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ABSTRACT
Given a query graph q and a data graph G, computing all
occurrences of q in G, namely exact all-matching, is fun-
damental in graph data analysis with a wide spectrum of
real applications. It is challenging since even finding one
occurrence of q in G (subgraph isomorphism test) is NP-
Complete. Consider that in many real applications, ex-
ploratory queries from users are often inaccurate to express
their real demands. In this paper, we study the problem of
efficiently computing all approximate occurrences of q in G.
Particularly, we study the problem of efficiently retrieving
all matches of q in G with the number of possible missing
edges bounded by a given threshold θ, namely similarity all-
matching. The problem of similarity all-matching is harder
than the problem of exact all-matching since it covers the
problem of exact all-matching as a special case with θ = 0.

In this paper, we develop a novel paradigm to conduct
similarity all-matching. Specifically, we propose to use a
minimal set QT of spanning trees in q to cover all connected
subgraphs q′ of q missing at most θ edges; that is, each q′ is
spanned by a spanning tree in QT . Then, we conduct exact
all-matching for each spanning tree in QT to induce all sim-
ilarity matches. A rigid theoretic analysis shows that our
new search paradigm significantly reduces the times of con-
ducting exact all-matching against the existing techniques.
To further speed-up the computation, we develop new filter-
ing, computation sharing, and search ordering techniques.
Our comprehensive experiments on both real and synthetic
datasets demonstrate that our techniques outperform the
state of the art technique by 7 orders of magnitude.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems; I.2.8 [Problem
Solving, Control Methods, and Search]: Graph and
tree search strategies

General Terms
Algorithms, Performance

Keywords
Graph, Similarity All-Matching

1. INTRODUCTION
Recently, graphs have gained much popularity in model-

ing complex data in many applications, including biology
(protein interaction networks), chemistry (chemical com-
pounds), Web (social networks), road networks, etc. Sig-
nificant research efforts have been made towards many fun-
damental problems in managing and analyzing graph data.
Given a query graph q and a large data graph G, exact all-
matching [22, 24] returns all occurrences of q in G, called
“exact matches” of q in G. Figure 1 (a) and (b) illustrate
a query graph q and a data graph G, respectively. The 2
resultant exact matches are depicted in Figure 1 (c). Ex-
act all-matching is very useful for an exploration purpose in
many real applications. For example, as shown in [22], in
protein-protein interaction (PPI) networks, biologists may
want to recognize groups of proteins which match a partic-
ular pattern in a large PPI network. Such a pattern could
be an interaction network among a number of protein types.
Since distinct proteins may share the same protein type (e.g.,
v1 and v3 in Figure 1(b) have label A), it is necessary to
retrieve all the occurrences of a particular pattern (query
graph) in a PPI network to identify all interactions among
the involved proteins following the given pattern. Exact
all-matching queries are also useful in a number of other ap-
plications [24, 26], such as identifying substructures in com-
munity networks, RDF datasets, software programs, etc.
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Figure 1: All-Matching Queries

A common problem is that in many occasions, there could
be no result for such an exploratory query issued by users
since users often only have approximate goals in minds. For
instance, if a user issues the query graph q depicted in Figure
2(a) against the data graph G in Figure 1(b), no results will
be returned. Instead of asking users to manually refine a
query graph to conduct exact all-matching search again and
again, [23] recently proposes to ask the system to generate all
approximate occurrences of q inG. Specifically, [23] proposes
to enumerate all connected subgraphs g of G such that g is
at most θ edges away to be identical (isomorphic) to q, called
“similarity matches” conforming θ. For example, regarding
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the query graph q in Figure 2(a) and the data graph G in
Figure 1(b), the 2 similarity matches of q in G conforming
θ (= 2) are depicted in Figure 1(c).

Note that a similarity match confirming θ could be an
exact match. Finding all similarity matches to conform θ
is generally harder than the problem of exact all-matching
since it covers the problem of exact all-matching as a spe-
cial case with θ = 0. It is challenging since even finding one
exact match of q in G is NP-Complete [5]. A näıve way to
compute all similarity matches conforming θ is to enumer-
ate all connected subgraphs q′ of q missing at most θ edges
and then find all exact matches for each of such subgraphs
q′. The recent work [23], SAPPER, proposes to compute
all exact matches of the connected subgraphs of q missing
θ edges and then induce all other similarity matches from
those obtained exact matches. While this effectively reduces
the times of conducting exact all-matching from O(mθ) to
O(
(
m
θ

)
) where m is the number of edges in q, the perfor-

mance of SAPPER dramatically drops when θ increases to
3. Motivated by this, in this paper we study the problem
of efficiently computing all similarity matches conforming θ,
namely “similarity all-matching”.
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Figure 2: Cover by Trees

Our Approach. Regarding the query graph q in Figure
2(a), each of the 3 subgraphs of q depicted in Figures 2(b)-
(d) misses 2 edges from q, respectively. These 3 subgraphs
of q share a common spanning tree highlighted by the bold
lines. Clearly, any exact match of one of these 3 subgraphs
must be an exact match of this common spanning tree, and
for any exact match F on the common spanning tree, it
can be very efficient to identify (in linear time regarding the
number of edges in these subgraphs, respectively) whether
F can be extended to an exact match of one or all of these
subgraphs. Consequently, instead of conducting exact all-
matching on each of these subgraphs to induce the similar-
ity matches from the exact matches [23] (3 times of exact
all-matching in total), we only need to conduct exact all-
matching once on the common spanning tree to induce the
same set of similarity matches of these 3 subgraphs. More-
over, conducting exact all-matching on a tree is much less
expensive than on a general graph.

Based on the above observations, in this paper we propose
a novel search paradigm as follows. Firstly, we generate a
minimal set QT of spanning trees in q to cover all connected
subgraphs of q missing at most θ edges; that is, for each
connected subgraph q′ of q missing at most θ edges, q′ uses
one spanning tree in QT as its spanning tree. Then, we
generate all exact matches for each spanning tree in QT to
induce all similarity matches. Our rigid theoretic analysis
shows that the number of spanning trees in QT generated in
the worst case is always significantly smaller than the num-
ber |QSAPPER| of connected subgraphs of q missing θ edges
except the two extreme cases; in these two extreme cases,
|QT | = |QSAPPER|. This implies that our algorithm conducts
significantly less times of exact all-matching on average than
that in the state of the art existing technique, SAPPER.

To further improve the efficiency of our computation, new
filtering, computation sharing, and search ordering tech-

niques are developed. We also propose to partially generate
QT based on demands to skip unwanted spanning trees in
QT regarding a data graph G; that is, based on the current
partial mappings from q to G.

Contributions. Our principle contributions in this paper
may be summarized as follows.

• We propose a novel search paradigm to conduct sim-
ilarity all-matching conforming a similarity threshold
θ by firstly conducting exact all-matching on a mini-
mal set of spanning trees. Compared with the state
of the art technique [23], this not only significantly re-
duces the times of conducting exact all-matching but
also reduces the complexity of exact all-matching from
a general graph to a tree.

• To further improve the efficiency of our computation, a
set of new techniques are developed, including filtering-
based effective search ordering, computation sharing,
and adaptive generation of QT .

• We propose to compute all similarity maximal matches
instead of all similarity matches to further remove com-
putation redundancy.

Comprehensive experiments on real and synthetic datasets
show that our techniques significantly outperform the state
of the art techniques in [23] by several orders of magnitude.

Organizations. We organize the rest of this paper as fol-
lows. Section 2 presents the problem definitions and the
framework. Our efficient search algorithms are presented in
Section 3. In Section 4, we present our filtering and search
ordering techniques. For presentation simplicity and also
for the ease of a comparison (with [23]), in Sections 3-4,
we present our techniques based on the assumption that no
vertices in q are mismatched. In Section 5, we extend our
techniques to allow vertices in q to be mismatched. We re-
port the experimental evaluation in Section 6. Section 7
concludes the paper.

Related Work. Extensive research has been conducted in
recent years on exact graph structure search. For instance,
the problem of subgraph containment search [3, 8, 9, 13,
14, 19, 20, 25] is to find the graphs from a given set of data
graphs which contain a query graph, while the problem of
supergraph containment search [2, 21] is to find the graphs
from a given set of data graphs which are contained by a
given query graph. Driven by recent real applications, the
problem of finding data graphs from a given set of data
graphs which approximately contain a query graph, namely,
similarity subgraph search, has been studied in [7, 12, 18,
17]. The problem of exact all-matching has been studied in
[22, 24, 26].

Due to the NP-Completeness, most of the above tech-
niques focus on developing effective indexing techniques based
on the subgraph mining paradigms [11, 19]. Observing that,
in graph structure search, search (i.e., retrieving the actual
mappings from a query graph to data graphs) costs play a
dominant role, [4, 12, 13, 23] also focus on developing effi-
cient search techniques. While [4, 12, 13] aim to get only
one (exact or approximate) mapping from a query to a data
graph, [23] is the only work with the aim to efficiently gener-
ate all similarity matches by conducting exact all-matching
on a set of connected subgraphs of q missing θ edges.

The exact matching from a tree to a graph is widely ob-
served as a much more efficient operation than the exact
matching from a graph to another graph. Consequently,



trees or spanning trees are mainly used in indexing tech-
niques to quickly prune some non-promising searches; for
example, [23] adopts the exact matches of the spanning trees
to decide the search root and prune non-promising vertices
in data graphs. [4, 12, 13] are the only existing techniques to
identify exact or similarity matches based on spanning trees,
where [4, 13] propose to conduct the search on one spanning
tree of the query graph q to detect whether or not there
is an exact subgraph isomorphic mapping from q to a data
graph G, and [12] proposes to detect whether or not there
is a similarity-based subgraph isomorphic mapping from q
to G based on all feasible spanning trees of q. Nevertheless,
[4, 12, 13] aim to identify only one such match. The work
presented in this paper is the first to propose to generate
a minimal set of spanning trees of q to cover all its sub-
graphs missing at most θ edges and then efficiently conduct
exact all-matching to share the computation for inducing all
similarity (maximal) matches.

All existing filtering techniques for conducting all-matching
are developed for the purpose of efficiently obtaining exact
matches, including the filtering techniques in [23]. The work
presented in this paper is the first to provide filtering tech-
nique for similarity all-matching and propose to use the fil-
tering results to determine an effective search order.

A number of other subgraph search problems have also
been investigated. For example, TALE [15] returns one sim-
ilar subgraph in a data graph to an issued query graph with
a high matching quality. [16] proposes to locate all DN-
graphs, a new dense graph structure, in a large network.
Nevertheless, they are inherently different to the problem
studied in this paper.

2. BACKGROUND INFORMATION
Graphs studied in this paper are connected undirected

graphs without self-loops and multiple edges [6]; that is, sim-
ple and connected undirected graphs. Moreover, the paper
focuses on vertex-labeled graphs; the developed techniques
may be immediately extended to edge-labeled graphs. Given
a set of labels, ΣV , a graph is denoted byG = (V,E, l) where
V is the set of vertices, E ⊆ V ×V is the set of edges. Here,
l is a labeling function: V → ΣV (i.e., l(u) is the label of
a vertex u ∈ V ). We denote the vertex set and the edge
set of a graph g by V (g) and E(g), respectively. |V (g)| and
|E(g)| denote the number of vertices and edges, respectively.
For presentation simplicity, a connected undirected vertex-
labeled graph is hereafter abbreviated to a graph.

2.1 Problem Statement
The similarity matches defined below are equivalent to the

definition of approximate matches in [23]. We first define a
subgraph isomorphic mapping.

Definition 1. Given two graphs g = (V,E, l) and g′ =
(V ′, E′, l′), a subgraph isomorphic mapping F : V → V ′

is an injective function such that (1) ∀u ∈ V , F(u) ∈ V ′ and
l(u) = l′(F(u)); (2) ∀(u1, u2) ∈ E, (F(u1),F(u2)) ∈ E′.

We also say that g is subgraph isomorphic to g′ or g′ con-
tains g or g has an exact match in g′.

Definition 2. Given a similarity threshold θ, two graphs
q and G, if there exists a subgraph isomorphic mapping F
from a connected subgraph q′ of q to G where q′ has at
most θ edges missing from q, then (F ,F(E(q′))) is called
a similarity match of q conforming θ where F(E(q′)) =

{ (F(u),F(v)) | (u, v) ∈ E(q′) } is the set of edges in G
mapped from q′.

We use F together with F(E(q′)) to identify a similarity
match since F gives the mapping information from a vertex
u ∈ q′ to a vertex v ∈ G.
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Figure 4: Similarity Matches (θ = 1)

Example 1. Regarding the two graphs q and G in Figure
3, all the similarity matches of q regarding G conforming
θ = 1 are depicted in Figure 4.

The similarity matches in Figures 4(a)-(e) are generated
by F1 = {u1 → v1, u2 → v2, u3 → v3, u4 → v4} based on
different connected subgraphs of q, while the similarity match
in Figure 4(f) is generated by F2 = {u1 → v2, u2 → v1, u3 →
v3, u4 → v4}. �

In Example 1, the exact match in Figure 4(a) is also re-
garded as a similarity match conforming θ = 1, and the
generated matches in Figures 4(b)-(e) are sub-matches of
the exact match. These sub-matches are less interesting
to be generated since any connected subgraph of the exact
match with one edge missing is a similarity match confirm-
ing θ = 1. Therefore, in this paper we focus on generating
all the similarity maximal matches conforming a given sim-
ilarity threshold θ.

Definition 3. A similarity match (F ,F(E(q′))) conform-
ing θ is maximal if there does not exist another connected
subgraph q′′ of q such that q′′ is a proper supergraph of q′

(i.e, q′′ is a supergraph of q′ and q′′ �= q′), and F is also a
subgraph isomorphic mapping of q′′.

Example 2. Regarding the two graphs q and G in Figure
3, the two similarity matches in Figures 4(a) and 4(f) are
similarity maximal matches conforming θ = 1 generated by
F1 and F2, respectively. �

Definition 4 (Similarity Maximal All-Matching).

Given a query graph q, a data graph G, and a θ, find all dis-
tinct similarity maximal matches of q in G conforming θ.

Problem Statement. Given a query graph q, a data graph
G, and a θ, this paper studies the problem of efficiently
conducting similarity maximal all-matching.

Note that the existing work [23] studies the problem of
efficiently retrieving all similarity matches without allow-
ing mismatched vertices in q. For presentation simplicity
and the ease of a comparison (with [23]), we present our
techniques in Sections 3-4 with the assumption that no ver-
tices in q are mismatched. In Section 5, we show that our
techniques can be immediately extended to the general case
where vertices in q are allowed to be mismatched. In the
rest of the paper, query graphs are abbreviated into queries.



2.2 Framework
As the problem of testing subgraph isomorphism is NP-

Complete [5], the problem of similarity maximal all-matching
is NP-complete since θ = 0 implies the subgraph isomor-
phism testing. To reduce the computation costs, our algo-
rithms follow the framework of filtering and search [22, 24].
In the filtering phase, for each vertex u in a query graph q
we filter the non-promising vertices in G to generate a set
of candidate vertices C(u) in G to be mapped from u. In
search phase, we enumerate all similarity maximal matches.
Below we first present our novel search paradigm, assuming
that C(u) for each vertex in q has already been generated.

3. TREE BASED SPANNING SEARCH
In this section, we present a novel search paradigm to

conduct similarity maximal all-matching with the assump-
tion that no vertices in q will be mismatched. We need the
following notion.

Definition 5. Given a graph q1, a subgraph q2 spans q1
if q2 is connected and no vertex in q1 is missed in q2. Here,
we also say q2 is a spanning subgraph of q1.

Definition 5 extends the notion of spanning trees of a
graph; that is, any spanning tree of q1 spans q1.

Definition 6. Suppose that q2 is a spanning subgraph of
q1 and F is a subgraph isomorphic mapping from q2 to G.
The similarity match of q1 in G induced by F is (F ,MF,q1)
where MF,q1 = {(F(u),F(v)) | (u, v) ∈ E(q1) & (F(u),F(v))
∈ E(G)}.

Example 3. Regarding Example 1, the match depicted in
Figure 4(a) can be induced by a subgraph isomorphic map-
ping on the subgraph, ((u1, u2), (u2, u3), (u3, u4)), of q in
Figure 3(a).

3.1 Overview of Our Approach
Given a spanning subgraph q′ of q and a subgraph isomor-

phic mapping F of q′, it can be very efficient to compute the
induced similarity match of q by F of q′; this can be done
in linear time regarding the number of edges in q. Based on
this observation, we use the following 3 phases to conduct
similarity maximal all-matching.

• Phase 1: Seeding. Generate a set QT of spanning
trees of q to cover all spanning subgraphs of q missing
at most θ edges from q; that is, any spanning subgraph
of q missing at most θ edges uses at least one spanning
tree in QT as its spanning tree.

• Phase 2: Exact All-Matching. For each spanning
tree T ∈ QT , get all subgraph isomorphic mappings
(i.e., exact all-matching) from T to G.

• Phase 3: Inducing Matches. For each subgraph
isomorphic mapping F of T , induce the similarity match
of q from F conforming θ.

The costs of the 3-phase search are expressed below in (1).

Cseeding +
∑

T∈QT

Callmatching(T,G) + Cinducing (1)

Cseeding is the cost of Phase 1, Callmatching(T,G) is the
cost of computing all exact matches of T in G, and Cinducing

is the cost of Phase 3. Phase 2 takes the dominant costs

as it takes exponential time in the worst case to conduct
exact all-matching due to the NP-Completeness of testing
subgraph isomorphism. In (1),

∑
T∈QT Callmatching(T,G)

can be written as |QT |Callmatching where Callmatching is the
average cost of computing exact all-matching for a T in QT .

Duplicates-Free Enforcement. The 3 phases can gener-
ate all similarity maximal matches since QT covers all span-
ning subgraphs of q missing at most θ edges and an exact
match of a spanning subgraph q′ must be the exact match
of any spanning tree of q′. Nevertheless, it is possible that
different spanning trees may generate the same similarity
maximal match.
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Figure 5: Duplicates

Suppose that a query q is given in Figures 5(a). Regarding
the data graph G in Figure (b), the two spanning trees of q
in Figure 5(c)-(d) will induce the same similarity maximal
match in G conforming θ = 2, the subgraph of G circled
by the dotted line. In fact, in this example, any spanning
tree of q without edges (B,C) and (B,D) will induce the
same circled similarity maximal match in G. Duplicates
not only require extra effort to be removed but also waste
computation costs to be generated.

To enforce that the above 3-phase search always generates
distinct similarity maximal matches, we attach a set T.R of
edges to each spanning tree T ∈ QT such that E(T )∩T.R =
∅, |T.R| ≤ θ, and any similarity maximal match induced by
an exact match of T must exclude any edge in T.R; T.R is
called the edge exclusion set of T . Regarding the spanning
tree T in Figure 5(d), if we make T.R = { (A,D) }, then no
similarity matches conforming θ = 2 will be induced by an
exact match of T .

Speed-Up Techniques. We propose to conduct exact all-
matching for spanning trees in QT by sharing the compu-
tation of prefix instead of conducting exact all-matching for
each T ∈ QT separately. Moreover, we also propose to enu-
merate QT partially based on demands (i.e. based on the
current mappings obtained) instead of always enumerating
the whole QT .

Compared with SAPPER. SAPPER also adopts the above
3-phase approach. In the seeding phase, SAPPER proposes
to generate the set QSAPPER of all spanning subgraphs miss-
ing θ edges.

Our paradigm has the following 3 major advantages com-
pared with SAPPER. Firstly, we will show |QT | is signifi-
cantly smaller than |QSAPPER| except that in the two extreme
cases, |QT | = |QSAPPER|. This leads to a significant reduction
on the times of conducting exact all-matching; that is, from
|QSAPPER| to |QT |. Our strategy of enumeration on demands
further reduces the times of conducting exact all-matching.
Secondly, conducting exact all-matching on a spanning tree
is much less expensive than on a graph due to a much sim-
pler structure of a spanning tree. Thirdly, we conduct exact
all-matching on QT by computation sharing, while SAPPER
conducts exact all-matching on each graph in QSAPPER sep-
arately. As a result, our experiment demonstrates that our
algorithm significantly improves the performance of SAP-
PER (by several orders of magnitude).



It is worth mentioning that SAPPER conducts exact all-
matching on (n+1) spanning trees of q to do a filtering only.
Nevertheless, our algorithm can always generate the results
by conducting exact all-matching on at most n spanning
trees when θ = 1.

3.2 Generating QT

We present a novel algorithm to effectively generate amin-
imal QT regarding θ. We assume that each edge in q has
a weight and a vertex in q is selected as the head; details
about selecting edge weights, and the head vertex to im-
prove the efficiency of our search algorithm in Section 3.4
may be found in Section 4.2. Each spanning tree T of q is
represented as a sequence of edges, (T [1], ..., T [n−1]), where
n is the number of vertices of q. We refer the edge T [h] as
the hth edge or at h level. For the search efficiency reason
(to be stated in Section 4.2), an initial minimum spanning
tree T of q is chosen to follow the order of edges selected by
the PRIM algorithm [1], namely PRIM order.

PRIM order: for 1 ≤ i ≤ n−1, T [1], ..., T [i] are connected,
T [i] is the edge in T with the smallest weight to connect
T [1], ..., T [i− 1] where T [0] is the head vertex.

Our enumeration algorithm to generate QT together with
the edge exclusion sets T.R is executed in a depth-first search
fashion from the lowest level (h = 1) to the highest level
(h = n − 1); it is outlined in Algorithm 1 in a recursive
fashion. It consists of 2 phases, go-down phase (Lines 1-2)
and alternating-reordering phase (Lines 3-8).

Algorithm 1: EnuQT (h, T, T.R, θ,QT )

Input : h: current level, initially 1;
T : current spanning tree;
T.R: the edges replaced to get T , initially ∅;
θ: a given similarity threshold;
QT : the set of spanning trees;

1 if h < n− 1 then
2 EnuQT (h+ 1, T, T.R, θ,QT ) ;

3 if |T.R| < θ & checkReplacing (T [h]) then
4 e := Replacing (T [h]);
5 T ′ := reOrdering (T − {T [h]}+ {e});
6 T ′.R := T.R+ {T [h]};
7 QT := QT

⋃
{T ′};

8 EnuQT (h, T ′, T ′.R, θ,QT ) ;

Algorithm 1 starts with an initial spanning tree loaded in
QT . The go-down phase in Algorithm 1 corresponds to the
depth-first paradigm.

In each enumerated T , the edge exclusion set T.R records
the set of edges replaced during the enumeration process
to get T from the initial spanning tree. In the alternating-
reordering phase at the ith level of T , we use an edge e in
(E(q)−E(T )−T.R) to replace T [i] to form another spanning
tree together with the remaining edges in T if (1) |T.R| < θ,
and (2) at least one edge e′ in (E(q) − E(T ) − T.R) can
replace T [i] to form another spanning tree of q. We check
these two conditions in Line 3 where checkReplacing (T [h])
returns true if the condition (2) holds.

Replacing (T [h]) returns the edge e with the smallest weight
among all edges in (E(q)−E(T )− T.R) which can be used
to replace T [h] to connect the remaining edges in T to form
another spanning tree. reOrdering (T − {T [h]} + {e}) is to
reorder the edges in {e, T [h+ 1], ..., T [n − 1]} to follow the
PRIM order while fixing the order in T [1], ..., T [h − 1] (i.e,
T ′[1] = T [1], ..., T ′[h− 1] = T [h− 1]).
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Example 4. We use Figure 6 to illustrate the enumera-
tion process where the query q is depicted in Figure 6(b) and
θ = 2. Suppose that the weight of ei is i. The root in Fig-
ure 6(a) gives the initial spanning tree e1e2e3. Consecutively
conducting the go-down phase from the initial spanning tree
e1e2e3 to drill down to e3 for executing the alternating-
reordering phase, e4 is chosen to replace e3 to form the next
spanning tree e1e2e4, and then e5 is chosen to replace e4 to
form the next spanning tree e1e2e5. Note that e1e2e3.R = ∅,
e1e2e4.R = {e3}, and e1e2e5.R = {e3, e4}.

Algorithm 1 may execute the alternating-reordering phase
while drilling down to e2. Then e4 is chosen to replace
e2. Since e1 and e3 are disconnected, reOrdering () gives
e1e4e3 for further conducting go-down and/or alternating-
reordering phases. Algorithm 1 may execute the alternating-
reordering phase at e1 in the original spanning tree. The set
QT of spanning trees of q, generated by Algorithm 1, is de-
picted in Figure 6(a).

Analysis of Algorithm 1. Immediately, Algorithm 1 does
not enumerate two identical spanning trees; and for each
T ∈ QT , E(T ) ∩ T.R = ∅ and |T.R| ≤ θ. Theorem 1 be-
low implies that all generated similarity maximal matches
are distinct if each edge exclusion set T.R is enforced to be
excluded from the matches induced by exact matches on T .

Theorem 1. Given two spanning subgraphs q1 and q2 of
q, suppose that there are two different spanning trees T1 and
T2 generated by Algorithm 1 such that q1 contains T1 and
q2 contains T2. Further suppose that E(q1) ∩ T1.R = ∅ and
E(q2) ∩ T2.R = ∅. Then q1 �= q2.

Proof. We represent each T.R by a sequence of edges,
(T.R[1], ..., T.R[L]), where L = |T.R|, such that in the enu-
meration process to get T , TR[1] is replaced first from the
initial spanning tree, then T.R[2] is replaced from the next
spanning tree, and so on. Without loss of generality, we as-
sume that |T1.R| ≤ |T2.R|. Since T1 �= T2, it is immediate
that (T1.R[1], ..., T1.R[L]) �= (T2.R[1], ..., T2.R[L′]).

Case 1. For 1 ≤ i ≤ L, T1.R[i] = T2.R[i]. Thus, L′ > L
since L′ ≥ L and T1.R �= T2.R. According to Algorithm 1,
T2 must be enumerated from T1 by firstly replacing T2.R[L+
1] from T1. Consequently, q1 �= q2 since q2 does not contain
T2.R[L+1] but q1 contains T2.R[L+1] since q1 contains T1

and T1 contains T2.R[L+ 1].

Case 2. Assume that T1.R[k] and T2.R[k] are the first edges
in T1.R and T2.R, respectively, such that T1.R[k] �= T2.R[k].
Then, there must be a T3 generated by Algorithm 1 with
T3.R = (T1.R[1], ..., T1.R[k − 1]). It is immediate that both
T1 and T2 are enumerated from T3. That is, T3 contains
both of T1.R[k] and T2.R[k], T1 is enumerated from T3 by
first placing T1.R[k], and T2 is enumerated from T3 by first
replacing T2.R[k]. Without loss of generality, assume T3[i] =
T1.R[k], T3[j] = T2.R[k], and j > i. According to Algorithm
1, T2 is enumerated from T3 by iteratively replacing edges at



levels not smaller than j. Consequently, T2 contains T1.R[k].
Therefore, q2 contains T1.R[k]. Thus, q1 �= q2 as q1 does not
contain T1.R[k].

The proof of Theorem 1 implies that in two different span-
ning trees T and T ′ in QT , there must be one, say T ′ such
that T ′ contains one edge in T.R. Theorem 1 immedi-
ately implies the following Theorem with the assumption
θ ≤ m− n+ 1 where m = |E(q)| and n = |V (q)|. Note that
θ > m − (n − 1) means that any subgraph of q missing θ
edges is disconnected; thus we do not need to consider such
a case in this section - Section 3.

Theorem 2. |QT | ≤ |QSAPPER| and |QT | = |QSAPPER|
only when θ = 0 or θ = m− (n− 1).

Proof. Clearly, for each spanning tree T ∈ QT , we can
generate a spanning subgraph qT of q missing θ edges such
that qT contains T and qT does not contain any edge in T.R.
Theorem 1 immediately implies that qT �= qT ′ for any pair
of T and T ′ in QT . Thus, |QT | ≤ |QSAPPER|.

Note that qT has
(
m−n+1

θ

)
choices corresponding to the

initial spanning tree T . Consequently, |QT | = |QSAPPER|
only if θ = 0 or θ = m− (n− 1).

Clearly, each T in QT leads to
(
m−n+1−|T.R|

θ−|T.R|
)
distinct

spanning subgraphs of q missing θ edges each of which con-
tains T but does not contain any edge in T.R.

Theorem 1 immediately implies:

|QSAPPER| ≥
∑

T∈QT

(
m− n+ 1− |T.R|

θ − |T.R|

)
(2)

Note that
(
m−n+1−|T.R|

θ−|T.R|
)
=
(
m−n+1−|T.R|

m−n+1−θ

)
. As |QT | is sig-

nificantly smaller than
∑

T∈QT

(
m−n+1−|T.R|

m−n+1−θ

)
when θ �= 0

and m − n + 1 �= θ, |QSAPPER| is significantly larger than
|QT | except θ = 0 or m − n + 1 = θ. Our experiment also
demonstrates that |QSAPPER| is much larger than |QT |.

Next we show the completeness of QT ; that is, every sim-
ilarity match of q can be induced by a T ∈ QT even if the
edges in T.R are excluded.

Theorem 3. For a spanning subgraph q′ of q missing at
most θ edges, there is a spanning tree T ∈ QT such that q′

contains T and q′ does not contain any edge in T.R.

Proof. Let Sq′ denote the set of missing edges in q′ from
q; that is, Sq′ = E(q)−E(q′). If the initial spanning tree T
has no edge in Sq′ , then the theorem holds.

Assume that there are k (k ≤ θ) edges in Sq′ which are
in T and these k edges are T [i1], T [i2], ..., T [ik] such that
i1 < i2... < ik. As one part of Algorithm 1, we continuously
execute Line 2 to reach the level i1 and then execute the
alternating-reordering phase (i.e., Line 3 to Line 8) to replace
the edge T [i1] by e to form T ′.

Note that e may or may not be in Sq′ − {T [i1]} and now
we only need to focus on Sq′ − {T [i1]} against T ′. Due to
reOrdering () in Algorithm 1, the edges in (Sq′−{T [i1]})∩T ′

may change their positions in T . Nevertheless, since we only
reorder the edges at the levels not lower than i1, the lowest
level edge T ′[j] in (Sq′−{T [i1]})∩T ′ must not be lower than
i1; that is, j ≥ i1. Therefore, Algorithm 1 goes down to j
to replace T ′[j]. We continue to do this till find a spanning
tree T ′′ (i.e., T ′′ ∈ QT ) such that T ′′ does not contain any
edge in Sq′ and T ′′.R is a subset of Sq′ . Thus, q′ contains
T ′′ and q′ does not contain any edge in T ′′.R.

Minimality of QT . To enforce our search algorithm in Sec-
tion 3.4 to generate all distinct similarity maximal matches,
Algorithm 1 may not give the minimum number of spanning
trees as a cover in general. Nevertheless, Theorem 1 imme-
diately implies that QT is minimal with the enforcement
of the exclusive semantics of edge exclusion sets; that is,
removing one T from QT , the maximal similarity matches
induced by T to exclude the edges in T.R cannot be induced
by another T ′ in QT to exclude edges in T ′.R. It can also
be immediately verified that any spanning tree T in QT is
a minimal spanning tree in (q−T.R) and follows the PRIM
order in (q − T.R).

3.3 Effectively Storing QT

We present a data structure, T , to effectively organize
QT for prefix sharing search, referred as a DFS Traver-
sal Tree. The basic idea is as follows. When generating
T ′ by replacing T [h] from T , we store their common prefix
T [1], ..., T [h − 1] only once in T . The remaining spanning
edges in T and T ′ are organized as two different branches.

In a T , each node N represents an edge T [h] of a spanning
tree T , while the root R represents the head vertex of the
spanning trees in QT . The initial spanning tree is firstly
loaded as the left-most path of T . In Algorithm 1, itera-
tively, if T [h] is replaced by an edge e to form the next span-
ning tree T ′, then T ′[h] is allocated as the right sibling next
to T [h] such that T and T ′ share the prefix T [1], ..., T [h−1].
Note that T ′[h] is not always e due to reOrdering (). Clearly,
the space requirement of T is O(|QT ||V (q)|).

Regarding the query q in Figure 6(b). The resulted QT
of Algorithm 1 depicted in Figure 6(a) is organized in T
as depicted in Figure 7. Here, arrows indicate the order of
edges in a spanning tree and a path from the root to a leaf
gives a spanning tree.
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Figure 7: DFS Traversal Tree

3.4 Similarity Maximal All-Matching
Basic Idea. The central idea of our algorithm is to search
T in a depth-first search fashion to generate all extendible
exact mappings F for each spanning tree T ∈ QT . We
enforce that the induced match by each F on T excludes T.R
and confirms θ. Theorem 1 and 3 guarantee the correctness.

Iteratively, once we detect that a node (corresponding to
an edge) in T does not support the current mapping exten-
sion, we immediately terminate the extension to the next
level in T and only focus on alternating the search to the
right sibling node.

We adopt a graph encoding technique in [13], called QIse-
quence, to present our search algorithm.

QIsequence. A QIsequence seq of q is determined by a
spanning tree T of q; it is represented by a sequence {S[1], ...,
S[|V (q)|]}. Here, each S[i] (1 ≤ i ≤ |V (q)|) is called an entry
of seq and corresponds to a vertex in q. The first entry S[1]
corresponds to the root vertex of T . All edges in T are
represented by the spanning edges in seq such that for 2 ≤
i ≤ |V (q)|, each entry S[i] has one and only one spanning
edge (S[i], S[j]), denoted by S[i].sEdge, where j < i. Here,



we call S[j] the parent of S[i] in T . All other edges in q are
called backward edges in seq and the set of backward edges
incident to an entry S[i] is denoted by S[i].bEdges.

B

B

C

A

(b) seq

Entry sEdge bEdges

S[1]  (u1) nil

S[2]  (u2) (S[2], S[1])

S[3]  (u3) (S[3], S[2])

S[4]  (u4) (S[4], S[2]) (S[4], S[3])

S[1] (u1)

(a)

S[2] (u2)

S[3] (u3)

S[4] (u4)

Figure 8: A Sample QIsequence

Example 5. We depict a QIsequence of a query graph q
in Figure 8(b) based on a spanning tree of q. The corre-
sponding entry information is listed in Figure 8(a). Span-
ning edges and backward edges are depicted by double-lined
and single-lined edges, respectively.

In our search algorithm, the enumerated spanning trees
for generating QIsequences are stored in T as described in
Section 3.3. Two ways can be used to conduct similarity
maximal all-matching, (1) build an entire T (i.e., QT ), and
(2) build T on the demands; that is, based on the current
results. We first present (2).

EnumerateOnDemand. EnumerateOnDemand strategy iter-
atively enumerates QIsequences (spanning trees) only when
it is feasible to extend the current partial mapping verti-
cally (i.e. go-down) or horizontally (i.e., alternating to the
next spanning tree). Our search algorithm is outlined be-
low in Algorithm 2 following the go-down and alternating-
reordering phases in Algorithm 1.

Algorithm 2: SimSearch (h, seq,F , G, γ, θ, T )

Input : h: the current mapping depth; (initially 1)
seq: the current QIsequence;
F : the current partial mapping;
G: the data graph; γ: # missing edges;
θ: a given similarity threshold;
T : the DFS Traversal Tree;

1 S[h] := seq.S[h];
2 for each v ∈ getCandiate(S[h],F , G) do
3 α := getMissingBackedges(v, S[h].bEdges,G) ;
4 if α+ γ ≤ θ & Validate(v, S[h].bEdges, seq.R,G) then
5 F [h] := v;
6 if h < |V (q)| then
7 SimSearch (h+ 1, seq,F , G, γ + α, θ,T ) ;
8 else
9 Output (F ,MF,Tseq ) ;

10 if γ < θ & h �= 1 & checkReplacing (S[h].sEdge) then
11 S′[h].sEdge := Replacing (S[h].sEdge) ;
12 if Already (seq, S[h].sEdge,S′[h].sEdge,T ) then
13 seq′ := get(seq, S[h].sEdge,S′[h].sEdge,T ) ;
14 else
15 seq′ := enu(seq, S[h].sEdge,S′[h].sEdge,T ) ;

16 SimSearch (h, seq′,F , G, γ + 1, θ,T ) ;

In Algorithm 2, h is the current mapping depth and seq
is the current QIsequence to be explored against G (initially
seq∗, the QIsequence determined by the initial spanning tree
in QT ). The current partial mapping F on seq[1, ..., h − 1]
is a vector {F [1], ...,F [h− 1] } where F [i] (1 ≤ i ≤ h− 1) is
a vertex in G mapped from S[i], and seq[1, ..., i] denotes the
prefix of seq up to the entry S[i] (i.e., seq[1, ..., i] consists of
all the spanning edges and the backward edges of the vertices
(entries) S[j] for 1 ≤ j ≤ i). γ is the number of missing edges
in the current parting mapping F on seq[1, ..., h − 1]. T is

the DFS Traversal Tree which initially has only a left-most
path representing the spanning tree of seq∗.

Following Algorithm 1, Lines 2-7 of Algorithm 2 execute
the go-down phase and Lines 10-16 execute the alternating-
reordering phase. Note that each edge in the spanning tree
of seq is represented by the spanning edge of an entry and
the root S[1] does not have a spanning edge.

go-down. The go-down phase (Lines 2-7) of Algorithm 2
needs to check whether or not the current extended par-
tial mapping conforms the θ constraint and excludes the
edge exclusion set when it attempts to extend the current
partial mapping F on seq[1, ..., h − 1] to F on seq[1, ..., h]
via the spanning edge S[h].sEdge by fixing the mapping on
seq[1, ..., h − 1]. getCandiate iteratively retrieves the next
unmapped candidate v in C(u) of G where C(u) is the can-
didate set of u. If h = 1, v is simply a vertex in C(u); oth-
erwise, v is chosen to match the spanning edge S[h].sEdge
from q to G; that is, v must also be a neighbor of the vertex
in G mapped from the parent of S[h] in seq.

getMissingBackedges computes the number of backward
edges in S[h].bEdges mismatched by extending to v. Con-
sequently, if γ + α ≤ θ, the current partial mapping F on
seq[1, ..., h] still conforms the θ constraint. In addition, we
use Validate () to ensure that the current induced match does
not include any edge in seq.R where seq.R stores the edge
exclusion set of the spanning tree of seq (i.e., edges replaced
in the enumeration process from the spanning tree of seq∗

to obtain the spanning tree of seq). It checks the induced
match on seq[h].bEdges; if the induced match maps an edge
in seq.R to G, then we stop the current extension. When
the current mapping covers all vertices (i.e. h = |V (q)|), we
output the similarity maximal match (F ,MF,Tseq ) induced
by the spanning tree Tseq of seq in Line 9.

alternating-reordering. Lines 10-16 of Algorithm 2 execute
the alternating-reordering phase following Algorithm 1. Since
the root node S[1] in a seq does not have a spanning edge, Al-
gorithm 2 does not execute the alternating phase for h = 1.
checkReplacing (S[h].sEdge) and Replacing (S[h].sEdge) are
the same as those in Algorithm 1. Already () checks if the
spanning tree of a seq′ generated by replacing S[h].sEdge
with S′[h].sEdge has been obtained earlier. If yes, it just
gets the seq′ for the go-down phase in Line 16. Otherwise,
enu () is executed in the same way as Lines 3-8 of Algorithm
1 to get the spanning tree of seq′ from the spanning tree of
seq by replacing S[h].sEdge with S′[h].sEdge; the spanning
tree of seq′ is then stored in T in the way described in Sec-
tion 3.3 for the go-down phase in Line 16. S[h].sEdge and
all edges in seq.R are added to seq′.R.

EnumerateAll. The EnumerateAll strategy firstly enumer-
ates the spanning trees in QT (thus, all corresponding QIse-
quences) by Algorithm 1, stored in T as described in Section
3.3. We run the algorithm 2 by excluding Lines 13-14.

Correctness of SimSearch. By Theorems 1 and 3, Sim-
Search can generate all distinct similarity maximal matches.

3.5 Computing All Similarity Matches
We can compute the similarity matches, as proposed in [23],

using our similarity maximal matches as intermediate re-
sults. That is, generate all feasible spanning subgraphs from
each similarity maximal match. Theorems 1 and 3 ensure
that all distinct similarity matches conforming θ will be gen-
erated. Our experiments demonstrate that this algorithm
for computing all similarity matches achieves a speed-up for
up to 5 orders of magnitude against SAPPER algorithm.



4. FILTERING AND ORDERING
In this section, we first present an effective filtering condi-

tion to remove non-promising vertices from G for each vertex
u in q; that is, generating C(u) to feed Algorithm 2. Then
we present an effective edge ordering technique.

4.1 Neighborhood based Pruning

Definition 7 (Neighborhood Aggregates). Given
a set of labels ΣV = {L1, ..., Lm} and a graph g, the neigh-
borhood aggregates of each vertex v in g, denoted by N(v, g),
is (x1, ..., xm) where xi is the number of vertices with label
Li ∈ ΣV that can be reached by an edge from v in g. Here,
N(v, g) may be regarded as a point in an m-dimensional
space and each xi is called the hit of the label Li or the
dimension i.

A

AB

D

A

D A

BB

C

A

C

(a) q (b) G
u v

Figure 9: Neighborhood Aggregates

Example 6. Regarding the example in Figure 9, L1 = A,
L2 = B, L3 = C, and L4 = D. N(u, q) = (2, 1, 0, 2), and
N(v, G) = (1, 2, 2, 0).

Our filtering technique is based on the neighborhood ag-
gregates. Given two vertices u ∈ V (q) and v ∈ V (G) where
l(u) = l(v), assume N(u, q) = (x1, ..., xm) and N(v,G) =
(y1, ..., ym). According to Definitions 2 and 3, if xi − yi > θ
for any i, u can not be mapped to v because more than θ
edges in q will be definitely mismatched. This can be gener-
alized by Theorem 4 below. We first define the neighborhood
distance δ(u, v) as δ(u, v) = Σm

i=1δi where for 1 ≤ i ≤ m,

δi =

{
xi − yi xi > yi
0 otherwise

(3)

Definition 4 immediately implies the following theorem.

Theorem 4. Given a similarity threshold θ, a vertex u ∈
V (q) can not be mapped to a vertex v ∈ V (G) by any simi-
larity matches confirming θ, if δ(u, v) > θ.

By Theorem 4, in the filtering phase of our techniques,
we first precalculate the neighborhood aggregates of each
v ∈ V (G) (a.k.a building the index of G). Once a query q is
issued, we compute the neighborhood aggregates of each u ∈
V (q) and retrieve an initial candidate list C(u) containing
all vertices v ∈ V (G) such that l(v) = l(u). We can filter v
from C(u) if δ(u, v) > θ; the finally obtained C(u) is used
as candidate set for Line 2 of Algorithm 2.

The space required to store all neighborhood aggregates
is O(|V (G)||ΣV |), while the filtering cost for each u ∈ V (q)
is O(|C(u)||ΣV |).

4.2 Search Order
[13] proposes to assign a weight φ(u) (φ(u1, u2)) to each

vertex u (edge (u1, u2)) in q such that φ(u) (φ(u1, u2)) is the
occurrence of the vertices (edges) in G with the label l(u)
((l(u1), l(u2))). Then, [13] picks the vertex u with the min-
imum φ(u) as the root S[1] for all QIsequences enumerated

by Algorithm 2, including the initial spanning tree (QIse-
quence). The initial spanning tree is generated by the PRIM
algorithm [1]; that is, enforce the PRIM order.

The motivation to generate a QIsequence using such an
ordered minimum spanning tree is to prune a non-promising
search as early as possible; it is shown in [13] that selecting
seq∗ using the PRIM algorithm (i.e. iteratively enforcing
the greedy constraint) is the most efficient way to find a
subgraph isomorphic mapping. Although [13] aims to find
one exact match for a QIsequence, such motivation is imme-
diately applicable to similarity maximal all-matching since
our algorithm and the algorithm in [13] are both based on
iteratively extending a subgraph isomorphic mapping on the
spanning tree of a QIsequence in a depth-first search fashion.

As discussed in Section 3.2, a generated seq by Algorithm
2 is a minimum spanning tree and follows the PRIM order
in (q − seq.R). Therefore, Algorithm 2 always adopts the
best available subgraph isomorphism search strategy in [13]
while excluding seq.R.

Dynamically Weighting. Our algorithm, Algorithm 2,
generates alternative QIsequences on the fly and based on
the current partial mappings. Below, we propose to assign
weights to edges of q based on the results of our filtering
technique in Section 4.1 and based on the current partial
mapping. Particularly, we choose the vertex u in q with the
smallest |C(u)| as S[1] where C(u) is obtained by the filter-
ing technique in Section 4.1 and then the initial QIsequence
is chosen in the way described in Section 3.2 (i.e., the same
way in[13]).

To replace S[h].sEdge to conform the PRIM order (i.e.,
Line 11 of Algorithm 2), we choose an edge (u, S[j]) (j < h)

in q such that |C(u)|×φ(u,S[j])
φ(u)

is minimized. The observation

is as follows. As with [13], we assume that in G (1) the ver-
tices with label l(u) are uniformly distributed in all edges
with label (l(u), l(S[j])); (2) each vertex with label l(u) has
the same probability to appear in C(u). With the above as-
sumptions, for an edge (u, S[j]) (j < h), we can estimate the

number of possible mappings of (u, S[j]) by |C(u)|×φ(u,S[j])
φ(u)

since the mapping on S[j] is already obtained.

5. ALLOWING MISMATCHED VERTICES
Our techniques can be immediately extended to cover the

problem of finding all similarity maximal matches allowing
mismatched vertices, defined in Section 2. Firstly, our fil-
tering techniques in Section 4.1 are immediately applicable.

Algorithm 2 needs to be carefully extended to deal with
mismatched vertices in q since q is allowed to be cut into
several disconnected parts by disabling edges in q. The ba-
sic idea is to execute the modified Algorithm 2 in multi-
ple rounds. In round-1, we fix seq∗.S[1] as the head and
conduct a modified Algorithm 2 to compute all the results
with matched S[1], while allowing to mismatch any other
seq∗.S[h] (h > 1) as long as the threshold constraint θ still
holds. In round-2, we first mark seq∗.S[1] as a must-missing
vertex and seq∗.S[2] as a must-matching vertex, while allow-
ing to mismatch any other seq∗.S[h] (h > 2). In round-3,
we enforce that seq∗.S[1] and seq∗.S[2] as must-missing ver-
tices and seq∗.S[3] as a must-matching vertex. Continuing
this till we get all results.

The key part is to carefully deal with a missing vertex u.
Simply putting all edges of a missing vertex into seq.R to
enforce that the current partial mapping does not include
any edge in seq.R will miss results. For example, consider



the q and G depicted in Figures 10(a) and (b), respectively.
Assume the current QIsequence seq is (u1, u2, u4) where u3

needs to be mismatched and θ = 1. Simply putting (u2, u3)
into seq.R and dealing with seq.R in the same way as that in
Algorithm 2 will miss the mapping {u1 → v1, u2 → v2, u4 →
v3 } and its induced maximal match { (v1, v2), (v2, v3) }. This
is because the depth-first search will stop at u2 after discov-
ering (u2, u3) can be mapped into G.

(a) q

C

u3

A

C

(b) G

v1

v2

v3

B

A

C

u1

u2

u4

B

Figure 10: Allowing Vertex Mismatch (θ = 1)

To resolve the above issue, we put edges replaced to obtain
the current seq in seq.R only if they are in seq, while the
edges cutting seq from other parts in q are put in seq.D.
We check whether or not the current partial mapping can
be extended to map an edge (seq.S[i], u) ∈ seq.D into G
only when all vertices in seq with the same label of u are
exhausted. Due to space limits, we omit the details in this
paper and only provide the experiment results to illustrate
the efficiency of our extended algorithm.

6. PERFORMANCE EVALUATION
We report our performance evaluation in this section by

using the state of the art technique SAPPER as a benchmark
algorithm. The following algorithms are implemented:

• TSpan: Our SimSearch algorithm based on the Enu-
merateOnDemand strategy (i.e., Algorithm 2) in Sec-
tion 3.4 employing the neighborhood based filtering
technique in Section 4.1 and the dynamic weighting
strategy in Section 4.2.

• TSpanQI: Running TSpan by the weights of edges and
vertices in q as proposed in [13] (also see Section 4.2).

• PrecTSpan: Replacing the EnumerateOnDemand strat-
egy in TSpan by the EnumerateAll strategy (also see
Section 3.4).

• NäıveTSpan: Computing similarity maximal matches
induced by each spanning tree in QT separately; that
is, run PrecTSpan for |QT | times and feed PrecTSpan
by one QIsequence every time.

• TSpanNF: Running TSpan without filtering.

• TSpan+: Using TSpan to compute all similarity maxi-
mal matches and then enumerate all feasible subgraphs
of each maximal match (see Section 3.5).

• TSpanMV: The modified TSpan allowing mismatched
vertices (see Section 5).

All algorithms are implemented in C++ and compiled
with GNU GCC. We conduct the experiments on a PC with
Intel Xeon 2.40GHz CPU and 4GB memory running De-
bian Linux. We obtain the binary code of SAPPER from
the authors of [23].

We evaluate the performance of all algorithms on a real
dataset by varying query settings, while synthetic datasets
are used to vary data graph settings. Below are the details.

Real Dataset. The Human Protean Interaction Network
(HPRD) (http://www.hprd.org/download) is used as the
real data graph in this section, denoted by GH . The data

graph contains 9, 460 vertices, 37, 081 edges and 307 distinct
vertex labels generated under the Gene Ontology Term.

Query Graphs. Based on GH , we use the random walk
to randomly generate the following query sets from GH to
study the impact of different query settings.

• Varying |V (q)|: We randomly generate 8 sets of query
graphs, denoted by Q5, Q10, Q15, Q20, Q40, Q60, Q80

and Q100 where each query in Qi has i vertices with an
average vertex degree 4 (a default setting). Each Qi

(i = 5, 10, ..., 100) has 100 randomly generated queries
which are all subgraphs of GH .

• Varying avg.deg(q): We also randomly generate 4
sets of query graphs, denoted by Qd=3, Qd=4, Qd=5

and Qd=6 where each query in Qd=i has the average
vertex degree i with 60 vertices (a default setting).
Each Qd=i (i = 3, 4, 5, 6) has 100 randomly generated
queries which are all subgraphs of GH .

Note thatQ60 = Qd=4 with the default setting |V (q)| = 60
and avg.deg(q) = 4.

Synthetic Dataset. A synthetic data graph GS is ran-
domly generated as follows. We first randomly generate a
spanning tree and then randomly add edges to the span-
ning tree. Finally, we assign labels randomly to the vertices
following the power law distribution [10]. Particulary, we
choose the exponent of power law to be 3 and randomly
map each label to a distinct number l ∈ [1, ...|ΣV |] to get its
weight l3. We use power law distributions since many real
graphs follow a power law distribution.

The default settings of the graph GS are: |V (G)| = 10k,
avg.deg(G) = 8, and |ΣV | = 50 (i.e. the number of labels is
50). Note that the smaller the number of labels, the more
challenging. The following synthetic data graphs are gener-
ated to study the impact of various data graph settings.

• Varying |V (G)|: We generate 5 data graphs denoted
by G5k, G10k, G20k, G40k and G80k where each Gik

has ik vertices with the default settings of avg.deg(G)
and |ΣV |.

• Varying avg.deg(G): We generate 5 data graphs de-
noted by Gd=4, Gd=8, Gd=12, Gd=16 and Gd=20 where
each Gd=i has an average degree of i with the default
settings of |V (G)| and |ΣV |.

• Varying |ΣV |: We generate 4 data graphs denoted
by GL=20, GL=50, GL=100, GL=200 where each GL=i

contains i distinct vertex labels with default settings
of |V (G)| and avg.deg(G).

A set of 100 randomly selected subgraphs q of GS is also
generated as the query graphs with the default settings on
|V (q)| (60) and avg.deg(q) (4).

Default θ Value. The default similarity threshold is θ = 2.

6.1 Our Search Paradigms Against SAPPER
We evaluate TSpan, NäıveTSpan and TSpan+ against SAP-

PER on GH and GS (with default data graph settings).
While TSpan+ and SAPPER compute all similarity matches,
TSpan and NäıveTSpan only compute similarity maximal
matches. As SAPPER is slow, we randomly generate a set
of 100 subgraphs of GH and GS as the queries, respectively.
Here, each query for GH and GS has 20 and 30 vertices, re-
spectively. Note that we use query graphs with 20 vertices
against GH because SAPPER can not terminate in two days
for a single query with 30 vertices against GH .
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Figure 11: Number of Seeds

Number of Seed Graphs. While the numbers of seeds
generated by SAPPER and NäıveTSpan (i.e, |QSAPPER| and
|QT |) are irrelevant to data graphs, the number of seeds
(spanning trees) generated by TSpan depends on data graphs.
Figure 11(a) and 11(b) report the average number of enu-
merated seeds for TSpan, NäıveTSpan and SAPPER, respec-
tively for various θ. Note that |QSAPPER| is significantly larger
than |QT | (i.e., for up to 7.5 and 8.1 times for query graphs
generated from GH and GS, respectively). By the Enumer-
ateOnDemand strategy, TSpan can significantly reduce the
size of QT ; our results demonstrate that TSpan leads to
the reduction of |QT | by up to 76% and 79% regarding the
queries generated from GH and GS , respectively.

Query Processing Time. Figures 12(a) and 12(b) plot
the average query processing time per query regarding var-
ious θ. Note that we do not report the results of SAPPER
on GS for θ = 3 as SAPPER fails to terminate in two days.
While generating the same results, TSpan+ improves SAP-
PER by up to 5 orders of magnitude over both GH and
GS , even excluding the case of failing to terminate. Against
SAPPER, TSpan achieves a speed-up by up to 7 orders of
magnitude, even excluding the case of failing to terminate.
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Figure 12: Total Processing Time

Figures 12(a) and 12(b) also show that TSpan improves
NäıveTSpan by up to 4 and 14 times on GH and GS, re-
spectively, due to a smaller number of generated seeds to
conduct all-matching and computation sharing. Although
both NäıveTSpan and SAPPER adopt a näıve strategy to
conduct all-matching, NäıveTSpan is 6 orders of magnitude
faster than SAPPER, even excluding the case θ = 3 on GS ;
this is because (1) fewer seeds are generated, (2) only maxi-
mal matches are computed; and (3) conducting all-matching
against trees is less expensive conducting it against graphs.
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Figure 13: Varying |V (q)| to query GH

Varying Query Graph Size. To further demonstrate the
efficiency of our algorithms, we compare TSpan, NäıveTSpan
and TSpan+ with SAPPER when δ is small and |V (q)| is
small. We vary |V (q)| from 5 to 20 to query the real data
graph GH . Figure 13(a) and 13(b) report the average query
processing time of all algorithms when θ = 1 and 2, respec-
tively. TSpan+ outperforms SAPPER from 3 to 5 orders of
magnitude over various |V (q)| settings. It also shows that
TSpan and NäıveTSpan further improve the query processing
time of TSpan+ for generating maximal matches only.

In the rest of the section, we will exclude the evalua-
tions of SAPPER and NäıveTSpan as they are not competi-
tive against TSpan. We will also exclude the evaluations of
TSpan+ as it is always more expensive than TSpan and we
aim to compute similarity maximal matches.

6.2 EnumerateOnDemand vs EnumerateAll
We next evaluate TSpan and PrecTSpan by varying θ and

avg.deg(q) to query GH . The default value for |V (q)| is 60.
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Figure 14: Number of Seeds

Number of Seed Graphs. We report the number of seed
graphs of TSpan and PrecTSpan (i.e. generate the whole
QT ) in Figure 14(a) and 14(b), respectively. Clearly, the
difference between TSpan and |QT | increases when |V (q)|,
θ, and avg.deg(q) increase. For example, TSpan enumerates
only 2.7% of the spanning trees in QT for θ = 4.
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Figure 15: Total Processing Time

Query Processing Time. The evaluation results are re-
ported in Figure 15(a) and 15(b). Due to the EnumerateOn-
Demand strategy, TSpan significantly improves PrecTSpan
for up to 26 times over various θ settings. Interestingly,
PrecTSpan only doubles the running time of TSpan on vari-
ous avg.deq(q); this shows that the ratio between TSpan and
PrecTSpan is less sensitive to avg.deg(q), compared with θ.

Note that PrecTSpan consumes significantly more memory
than TSpan since PrecTSpan generates much more spanning
trees than TSpan. In fact, PrecTSpan needs more than 10GB
memory for conducting the experiment in Figure 15(a) re-
garding θ = 4. Thus, we conduct the experiment in Fig-
ure 15(a) on another PC with AMD 800MHz CPU and
100GB memory running Ubuntu Linux. We also notice
that TSpan is much more scalable regarding the memory
usage (e.g., 16MB, 20MB, 36MB, 176MB for θ = 1 to 4,
respectively). While TSpan is guaranteed not slower than
PrecTSpan, it is significantly faster than PrecTSpan in prac-
tice. Thus, we exclude PrecTSpan from further evaluation.



6.3 Evaluating Filtering Technique
Indexing Cost. The evaluation of index time and size
is reported in Table 1 by varying |V (G)| and avg.deg(G).
Both index size and time grow linearly with |V (G)| and
avg.deg(G) for generating neighborhood aggregates of data
graph vertices. They confirm that our index construction
costs are low in terms of both index size and time.

Table 1: Index Size and Index Time
avg. deg(G) 4 8 12 16 20

Index Size (MB) 0.30 0.49 0.63 0.74 0.83
Index Time (s) 0.15 0.24 0.30 0.34 0.40

|V(G)| 5k 10k 20k 40k 80k
Index Size (MB) 0.26 0.49 0.89 1.72 3.41
Index Time (s) 0.11 0.24 0.50 1.25 3.12

Filtering Power. The evaluations of the filtering power
record the average ratio of size of candidate set for each ver-
tex u in q over that of the set of vertices in G with the same
label of u. Lower ratio indicates stronger filtering power.
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Figure 16: Filtering Power

Figures 16(a) and 16(b) report our results against GH ,
while Figures 16(c) and 16(d) report our results over syn-
thetic data graphs. Clearly, the filtering power degrades
when θ and avg.deg(G) increase. However, the filtering
power enhances when avg.deg(q) increases. It confirms that
the filtering power is not sensitive to the growth of |V (G)|.
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Figure 17: Filtering Efficiency

Efficiency. The evaluations of the efficiency of our filter-
ing technique are reported in Figure 17(a) to 17(d). They

show the break-down information in TSpan regarding filter-
ing time and the time to conduct Algorithm 2 in TSpan. It
shows that the filtering cost increases significantly with the
increase of data graph size and becomes a quite significant
factor (about 10% of the total costs).

The next experiment shows the efficiency of TSpan on
large-scale synthetic data graphs. The default settings of
large-scale data graphs are: |V (G)| = 10M(M = Million),
avg.deg(G) = 8 and |ΣV | = 200. The default settings of
query graphs are: |V (q)| = 60 and avg.deg(q) = 4.

Table 2: Processing Time on Large-scale Datasets
Varying |V (G)| 0.1M 0.5M 1M 1.5M

Processing Time (s) 0.06 0.15 0.32 0.51
(a)

Varying avg.deg(G) 4 8 12 16 20
Processing Time (s) 0.28 0.32 0.45 0.93 2.99

(b)

Varying |V (q)| 20 40 60 80 100
Processing Time (s) 0.11 0.21 0.32 0.40 0.57

(c)

Varying θ 1 2 3 4
Processing Time (s) 0.21 0.32 0.83 6.82

(d)

Table 2(a)-(d) show the query processing time of TSpan by
varying various settings. Note that, to be scalable, our algo-
rithms aim to make the total costs of TSpan as linear as pos-
sible in practice regarding |V (G)| and |E(G)|, respectively,
by terminating a false positive match as early as possible and
maximizing the computation sharing. Table 2(a)-(b) show
that the query processing time of TSpan has almost linear
growth when |V (G)| and avg.deg(G) (i.e., |E(G)|) increase.
In Table 2(c), as |V (q)| increases, TSpan is also efficient and
scalable. Table 2(d) demonstrates that the query processing
time of TSpan may grow exponentially when θ increases.
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Figure 18: Total Processing Time

Effectiveness of Search Order. Finally, we evaluate the
impact of search orders; that is, edge orders in QIsequences
(see Section 4.2). We evaluate TSpan (with the dynami-
cal weighting) against TSpanQI (with the weighting strategy



in [13]) and TSpanNF (without filtering and thus with the
weighting strategy in [13]).

Figures 18(a)-18(c) report our evaluation results against
real data graphs, while Figures 18(d)-18(f) report our evalu-
ation results against synthetic data graphs. They show that
TSpan significantly outperforms TSpanQI and TSpanNF in
all cases, and demonstrate that 1) the search order is very
important, and 2) our filtering technique plays a more sig-
nificant role in determining a search order. Interestingly,
TSpanQI and TSpanNF have very close performance though
earlier evaluation results show that our filtering technique
has a significant filtering power. This shows that the span-
ning tree based search to iteratively prune a non-promising
search can detect and prune non-promising vertices in G
as effectively as the proposed filtering technique, especially
when avg.deg(q) is not large.

6.4 Allowing Mismatched Vertices
We now evaluate TSpanMV, the extension of TSpan in

Section 5 to conduct similarity maximal all-matching by al-
lowing missing vertices. We conduct the evaluation against
TSpan over real data graph GH . The evaluation results are
reported in Figures 19(a) and 19(b). They show that the two
algorithms perform quite closely though TSpanMV conducts
more complex computation than TSpan.
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Figure 19: Total Processing Time

In summary, our spanning tree based search paradigm sig-
nificantly outperforms SAPPER. TSpan is the best choice.

7. CONCLUSIONS
In this paper, we propose a novel search paradigm to con-

duct similarity (maximal) all-matching. It is based on enu-
merating a minimal set of spanning trees together with the
edge exclusion set to generate all distinct similarity maximal
matches. Compared with the state of the art technique SAP-
PER [23], our search algorithm not only leads to significantly
fewer times of conducting exact all-matching computation
but also reduces the complexity of exact all-matching from
graphs to trees. We also present new techniques in filtering,
search order, and computation sharing. A comprehensive
performance evaluation on both real and synthetic datasets
demonstrates that our algorithms outperform SAPPER by
several orders of of magnitude.
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