
Instance-Based Ontology Matching Using Different

Kinds of Formalisms
Katrin Zaiß and Tim Schlüter and Stefan Conrad

Institute of Computer Science

Heinrich-Heine-Universität Düsseldorf

40225 Düsseldorf, Germany

{zaiss,schlueter,conrad}@cs.uni-duesseldorf.de

Abstract—Ontology Matching is a task needed in various applica-
tions, for example for comparison or merging purposes. In literature,
many algorithms solving the matching problem can be found, but
most of them do not consider instances at all. Mappings are deter-
mined by calculating the string-similarity of labels, by recognizing
linguistic word relations (synonyms, subsumptions etc.) or by ana-
lyzing the (graph) structure. Due to the facts that instances are often
modeled within the ontology and that the set of instances describes
the meaning of the concepts better than their meta information,
instances should definitely be incorporated into the matching process.
In this paper several novel instance-based matching algorithms are
presented which enhance the quality of matching results obtained
with common concept-based methods. Different kinds of formalisms
are use to classify concepts on account of their instances and finally
to compare the concepts directly.

Keywords—Instances, Ontology Matching, Semantic Web

I. INTRODUCTION

T
HE Semantic Web, an idea of Tim Berners-Lee, creates a

vision of bringing meaning to the content of web pages.

The semantics of the offered information should be structured

and meaningfully processable for machines and Semantic

Web applications. Ontologies are often used as a model for

knowledge representation, made processable automatically by

the use of languages like RDF and OWL. Ideally, there is

one standardized ontology for each specific domain, which is

referenced by every other ontology of this domain. Actually

there are many different ontologies describing (nearly) the

same domain, but using different labels or different structures.

This implies the need of a Matching or Integration Process.

Whenever there is a need to exchange information, first

correspondences have to be found between different ontologies

to get an overview of the common concepts. This process

can hardly be done by hand for large ontologies, hence

semi-automatic matching algorithms have to be developed.

Mainly, there are three types of approaches to perform the

matching process using different types of input. Concept-based

algorithms try to compare ontologies only using information

like labels, attributes, data types or structure. Instance-based

algorithms use the set of instances to train learners or to com-

pare instances using string similarity functions for instance.

But most of the instance-based approaches do not work well

whenever there is a lack of instances or if the instances of

both ontologies do not have a lot in common. Hence, a lot of

systems are hybrid, i.e. they combine concept- and instance-

based algorithms. Due to the fact that instances provide a

broader information content, that could definitely increase the

quality of the match result, there is the need to develop an

efficient instance-based matching algorithm.

The rest of the paper is organized as follows. First, related

work is presented in Section II, whereas the most challenging

tasks and deficits of existing systems are pointed out. Section

III shortly introduces the used terminology. The theoretical

basis of the presented methods is provided in Section IV.

Section V describes the approach in detail, and Section VI

presents an evaluation. The paper concludes with future work

in Section VII.

II. RELATED WORK

There are already a few systems providing instance-based

ontology matcher. To motivate this work, some of the used

methods are presented and their limitations are pointed out.

A. GLUE

An approach that uses instances as input is GLUE [1]. It

makes use of machine learning techniques to gather infor-

mation about the content or the syntactical representation of

concepts helping to classify instances. The classification of the

instances is then used to calculate a joint probability distribu-

tion. Using an appropriate similarity function, e.g. the Jaccard

similarity, the distribution is transformed into a similarity

value and into a similarity matrix. In a next step this matrix

and domain-specific constraints and heuristic knowledge are

applied to increase the matching quality. Finally, relaxation

labeling (a graph algorithm) is used to determine an alignment.

The machine learning techniques used by GLUE do not

work very well if instances differ syntactically. Another dis-

advantage is that GLUE cannot determine a mapping if there

is a lack of instances.

B. COMA++

COMA++ [2] is a system which flexibly combines many

different matchers, e.g. the comparison of names or data types

or structural matcher. In [3] two instance-based matchers are

proposed as an extension of the existing matcher library. The

new instance-based matchers can be divided into constraint-

based and content-based matching methods. The constraint-

based approach classifies instances using general, numerical

World Academy of Science, Engineering and Technology 55 2009

164

or pattern constraints. Among the general constraints there are

methods calculating the average length or determining the set

of the used characters. Numerical constraints check whether

an instance is a number and determine its type, and pattern

constraints test whether all instances belonging to one concept

follow a certain pattern. The content-based algorithm com-

pares the instances pair-wise using string-similarity functions

like the edit distance.

The instance-based methods of COMA++ seem to be

promising, but unfortunately the authors do not tell something

about the used similarity measures. But the application of an

appropriate similarity function is very important, since the

comparison of the constraints for example is very challenging.

A lot of question have to be answered, for instance if similar

average length influences the similarity of two attributes.

C. Automatch

Another system using instance-based matching methods

is Automatch [4]. For each domain experts create attribute

dictionaries containing all possible values and the belonging

probabilities of occurrence. The instances of an ontology are

matched against these dictionaries, and the resulting mapping

provides the basis for calculating an individual match score

for each attribute. The several match scores are summed up

and finally a mapping is determined by applying a “minimum

cost maximum flow” graph algorithm.

One big drawback of Automatch is the huge effort needed

to build the dictionaries and especially to calculate the prob-

abilities.

D. Dumas

Dumas [5] is another instance-based matching approach

which compares the set of instances to detect duplicates. This

duplicate information is used to find similar attribute pairs and

hence similar concepts.

If there are duplicates, this algorithm should work very well.

In real-life datasets there should be duplicates, but if there

are none the algorithm does not work, just as if there are no

instances available at all.

E. Other Approaches

There are several other instance-based approaches like [6],

[7] or [8] which are not covered by this paper due to minor

importance for our approach. An overview and a short descrip-

tion of several instance-based matching system can be found

in [9].

III. TERMINOLOGY

To facilitate the description of the algorithms in Section

IV and V the most important concepts are described in this

section.

A. Matching

The matching problem describes the process of finding

correlating entities representing the same real-world thing,

i.e. similar entities or subsumptions. A mapping (the result

of a matching process) between two given ontologies can be

defined as follows: To map an ontology O onto an ontology

P implies that for each entity (concept or relation) of O

a corresponding entity of P having the same meaning is

searched. Formally, the matching function performing this

process can be defined as follows:

match : (O,P) 7→ {(c1, c2),
with c1 ∈ O, c2 ∈ P and sim(c1, c2) > t},

whereas sim is an arbitrary similarity function and t a

predefined similarity threshold.

B. Similarity Measure

In order to compare two given vectors, a similarity measure

is needed that is appropriate for the specific application.

Two common distance measures are the Euclidean and the

Manhattan distances [9]. For the following let v, w ∈ Nd
0

denote two d-dimensional vectors.

The Manhattan distance d
L1(v, w) and the Euclidean dis-

tance d
L2(v, w) between v and w is given by

d
L1(v, w) =

d−1∑
i=0

|vi − wi| and

d
L2(v, w) =

√
d−1∑
i=0

(vi − wi)2.

Distance functions calculate values between 0 and ∞, but

for our purpose similarity values sim ∈ [0, 1] are needed,

where sim = 1 defines the maximum similarity. An ap-

propriate transformation can be done by using the following

equation:

sim = 1
1+distance

The two above mentioned (dis-)similarity measures consider

the value of each component. In some cases an angle-based

measure like the cosine similarity is more appropriate to

express similarity. Let v ∗ w denote the scalar product of the

two vectors v and w, and |v| = √v ∗ v the length of v. The

similarity function cosine : Nd
0 ×Nd

0 → [0, 1] is defined by

cosine(v, w) = v∗w
|v|·|w|

.

Of course, the cosine similarity is also defined for Rd or Cd,

but our approach only uses the vector space of the natural

numbers.

C. Evaluation Measures

For evaluation purposes some measure have to be defined,

which can determine the quality and the matching accuracy,

respectively.

Precision defines the proportion of correct classified map-

pings to the number of all retrieved mappings. A less math-

ematical and more intuitive definition of Precision is the

following (cf. [10]) :

World Academy of Science, Engineering and Technology 55 2009

165

Precision = #correctFoundMappings
#foundMappings

The Recall measure calculates the fraction of correct classi-

fied mappings to the number of all possible correct mappings.

Again, Recall can be defined using a more informal definition

(cf. [10]):

Recall = #correctFoundMappings
#existingMappings

The F-Measure combines Precision and Recall to gain an

overall result. It is defined as:

F −Measure = 2*Precision*Recall
Precision+Recall

D. Regular Expressions

Regular languages or regular expressions provide an easy

way to identify strings of interest in certain texts, or in our case

to distinguish certain instances of ontologies. They are part of

nearly every basic course in theoretical computer science (an

overview about formal languages can be found e.g. in [11]),

and of course every programming language has its own way to

deal with regular expressions. Thus some short examples about

how regular expressions (RegEx for shorthand) are used will

be given in the following and in Figure 1 (cf. [12] for more

detail).

• The RegEx

R.*

matches any string that starts with “R”, followed by an

arbitrary number of any character or number (the dot de-

notes any character and the asterisk that this symbol can

appear arbitrarily often), it would match e.g. “RegEx”.

• RegEx can be composed in many different variations. The

expression

.*(((c|C)onference)|((w|W)orkshop)).*

would match any string in which Conference, conference,

Workshop or workshop appear.

• For convenience there are many abbreviations, for exam-

ple “\d” for any digit and “\w” for any character (small

or capital) or digit, and special symbols like “\s” for a

whitespace. An expression that makes use of this is

[\w-\.]+@([\w-]+\.)+[\w-]{2,4}

for email addresses. Note, that “[...]{2, 4}” denotes that

the expression in the squared brackets has to occur twice

at minimum and maximum 4 times.

IV. HOW TO HANDLE INSTANCE INFORMATION

Ontologies often include a lot of instances per concept

which probably better describe the semantics of the concept

than its meta information like concept name etc. Thus, instance

information should definitely be used in a matching process.

But how to catch the specific aspects of the instances? Our first

approach, which has been shortly described in [13], makes use

of predefined regular expressions (created by domain experts)

to classify instances and finally concepts. The creation of

regular expressions may be difficult for domain experts if they

do not have experience in creating regular expressions. Hence,

the process can be simplified by just giving catchwords instead

of regular expressions (second approach). Both methods return

a set of vectors describing all concepts of one ontology.

In the following, these concept vectors are referred to as

RECW vectors because they are either created using regular

expressions or catchword groups but the processing of the

vectors is the same. These vectors are compared pairwise with

the ones of a second ontology using a similarity function. This

process will be described in Section V. In the following, the

process from specifying regular expressions and catchwords

to creating RECW vectors is described for each of the two

strategies.

A. First Approach - Predefined Regular Expressions

In the last decades many effort has been made in the

research of language inferring. Especially interesting for our

purpose is the inference of regular languages or expressions

from given positive examples. Unfortunately, Mark E. Gold

has stated in his seminal work [14] that it is impossible to

learn the whole class of regular expressions only from positive

examples. Until today many algorithms for inferring regular

expressions from a finite number of positive examples have

been proposed and implemented, but most of them, especially

the ones actually used, are only heuristic, i.e. there is no

precise characterization of the (sub-)class of language that is

covered by them [15]. In addition to that these algorithms are

not really practicable for our needs because even for alphabets

with strong limited size the runtime is too long. A recent and

elaborate algorithm for example is [16], but even for inferring

expressions with alphabet size |Σ| = 15 it takes about 9 hours

on a current PC system on the average.

Thus, a domain expert creates a list of regular expressions

that fits to (the instances of attributes of) the ontologies. In

order to describe an attribute through a regular expression, a

certain amount of instances is compared to a list containing

regular expressions, and the first fitting regular expression is

assigned to the instance, and the regular expression that is

assigned to the majority of the regarded instances belonging

to a certain attribute is assigned to this attribute. Certainly, to

avoid misassignment at this point, the regular expressions have

to be ordered from very specialized at the beginning to more

common at the end of the list. The process of rearranging the

list is described more in detail in Algorithm IV-B-1.

B. Arranging Lists and Creating Vectors

After creating regular expressions manually by domain

experts the list containing them has to be ordered from very

specialized at the beginning to more common at the end

of the list, because instances are always assigned to the

first fitting regular expression. Let u denote the unordered

list containing d different regular expressions. After applying

Algorithm IV-B-1 on u for sequencing, a list l is obtained

that is ordered appropriate for our purpose. Now a bijective

function δ can be defined from {1, ..., d} to the subspace Θ
of regular expressions, which are contained in l (and u), with

δ(i) = r,

World Academy of Science, Engineering and Technology 55 2009

166

where r is the i-th regular expression of the ordered RegEx

list l.

Algorithm IV-B-1:

Require: unordered list u containing d RegEx

Ensure: ordered RegEx list l

int[] counter=zeros(1,d); {init. d-dim array with zeros}
{count RegEx matches}
for all ontology o, concept c ∈ o, attribute a ∈ c do

insert “certain amount” of attribute instances i ∈ a in set

sa;

for all i ∈ sa do

for all k = 1, ..., d do

if k-th RegEx of list u matches instance i then

counter[k]++;

end if

end for

end for

end forlist l =emptyList;

{sort list l according to counter[]}
for all k = 1, ..., d do

find m with counter[m] = max!, counter[m]≥ 0;

l.appendAtBeginning(m-th RegEx of list u);

counter[m]=-1;

end for

return l

With the process of comparing instances with regular ex-

pressions described in Algorithm IV-A, a function reg can

be defined from the attribute space to the space of regular

expression, which holds

reg(a) = r,

where a is an attribute of a certain concept and r the regular

expression that is assigned to a (i.e. to the majority of instances

examined belonging to this attribute).

After defining the two functions δ(i) and reg(a) the RECW

vector can be defined more easily: the RECW vector v ∈ Nd

representing a concept c is the vector whose components vi

(i = 1, ..., d) contain the number of assignments from δ(i) (i.e.

the i-th regular expression in the RegEx list l) to an attribute

in c. Hence the sum of all components of v equals the number

of attributes in c.

A short informal algorithm for building a RECW vector

v is given by Algorithm IV-B-2, and an illustration of the

process is given in Figure 1.

Algorithm IV-B-2:

Require: concept c, ordered RegEx list l

Ensure: RECW vector v calculate δ and δ
−1;

{calculate function reg}
for all attribute a ∈ concept c do

compare certain amount of instances with RegEx list l to

determine reg(a);
end for

{initialize RECW vector v}

for all component vi, 1 ≤ i ≤ d do

vi = 0
end for

{count allocated RegEx in accordant component}
for all attribute a ∈ c do

inc(vδ−1(reg(a)), 1);
end for

return v

Naturally, the lack of instances is a severe drawback of

all instance-based matching methods. Our approach creates

zero-vectors for concepts without instances, and the similarity

between such concepts, from which at least one is represented

by a zero-vector, is defined as 0.

C. Second Approach - Transforming Catchwords

In most cases domain experts may not be able to formulate

complex regular expressions, for example if the matching

system shall be used in areas like biology or banking industry.

Additionally, the creation of appropriate regular expressions

may even be difficult or time-consuming for computer scientist

for all non-trivial attributes. Hence, the process of creating

regular expressions is facilitated, such that domain experts

just have to specify catchwords. In this case, catchwords are

a group of strings (s1, ..., sn) which are often included in

instances belonging to one attribute, i.e. they could be char-

acterized as most probably common substrings. The domain

expert just thinks about attributes that are likely for his domain

and specifies frequently used substrings.

An concrete example for this is the field of bibliographic

references, where an expert has to define catchwords belong-

ing to the domain of paper classification. Thinking of the

attribute “title of event”, which will surely appear when having

ontologies about bibliography, he could specify catchwords

like “conference”, “workshop” or “symposium”, because these

words often appear when naming the title of the presentation

event. An attribute like “email” could be described using

catchwords like “@”, “.de”, “.org” and “.com”.

After specifying all catchword groups a list u is obtained

with d entries, where each entry consists of a catchword group

describing one possible attribute.

But in some cases it is difficult to specify catchwords, for

example attributes like “author name” do not have frequently

common substrings. In this case, the domain expert could give

a set of examples, such as “John”, “Jim” or “Thomas” that are

treated as catchwords. The same mechanism is necessary for

numerical attributes, because usually they do not have common

substrings. Alternatively, example values could be extracted

automatically from one ontology within the match process, for

example by taking the m most frequently appearing instances

per attribute. Attributes like “month” or “day” normally have

a limited space of possible instances, which cannot be de-

scribed very well with user-defined catchwords. Due to this

observation, the catchword lists always include predefined

catchword groups consisting of all possible instance values

for standard types like month and day. To describe instances

by comparing them with catchwords or example values, the

following algorithm is used: a certain amount of instances of

World Academy of Science, Engineering and Technology 55 2009

167

RegEx list

.*(((c|C)onference)|((w|W)orkshop)|((s|S)ymposium)|((t|T)utorial)).* // conference etc.

(19(\d)(\d))|(200(\d)) // year (1910-2009)

((([A-Z][a-z]{0,4}(\.))?(\s)?)|([A-Z][a-z]*(\s)?))+ // name (shortname, etc.)

[\w-\.]+@([\w-]+\.)+[\w-]{2,4} // email

[\d]+ // simple number

[\w\-\s]+ // text with some additional character

...

Attribute Assigned Regular Expression
ID [\d]+

AUTHOR ((([A-Z][a-z]{0,4}(\.))?(\s)?)|([A-Z][a-z]*(\s)?))+

EMAIL [\w -\.]+@([\w -]+\.)+[\w -]{2,4}

TITLE [\w \-\s]+

Concept "Unpublished"
ID AUTHOR EMAIL TITLE
168 I. N. Bronnshtein master@math.org YAH - Yet Another Handbook

254 Walt Disney staff@disney.com Cinderella 2 - The Beginning

...

Fig. 1. Illustration and example of vector creation. An RegEx list with 6 specified regular expressions is given above (see Algorithm III-D for more details
about RegEx). The concept “Unpublished” is displayed as a relation, containing some instances for every attribute. After comparing the instances with the
RegEx list a regular expression is assigned to every attribute as shown in the tabular at the bottom. Finally, a RegEx vector for concept “Unpublished” is
created as described in Algorithm IV-B-2.

each attribute is compared to the list of catchwords/examples

and the one that fits to the majority of the instances is assigned

to the attribute. A catchword or example group fits to an

instance, whenever the instance contains one of the catchwords

or example values. The process of vector creation remains

the same (see Algorithm IV-B-2, just replace “RegEx” by

“catchword/example” list).

V. THE MATCHING PROCESS

First, it is important to state, that the proposed instance-

based algorithms should not work alone as the only method

to compare the ontologies and to determine a mapping. Our

method has to be integrated into a system containing different

matchers and several features like relevance feedback to in-

crease the match quality and to enable matching of concepts

without instances. A possible system architecture is shown in

Figure 2 (more details can be found in [17]).

Concept-based matching methods form the beginning of

the whole process. Simple mapping assertions, including very

similar concept names or URIs detected by calculating the

edit distance e.g. , can easily be determined and provide a

basis for the instance-based process. The exact specification

of the used concept-based methods for evaluation purposes is

given in the corresponding Section VI. Concepts that found a

mapping partner do not participate in the next mapping step,

i.e. the presented instance-based approach.

A. General Process

The flow of our matching process is shown in Figure 3.

First, a certain amount of instances is extracted for each

attribute of each concept that provides instances. For each

���������
����	�
�

������������
���������	��

������� �������

���	�	�

���������	���
	�������

������������
���������	��

������
�
�

������
�
�

�����������
������

	�����������
������

����������
�����	�

���	�	�

��������
�	������
	�������

Fig. 2. Possible Matching Framework

instance set one of the strategies described in IV is executed

(but the choice of the strategy is fixed for the complete match-

ing process). As a result of Algorithm IV-B-2 each concept

World Academy of Science, Engineering and Technology 55 2009

168

is described by a vector containing numbers representing the

quantity of each regular expression/catchword group that is

assigned to an attribute of this concept. Finally there are two

sets of RECW vectors (one for each ontology), which are

compared pairwise using a similarity measure as described

in III-B. The resulting similarities are used to determine 1:1

mappings by selecting those concept pairs whose similarity

values are above a certain threshold and which do not partic-

ipate in another mapping yet. Additionally, 1:n mappings can

be found by comparing the sum of two (or more) vectors with

another one (more details in Section V-B).

B. Creation of Candidate Mapping

The process of creating 1:1 and 1:n mappings is described

in Algorithm V-B.

Algorithm V-B:

Require: similarity matrix M

with i identifier for a concept vector of O1 and j of O2

[i, j] cosine similarity of the vectors

threshold t

Ensure: set Map of 1:n mappings

for all i ∈ [0, M.length()− 1] do

define set CM containing mapping candidates

for all j ∈ [0, M.length()− 1] do

if [i, j] ≥ t then

Map← (i, j)
else if 0 < [i, j] < t then

C ← j

end if

end forconstruct power set P(CM)
for all cm ∈ P(CM) do

sum up vectors for all concepts, whose identifier is

∈ cm

result: vector cmv

calculate sim sc of concept vector i and cmv

if sc > t then

Map← (i, cm)
end if

end for

end for

return Map

The whole similarity matrix is regarded and concept pairs

having a similarity values above the threshold are directly

added to set Map of Mappings. After that, a set CM is created

for each concept c ∈ O1 containing all concepts viinO2 with

s < sim(c, vi) < t, whereas O1 and O2 are ontologies,

s ∈ [0, t[and t is a defined threshold. Then, the power set

of CM is calculated. For each element cm of CM (which is

a set of concepts) c and cm are compared by summing up the

RECA vectors of the concepts contained in cm and calculating

the similarity between the concept vector of c and this sum.

If the similarity is above the threshold the belonging concepts

are added to Map. Of course, the whole process has to be

repeated for each concept j ∈ O2.

The proposed method provides good results, as one can

see in Section VI, but of course there are more sophisticated

methods which can be tested in future developments. Espe-

cially the application of algorithms that try to find a mapping

configuration that maximizes Precision and Recall in general

(without just picking out the highest similarity values but doing

more computation to have an appropriate overall result) have

to be examined.

VI. EVALUATION

A. Evaluation Framework

As mentioned in section V, the proposed methods shall be

used within a more complex matching system to enhance the

quality of the determined mapping. For evaluation purposes

a system was created containing concept-based and the pre-

sented instance-based matching algorithms. The concept-based

similarity method consists of six similarity computation steps,

which are described more in detail in the following:

• Label Comparison

• Trigram Calculation

• Prefix/Suffix Comparison

• Attribute Set Comparison

• Attribute Matching

The Label Comparison step calculates a string similarity

between the concept names based on the edit distance.

The Trigram Calculation uses an ngram-like measure to

express the similarity between two concept names (e.g. used

by [18]). If two words A and B are compared using the trigram

measure, the trigrams for each word are constructed and the

accordances are counted. The number of accordances and the

number of trigrams are combined to calculate a similarity by

using the dice coefficient (cf. [19]) defined by:

2 ∗ accordances

#trigrams(A) + #trigrams(B)

The Trigram measures is useful to find similar concept names

containing typing mistakes for example.

The Prefix/Suffix Comparison is a simple comparison of the

beginning and the end of the concept names. If one concept

name is the prefix/suffix of the other one or vice-versa, the

similarity value is 1, otherwise the similarity is 0. This measure

is important to recognize if one concept is an abbreviation of

another, e.g. ”phone” and ”phonenumber”.

In the Attribute Set Comparison step each attribute is

compared to all the other ones using a SimSet similarity mea-

sure. First, the string similarity values between all attributes

are computed since these establish the basis for the SimSet

calculation. Each attribute can now be represented by a vector

containing his similarity values. The vectors of all attributes

belonging to the same concept are summed up and divided by

the number of attributes. Finally, the scalar product of the two

resulting vectors is computed representing the SimSet value (

[10]).

The Attribute Matching measure examines the attribute sets

separately. Again, for each attribute the string similarity values

are calculated, but this time only to the attributes of the other

concepts. For each concept the number of similarity values

World Academy of Science, Engineering and Technology 55 2009

169

�����������	
������
����

��
�����
�

�

��
�����
�

�

�	����
���	
�����������
��� �	����	
���	
�����
��

������������	��
���
���	
���	�����

���
	���� ���
��� �	
���

� ��!� ��
�	������

Fig. 3. Instance-Based Matching Process

above a certain threshold is counted (since the string similarity

is bijective, it is the same number) and the similarity value is

computed by calculating

simValues ≥ threshold

attributes of concept A
+

simValues ≥ threshold

attributes of concept B
,

i.e. the fraction of attributes of concept A having a mapping

partner plus the fraction of attributes of concept B that are very

similar to another one.

Finally, the value is normalized by dividing it by 2.

To evaluate our matching process, several tests have been

executed using different ontologies and different amounts

of instances. To show the improvement reached with our

instance-based methods, first the test are executed only using

concept-based methods and then extended with the presented

algorithms. For this purposes, some of the ontologies offered

for the benchmark test series at the “Ontology Alignment

Evaluation Initiative 2007” ([20]) are taken as the basis

for the calculations. The benchmark ontologies all describe

the domain of bibliography but differ in hierarchy, labeling,

existence of instances, suppressing of comments etc. A big

advantage of this benchmark is the additional specification

of the expected alignment. Ontologies without instances are

not useful for this evaluation, as well as simple changes on

the concept level. Finally, the ontologies with numbers 101

(reference ontology), 102 (irrelevant ontology), 202 (random

names), 205 (synonyms) and 230 (flattened classes) have been

chosen. Unfortunately, these ontologies do not provide many

instances, hence additional ones have been inserted basing on

real bibliographic data obtained from the “DBLP Computer

Science Bibliography”([21]).

B. Evaluation Results

Table I shows an overview of the composition of evaluated

ontologies.

In detail, the following three test scenarios have been

examined:

1) concept-based similarity calculation (only for concepts

containing instances)

TABLE I
OVERVIEW OF THE ONTOLOGIES USED FOR EVALUATION

number concepts attributes concepts with instances

101 36 78 28
102 74 101 12
202 36 78 28
205 36 78 28
230 28 73 25

2) concept-based methods combined with the first approach

3) concept-based methods combined with the second ap-

proach

Tests number 2 and 3 are executed using Manhattan, Cosine

and Euclidean distance. The final similarity values are com-

puted by taking the average of the calculated concept- and

instance-based similarity. In the following, the different tests

and their results are described in detail and several advantages

and limitations are pointed out. Additionally, the Precision and

Recall values are presented and explained for chosen tests,

whereas the results for concept-based methods and the two

presented approaches are subsumed. The different scenarios

are referred by their numbers described above. Figure 4

summarize the results. The test 101 vs. 102 is omitted due

to the fact that Precision and Recall are zero for all tests. The

results for test 2 and 3 are represented by an average value

calculated by the detailed values shown in Figure 5, because

several similarity measures are used.

101 vs. 101: The matching of one ontology to itself is a

trivial task, but for completeness this test was executed as

well. Logically Precision and Recall are 1, and the similarity

between equal concepts is 1, too. The values are the same for

all tested similarity measures and all approaches.

101 vs. 102: 102 is an ontology irrelevant for the domain

of bibliography, in this case it is a wine ontology. The used

RegEx-files are created by domain experts and adapted to

possible bibliographic data. Hence, the regular expressions

fitting to the instances of 102 are very common (placed at the

end of our RegEx file). The algorithms detects some matches,

but the number of these false positives is very low which is

a good result. Nevertheless, Precision and Recall are 0 for all

World Academy of Science, Engineering and Technology 55 2009

170

����������� ����������� ����������� ���������	�

�

�
�

�
�

�
�

�

�

�
�

�������

���������

��������

������

�������

���������

�������

������

�����	�

���������

�����	�

������

Fig. 4. Evaluation results

measures and approaches.

101 vs. 202: Ontology 202 has the same structure as 101

but all concept and attributes names are replaced by random

strings. This results in an unacceptable matching results for

the concept-based methods (test 1). No correct mapping can

be found. In contrast, tests 2 and 3 provide good results which

is reasonable since the instances are not affected directly by

the changes.

101 vs. 205: In ontology 205 concept and attribute names

are mostly replaced by synonyms. This matching task is

quite difficult for concept-based matching systems, because

synonyms have to be detected by using external resources.

For our (instance-based) algorithm, this test equals the test

101 vs. 101, hence Precision and Recall are quite high.

101 vs. 230: Ontology 230 is still quite similar to 101 (same

labels) but some concepts are flatted, e.g. the “Date” concept is

rejected and information about a date is stored directly in the

concept. The most difficult part of this test is the detection of

the 1:2 mappings. If the flattened concepts provide instances

only for a part of their attributes, they are more similar to the

according concept of these attributes in the other ontology. An

example: The concepts book (b1) and date of 101 have to be

mapped to book (b2) of 230. Most of the attributes of b2 are

equal to those of date, such that b2 and date are more similar

than b2 and b1 (with a similarity above the threshold). Thus,

our algorithm could be expanded, such that 1:1 mappings are

taken into account when 1:n mappings are determined. Since

the label of the concepts are very similar to those of 101

concept-based methods provide good results. Tests 2 and 3

confirm the results.

Our evaluation shows that the proposed method works quite

well. It is an advantage, that concept label are not taken into

account, such that mapping synonyms is easy. More problems

occur, if the number of attributes containing instances is

small. Since this algorithm should be embedded in a more

complex system with different matchers, it can be stated that

the proposed instance-based matching algorithm is very useful

to improve matching quality.

VII. CONCLUSION

Ontology matching is a task used in several applications

and performed by many systems using different algorithms.

As shown the number of instance-based methods is limited

and gives room for improvements. Our first proposed instance-

based method makes uses of regular expressions to classify

attributes by scanning instances. These regular expressions are

used to compare and finally to match concepts. The evaluation

states that the algorithm is helpful, especially for ontologies

which differ considerable in labels. As described above this

matcher has to be integrated into a more complex framework

offering different types of matcher.

Before performing the matching process, domain experts

have to build the regular expressions file adapted to a special

domain. This results in an additional effort, but assuming that

matching tasks are executed several times for the same domain

these files can be reused. One can also think of a collection

of different files (collected by-and-by or created by different

domain experts), where the RegEx file has to be determined by

the user or chosen dynamically by an automatic mechanism.

Our second approach uses catchwords and positive exam-

ples to classify instances. This avoids the problem of creating

appropriate regular expressions, but the accuracy probably gets

lost. Another problem is that example instances might not

be representative for the domain because they contain typing

mistakes or are randomly not included.

REFERENCES

[1] A. Doan, J. Madhavan, P. Domingos, and A. Y. Halevy, “Ontology
Matching: A Machine Learning Approach,” in Handbook on Ontologies.
Springer, 2004, pp. 385–404.

[2] H. H. Do and E. Rahm, “COMA - A System for Flexible Combination
of Schema Matching Approaches,” in VLDB 2002, Proceedings of 28th

International Conference on Very Large Data Bases, August 20-23,

2002, Hong Kong, China. Morgan Kaufmann, 2002, pp. 610–621.

[3] D. Engmann and S. Maßmann, “Instance Matching with COMA++,”
in Datenbanksysteme in Business, Technologie und Web (BTW 2007),

Workshop Proceedings, 5.-6. März 2007, Aachen, Germany, 2007.

[4] J. Berlin and A. Motro, “Database Schema Matching Using Machine
Learning with Feature Selection,” in Advanced Information Systems

Engineering, 14th International Conference, CAiSE 2002, Toronto,

Canada, May 27-31, 2002, Proceedings, 2002, pp. 452–466.

[5] A. Bilke and F. Naumann, “Schema Matching Using Duplicates,” in
Proceedings of the 21st International Conference on Data Engineering,

ICDE 2005, 5-8 April 2005, Tokyo, Japan, 2005, pp. 69–80.

[6] G. Stumme and A. Maedche, “FCA-MERGE: Bottom-Up Merging
of Ontologies,” in Proceedings of the Seventeenth International Joint

Conference on Artificial Intelligence, IJCAI 2001, Seattle, Washington,

USA, August 4-10, 2001, 2001, pp. 225–234.

[7] A. Doan, P. Domingos, and A. Y. Levy, “Learning Source Description
for Data Integration,” in WebDB (Informal Proceedings), 2000.

[8] M. S. Lacher and G. Groh, “Facilitating the Exchange of Explicit
Knowledge through Ontology Mappings,” in Proceedings of the Four-

teenth International Florida Artificial Intelligence Research Society

Conference, May 21-23, 2001, Key West, Florida, USA, 2001.

[9] J. Euzenat and P. Shvaiko, Ontology Matching. Heidelberg (DE):
Springer-Verlag, 2007.

[10] M. Ehrig and S. Staab, “QOM - Quick Ontology Mapping.” in IN-

FORMATIK 2004 - Informatik verbindet, Band 1, Beiträge der 34.

Jahrestagung der Gesellschaft für Informatik e.V. (GI), Ulm, 20.-24.

September 2004. GI, 2004, pp. 356–361.

[11] J. Rothe, Complexity Theory and Cryptology. Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 2005.

World Academy of Science, Engineering and Technology 55 2009

171

�����������

�����������

�����������

���������	�

�

�
�

�
�

�
�

�

�

�
�

������

���������
�

��������

���������
�

������

���������
�

��������

���������
�

������

������
�

��������

������
�

������

�����������

�����������

�����������

���������	�

�

�
�

�
�

�
�

�

�

�
�

�����	

���������
�

��������

���������
�

������

���������
�

��������

���������
�

������

������
�

��������

������
�

������

Fig. 5. Detailed results for Tests 2 and 3

[12] M. Habibi, Real World Regular Expressions with Java 1.4. APress,
2004.

[13] K. Zaiß, T. Schlueter, and S. Conrad, “Instance-based ontology matching
using regular expressions,” in OTM Workshops, ser. Lecture Notes in
Computer Science, R. Meersman, Z. Tari, and P. Herrero, Eds., vol.
5333. Springer, 2008, pp. 40–41.

[14] E. M. Gold, “Language Identification in the Limit,” Information and

Control, vol. 10, no. 5, pp. 447–474, 1967. [Online]. Available:
http://www.isrl.uiuc.edu/∼amag/langev/paper/gold67limit.html

[15] H. Fernau, “Algorithms for Learning Regular Expressions,” in ALT,
ser. Lecture Notes in Computer Science, S. Jain, H.-U. Simon, and
E. Tomita, Eds., vol. 3734. Springer, 2005, pp. 297–311.

[16] G. J. Bex, W. Gelade, F. Neven, and S. Vansummeren, “Learning Deter-
ministic Regular Expressions for the Inference of Schemas from XML
Data,” in WWW ’08: Proceeding of the 17th international conference

on World Wide Web. New York, NY, USA: ACM, 2008, pp. 825–834.
[17] K. Zaiß, “Entwicklung eines Frameworks fuer instanzbasiertes

Ontologie-Matching (Developing a Framework for instance-based On-
tology Matching) ,” in Tagungsband zum 20. GI-Workshop über Grund-

lagen von Datenbanken (20th GI-Workshop on the Foundations of

Databases), Apolda, Thringen, 13.-16. Mai 2008, 2008.
[18] H. H. Do and E. Rahm, “Coma - a system for flexible combination

of schema matching approaches.” in VLDB 2002, Proceedings of 28th

International Conference on Very Large Data Bases, August 20-23,

2002, Hong Kong, China, 2002, pp. 610–621.
[19] M. Kay and M. Röscheisen, “Text-translation alignment.” in Computa-

tional Linguistics, vol. 19, no. 1, 1993, pp. 121–142.
[20] “Ontology Aligment Evaluation Initiative - 2007 Campaign,”

http://oaei.ontologymatching.org/2007/, 2007.
[21] “The DBLP Computer Science Bibliography,”

http://www.informatik.uni-trier.de/ ley/db/, June 2008.

World Academy of Science, Engineering and Technology 55 2009

172

