
Journal of Theoretical and Applied Information Technology
31st March 2019. Vol.97. No 6

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1832

BOOTSRAPPING INSTANCE-BASED ONTOLOGY
MATCHING VIA UNSUPERVISED GENERATION OF

TRAINING SAMPLES

1MANSIR ABUBAKAR, 2HAZLINA HAMDAN, 3NORWATI MUSTAPHA, 4TEH NORANIS
MOHD ARIS

1, 2, 3,4Faculty of Computer Science and Information Technology, University Putra Malaysia, 43400 UPM

Serdang Selangor Darul Ehsan
E-mail: 1abubakar.mansir@auk.edu.ng, 2, 3, 4{hazlina, norwati, noranis}@upm.edu.my

ABSTRACT

Training set is the key role player that can improve the performance of any classification task. Different
techniques and methods are being applied to generate training set depending on its area of application.
Researchers in data science and semantic web community use different kind of training sets generated to
improve the performances of classifications and information retrieval capability. Operational Training Set
Generator (TSG) should always solve a minimum of two issues; (1) it must address the computational cost
in producing a reasonable outcome, thereby reducing the computational cost in the whole system. The run-
time of TSG is near linear as in blocking approach and (2) it must produce the qualitative training sets. We
use LogTfIdf as the cosine similarity function of two given vectors to produce Bag of Words (BoW); the
tokenizer is developed to specially take care of delimiters that often come across URIs and other RDF
essentials. We evaluated our UTSG on nine cross-domain benchmark ontologies publically available in
OAEI website. The results obtained shows that our UTSG outperforms the two baseline TSGs previously
developed to address similar problem.

Keywords: Semantic Web, Link Open Data, Semantic Heterogeneity, Ontology Matching, Instance-based
Matching, Training Set

1. INTRODUCTION

Gradually, the importance of ontology based
techniques in reading and processing semantic
information is dominating the semantic web.
Traditional search is being replaced by semantic
search for effective presentations of query results
to the user. For the information on the web to be
shared and be interoperated, strategies to minimize
if not totally eliminate the heterogeneities in the
data became necessary. Even though, many
techniques have been developed to solve semantic
heterogeneity through ontology matching [1], [2]
and [3] to mention a few. Yet, producing complete
alignment remains competitive among many
matching systems [4]. Most of these systems
concentrate on the exploit of structures or schemas
of the ontology while neglecting an important
component of an ontology called instance or
individual [5], [6]. Many approaches presented by
different authors contribute significantly the naïve
methods of matching ontology instances [7], [8]

[9] and [10]. A recent survey on instance based
matching reported that ontology matching will
remain incomplete provided the ontology’s
instances are not match in an unsupervised fashion
[11]. Even though, some instance matching
systems recorded high F-score in generating
alignments, still some aspects of the systems
requires global attention.

Traditional instance matching method consists
of two important steps (Figure 1), a blocking step
and a similarity step [12]. A blocking involves
grouping entities into paired and unpaired clusters,
thereby making the paired group a candidate for a
matching, this step can be replaced with machine
learning clustering approach as in the work [13]
where potential matching attributes are discovered
using clustering method. A similarity step is
characterized as classification stage where content
of paired candidate group are classified and
evaluated to produce the final output of the
matching. In these systems, the specification
function that specifies the mapping requires an

Journal of Theoretical and Applied Information Technology
31st March 2019. Vol.97. No 6

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1833

intervention from the domain expert to complete
the matching process. In some approaches, the
blocking has to consider manually trained
examples for the mapping to take place. Therefore,
these methods are completely supervised.

Figure 1: Traditional Instance-based matching
Method

To address the supervision problem, [14] proposed
an approach called training set generation to
bootstrap the overall instance matching process.
The idea suggested that as long as training set can
be identified via suitable assumptions, the set
would be appropriate to increase the adaptability
of the whole matching process. However, this
approach concentrated heavily on an assumption
which does not often satisfy in most of the RDF
graph data. In fact, this method is considered to be
unsupervised and can only work effectively to
domain-independence graph data. Most of the
training set generation methods in the literature are
experimentally weak when handling
heterogeneous RDF data. [15], tries to bridge this
gap in their work. In the work, they built a schema
free instance matcher that aimed to be
unsupervised but fails for some reasons. This
system succeeded in matching RDF data that is
made up of few properties but recorded low
performance in mapping large-scale data.
Therefore, designing and use of unsupervised
training set generator in an instance matching
system would address the above challenges.
Training set is the key role player that can improve
the performance of any classification task.
Different techniques and methods are being
applied to generate training set depending on its
area of application. Researchers in data science
and semantic web community use different kind of

training sets to improve the performances of
classifications and information retrieval capability.
In the work on instance matching, [16] uses
supervised learning approach to generate a training
set in order to improve the performance of their
instance matcher. In a similar work, [17]
generated a training set by constructing a novel
hybrid method based on genetic algorithm for
optimization. In [18], task-relevant training set was
used in the object recognition task. It uses
information that is in the language-based. In [15],
generated training set is corporates for the first
time to perform a property alignment in the input
graph data. In this approach, semi-supervised
approach is used to generate both negative and
positive training sets to reduce too much
comparison during matching. However, semi-
supervised approach requires little human
intervention in generating a training set, therefore,
achieving automation will in one way or the other
affect the matching process as a result of inferred
function being produced for every new mapping.
As irregular data is always part of the RDF graph
data, the desired output in supervised and semi-
supervised learning may contain noise due to the
sensor or human errors, then the learning
algorithm must be constrained to turn down the
function that exactly maps the training samples.
Therefore, we conducted this research to test the
hypothesis that
Generating a training sets or samples in an
unsupervised way rather than traditional
supervised methods can effectively bootstrap the
ontology instance matching performance.
In this paper, we design an unsupervised training
set generator (UTSG) to produce training samples
that can be fed to the property aligner in a
complete unsupervised fashion. Avoiding human
effort or sensor effort in generating a training
sample will bootstrap the learning process, thereby
making the whole process unsupervised. Thus, an
important instance matching system requirement
of automation can be guaranteed. In order to reject
or fail to reject the hypothesis, this work addresses
the following question: will unsupervised training
samples generation improve the performance of
classification task with regard to ontology instance
matching when compared with traditional
approaches?

Journal of Theoretical and Applied Information Technology
31st March 2019. Vol.97. No 6

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1834

1.1 Training Set Generation Intuition
Let introduce a real-world scenario to get insight
on the training set generator, ponder two faculty
members, Hazlina Hamdan and Norwati
Mustapha. Consider these persons to be present in
two different ontologies O1 and O2 that belong to
a similar type (person and people). These two
people must be proved by an effective instance
matching system based on the equivalence

relationship that exists in both ontologies. If the
sets of these two person’s information are
represented as shown in Figure 2, for them to be
declared equivalent with the approach that is
solely token-based and ignored all other
information (like that in property, phonetic and
structure of the entities), the result of a mapping
would be more precise (either similar or non-
similar).

Figure 2: An Intuition that backs TSG Component

Let assume a token-based matching of these two
different ontologies as mentioned earlier. In the
information of an entities Hazlina Hamdan and
Norwati Mustapha, cannot be declared the using
equivalent relation as most of the attributes have
different structure. The degree of similarity within
the attributes may like be very low, especially when
the mapping is strictly 1:1. The in property (:age)
for the entity Hazlina Hamdan in O1 and that of H.
Bnt. Hamdan in O2 are completely different.
Similarly in the property (:position) for the entity
Norwati Mustapha where mapping between “Ass.
Prof.” and “Deputy Dean” might not yield a
reasonable result. This intuition may be more
extreme if we can assume that the name Hazlina
typed wrongly in ontology 1 as Hazrina which is
inevitable in records that encompasses manual data
input. The change in only one letter may

completely prove the mapping as non-equivalent. If
we assume the generated set by the TSG returned
“Hazlina Hamdan” as the training sample, many
features can be learned from it as well as its
corresponding entity. These feature set may
include, token, numeric, phonetic and string
features. In the case of misspelling of the name
Hazlina, phonetic feature in the set may be of great
advantage. Therefore, generating training samples
can bootstrap the generation of alignment between
ontologies property. Thus, the generated training set
would be an input to the property aligner (next
component in the workflow diagram).

Ontology integration is considered to be
the general term used to describe different
operations being conducted on the ontologies, such
as features sharing, merging, unifying, mapping,
aligning, and matching between different

Journal of Theoretical and Applied Information Technology
31st March 2019. Vol.97. No 6

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1835

ontologies belonging to either same or different
domain of the ontologies. Ontology integration is
the process which may be done in three levels
[19]:
i. Building a new ontology by reusing other
available ontologies: this is the simplest case of
ontology integration in which new ontology is
built by adopting the existing ontologies.

ii. Merging different ontologies about the
same domain into a single one that unifies all
ontologies: In this case, the ontology should be
built by using knowledge from exactly the same
domain of existing ontologies.

iii. Introducing ontologies into the
application: Here, several ontologies are
introduced into an application, they are shared
among different software applications which make
it possible to use several ontologies to implement
or identify knowledge-based applications on the
basis of distributed resources.

On one hand, [20] identified two general
approaches for ontology integration process: (1)
Merging several ontologies for developing one
consistent ontology, and (2) Alignment of several
ontologies to be identifying their references to
determine the possibility of employing all the
ontologies. Therefore, to determine the
inconsistency or conflict among ontologies one has
to define and analyze several ontologies as
suggested in case one above. In the second case, in
every two candidate’s ontology, it is required to
find a mechanism which points out the relationship
between the elements of both ontologies. In this
case, it is possible to apply both ontologies for the
set goal without unifying them to single ontology.

There are many pieces of evidence on
why the one real-world entity is described in
different sources. In the case of instance
mentioned above, in open and social data, anyone
has ample right to published data and/or
information, and simply adhere to representation
and that best fits his application. Another
difference may be due to different data acquisition
approaches such as the processing of scientific
data. In addition, entities are dynamic in nature,
they may evolve and change over time, and this
development has to be up-to-date in data sources
which are often either impossible or found to be
hard enough (especially when this happens in a
synchronous way). Finally, when integrating data
from multiple sources, the process itself may add
(new) erroneous data [9]

2. RELATED WORKS
Instance-based matching compares two or more
sets of individuals of objects or classes so as to
decide whether or not they can represent areal-
world object figure 1.6. They combine items into a
single form. Instance matching is an important
aspect of ontology integration as it groups all
important points of instances for better
interoperability among different information
sources [21].
There are many pieces of evidence on why one
real-world entity is presented in different sources.
In an open and social source of data, anyone has
ample right to published data and/or information,
and simply adheres to representation that suits his
application. Another difference may be as a result
of different data acquirement methods.
Furthermore, entities are dynamic in nature; they
change over time resulting in the frequent update
which is often either impossible or found to be
hard enough. Lastly, if data is being integrated
from multiple sources, the integration process is
bound to include noisy data [9]. In order to
overcome such kind of problems, there is a global
need for a standard benchmark for instance
matching, for most instance matching techniques
requires evaluation for them to suit the context of
their applications. The benchmark will assist in
determining the scope of existing techniques and
identify the strength and weaknesses of these
systems as well as support the advancement of
instance matching research [9]. SEM+ implements
a novel semantic similarity computation model
called the Information Entropy and Weighted
Similarity Model (IEWS Model) to suggest
similarity measures between instances of distinct
ontologies and vocabularies concepts [22]. Based
on the similarity measures, SEM+ creates "same
as" links among those concepts. SEM+ also
implements a new prefix-based blocking
algorithm, which groups possible matching pairs
into one block. This blocking algorithm lessens the
number of concept pairs that are needed for
similarity calculation, which is important if
mapping between two large domain ontologies is
required

A. General Indexing Functions (GIFs) Used

In this work, we use 28 General Indexing
Functions (GIFs) to construct our feature space. A
GIF takes a string as input and returns a set of
strings as output. We can think of a GIF as an
'atom' that we use to construct more complicated
feature and hypothesis spaces. For the sake of

Journal of Theoretical and Applied Information Technology
31st March 2019. Vol.97. No 6

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1836

completeness, we describe them in more detail
here, complete with examples.
1. Identity: Returns a singleton set containing the
string.
Example: The string "abcde" would simply be
returned as {"abcde"}
2. Tokens: Tokenizes the string based on a set of
delimiters specifically designed for RDF elements
(see below), and outputs the set of tokens.
Example: Consider the string "7850 Avenue C;
Apt. 103". The output would be {"7850",
"Avenue", "C", "Apt.", "103"}. Note that the
output depends strongly on a good tokenizer. In
this example, it was assumed that whitespace and;
are in the tokenizer set. The tokenizer that we
uniformly use throughout the project is encoded by
the Java statement, this tokenizer is also used in
the training set generator.
3. Integers: Similar to Tokens but discards all
strings in the output that cannot be parsed as
integers.
Example: Continuing from the previous example,
this GIF would return {"7850", "103"}. Note that
the output is always guaranteed to be a subset of
the output of Tokens. The goal of such 'specialized'
GIFs is to provide better discriminative ability for
applicable cases.
4. ManipulateIntegersByOne: Same as Integers,
except that for every integer a, integers a-
1 and a+1 are converted to strings and added to
the output set along with a.
Example: Again continuing from the previous
example, this GIF would return {"7850", "7851",
"7849", "103", "102", "104"}. Note that Integers is
again a subset of this GIF, but this GIF is not
necessarily a subset of Tokens, unlike Integers.
5-7. ExtractNCharPrefixes: Same
as Tokens except that each token is further
truncated to its first N characters. If the token has
fewer than N characters, it is left intact. Three
GIFs were implemented, with N set to 3, 5 and 7
respectively.
Example: Continuing from the example started
in Tokens, Extract3CharPrefixes yields {"785",
"Ave", "C", "Apt",
"103"}, Extract5CharPrefixes yields {"7850",
"Avenu", "C", "Apt.", "103"}
and Extract7CharPrefixes yields the same output
as Tokens. Unless there are very long words in the
string, the last observation almost always holds. In
general, as N increases, the feature gains more
discriminative ability. The choices of the odd
numbers for N are arbitrary, but found in previous
studies (and our own experiment) to work quite
well.

8-10. ExtractTokenNGrams: Tokenizes the string
as an ordered list and extracts length-N contiguous
subsequence of tokens. If the list of tokens
contains fewer than N tokens, the list becomes its
own only subsequence. Each subsequence is added
to the output set. Implemented for N=2,4,6.
Example: Assuming the string "7850 Avenue C;
Apt. 103" as input, the output
for ExtractToken2Grams would be {"7850
Avenue", "Avenue C", "C Apt.", "Apt. 103"}, and
similarly for N= 4,6. Notice how the delimiter; is
not used, since the string is first tokenized and then
converted to subsequence. Also, similar to GIFs 5-
7, the choices of N are arbitrary but have been
found to work well experimentally.
11-
17. ExtractNonSoundexPhoneticFeatures: Toke
nizes the string and adds the phonetic encoding of
each token to the output set. The phonetic
functions used for implementing seven GIFs in
total are Caverphone1 (Encodes a string into a
Caverphone 1.0 value), Caverphone2 (Encodes a
string into a Caverphone 2.0 value),
ColognePhonetic I (Encodes a string into a
Cologne Phonetic value), DoubleMetaphone
(Encodes a string into a double metaphone value),
MatchRatingApproachEncoder,
Metaphone and NYSIIS. A library implementing
all these encoding functions efficiently exists in an
Apache open-
source package (https://www.apache.org/) and is
adapted for this project.
18-
27. ExtractSoundexPhoneticFeatures: Tokenizes
the string and adds the Soundex encoding of each
token to the output set. We consider the original
Soundex encoding algorithm (implemented in the
Apache open-source package), a refined version
(also implemented in the package) as well as eight
variations implemented in the open-
source FEBRL package [14]. An example of a
variation is to truncate each Soundex encoding to
only the first four characters.
28. ExtractAlphaNumeric: Extracts all tokens
from the string such that a token contains at least
one alphabet as well as a numerical digit (in
addition to other optional characters). This GIF is
used in the work of [23]
Example: Consider an input string "Sony Camera
HD678941". The output of this GIF would be
{"HD678941"}. Notice how the GIF concisely
provides discriminative information when
identifying strings are present. For example, if in
another database, the same product was described
in a slightly different manner (e.g. "Sony High-

Journal of Theoretical and Applied Information Technology
31st March 2019. Vol.97. No 6

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1837

Definition Camera, ID HD678941") the output of
this GIF would be identical. Again, we note that
the output is a subset of Tokens.
Most of these GIFs are empirically tested in the
previous research. For example, GIFs 18 to 27,
although the examples above show the utility and
limitations of the GIFs, we have also provided a
brief rationale for using them. An interesting area
of future work is to conduct feature-specific
research to ascertain how correlated each of these
GIFs are with the output of an instance matching
system. Such a study would obviously hang on
more to the datasets and on the types of noise in
the datasets. We believe that such a study would
also help in gaining insight into the nature of the
instance matching task, and why it's proving to be
such a stubbornly difficult AI task.

3. PROPOSED UNSUPERVISED TRAINING
SET GENERATOR (UTSG)
Achieving automation is one of the primary
objectives of any instance matching system. The
lower the level of supervision in the instance
matching system the higher the level of
automation the system can achieve. In this work,
we aim to improve the efficiency of instance
matching technique by introducing important
technique to the traditional matching method,
termed, Unsupervised Training Set Generator
(UTSG), shown in Figure 3.

This technique is aimed to bootstrap the
general matching process. The primary objective
of UTSG is to provide input to the Property
Aligner (PA) which is also a component to the
traditional matching system. Both positive and
negative training sets will be automatically
generated with UTSG in linearly time frame. With
UTSG, the training set to be produced are
expected to contain minimum number of unpaired
samples that can easy be accommodated by one

the remaining components. Figure 3 describes the
process flow of the proposed UTSG.

The pairs of record in D’ list are measured with
Jaccard similarity score [24]. If two bags of tokens
t1 and t2 are given as input, their Jaccard similarity
is defined as:

 (1)

One important characteristic of Jaccard similarity
is that it is similarity function is local, meaning it
depend not on external information set (like IDF)
which requires searching over the entire dataset.
As threshold and Log Tf-Idf are already applied to
be a filter for removing unnecessary non-duplicate
pairs, Jaccard score can serve to refine further the
list of tokens and sort list D’. In fact, Jaccard
similarity would eliminate many false-positive
possibilities for being part of the list D. applying
these two heuristics is of vital experimental benefit
in filtering and sorting out tokens that can
demonstrate high degree of overlap.

The constraint enforce in the algorithm is that
each record from the property table appears at
most once in a set D’. intuitively, the restrictions
tries to make the unsupervised training set very
much representative by preventing unnecessary
records to appear in the training set. This is mostly
a challenge of many existing Training Set
Generators that are mainly semi-supervised such
as in the work by [25].

Example 1: let n = 3 and the sorted list in D’ in
the algorithm is given as

, where
and represents the records P1 and P2 in the
property tables respectively. The matrix of the
above list can be represented as:

Journal of Theoretical and Applied Information Technology
31st March 2019. Vol.97. No 6

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1838

Figure 3: Utsg Process Flow

 i1 i2 i3 i4 i5 i6 i7

j1

j2
j3

j4

j5

j6

j7

With the positive training set will be , since the record i1 appeared
most in the scoring pairs.
Example 2: proceeding from example 1, the generated set , the possible
non-duplicates set G by permuting D may be derived from the table below:

 i1 i2 i3 i4 i5 i6 i7

j1

j2
j3

j4

j5

j6

j7

Journal of Theoretical and Applied Information Technology
31st March 2019. Vol.97. No 6

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1839

The possible set , in
practice these permutation yields a near perfect
result in terms of accuracy on the generated sets.
3.1 Evaluation
Goal: To evaluate the domain-independence and
scalability empirically using our proposed
Unsupervised Training Set Generator (UTSG). We
conducted evaluation on nine cross-domain test
cases that cover about twenty data types with some
of them multi-type.

The statistics of nine paired test suites used in
the evaluation of UTSG are summarized in Table 1.
In all nine data contains pair of distinct serialized
files. All data sets are real-world benchmarks made
available via ontology matching and semantic web
competitions (OAEI1). Almost, all the test cases
share the same type information. Therefore, the
type alignment problem has been taken care off in
the data sets, so we do not consider it here. This is
why the type alignment is excluded in our
matching process flow diagram. This is a right
benefit of using real-world benchmark data sets in
an evaluation otherwise another module for type
alignment has to be constructed in order to generate
a reliable alignment. Our analysis criteria consists
of the following parameters (data type, data size,
data distribution, parameter thresh, number of
instances and data transformation). The data
transformation is characterized by data structure,
data type and data semantics [26]. The important
factors are the number of instances pairs as used in
many previous training set algorithms such as the
work of [27] to be compared among the instances
pairs with a very small parameter thresh (thresh ≠
0). These factors are used to measure the
conformance of the generated training samples
with maximum precision and recall in which every
potential attribute can be considered as a training
sample. These training samples can be used to
generate matching between the semantically related
objects. The data distribution for the synthetic data
used ranges from 0.0 to 1.0 (0.2, 0.4, 0.6, 0.8 and
1.0) as shown in figures 4, 5 and 6.

1 Ontology Alignment Evaluation Initiative organizes annual

campaign in order to evaluate ontology matching systems.

Table 1: Test Suites Statistics
Matching
task

Ontology’s classes Number
of Pairs

Total
Instances

Sanbox003 owl:
NamedIndividual
owl:
NamedIndividual

363
367

133221

Person 1 Person_11: Person
Person_12: Person

2000
1000

2000000

Person 2 Person_21: Person
Person_22: Person

2400
800

1920000

IM_Identity

identity_a: Book
identity_b: Book

1330
2649

3523170

IM_Similarity Similarity_a:Book
Similarity_b:Book

1675
1658

2777150

IIMB_005

Film:Science_fiction
Film:Science_fiction

581
222

128982

IIMB_010

Film:Science_fiction
Film:Science_fiction

2150
1568

3371200

IIMB_015

Film:Science_fiction
Film:Science_fiction

8441
1416

11952456

SABINE Source: Topic
Target: Topic

706
1127

795662

3.2 Measurement Metrics

We apply commonly used measurement
metrics, precision and recall as well as their
harmonic mean (F-Measure) as the evaluation
metrics. Precision is the fraction of relevant
instances among the retrieved instances
while Recall is the fraction of relevant instances
that have been retrieved over the total amount of
relevant instances. Both precision and recall are
based on the measure of relevance. The ground
truth in this experiment is the set of true positives
in both our UTSG and the baseline TSGs. In this
context the metrics are formally defined as:

(2)

(3)

In real-world scenarios, the trade of between
efficiency and effectiveness is frequently observed.
Therefore, F-Measure is applied to represent this
trade-off. It is used to approximate the average of
precision and recall value. F-Measure can be
defined mathematically as follows:

Journal of Theoretical and Applied Information Technology
31st March 2019. Vol.97. No 6

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1840

(4)

3.3 Experimental Set-up

To the best of our knowledge, DUMAS2 TSG [16]
and a semi-supervised TSG proposed by [15] are
the only existing works that detect matches in
structurally heterogeneous data sets. Thus, we use
them as the baseline in this experiment. Both
approaches applied LogTfIdf to point the required
duplicate set (process 2-3 in our flow chart, (fig.3)).
In the first action, precision-recall trade-off is
plotted by applying the Jaccard similarity score
(process step 4 in the flow chart, (fig.3). We ran the
paired t-test to measure the statistical significance
by comparing F-Scores generated by our system
against each of the baseline system. The parameter
threshold is asset as 0.02 in the algorithm and it is
sets to be in a self-tuning mode. Self-tuning mode
will make the threshold acceptable for the variety
of test suites.

We used large number of instances (n value) in
our experiment so that the underlying properties of
the data sets can be represented. About 700
instances are considered as n value of our
algorithm. With this value of n, the algorithm is
expected to eliminate all imperfectly classified
pairs of instances to be present in the training set.
In selecting these instances, the elements or
attributes have to undergo series of sorting and re-
sorting so that all selected instances appeared once
in the list (sort step in the flow diagram). Finally,
the selected non-duplicate is rearranged and the
results are recorded base on the precision, recall
and F-score measures of 758 instances. For better
justification, this procedure is repeated for our
baseline TSGs techniques. The report of the
experiment is presented and discussed in the
subsequent sections. All experiments were
conducted in Python programming environment
with statistical test carried out in R programming
language in order to obtain a reliable result.

3.4 Results and Discussions
Table 2 shows the results of our proposed

UTSG against the baseline TSGs: KEJ_TSG and
DUMAS_TSG. The result is recorded according to
the highest obtained F-Measure either greater or
equal to 80% in both precisions and recalls for all
test cases. Our proposed method outperforms all
baseline TSGs in both precision and recall which
also resulted in having high F-measure in our
approach as against the baseline TSGs. The poor

2 Duplicate-based Matching of Schemas

performance with average F-Measure of 58%
obtained by DUMAS_TSG in the experiment
clearly indicates that supervised TSG is
inappropriate for bootstrapping the matching and
RDF data linkage. This is because the difference of
35% between the F-Measure of our UTSG and that
of DUMAS TSG is too significant. On the other
hand, KEJ_TSG also performs considerability
better than DUMAS TSG. The F-Measure obtained
by KEJ_TSG is almost high than that obtained by
DUMAS_TSG in the entire test cases, except in
IIMB_010 and Sabine data sets.

Despite the average F-Measure recorded by
KEJ_TSG which is below our benchmark of 80%,
we can still conclude that KEJ-TSG can fairly
bootstrap the matching process in contrast to
DUMAS_TSG. By extension, one can say that
semi-supervised TSG is suitable for bootstrapping
the matching and RDF data interlink than the
complete supervised TSG. In contrast to KEJ_TSG,
our proposed complete unsupervised method
performs significantly better with the average F-
Measure of 93% as against 76% recorded in
KEJ_TSG baseline. In the end, the hypothesis
holds with statistically significant difference at (P-
value < 0.05).This empirical results show that
developing TSG in complete unsupervised fashion
will yield to a better performed ontology matching
system. Even though, execution time not
considered in this experiment but careful
observation of the running times of both our
proposed method and the baseline TSGs
demonstrated competiveness in all the test cases
and performed near linear. However, the general
running time will be of great importance during the
final run of the system (that is when all sub-
components under construction in our ongoing
project are integrated to generate final and
complete alignments).

Journal of Theoretical and Applied Information Technology
31st March 2019. Vol.97. No 6

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1841

Figure 4: Results showing the Performance of Proposed

UTSG obtained in all Nine Test
Cases

Figure 5: Results showing the Performance of Kejriwal

TSG obtained in all Nine Test Cases

Figure 6: Results showing the Performance of Dumas

TSG obtained in all Nine Test Cases

In Figure 4, 5 and 6, the recall, precision and F-
measure obtained in all the test cases by applying
proposed UTSG is graphically represented. Except
in IM-Identity and Sabine test cases, all test cases
achieved the maximum recall more than 90%
which signifies the presence of high true-positives
in the generated sets. This indicates that our
proposed UTSG yields a positive result. The fall in
recall below 90% experienced by IM-Identity and
Sabine arose as a result of too much irregular data
found in the two data sets and this is one of the
important issues that the remaining components
would take care off to improve the efficiency of the
system in producing final output. This result clearly
shows that our UTSG can also perform well in a
cross domain scenarios as the nine test cases used
for the experiment came from different domains.
Furthermore, UTSG also addresses another
drawback of most instance matchers for being non-
scalable systems. Regardless of the size of the
ontologies, our UTSG effectively generated
training samples in all the nine test cases in a near
linear running time. This is why the running time is
not a priority in this experiment but rather in the
final output of the system.

Even though, the semi supervised TSG
proposed by Kejriwal (Figure 5) performs
reasonably better than DUMAS TSG (Figure 6),
both experience some falls in both recall and
precision in many of the test cases. However, their
performances are still low compared to that of
UTSG. These falls led to a trade-off by having low
F-Measures in the baseline TSGs compared to our
proposed UTSG (Table 2). The average F-
Measures (Figure 7) shows that our approach with
93% F-Score outperforms the two baseline TSGs
(KEJ TSG and DUMAS TSG) with F-Score 76%
and 58% respectively. This result also shows the
suitability of our approach in addressing scalability
and controlling the trade-off between effectiveness
and efficiency of the matching systems. Yet, all the
three TSGs demonstrated the ability of being
Domain-independence. To the base of our
knowledge, these baseline TSGs are the only
learning-based TSGs found to be applicable in
bootstrapping the RDF data matching and
populating linked data.

Journal of Theoretical and Applied Information Technology
31st March 2019. Vol.97. No 6

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1842

Table 2: Comparative Analysis for the Proposed UTSG with Baseline TSGs

Proposed UTSG KEJ_TSG DUMAS_TSG

Test Suits Recall Precision F-Measure Recall Precision F-Measure Recall Precision F-Measure

Sanbox003 1.00 1.00 1.00 0.83 0.83 0.83 0.53 0.40 0.46

Persons 1 1.00 0.99 0.99 0.82 0.87 0.80 0.99 0.51 0.68

Persons 2 0.98 1.00 0.99 0.83 0.57 0.68 0.67 0.32 0.43

IM_Identity 0.89 0.95 0.92 0.84 0.81 0.82 0.85 0.42 0.56

IM_Similarity 0.97 0.95 0.96 0.96 0.83 0.89 0.51 0.62 0.56

IIMB_005 0.99 0.87 0.93 0.71 0.85 0.77 0.31 0.53 0.39

IIMB_010 0.93 0.71 0.81 0.48 1.00 0.65 0.95 0.60 0.73

IIMB_ 015 0.92 0.87 0.89 0.74 0.84 0.79 0.77 0.66 0.71

Sabine 0.86 0.91 0.88 0.78 0.65 0.71 0.94 0.64 0.76

AVERAGE 0.95 0.92 0.93 0.77 0.80 0.76 0.72 0.52 0.58

Figure 7: Average F-Measures of UTSG with

Baseline TSGs obtained from all Nine Test Cases

Traditional instance-based matching techniques
analyze candidate attributes separately; they extract
attribute’s properties like average length of
character, average length of strings, and ratio of the
attribute length and so on. Attributes with
corresponding properties are always assumed to be
the same in meaning. This kind of approach is
normally called, vertical matching as a result of
comparing properties of table columns. In DUMAS
method [16], horizontal matching is performed.
They traverse tables to search similar tuples (rows)

to detect duplicates. Their horizontal approach
solves two important matching problems: (i) fuzzy
duplicates detection and (2) generating a schema
matching using the duplicates set. In this method,
duplicates can be found even if the overlap is
small. In [15], TSG is designed to tokenize each
row (tuple) in a property table by applying a
tokenizer, then transforms it into bag-of-words
through a standard information retrieval method
Term Frequencies and Inverse Document
frequencies (TF-IDF). To the best of our
knowledge, TSGs are applied to record linkage
problem and they are considered to work in a
supervised and semi-supervised fashion
respectively and demonstrated low performance
compared to our approach.

All four types of validity threats have been
monitored with due consideration to the type of
research in prioritization. In this work, the priority
for experiment is in the order: Internal, external,
construct, and conclusion. In conducting this
experiment, we identified and handled two
important threats to validity: internal and external
validity. Before the commencement of the
experiment, we ensure that the experimental
environment is appropriate to carry out the
experiment. The amount of memory needed and
CPU speed are ensured to be in conformity with the
baseline methods used in this work. Thus, threat to

Journal of Theoretical and Applied Information Technology
31st March 2019. Vol.97. No 6

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1843

internal validity has taken care of. To ensure
generalization of this work and easy replication in
different environment, we tested our algorithm with
nine benchmark datasets which are publically
available in OAEI website which is cross-domain.
The technique is also compared with two state-of-
the-art techniques of training set generation. Thus,
threat to external validity addressed.

4. CONCLUSION

Linked Data success is the important aspect for
web applications success. Most importantly, if the
data to be linked across two or more RDF graph, or
to be replicated in the same source of data (i.e. self-
match) may link to different domains, such as
health, publication, people, production, agriculture,
etc. for instance, with the growing quantity of
online shopping websites, instance matching is the
best technology that provides accurate and all-
inclusive price unification among similar products
by linking all instances of related items together
and presents it to user as required. A shopping site
(such as AMAZON) can be able to precisely
identify similar products alongside their prices with
the power of semantic interoperability and record
matching.

For web search applications (named, search
engines), instance matching is an important
technology that facilitates the removal of duplicate
query results. Moreover, instance matching
technique is also broadly applied to knowledge
management systems that provide a mechanism to
drive new knowledge through integrating similar
data when preparing for data mining and statistical
analysis.

The significance of instance matching gains
more relevance if one consider that lot of real-
world object (such as, place, people, event) are
being represented on the web within many
documents in a heterogeneous form of
representation of individuals or instances.
Furthermore, instance-based matching is highly
needed in the areas of ontology management as it
tremendously assists domain experts in performing
ontology manipulations via advancement and
improvements in the ontology engineering
techniques and models. For example, instance-
based matching boosts ontology population (i.e.,
make a new inclusion of an individual in an
ontology) and also to identify the similarity
possibility to map incoming instance with the
existing ones.

The output of our UTSG shows that, the
implementation of the algorithm can successfully

take care of data irregularity (heterogeneity) which
is a necessary concern in different problems that
are data-intensive. It is observed that with efficient
UTSG, it is possible to have a complete
unsupervised instance matching system that could
not compromise quality. This will allowed us to
achieve the desired aim of developing an instance
matching system that can satisfy the scalability and
automation requirements despite the heterogeneous
nature of the RDF graph data. However,
discovering when the UTSG will be selected
automatically over a self-adaptive classifier is a
serious limitation of this work which is open for
further research.

There are many direction of work intended to
undertake in a near future. This includes cloud
implementation of this method as MapReduce to
ensure real time scalability test.

ACKNOWLEDGMENT

This work is supported by University Putra Malaysia

grant (Putra Grant No: 9569200) and Al-Qalam
University Katsina (AUK), Katsina State Nigeria under
the University’s Staff Development Unit.

REFERENCES

[1] J. Euzenat and P. Shvaiko, Ontology

matching, vol. 18. 2007.
[2] L. Liu, F. Yang, P. Zhang, J.-Y. Wu, and L.

Hu, “SVM-based ontology matching
approach,” Int. J. Autom. Comput., vol. 9, no.
3, pp. 306–314, 2012.

[3] I. Akbari and M. Fathian, “A novel algorithm
for ontology matching,” J. Inf. Sci., vol. 36,
no. 3, pp. 324–334, 2010.

[4] E. Jim´enez-Ruiz, “Results of the Ontology
Alignment Evaluation Initiative 2014,” Proc.
8th ISWC Work. Ontol. matching, pp. 61–
100, 2013.

[5] M. Chi, Z. Yao, and S. Liu, “A Matching
Algorithm Based on Association Rules in
Ontology Based Publish/Subscribe System,”
Chinese J. Electron., vol. 24, no. 1, pp. 65–
70, 2015.

[6] A. Isaac, L. van der Meij, S. Schlobach, and
S. Wang, “An empirical study of instance-
based ontology matching,”
Belgian/Netherlands Artif. Intell. Conf., pp.
317–318, 2008.

[7] S. Castano, A. Ferrara, D. Lorusso, and S.
Montanelli, “On the ontology instance
matching problem,” in Proceedings -
International Workshop on Database and
Expert Systems Applications, DEXA, 2008,

Journal of Theoretical and Applied Information Technology
31st March 2019. Vol.97. No 6

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1844

pp. 180–184.
[8] J. Li, Z. Wang, X. Zhang, and J. Tang, “Large

scale instance matching via multiple indexes
and candidate selection,” Knowledge-Based
Syst., vol. 50, pp. 112–120, 2013.

[9] E. Daskalaki, G. Flouris, I. Fundulaki, and T.
Saveta, “Instance matching benchmarks in the
era of Linked Data,” Web Semant. Sci. Serv.
Agents World Wide Web, vol. 39, pp. 1–14,
2016.

[10] S. Cerón-Figueroa, I. López-Yáñez, W.
Alhalabi, O. Camacho-Nieto, Y. Villuendas-
Rey, M. Aldape-Pérez, and C. Yáñez-
Márquez, “Instance-based ontology matching
for e-learning material using an associative
pattern classifier,” Comput. Human Behav.,
vol. 69, pp. 218–225, 2017.

[11] Teh Noranis Mohd Aris, Mansir Abubakar,
Hazlina Hamdan, Norwati Mustapha,
“Instance-Based Ontology Matching : A
Literature Review,” in Recent Advances on
Soft Computing and Data Mining, Advances
in Intelligent Systems and Computing, 2018,
pp. 456–469.

[12] S. Castano, A. Ferrara, S. Montanelli, and G.
Varese, “Ontology and instance matching,”
Lect. Notes Comput. Sci. (including Subser.
Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics), vol. 6050, pp. 167–195,
2011.

[13] M. Abubakar, H. Hamdan, N. Mustapha, T.
Noranis, and M. Aris, “Attributes
Correspondence Discovery in Ontology
Instance-based Matching and RDF Data
Linkage using Clustering Method,” Int. J.
Eng. Technol., vol. 7, pp. 290–297, 2018.

[14] D. Vatsalan, P. Christen, and V. S. Verykios,
“A taxonomy of privacy-preserving record
linkage techniques,” Inf. Syst., vol. 38, no. 6,
pp. 946–969, 2013.

[15] M. Kejriwal and D. P. Miranker, “An
unsupervised instance matcher for schema-
free RDF data,” J. Web Semant., vol. 35, pp.
102–123, 2015.

[16] A. Bilke and F. Naumann, “Schema Matching
Using Duplicates,” 21st Int. Conf. Data Eng.,
pp. 69–80, 2005.

[17] N. Nahapetian, M. Analoui, and M. R. Jahed
Motlagh, “Training set generation using fuzzy
logic and dynamic chromosome based genetic
algorithms for plant identifiers,” 2009 IEEE
Symp. Comput. Intell. Control Autom. CICA
2009 - Proc., pp. 49–56, 2009.

[18] M. Schoeler, F. Worgotter, M. J. Aein, and T.
Kulvicius, “Automated generation of training
sets for object recognition in robotic
applications,” 23rd Int. Conf. Robot. Alpe-
Adria-Danube Reg. IEEE RAAD 2014 - Conf.
Proc., 2015.

[19] H. S. Pinto and J. P. Martins, “Ontology
Integrations: How to perform the Process,”
Work. Ontol. Inf. Shar. (into IJCAI’2001), pp.
71–80, 2001.

[20] N. F. Noy and D. L. McGuinness, “Ontology
Development 101: A Guide to Creating Your
First Ontology,” Stanford Knowl. Syst. Lab.,
p. 25, 2001.

[21] R. P. Deb Nath, H. Seddiqui, and M. Aono,
“Resolving scalability issue to ontology
instance matching in Semantic Web,”
Proceeding 15th Int. Conf. Comput. Inf.
Technol. ICCIT 2012, pp. 396–404, 2012.

[22] L. Li, X. Xing, H. Xia, and X. Huang,
“Entropy-Weighted instance matching
between different sourcing points of interest,”
Entropy, vol. 18, no. 2, pp. 1–15, 2016.

[23] S. Sowmya Kamath, V. S. Ananthanarayana,
Sowmya Kamath S., and Ananthanarayana
V.S., “Similarity analysis of service
descriptions for efficient Web service
discovery,” Data Sci. Adv. Anal. (DSAA),
2014 Int. Conf., pp. 142–148, 2014.

[24] F. Cao, J. Z. Huang, and J. Liang, “A fuzzy
SV-k-modes algorithm for clustering
categorical data with set-valued attributes,”
Appl. Math. Comput., vol. 295, pp. 1–15,
2017.

[25] M. Kejriwal and D. P. Miranker, “Semi-
supervised instance matching using boosted
classifiers,” in Lecture Notes in Computer
Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in
Bioinformatics), 2015, vol. 9088, pp. 388–
402.

[26] M. del C. Legaz-García, M. Menárguez-
Tortosa, J. T. omás Fernández-Breis, C. G.
Chute, and C. Tao, “Transformation of
standardized clinical models based on OWL
technologies: from CEM to OpenEHR
archetypes,” J. Am. Med. Inform. Assoc., vol.
22, no. 3, pp. 536–544, 2015.

[27] A. Judea and H. Sch, “Unsupervised Training
Set Generation for Automatic Acquisition of
Technical Terminology in Patents Br ¨,” pp.
290–300, 2014.

