of two mappingsM andM′ simply as [[M]] ◦
[[M′]]. That is, for two mappingsM12 = (D1, D2,Σ12) and
M23 = (D2, D3,Σ23), their composition consists of pairs
of trees (T1, T3) such that:

1. T1 |= D1 and T3 |= D3; and

2. there exists T2 |= D2 such that (T1, T2) satisfy Σ12

and (T2, T3) satisfy Σ23.

We consider the following problems:

• Consistency of composition: is [[M12]]◦[[M23]] empty?

• Complexity of composition; and
• Syntactic definability of composition: can we find a
mapping M13 = (D1, D3,Σ13) such that [[M13]] =
[[M12]] ◦ [[M23]]?

The last two problems have been studied in the relational
case; the first problem is motivated by the consistency prob-
lem for XML schema mappings themselves. We study the
first two problems in this section, and syntactic definability
of composition in Section 8.

7.1 Consistency of composition

We say that the composition ofM andM′ is consistent
if [[M]] ◦ [[M′]] �= ∅.
There are two flavors of the consistency of composition

problem. One is simply to check whether the composition
of two given mappings is consistent. This is not very dif-
ferent from the usual consistency problem: by composing a
mapping with a trivial one (e.g., sending the source root to
the target root) we can use consistency of composition to test
consistency of the mapping itself.

Amore interesting version of consistency iswhenwe know
that both inputs themselves are consistent:

Probem: ConsComp(σ)
Input: Two consistent mappings

M,M′ ∈ SM(σ)
Question: Is the composition of M and

M′ consistent?

It turns out that the complexity of this problem is the same
as the complexity of Cons(σ).

Theorem 7.1. The complexity of ConsComp(σ) is:

• EXPTIME-complete for σ = {⇓} or {⇓,⇒}.
• undecidable for σ = {⇓,∼} or σ = {⇒,∼}.

The decidability result carries over to an arbitrary number
ofmappings. We can define composition of an arbitrary num-
ber of mappingsM1, . . . ,Mn simply as the composition of
binary relations [[Mi]]’s.

Proposition 7.2. The problem of checking whether
the composition of n mappings M1, . . . ,Mn from
SM(⇓,⇒) is consistent is solvable in EXPTIME.

7.2 Complexity of composition

By analogy with the complexity of schema mappings, we
define data and combined complexity of composition:

• Data complexity of composition. For fixedmappings
M and M′, check, for two trees T and T ′, whether
(T, T ′) ∈ [[M]] ◦ [[M′]].

• Combined complexity of composition. Check, for
two mappings M and M′ and two trees T and T ′,
whether (T, T ′) ∈ [[M]] ◦ [[M′]].

Data complexity of relational composition is known to
be in NP, and could be NP-complete for some mappings
[17]. For XMLmappings, the problembecomes undecidable
once data value comparisons are allowed. Without such
comparisons, it is decidable: the data complexity goes a little
bit up compared to the relational case, and we have the usual
exponential gap between data and combined complexity.

Theorem 7.3. • For mappings from SM(⇓,⇒), the
combined complexity of composition is in 2-
EXPTIME and NEXPTIME-hard, and the data
complexity of composition is EXPTIME-complete.

• For mappings from both SM(⇓,∼) and SM(⇒,∼),
the combined complexity of composition is unde-
cidable.



By saying that the data complexity is EXPTIME-
complete we mean that it is always in EXPTIME, and there
exist mappingsM,M′ such that checking whether the input
trees (T, T ′) belong to [[M]] ◦ [[M′]] is EXPTIME-hard.

Fig. 2 presents a summary of complexity results. By
putting “not uniformly decidable” for data complexity of
composition over SM(⇓,⇒,∼) we mean that there is no re-
cursive function that maps a pair of mappings (M,M′) into
an algorithm that checks whether (T, T ′) ∈ [[M]] ◦ [[M′]].

8. Composition: closure under restrictions

We now address the last issue related to composition
of schema mappings: the syntactic representation. The
question is whether for two given mappings M12 =
(D1, D2,Σ12) and M23 = (D2, D3,Σ23) we can find a
mappingM13 = (D1, D3,Σ13) so that [[M13]] = [[M12]] ◦
[[M23]]. We know that in the relational case getting clo-
sure under composition requires adding Skolem functions,
i.e., stds of the form ϕs(x̄, ȳ) → ψt(x̄, z̄) where each
element of z̄ is either a variable or a term f(ū) for a
Skolem function f and some tuple ū of variables among
x̄, ȳ [17]. Skolem functions are a natural addition to re-
lational schema mappings. For example, to create a map-
ping between a source S(empl name, project) and a target
T (empl id, empl name, office), it is natural to use an std
S(x, y) → T (f(x), x, z) which assigns a unique id to each
employee name, rather than S(x, y) → T (z1, x, z2) which
may assign different ids for different projects an employee is
involved in.

Formulae in stds can also have equality comparisons
among values of Skolem functions, in addition to relational
atoms. The semantics of solution is obtained by existen-
tially quantifying such Skolem functions. By Fagin’s theo-
rem, this puts data complexity of composed relational map-
pings in NP, and in fact there are simple examples of NP-
completeness of mapping composition [17].

We show here that getting closure for XML schema map-
pings is harder than for relational mappings, and can only
be obtained in limited settings that essentially correspond
to nested relations. Such settings constitute an important
practical class however; for example, they are used in non-
relational extensions of the Clio project [29, 32].

We startwith a simple example. LetD1 = {r → ε}, D2 =
{r → b1|b2; b1, b2 → b3}, and D3 = {r → c1?c2?c3?};
no attributes are present. Let Σ12 contain r → r/ /b3 and
Σ23 contain r/bi → r/ci for i = 1, 2. Then [[M12]] ◦
[[M23]] consists of pairs of trees (r, T ), where T matches
either r/c1 or r/c2. To define such a mapping, we need a
disjunction over the target (note that c3? is necessary in D3:
with the production r → c1?c2? the composition would be
definable by r → r/ ). Disjunctions in mappings are not
well understood even in the relational case, and we certainly
do not know how to compose such mappings.

As another illustration of problems with composing XML
schema mappings, look at D1 = {r → a∗}, D2 = {r →

b b}, and D3 = {r → ε}, with a and b having an attribute
each, and mappings r/a(x) → r/b(x) for Σ12 and r → r
for Σ23. In the composition we have pairs (T, r) such that
in T at most two different data values are present. This
again requires disjunction, e.g., r[a(x), a(y), a(z)] → (x =
y ∨ y = z ∨ x = z). In fact a variety of features such as
wildcards in patterns and places where attributes appear take
us out of our usual classes of schema mappings.

We now summarize what causes problems with composi-
tion. We call an element type starred if it appears under the
scope of a ∗ or a + in a DTD and unstarred otherwise.

Proposition 8.1. Consider DTDs D = {r → ε} and
D′ = {r → c1?c2?c3?} with no attributes. Then we
can find schema mappings so that their composition, as
a mapping between D and D′, contains exactly pairs
(r, T ), where T matches r/c1 or r/c2, if we allow either

• one of the following features in stds: (a) wild-
card; (b) descendant; (c) next-sibling; (d) inequal-
ity; and only starred element types can have at-
tributes; or

• only fully-specified stds but unstarred element types
can have attributes.

In other words, the following features make composition
problematic by requiring capabilities (disjunction in map-
pings) that are not even understood in the relational case:

• the presence of disjunctions and attributes of unstarred
element types in DTDs;

• wildcard, descendant, next-sibling, and inequalities in
stds.

We now eliminate them all: we look at mappings with fully-
specified stds (given by (5); to eliminate wildcard, descen-
dant, and next-sibling), nested relational DTDs (to eliminate
disjunctions), no inequalities, and attributes appearing only
with starred element types.

For this class, a natural extension of stds with Skolem func-
tions gives us closure under composition. We add Skolem
functions to XML schema mappings as it was done for re-
lational mappings in [17], by using terms in place of vari-
ables. For a valuation of function symbols f̄ and a valuation
of variables ā, the meaning of T |= ϕ(t̄)[f̄ , ā] is as usual.
For a mapping M = (Ds, Dt,Σ) with Skolem functions,
(T, T ′) ∈ [[M]] iff there exist functions f̄ such that for each
(ϕ, α= → ψ, α′

=) ∈ Σ and each ā, if T |= ϕ, α=[f̄ , ā] then
T ′ |= ψ, α′

=[f̄ , ā]. Note that we can use the same function
symbol in more than one constraint.

We say that a DTD is strictly nested-relational if it is
nested-relational and only starred element types can have
attributes. Now we can state the closure result.

Theorem 8.2. The class of mappings with Skolem func-
tions and equality, restricted to strictly nested-relational
DTDs and fully specified stds, is closed under composi-
tion.



tree pattern mappingsM composition [[M]] ◦ [[M′]] composition [[M]] ◦ [[M′]]
evaluation over SM(⇓,⇒) over SM(⇓,⇒,∼)
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combined PTIME Πp
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complexity PTIME for fixed-arity stds NEXPTIME-hard

Figure 2: Summary of complexity results

9. Conclusions

This paper has made several initial steps in the investiga-
tion of XML schema mappings, but many questions remain.
Of course there are technical questions left open here, such
as closing the complexity gaps (although all the gapswe have
here are rather small). Most of them are related to the fol-
lowing technical problem: given a DTD D and two sets of
patterns P+ and P−, can we find a tree T |= D that matches
all the patterns in P+ and none in P−? We know that the
problem is in EXPTIME and NP-hard; knowing its exact
complexity will help us close the complexity gaps.

More importantly, we would like to extend this work in
several directions. One of them is constructing target in-
stances. This is important in data integration and exchange
tasks, but so far good algorithms are lacking, even for very
simple mappings already introduced in [4]. We also would
like to work further on operations on schema mappings. We
have identified a natural class that is closed under composi-
tion, but we do not know anything about its maximality, nor
do we know anything about other operations such as inverse
[5, 18] or merge [9]. We would like to see how the com-
plexity of schema mappings affects the complexity of query
answering in integration and exchange scenarios with XML
data.
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