2004.00584v1 [cs.DB] 1 Apr 2020

arXiv

Deep Entity Matching with Pre-Trained Language Models
[Scalable Data Science]

Yuliang Li',J infeng Li', Yoshihiko Suhara'!, AnHai Doan?, and Wang-Chiew Tan'

'"Megagon Labs

2University of Wisconsin-Madison

{yuliang, jinfeng, yoshi, wangchiew } @megagon.ai, >anhai @cs.wisc.edu

ABSTRACT

We present Ditro, a novel entity matching system based on pre-
trained Transformer-based language models. We fine-tune and cast
EM as a sequence-pair classification problem to leverage such mod-
els with a simple architecture. Our experiments show that a straight-
forward application of language models such as BERT, DistilBERT,
or ALBERT pre-trained on large text corpora already significantly
improves the matching quality and outperforms previous state-of-
the-art (SOTA), by up to 19% of F1 score on benchmark datasets.
We also developed three optimization techniques to further improve
Drtro’s matching capability. Dirro allows domain knowledge to
be injected by highlighting important pieces of input information
that may be of interest when making matching decisions. DitTto
also summarizes strings that are too long so that only the essential
information is retained and used for EM. Finally, DitTo adapts a
SOTA technique on data augmentation for text to EM to augment
the training data with (difficult) examples. This way, DitTo is forced
to learn “harder” to improve the model’s matching capability. The
optimizations we developed further boost the performance of Dirto
by up to 8.5%. Perhaps more surprisingly, we establish that Dirto
can achieve the previous SOTA results with at most half the num-
ber of labeled data. Finally, we demonstrate Drtto’s effectiveness
on a real-world large-scale EM task. On matching two company
datasets consisting of 789K and 412K records, Drtto achieves a
high F1 score of 96.5%.

PVLDB Reference Format:
Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, Wang-Chiew Tan.
Deep Entity Matching with Pre-Trained Language Models. PVLDB, (): XXxx-

YYYY, -
DOI:

1. INTRODUCTION

Entity Matching (EM) refers to the problem of determining whether

two data entries refer to the same real-world entity. Consider the two
datasets about products in Figure[I] The goal is to determine the set
of pairs of data entries, one entry from each table so that each pair
of entries refer to the same product.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. , No.

ISSN 2150-8097.

DOIL:

If the datasets are large, it can be expensive to determine the pairs
of matching entries. For this reason, EM is typically accompanied
by a pre-processing step, called blocking, to prune pairs of entries
that are unlikely matches to reduce the number of candidate pairs
to consider. As we will illustrate, correctly matching the candi-
date pairs requires substantial language understanding and domain-
specific knowledge. Hence, entity matching remains a challenging
task even for the most advanced EM solutions.

We present Ditto, a novel EM solution based on pre-trained
Transformer-based language models (or pre-trained language mod-
els in short). We cast EM as a sequence-pair classification prob-
lem to leverage such models, which have been shown to generate
highly contextualized embeddings that capture better language un-
derstanding compared to traditional word embeddings. Ditto fur-
ther improves its matching capability through three optimizations:
(1) It allows domain knowledge to be added by highlighting impor-
tant pieces of the input that may be useful for matching decisions.
(2) It summarizes long strings so that only the most essential infor-
mation is retained and used for EM. (3) It augments training data
with (difficult) examples, which challenges DitTo to learn “harder”
and also reduces the amount of training data required. Figure[2]de-
picts DitTo in the overall architecture of a complete EM workflow.

There are 9 candidate pairs of entries to consider for matching in
total in Figure[I] The blocking heuristic that matching entries must
have one word in common in the title will reduce the number of
pairs to only 3: the first entry on the left with the first entry on the
right and so on. Perhaps more surprisingly, even though the 3 pairs
are highly similar and look like matches, only the first and last pair
of entries are true matches. Our system, DitTo, is able to discern
the nuances in the 3 pairs to make the correct conclusion for every
pair while some state-of-the-art systems are unable to do so.

The example illustrates the power of language understanding given
by DitTo’s pre-trained language model. It understands that instant
immersion spanish deluxe 2.0 is the same as instant immers spanish
dlux 2 in the context of software products even though they are syn-
tactically different. Furthermore, one can explicitly emphasize that
certain parts of a value are more useful for deciding matching deci-
sions. For books, the domain knowledge that the grade level or edi-
tion is important for matching books can be made explicit to Ditro,
simply by placing tags around the grade/edition values. Hence, for
the second candidate pair, even though the titles are highly simi-
lar (i.e., they overlap in many words), DitToO is able to focus on
the grade/edition information when making the matching decision.
The third candidate pair shows the power of language understand-
ing for the opposite situation. Even though the entries look dissim-
ilar DiTTO is able to attend to the right parts of a value (i.e., the
manf./modelno under different attributes) and also understand the
semantics of the model number to make the right decision.

title manf./modelno price |
instant immersion spanish deluxe topics -
. 4999 -
2.0 entertainment
adventure workshop 4th-6th grade

7th edition encore softvare | 19.99 -

sharp printing calculator

sharp el1192bl 3763 —-=---

| title manf./modelno | price

-— instant immers spanish dlux 2 NULL 36.11
encore inc adventure workshop 4th-6th

grade 8th edition NULL 171

new-sharp shr-el1192bl two-color NULL 56.0

printing calculator 12-digit Icd black red

Figure 1: Entity Matching: determine the matching entries from two datasets.

Contributions In summary, the following are our contributions:

e We present DitTo, a novel EM solution based on pre-trained lan-
guage models (LMs) such as BERT, DistilBERT, and ALBERT.
We fine-tune and cast EM as a sequence-pair classification prob-
lem to leverage such models with a simple architecture. To the
best of our knowledge, DitTo is the first EM solution that lever-
ages pre-trained Transformer-based LMs, which are powerful LMs
that have been shown to provide deeper language understanding.

e We also developed three optimization techniques to further im-

prove DitTo’s matching capability through injecting domain knowl-

edge, summarizing long strings, and augmenting training data
with (difficult) examples. The first two techniques help DitTo fo-
cus on the right information for making matching decisions. The
last technique, data augmentation, is adapted from [24] for EM
to help Drrro learn “harder” to understand the data invariance
properties that may exist but are beyond the provided labeled ex-
amples and also, reduce the amount of training data required.

e We evaluated the effectiveness of DitTo on three benchmark datasets:

the Entity Resolution benchmark [21], the Magellan dataset [20],
and the WDC product matching dataset [31]] of various sizes and
domains. Our experimental results show that DitTo consistently
outperforms the previous SOTA EM solutions in all datasets and
by up to 25% in F1 scores. Furthermore, DitTo consistently per-
forms better on dirty data and is more label efficient: it achieves
the same or higher previous SOTA accuracy using less than half
the labeled data.

e We applied DitTo to a real-world large-scale matching task on
two company datasets, containing 789K and 412K entries respec-
tively. To deploy an end-to-to EM pipeline efficiently, we devel-
oped an advanced blocking technique to help reduce the num-
ber of pairs to consider for Ditro. DiTTO obtains high accuracy,
96.5% F1 on a holdout dataset. The blocking phase also helped
speed up the end-to-end EM deployment significantly, by up to
3.8 times, compared to naive blocking techniques.

e Finally, we will open-source DitTo in the future.

Outline Section 2] overviews Dirro and pre-trained LMs. Section
[]describes how we optimize Ditro with domain knowledge, sum-
marization, and data augmentation. Our experimental results are
described in Section[d]and the case study is presented in Section 5]
We discuss related work in Section [@]and conclude in Section[7]

Table A Candidate ... Biti: Matched
Pairs Pairs
mmE | Matcher

Table B: g : : \ Train

' Sample i - L :

L& Laba@ ~ (Summarize J5-{ Augment J,
1

1

1

E

Figure 2: An EM system architecture with Drrro as the matcher. In ad-
dition to the training data, the user of Ditto can specify (1) a method for
injecting domain knowledge (DK), (2) a summarization module for keep-
ing the essential information, and (3) a data augmentation (DA) operator to
strengthen the training set.

2. BACKGROUND AND ARCHITECTURE

We present the main concepts behind EM and provide some back-
ground on pre-trained LMs before we describe how we fine-tune the
LMs on EM datasets to train EM models. We also present a simple
method for reducing EM to a sequence-pair classification problem
so that pre-trained LMs can be used for solving the EM problem.

Notations Ditro’s EM pipeline takes as input two collections D
and D’ of data entries (e.g., rows of relational tables, XML docu-
ments, JSON files, text paragraphs) and outputs a set M C D x D’
of pairs where each pair (e,e’) € M is thought to represent the
same real-world entity (e.g., person, company, laptop, etc.). A data
entry e is a set of key-value pairs e = {(attr;,val;) }1<i<r where
attr; is the attribute name and val; is the attribute’s value repre-
sented as text. Note that our definition of data entries is general
enough to capture both structured and semi-structured data such as

JSON files.

As described earlier, an end-to-end EM system consists of a blocker
and a matcher. The goal of the blocking phase is to quickly identify
a small subset of D x D’ of candidate pairs of high recall (i.e., a
high proportion of actual matching pairs are that subset). The goal
of a matcher (i.e., DiTTO) is to accurately predict, given a pair of
entries, whether they refer to the same real-world entity.

2.1 Pre-trained language models

Unlike prior learning-based EM solutions that rely on word em-
beddings and customized RNN architectures to train the matching
model (See Section [f] for a detailed summary), DiTTo trains the
matching models by fine-tuning pre-trained LMs in a simpler ar-
chitecture.

Pre-trained LMs such as BERT [11]], ALBERT [22], and GPT-
2 [32] have demonstrated good performance on a wide range of NLP
tasks. They are typically deep neural networks with multiple Trans-
former layers [42], typically 12 or 24 layers, pre-trained on large text
corpora such as Wikipedia articles in an unsupervised manner. Dur-
ing pre-training, the model is self-trained to perform auxiliary tasks
such as missing token and next-sentence prediction. Studies [7,41]
have shown that the shallow layers capture lexical meaning while
the deeper layers capture syntactic and semantic meanings of the
input sequence after pre-training.

A specific strength of pre-trained LMs is that it learns the seman-
tics of words better than conventional word embedding techniques
such as word2vec, GloVe, or FastText. This is largely because the
Transformer architecture calculates token embeddings from all the
tokens in the input sequence and thus, the embeddings it generates
are highly-contextualized and captures the semantic and contextual
understanding of the words. Consequently, such embeddings can
capture polysemy, i.e., discern that the same word may have differ-
ent meanings in different phrases. For example, the word Sharp has
different meanings in “Sharp resolution” versus “Sharp TV”. Pre-
trained LMs will embed “Sharp” differently depending on the con-
text while traditional word embedding techniques such as FastText
always produce the same vector independent of the context. Such
models can also understand the opposite, i.e., that different words
may have the same meaning. For example, the words immersion and
immers (respectively, (deluxe, dlux) and (2.0, 2)) are likely the same

0/1

Task-specific

___________________ [

I ; o

Coperateet B (5] (] (e (e (B 5 5

|[Transformer Layer]: B g

| £

- -

i Transformer Layer J L o

P t t t o™

Embeddings | Ewws) | E1 ‘ | E2 ‘ | Egsery | | Em H Eser) : é'.’
> /V AW

First entity e Second entity e’
Figure 3: Drirro’s model architecture. Drtro serializes the two entries as
one sequence and feeds it to the model as input. The model consists of (1)
token embeddings and Transformer layers [49]] from a pre-trained language
model (e.g., BERT) and (2) task-specific layers (linear followed by softmax).
Conceptually, the [CLS] token “summarizes” all the contextual information
needed for matching as a contextualized embedding vector E[CLS] which the

task-specific layers take as input for classification.

-
Serialize
Tokenize

given their respective contexts. Thus, such language understanding
capability of pre-trained LMs can improve the EM performance.

2.2 Fine-tuning pre-trained language models

A pre-trained LM can be fine-tuned with task-specific training
data so that it becomes better at performing that task. Here, we
fine-tune a pre-trained LM for the EM task with a labeled training
dataset consisting of positive and negative pairs of matching and
non-matching entries as follows:

1. Add task-specific layers after the final layer of the LM. For EM,
we add a simple fully connected layer and a softmax output layer
for binary classification.

2. Initialize the modified network with parameters from the pre-
trained LM.

3. Train the modified network on the training set until it converges.

The result is a model fine-tuned for the EM task. In DitTO, We
fine-tune the popular base 12-layer BERT model [[11]] and its dis-
tilled variant DistilBERT [36]), which is smaller but more efficient.
However, our proposed techniques are independent of the choice of
pre-trained LMs and our experimental results (Table[6) indicate that
Ditto can potentially perform even better with larger pre-trained
LMs. We illustrate the model architecture in Figure 3} The pair
of data entries is serialized (see next section) as input to the LM
and the output is a match or no-match decision. Dirro’s architec-
ture is much simpler when compared to many state-of-the-art EM
solutions today [27,|12]. Even though the bulk of the “work” is sim-
ply off-loaded to pre-trained LMs, we show that this simple scheme
works surprisingly well in our experiments.

2.3 Serializing the data entries for Ditto

Since LMs take token sequences (i.e., text) as input, a key chal-
lenge is to convert the candidate pairs into token sequences so that
they can be meaningfully ingested by DitTo.

DrtTo serializes data entries as follows: for each data entry e =
{(attr;, val;) }r<i<k, we let

serialize(e) ::= [COL] attr; [VAL]val; ... [COL] attry, [VAL] valy,

where [COL] and [VAL] are special tokens for indicating the start of
attribute names and values respectively. For example,the first entry
of the second table is serialized as:

[COL] title [VAL] instant immers spanish dlux 2 [COL] manf./modelno
[VAL] NULL [COL] price [VAL] 36.11

To serialize a candidate pair (e, e’), we let
[CLS] serialize(e) [SEP] serialize(e”) [SEP],

where [SEP] is the special token separating the two sequences and
[CLS] is the special token necessary for BERT to encode the se-
quence pair into a 768-dimensional vector which will be fed into
the fully connected layers for classification.

serialize(e,) 1=

Other serialization schemes There are different ways to serialize
data entries so that LMs can treat the input as a sequence classifi-
cation problem. For example, one can also omit the special tokens
“[COL]” and/or “[VAL]”, or exclude attribute names attr; during
serialization. We found that including the special tokens to retain
the structure of the input does not hurt the performance in general
and excluding the attribute names tend to help only when the at-
tribute names do not contain useful information (e.g., names such
as attrl, attr2, ...) or when the entries contain only one column. A
more rigorous study on this matter is left for future work.

Heterogeneous schemas As shown, the serialization method of
Drtro does not require data entries to adhere to the same schema. It
also does not require that the attributes of data entries to be matched
prior to executing the matcher, which is a sharp contrast to other EM
systems such as DeepER [12]] or DeepMatchelE] [27]]. Furthermore,
Drtro can also ingest and match hierarchically structured data en-
tries by serializing nested attribute-value pairs with special start and
end tokens (much like Lisp or XML-style parentheses structure).

3. OPTIMIZATIONS IN DITTO

As we will describe in Section [4] the basic version of DitTo,
which leverages only the pre-trained LM, is already outperforming
the SOTA on average. Here, we describe three further optimization
techniques that will facilitate and challenge DitTo to learn “harder”,
and consequently make better matching decisions.

3.1 Leveraging Domain Knowledge

Our first optimization allows domain knowledge to be injected
into Drrto through pre-processing the input sequences (i.e., seri-
alized data entries) to emphasize what pieces of information are
potentially important. This follows the intuition that when human
workers make a matching/non-matching decision on two data en-
tries, they typically look for spans of text that contain key infor-
mation before making the final decision. Even though we can also
train deep learning EM solutions to learn such knowledge, we will
require a significant amount of training data to do so. As we will de-
scribe, this pre-processing step on the input sequences is lightweight
and yet can yield significant improvements. Our experiment results
show that with less than 5% of additional training time, we can im-
prove the model’s performance by up to 8%.

There are two main types of domain knowledge that we can pro-
vide DrtTO.

Span Typing The type of a span of tokens is one kind of domain
knowledge that can be provided to Ditto. Product id, street number,
publisher are examples of span types. Span types help Ditto avoid
mismatches. With span types, for example, Drtro is likelier to avoid
matching a street number with a year or a product id.

Table [T] summarizes the main span types that human workers
would focus on when matching three types of entities in our bench-
mark datasets.

'In DeepMatcher, the requirement that both entries have the same schema
can be removed by treating the values in all columns as one value under one
attribute.

Table 1: Main span types for matching entities in our benchmark datasets.
Entity Type

Publications, Movies, Music Persons (e.g., Authors), Year, Publisher
Organizations, Employers Last 4-digit of phone, Street number
Products Product ID, Brand, Configurations (num.)

Types of Important Spans

The developer specifies a recognizer to type spans of tokens from
attribute values. The recognizer takes a text string v as input and
returns a list recognizer(v) = {(si, t;, type;) }s>1 of start/end po-
sitions of the span in v and the corresponding type of the span.
Drtro’s current implementation leverages an open-source Named-
Entity Recognition (NER) model [39] to identify known types such
as persons, dates, or organizations and use regular expressions to
identify specific types such as product IDs, last 4 digits of phone
numbers, etc.

After the types are recognized, the original text v is replaced by
a new text where special tokens are inserted to reflect the types of
the spans. For example, a phone number “(866) 246-6453” may
be replaced with “(866) 246 - [LAST] 6453 [/LAST]” where
[LASTV/[/LAST] indicates the start/end of the last 4 digits and ad-
ditional spaces are also added because of tokenization. In our imple-
mentation, when we are sure that the span type has only one token
or the NER model is inaccurate in determining the end position, we
drop the end indicator and keep only the start indicator token.

Intuitively, these newly added special tokens are additional sig-
nals to the self-attention mechanism that already exists in pre-trained
LMs, such as BERT. If two spans have the same type, then Dirto
picks up the signal that they are likelier to be the same and hence,
they are aligned together for matching. In the above example,

« 246- [LAST] 6453 [/LAST] .. [SEP] .. [LAST] 0000 [/LAST]..”

when the model sees two encoded sequences with the [LAST] spe-

cial tokens, it is likely to take the hint to align “6453” with “0000”
without relying on other patterns elsewhere in the sequence that may
be harder to learn.

Span Normalization The second kind of domain knowledge that
can be passed to DirtTo rewrites syntactically different but equiva-
lent spans into the same string. This way, they will have identical
embeddings and it becomes easier for DitTo to detect that the two
spans are identical. For example, we can enforce that “VLDB jour-
nal” and “VLDBJ” are the same by writing them as VLDBJ. Sim-
ilarly, we can enforce the general knowledge that “5 %” vs. “5.00
%" are equal by writing them as “5.0%”.

The developer specifies a set of rewriting rules to rewrite spans.
The specification consists of a function that first identifies the spans
of interest before it replaces them with the rewritten spans. Ditto
contains a number of rewriting rules for numbers, including rules
that round all floating point numbers to 2 decimal places and drop-
ping all commas from integers (e.g., “2,020” — “2020"). For abbre-
viations, we allow the developers to specify a dictionary of synonym
pairs to normalize all synonym spans to be the same.

3.2 Summarizing long entries

When the value is an extremely long string, it becomes harder for
the LM to understand what to pay attention to when matching. In
addition, one limiting factor of Transformer-based pre-trained LMs
is that there is a limit on the sequence length of the input. For ex-
ample, the input to BERT can have at most 512 sub-word tokens.
It is thus important to summarize the serialized entries down to the
maximum allowed length while retaining the key information. A
common practice is to truncate the sequences so that they fit within
the maximum length. However, the truncation strategy does not

work well for EM in general because the important information for
matching is usually not at the beginning of the sequences.

There are many ways to perform summarization 25|33} 35]]. In
Ditro’s current implementation, we use a TF-IDF-based summa-
rization technique that retains non-stopword tokens with the high
TF-IDF scores. We ignore the start and end tags generated by span
typing in this process and use the list of stop words from scikit-learn
library. By doing so, Ditro feeds only the most informative tokens
to the LM. We found that this technique works well in practice. Our
experiment results show that it improves the F1 score of DiTTo on
a text-heavy dataset from ~40% to over 92% and we plan to add
more summarization techniques to DitTo’s library in the future.

3.3 Augmenting training data

We describe how we apply data augmentation to augment the
training data for entity matching.

Data augmentation (DA) is a commonly used technique in com-
puter vision for generating additional training data from existing
examples by simple transformation such as cropping, flipping, ro-
tation, padding, etc. The DA operators not only add more training
data, but the augmented data also allows to model to learn to make
predictions invariant of these transformations.

Similarly, DA can add training data that will help EM models
learn “harder”. Although labeled examples for EM are arguably
not hard to obtain, invariance properties are very important to help
make the solution more robust to dirty data, such as missing val-
ues (NULLs), values that are placed under the wrong attributes or
missing some tokens.

Next, we introduce a set of DA operators for EM that will help
train more robust models.

Augmentation operators for EM The proposed DA operators are
summarized in Table 2] If s is a serialized pair of data entries with
a match or no-match label /, then an augmented example is a pair
(s’,1), where s’ is obtained by applying an operator o on s and s’
has the same label [as before.

Table 2: Data augmentation operators in Drrro. The operators are 3 dif-

ferent levels: span-level, attribute-level, and entry-level. All samplings are
done uniformly at random.

Operator Explanation

span_del Delete a randomly sampled span of tokens
span_shuffle Randomly sample a span and shuffle the tokens’ order

attr_del Delete a randomly chosen attribute and its value
attr_shuffle Randomly shuffle the orders of all attributes
entry_swap Swap the order of the two data entries e and e’

The operators are divided into 3 categories. The first category
consists of span-level operators, such as span_del and span_shuffie.
These two operators are used in NLP tasks [48}|24]] and shown to be
effective for text classification. For span_del, we randomly delete
from s a span of tokens of length at most 4 without special tokens
(e.g., [SEP], [COL], [VAL]). For span_shuffle, we sample a span of
length at most 4 and randomly shuffle the order of its tokens.

These two operators are motivated by the observation that mak-
ing a match/no-match decision can sometimes be “too easy” when
the candidate pair of data entries contain multiple spans of text sup-
porting the decision. For example, suppose our negative examples
for matching company data in the existing training data is similar to
what is shown below.

[CLS] ... [VAL] Google LLC ... [VAL] (866) 246-6453 [SEP] .. .
[VAL] Alphabet inc . .. [VAL] (650) 253-0000 [SEP]

The model may learn to predict “no-match” based on the phone
number alone, which is insufficient in general. On the other hand,

by corrupting parts of the input sequence (e.g., dropping phone
numbers), DA forces the model to learn beyond that, by leverag-
ing the remaining signals, such as the company name, to predict
“no-match”.

The second category of operators is attribute-level operators: attr_del

and attr_shuffle. The operator attr_del randomly deletes an attribute
(both name and value) and attr_shuffle randomly shuffles the order
of the attributes of both data entries. The motivation for attr_del is
similar to span_del and span_shuffle but it gets rid of an attribute
entirely. The attr_shuffle operator allows the model to learn the
property that the matching decision should be independent of the
ordering of attributes in the sequence.

The last operator, entry_swap, swaps the order of the pair (e, €’)
with probability 1/2. This teaches the model to make symmetric
decisions (i.e., F'(e,e’) = F(¢’,e)) and helps double the size of
the training set if both input tables are from the same data source.

MixDA: interpolating the augmented data Unlike DA operators
for images which almost always preserve the image labels, the op-
erators for EM can distort the input sequence so much that the label
becomes incorrect. For example, the attr_del operator may drop the
company name entirely and the remaining attributes may contain no
useful signals to distinguish the two entries.

To address this issue, Ditto applies MixDA, a recently proposed
data augmentation technique for NLP tasks [[24] illustrated in Figure
El Instead of using the augmented example directly, MixDA com-
putes a convex interpolation of the original example with the aug-
mented examples. Hence, the interpolated example is somewhere in
between, i.e., it is a “partial” augmentation of the original example
and this interpolated example is expected to be less distorted than
the augmented one.

The idea of interpolating two examples is originally proposed for
computer vision tasks [53]. For EM or text data, since we cannot
directly interpolate sequences, MixDA interpolates their represen-
tations by the language model instead. We omit the technical details
and refer the interested readers to [24]. In practice, augmentation
with MixDA slows the training time because the LM is called twice.
However, the prediction time is not affected since the DA operators
are only applied to training data.

Input Sequence
Sequences

Representations

Linear

Original

Interpolate
(MixUp)

Augmented 1A

Back propagate
Figure 4: Data augmentation with MixDA. To apply MixDA, we first trans-
form the example with a DA operator and pass it to the LM. We then interpo-

late the representations of the original and the augmented examples. Finally,
we feed the interpolation to the rest of the NN and back-propagate.

4. EXPERIMENTS

We present the experiment results on benchmark datasets for EM:
the ER Benchmark datasets [21]], the Magellan datasets [20] and the
WDC product data corpus [31]. Drrro achieves new SOTA results
on all these datasets and outperforms the previous best results by
up to 25% in F1 score. The results show that DitTo is more ro-
bust to dirty data and performs well when the training set is small.
Drtro is also more label-efficient as it achieves the previous SOTA
results using only 1/2 of the training data across multiple subsets of
the WDC corpus. Our ablation analysis shows that (1) using pre-
trained LMs contributes to over 50% of Ditto’s performance gain

Table 3: The 13 datasets divided into 4 categories of domains. The datasets
marked with } are text-heavy (Textual). Each dataset with * has an additional
dirty version to test the models’ robustness against noisy data.

Datasets Domains

software / electronics
product
citation / music
company / restaurant

Amazon-Google, Walmart-Amazon™*
Abt—BuyT, Beer
DBLP-ACM*, DBLP-Scholar*, iTunes-Amazon*
Company, Fodors-Zagats

and (2) all 3 optimizations, domain knowledge (DK), summariza-
tion (SU) and data augmentation (DA), are effective. For example,
SU improves the performance on a text-heavy dataset by 41%, DK
leads to 1.98% average improvement on the ER-Magellan datasets
and DA improves on the WDC datasets by 2.53% on average.

4.1 Benchmark datasets

We experimented with all the 13 publicly available datasets used
for evaluating DeepMatcher [27]]. These datasets are from the ER
Benchmark datasets [21]] and the Magellan data repository [10]]. We
summarize the datasets in Table[3]and refer to them as ER-Magellan.
These datasets are for training and evaluating matching models for
various domains including products, publications, and businesses.
Each dataset consists of candidate pairs from two structured tables
of entity records of the same schema. The pairs are sampled from
the results of blocking and manually labeled. The positive rate (i.e.,
the ratio of matched pairs) ranges from 9.4% (Walmart-Amazon) to
25% (Company). The number of attributes ranges from 1 to 8.

Among the datasets, the Abt-Buy and Company datasets are text-
heavy meaning that at least one attributes contain long text. Also,
following [27]], we use the dirty version of the DBLP-ACM, DBLP-
Scholar, iTunes-Amazon, and Walmart-Amazon datasets to mea-
sure the robustness of the models against noise. These datasets are
generated from the clean version by randomly emptying attributes
and appending their values to another randomly selected attribute.

Each dataset is split into the training, validation, and test sets us-
ing the ratio of 3:1:1. We list the size of each dataset in Table[3]

The WDC product data corpus [31]] contains 26 million product
offers and descriptions collected from e-commerce websites [47].
The goal is to find product offer pairs that refer to the same prod-
uct. To evaluate the accuracy of product matchers, the dataset pro-
vides 4,400 manually created golden labels of offer pairs from 4
categories: computers, cameras, watches, and shoes. Each cate-
gory has a fixed number of 300 positive and 800 negative pairs. For
training, the dataset provides for each category pairs that share the
same product ID such as GTINs or MPNs mined from the product’s
webpage. The negative examples are created by selecting pairs that
have high textual similarity but different IDs. These labels are fur-
ther reduced to different sizes to test the models’ label efficiency.
We summarize the different subsets in Table @l We refer to these
subsets as the WDC datasets.

Table 4: Different subsets of the WDC product data corpus. Each subset
(except Test) is split into a training set and a validation set with a ratio of
4:1. The last column shows the positive rate (%POS) of each category in the
xLarge set. The positive rate on the test set is 27.27% for all the categories.

Categories Test Small Medium Large xLarge %POS

Computers 1,100 2,834 8,094 33,359 68,461 14.15%
Cameras 1,100 1,886 5,255 20,036 42,277 16.98%
Watches 1,100 2,255 6,413 27,027 61,569 15.05%

Shoes 1,100 2,063 5,805 22,980 42,429 9.76%
All 4,400 9,038 25,567 103,411 214,736 14.10%

Each entry in this dataset has 5 attributes. DitTO uses only the
title attribute because it contains rich product information such as
brands, IDs, and price, making the rest of the attributes redundant.

Meanwhile, DeepMatcher is allowed to use any subsets of attributes
to determine the best attribute set as in [31].

4.2 Implementation and experimental setup

We implemented Dirro in PyTorch [29] and the Transformers
library [49]]. The default setting uses the uncased 6-layer Distil-
BERT [36] pre-trained model and half-precision floating-point (fp16)
to accelerate the training and prediction speed. In all the experi-
ments, we fix the learning rate to be 3e-5 and the max sequence
length to be 256. The batch size is 32 if MixDA is used and 64 oth-
erwise. The training process runs a fixed number of epochs (10, 15,
or 40 depending on the dataset size) and returns the checkpoint with
the highest F1 score on the validation set. We conducted all experi-
ments on a p3.8xlarge AWS EC2 machine with 4 V100 GPUs (one
GPU per run).

Compared methods. We compare Ditro with the SOTA EM
solution DeepMatcher and its variants. We also compare with vari-
ants of Ditto without the data augmentation (DA) and/or domain
knowledge (DK) optimization to evaluate the effectiveness of each
component. We summarize these methods below. We report the
average F1 of 5 repeated runs in all the settings.

e DeepMatcher: DeepMatcher [27] is the SOTA matching solu-
tion. Compared to Ditro, DeepMatcher customizes the RNN ar-
chitecture to aggregate the attribute values, then compares/aligns
the aggregated representations of the attributes. DeepMatcher
leverages FastText [4] to train the word embeddings. When re-
porting DeepMatcher’s F1 scores, we use the numbers in [27]
for the ER-Magellan datasets and numbers in [31] for the WDC
datasets. We also reproduced those results using the open-sourced
implementation and report the training time.

o DeepMatcher+: Follow-up work [19] slightly outperforms Deep-
Matcher in the DBLP-ACM dataset and [[15]] achieves better F1 in
the Walmart-Amazon and Amazon-Google datasets. According
to [27], the Magellan system ([20], based on classical ML mod-
els) outperforms DeepMatcher in the Beer and iTunes-Amazon
datasets. For these cases, we denote by DeepMatcher+ the best
F1 scores among DeepMatcher and these works aforementioned.

e Ditro: This is the full version of our system with all 3 optimiza-
tions, domain knowledge (DK), TF-IDF summarization (SU), and
data augmentation (DA) turned on. See the details below.

e Ditro(DA): This version only turns on the DA (with MixDA)
and SU but does not have the DK optimization. We apply one
of the span-level or attribute-level DA operators listed in Table[2]
with the entry_swap operator. We compare the different combi-
nations and report the best one. Following [24]], we apply MixDA
with the interpolation parameter A sampled from a Beta distribu-
tion Beta(0.8,0.8).

e Ditro(DK): With only the DK and SU optimizations on, this
version of Ditto is expected to have lower F1 scores but train
much faster. We apply the span-typing to datasets of each do-
main according to Table [I]and apply the span-normalization on
the number spans.

e Baseline: This base form of Ditrto corresponds simply to fine-
tuning a pre-trained LM (DistilBERT) on the EM task. We did
not apply any optimizations on the baseline. We pick DistilBERT
instead of larger models such as BERT or ALBERT because Dis-
tilBERT is faster to train and it also makes a tougher compari-
son for DrtTo since larger models are generally perceived to have
more powerful language understanding capabilities [52, [23] [22].

4.3 Main results

Table [5] shows the results of the ER-Magellan datasets. Overall,
Drtro (with optimizations) achieves significantly higher F1 scores

than the SOTA results (DeepMatcher+). Dirro without optimiza-
tions (i.e., the baseline) achieves comparable results with Deep-
Matcher+. Dirro outperforms DeepMatcher+ in 10/13 cases and
by up to 25% (Dirty, Walmart-Amazon) while the baseline out-
performs DeepMatcher+ in 8/13 cases and by up to 16% (Dirty,
Walmart-Amazon). On the 3 cases that Dirto performs slightly
worse than DeepMatcher+, it turns out that using a larger pre-trained
LMs such as BERT or ALBERT helps fill the gaps (see Table [6).
These initial results led us to believe that larger pre-trained language
models will further improve DitT0’s results and we leave as future
work to further verify this hypothesis.

In addition, we found that DitTo is better at datasets with small
training sets. Particularly, the average improvement on the 7 small-
est datasets is 9.96% vs. 0.32% on average on the rest of datasets.
Drtro is also more robust against data noise than DeepMatcher+. In
the 4 dirty datasets, the performance degradation of DitTo is only
0.68 on average while the performance of DeepMatcher+ degrades
by 8.21. These two properties make DitTo more attractive in prac-
tical EM settings.

Drtro also achieves promising results on the WDC datasets (Ta-
ble[7). Drrro achieves the highest F1 score of 94.08 when using
all the 215k training data, outperforming the previous best result by
3.92. Similar to what we found in the ER-Magellan datasets, the
improvements are higher on settings with fewer training examples
(to the right of Table[7). The results also show that DitTo is more
label efficient than DeepMatcher. For example, when using only
1/2 of the data (Large), Drtro already outperforms DeepMatcher
with all the training data (xLarge) by 2.89 in All. When using only
1/8 of the data (Medium), the performance is within 1% close to
DeepMatcher’s F1 when 1/2 of the data (Large) is in use. The only
exception is the shoes category. This may be caused by the large
gap of the positive label ratios between the training set and the test
set (9.76% vs. 27.27% according to Table[d).

Table 5: F1 scores on the ER-Magellan EM datasets. The numbers of Deep-
Matcher+ (DM+) are the highest available found in [[15}|19}27].

Dirro Dirro

Datasets DM+ Ditro (DA) (DK) Baseline Size
Structured
Amazon-Google 70.7 71.42(+0.72) 72.10 71.53 70.04 11,460
Beer 78.8 82.12(+3.32) 80.72 83.11 73.44 450
DBLP-ACM 98.45 98.65(+0.2) 98.83 9854 98.65 12,363
DBLP-Google 94.7 94.57 (-0.13) 94.53 9453 94.67 28,707

Fodors-Zagats 100 97.76 (-2.24) 98.18 98.16 96.76 946
iTunes-Amazon 91.2 94.19 (+2.99) 90.23 9247 91.38 539

Walmart-Amazon 73.6 80.66 (+7.06) 81.30 79.07 7695 10,242
Dirty

DBLP-ACM 98.1 98.63 (+0.53) 98.43 9852 98.60 12,363

DBLP-Google 93.8 94.68 (+0.88) 9448 94.62 94.66 28,707

iTunes-Amazon 79.4 93.16 (+13.76) 92.30 91.72 89.88 539
Walmart-Amazon 53.8 78.87 (+25.07) 78.80 76.79 70.40 10,242

Textual
Abt-Buy 62.8 82.60 (+19.80) 81.66 8190 81.74 9,575
Company 92.7 9243 (-0.27) 9229 9263 41.00 112,632

Table 6: F1 scores of Ditro with the base BERT and ALBERT models
on the 3 datasets where Ditro with DistilBERT does not outperform Deep-
Matcher+ (DM+), the SOTA matching models.

Datasets DM+ Ditto (BERT) delta Ditto (ALBERT) delta
DBLP-Google 94.70 94.80 (+0.10) 94.73 (+0.03)
Fodors-Zagats 100.00 100.00 0.00 100.00 0.00

Company 92.70 93.15 (+0.45) 92.89 (+0.19)

Training time. We plot the training time required by DeepMatcher
and DrtTo in Figure@ We do not plot the time for Ditto(DA) be-
cause the DK optimization only pre-processes the data and adds

95 all computers cameras watches shoes
95 95] DM
2 901 90 1 901 90 90 Ditto
% 854 801 801 80 801 D?tto (DA)
o 801 Ditto (DK)
: ' ' 7042, ' 1 704 ' ' 70 ' ' 70 ' ' Baseline
10k 100k 200k 10k 35k 70k 5k 20k 40k 10k 30k 60k 5k 20k 40k

Train+Valid Size
Figure 5: F1 scores on the WDC datasets of different versions of Dirtro. DM: DeepMatcher.

Table 7: F1 scores on the WDC product matching datasets. The numbers
for DeepMatcher (DM) are taken from [31].

Size xLarge (1/1) Large (1/2) Medium (1/8) Small (1/20)

Methods DM Ditto DM Ditto DM Ditto DM Ditto
Computers 90-80 9545 8955 9170 77.82 88.62 70.55 80.76
P +4.65 +2.15 +10.80 +10.21
Cameras 8921 9378 87.19 9123 7653 88.09 68.59 80.89

‘ +4.57 +4.04 +11.56 +12.30
Watches 9343 96.53 91.28 9569 79.31 9112 6632 85.12
+3.08 +4.41 +11.81 +18.80
Shoes 9261 90.11 90.39 88.07 79.48 82.66 73.86 75.89
2.50 2.32 +3.18 +2.03
Al 90.16 94.08 89.24 93.05 79.94 88.61 7634 84.36
+3.92 +3.81 +8.67 +8.02
G 1044 © DM 1047, om
° Ditto Ditto
£ Ditto (DK) 5 Ditto (DK)
103 Baseline 1074 Baseline
o
C
z
© 1074 1024
'_
1k 10k 100k 2k 10k 50k 200k

Training set size Training set size
Figure 6: Training time vs. dataset size for the ER-Megallan datasets
(left) and the WDC datasets (right). Each point corresponds to the train-
ing time needed for a dataset using different methods. Dirro(DK) does not
use MixDA thus is faster than the full Dittro. DeepMatcher (DM) ran out of
memory on the Company dataset so the data point is not reported. We omit
Drtro(DA) in the figures because its running time is very close to DiTTo’s.

no more than 5% of training time. The running time ranges from
69 seconds (450 examples) to 5.2 hours (113k examples). Dirro
has a similar training time to DeepMatcher although DistilBERT,
which is used by Ditto, has a Transformer-based architecture that
is deeper and more complex. The speed-up is due to DistilBERT
and the fp16 optimization. Ditro with MixDA is about 2-3x slower
than Drrto(DK) without MixDA. This is because MixDA requires
additional time for generating the augmented pairs and computing
with the LM twice. However, this overhead only affects offline train-
ing and does not affect online prediction.

4.4 Ablation study

Next, we analyze the effectiveness of each component (i.e., LM,
SU, DK, and DA) by comparing Ditto with its variants without
these optimizations. The results are shown in Table|§|and FigureEl

The use of a pre-trained LM contributes to a large portion of the
performance gain. In the ER-Magellan datasets (excluding Com-
pany), the average improvement of the baseline compared to Deep-
Matcher+ is 3.49, which accounts for 58% of the improvement of
the full Ditto (6.0). While DeepMatcher+ and the baseline Ditto
(essentially fine-tuning DistilIBERT) are comparable on the Struc-
tured datasets, the baseline performs much better on all the Dirty
datasets and the Abt-Buy dataset. This confirms our intuition that
the language understanding capability is a key advantage of DitTo
over existing EM solutions. The Company dataset is a special case

because the length of the company articles (3,123 words on aver-
age) is much greater than the max sequence length of 256. The SU
optimization increases the F1 score of this dataset from 41% to over
92%. In the WDC datasets, across the 20 settings, LM contributes
to 3.41 F1 improvement on average, which explains 55.3% of im-
provement of the full Drtro (6.16).

The DK optimization is more effective on the ER-Magellan datasets.
Compared to the baseline, the improvement of Ditro(DK) is 1.98
on average and is up to 9.67 on the Beer dataset while the improve-
ment is only 0.22 on average on the WDC datasets. We inspected
the span-typing output and found that only 66.2% of entry pairs have
spans of the same type. This is caused by the current NER module
not extracting product-related spans with the correct types. We ex-
pect DK to be more effective if we use an NER model trained on
the product domain.

DA is effective on both datasets and more significantly on the
WDC datasets. The average F1 score of the full Drtto improves
upon Dirro(DK) (without DA) by 0.53 and 2.53 respectively in the
two datasets. In the WDC datasets, we found that the span_del oper-
ator always performs the best while the best operators are diverse in
the ER-Magellan datasets. We list the best operator for each dataset
in Table[8] We note that there is a large space of tuning these opera-
tors (e.g., the MixDA interpolation parameter, maximal span length,
etc.) and new operators to further improve the performance. Find-
ing the best DA operators for EM is future work beyond the scope
of this paper.

Table 8: Datasets that each DA operator achieves the best performance.

The suffix (S)/(D) and (Both) denote the clean/dirty version of the dataset
or both of them. All operators are applied with the entry_swap operator.

Operator Datasets

span_shuffle DBLP-ACM (Both), DBLP-Google (Both), Abt-Buy

span_del Walmart-Amazon(D), Company, all of WDC
attr_del Beer, iTunes-Amazon(S), Walmart-Amazon(S)
attr_shuffle Fodors-Zagats, iTunes-Amazon(D)

5. CASE STUDY: EMPLOYER MATCHING

We present a case of applying Ditro to a real-world EM task. An
online recruiting platform would like to join its internal employer
records with newly collected public records to enable downstream
aggregation tasks. Formally, given two tables A and B (internal
and public) of employer records, the goal of the task is to find, for
every record in table B, a record in table A that represents the same
employer. Both tables have 6 attributes: name, addr, city, state,
zipcode, and phone. Our goal is to find matching record pairs with
both high precision and recall.

Basic blocking. Our first challenge is size of the datasets. As
shown in Table[8} both tables are of nontrivial sizes even after dedu-
plication. Thus, a naive pairwise comparison is not feasible. The
first blocking method we designed is to only match companies with
the same zipcode. However, since 60% of records in Table A do
not have the zipcode attribute and some large employers have mul-
tiple sites, we use a second blocking method that returns for each
record in Table B the top-20 most similar records in A ranked by
the TF-IDF cosine similarity of name and addr attributes. We use

Table 9: Sizes of the two employer datasets to be matched.

TableA TableB #Candidates
original deduplicated original deduplicated Basic blocking

Size 789,409 788,094 412,418 62,511 10,652,249

the union of these two methods as our blocker, which produces 10
million candidate pairs.

Data labeling. We labeled 10,000 pairs sampled from the results
of each blocking method (20,000 labels in total). We sampled pairs
of high similarity with higher probability to increase the difficulty
of the dataset to train more robust models. The positive rate of all
the labeled pairs is 39%. We split the labeled pairs into training,
validation, and test sets by the ratio of 3:1:1.

Applying Ditrro. The user of Ditro does not need to exten-
sively tune the hyperparameters but only needs to specify the do-
main knowledge and choose a data augmentation operator. We ob-
serve that the street number and the phone number are both useful
signals for matching. Thus, we implemented a simple recognizer
that tags the first number string in the addr attribute and the last 4
digits of the phone attribute. Since we would like the trained model
to be robust against the large number of missing values, we choose
the attr_del operator for data augmentation.

We plot the model’s performance in Figure[7] Ditto achieves the
highest F1 score of 96.53 when using all the training data. Drrto
outperforms DeepMatcher (DM) in F1 and trains faster (even when
using MixDA) than DeepMatcher across different training set sizes.

F1 scores vs. size training time (s) vs. size

97 2000
DM
| Ditto

95 1500 Ditto (DA)

oM 10001 Ditto (DK)
93 Ditto

Ditto (DA) 500

Ditto (DK)
91— y T — T -

2k 3k 6k 12k 2k 3k 6k 12k

Figure 7: F1 scores and training time for the employer matching models.

Advanced blocking. Optionally, before applying the trained model
to all the candidate pairs, we can use the labeled data to improve the
basic blocking method. We leverage Sentence-BERT [34], a vari-
ant of the BERT model that trains sentence embeddings for sentence
similarity search. The trained model generates a high-dimensional
(e.g., 768 for BERT) vector for each record. Although this model
has a relatively low F1 (only 92%) thus cannot replace Ditto, we
can use it with vector similarity search to quickly find record pairs
that are likely to match. We can greatly reduce the matching time
by only testing those pairs of high cosine similarity. We list the
running time for each module in Table[T0] With this technique, the
overall EM process is accelerated by 3.8x (1.69 hours vs. 6.49 hours
with/without advanced blocking).

Table 10: Running time for blocking and matching with Drrro. Advanced
blocking consists of two steps: computing the representation of each record
with Sentence-BERT [34] (Encoding) and similarity search by blocked ma-
trix multiplication [1] (Search). With advanced blocking, we only match
each record with the top-10 most similar records according to the model.

Matching
(top-10) (ALL)

2,229.26 1,981.97 1,339.36 22,823.43

Basic Encoding Search
Blocking (GPU) (CPU)

Time (s) 537.26

6. RELATED WORK

EM solutions have tackled the blocking problem [2} 6l /14} 28 45]
and the matching problem with rules [9} |13} [38} [44]], crowdsourc-
ing [16 18] 43]], or machine learning [[37, (8} |3} 16} 20].

Recently, EM solutions used deep learning and achieved promis-
ing results [12} |15} {19} |27, 155]. DeepER [12] trains EM models
based on the LSTM [[17]] neural network architecture with word em-
beddings such as word2vec [26] or GloVe [30]. DeepER also pro-
posed a blocking technique to represent each entry by the LSTM’s

output. Our advanced blocking technique based on Sentence-BERT [34]],

described in Section[3} is inspired by this. Auto-EM [53] improves
deep learning-based EM models by pre-training the EM model on
an auxiliary task of entity type detection. Ditto also leverages
transfer learning by fine-tuning pre-trained LMs, which are more
powerful models in language understanding. We did not compare
Drtrro with Auto-EM in experiments because the entity types re-
quired by Auto-EM are not available in our benchmarks. However,
we expect that pre-training Ditro with EM-specific data/tasks can
improve the performance of Ditto further and is part of our future
work. DeepMatcher introduced a design space for applying deep
learning methods to EM. Following their template architecture, one
can think of DitTo as replacing both the attribute embedding and
similarity representation components in the architecture with a sin-
gle pre-trained LM such as BERT, thus providing a much simpler
overall architecture.

All systems, Auto-EM, DeepER, DeepMatcher, and Ditto for-
mulate matching as a binary classification problem. The first three
take a pair of data entries of the same arity as input and aligns the
attributes before passing them to the system for matching. On the
other hand, Ditto serializes both data entries as one input with
structural tags intact. This way, data entries of different schemas can
be uniformly ingested, including hierarchically formatted data such
as those in JSON. Our serialization scheme is not only applicable to
Drtro, but also to other systems such as Auto-EM, DeepMatcher,
and DeepER. In fact, we serialized data entries to DeepMatcher un-
der one attribute using our scheme and observed that DeepMatcher
improved by as much as 1.94% on some datasets.

External knowledge is known to be effective in improving neu-
ral network models in NLP tasks [} 40]. Instead of directly mod-
ifying the network architecture [46, |S1] or the loss function [54]
to incorporate domain knowledge, Ditro modularizes the way do-
main knowledge is incorporated by allowing users to specify and
customize rules for preprocessing input entries. Data augmentation
has been extensively studied in computer vision and has recently
received more attention in NLP [24] 48| 50]. We designed a set of
data augmentation operators suitable for EM and apply them with
MixDA [24], a recently proposed DA strategy based on convex in-
terpolation. To the best of our knowledge, this is the first time data
augmentation has been applied to EM.

7. CONCLUSION

We present Dirro, the first EM system based on fine-tuned pre-
trained Transformer-based language models. DitTo uses a simple
architecture to leverage pre-trained LMs and is further optimized
by injecting domain knowledge, text summarization, and data aug-
mentation. Our results show that it outperforms existing EM solu-
tions on all three benchmark datasets with significantly less training
data. DitT0’s good performance can be attributed to the improved
language understanding capability mainly through pre-trained LMs,
the more accurate text alignment guided by the injected knowledge,
and the data invariance properties learned from the augmented data.
We plan to further explore our design choices for injecting domain
knowledge, text summarization, and data augmentation. In addi-
tion, we plan to extend DitTo to other data integration tasks beyond
EM, such as entity type detection and schema matching with the
ultimate goal of building a BERT-like model for tables.

8.
(1]

(2]
(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]
(18]

[19]

[20]

REFERENCES
F. Abuzaid, G. Sethi, P. Bailis, and M. Zaharia. To index or

not to index: Optimizing exact maximum inner product
search. In Proc. ICDE ’19, pages 1250-1261. IEEE, 2019.
L. R. Baxter, R. Baxter, P. Christen, et al. A comparison of
fast blocking methods for record. 2003.

M. Bilenko and R. J. Mooney. Adaptive duplicate detection
using learnable string similarity measures. In Proc. KDD
"03, pages 3948, 2003.

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov.
Enriching word vectors with subword information. TACL,
5:135-146, 2017.

Q. Chen, X. Zhu, Z.-H. Ling, D. Inkpen, and S. Wei. Neural
natural language inference models enhanced with external
knowledge. In Proc. ACL ’18, pages 2406-2417, 2018.

P. Christen. A survey of indexing techniques for scalable
record linkage and deduplication. TKDE, 24(9):1537-1555,
2011.

K. Clark, U. Khandelwal, O. Levy, and C. D. Manning. What
does BERT look at? an analysis of BERT’s attention. In
Proc. BlackBoxNLP ’19, pages 276-286, 2019.

W. W. Cohen and J. Richman. Learning to match and cluster
large high-dimensional data sets for data integration. In Proc.
KDD 02, pages 475-480, 2002.

N. Dalvi, V. Rastogi, A. Dasgupta, A. Das Sarma, and

T. Sarlos. Optimal hashing schemes for entity matching. In
Proc. WWW 13, pages 295-306, 2013.

S. Das, A. Doan, P. S. G. C., C. Gokhale, P. Konda,

Y. Govind, and D. Paulsen. The magellan data repository.
https://sites.google.com/site/
anhaidgroup/projects/datal

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT:
Pre-training of deep bidirectional transformers for language
understanding. In Proc. NAACL-HLT ’19, pages 4171-4186,
2019.

M. Ebraheem, S. Thirumuruganathan, S. Joty, M. Ouzzani,
and N. Tang. Distributed representations of tuples for entity
resolution. PVLDB, 11(11):1454-1467, 2018.

A. Elmagarmid, L. F. Ilyas, M. Ouzzani, J.-A. Quiané-Ruiz,
N. Tang, and S. Yin. NADEEF/ER: generic and interactive
entity resolution. In Proc. SIGMOD ’14, pages 1071-1074,
2014.

J. Fisher, P. Christen, Q. Wang, and E. Rahm. A
clustering-based framework to control block sizes for entity
resolution. In Proc. KDD ’15, pages 279-288, 2015.

C. Fu, X. Han, L. Sun, B. Chen, W. Zhang, S. Wu, and

H. Kong. End-to-end multi-perspective matching for entity
resolution. In Proc. IJCAI ’19, pages 4961-4967. AAAI
Press, 2019.

C. Gokhale, S. Das, A. Doan, J. F. Naughton, N. Rampalli,
J. Shavlik, and X. Zhu. Corleone: Hands-off crowdsourcing
for entity matching. In Proc. SIGMOD ’14, pages 601-612,
2014.

S. Hochreiter and J. Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735-1780, 1997.

A.M. E. W. D. Karger and S. M. R. Miller. Human-powered
sorts and joins. PVLDB, 5(1), 2011.

J. Kasai, K. Qian, S. Gurajada, Y. Li, and L. Popa.
Low-resource deep entity resolution with transfer and active
learning. In Proc. ACL ’19, pages 5851-5861, 2019.

P. Konda, S. Das, P. S. G. C., A. Doan, A. Ardalan, J. R.
Ballard, H. Li, F. Panahi, H. Zhang, J. F. Naughton,

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

[33]

[34]

(35]

(36]

(371

(38]

S. Prasad, G. Krishnan, R. Deep, and V. Raghavendra.
Magellan: Toward building entity matching management
systems. PVLDB, 9(12):1197-1208, 2016.

H. Kopcke, A. Thor, and E. Rahm. Evaluation of entity
resolution approaches on real-world match problems.
PVLDB, 3(1-2):484-493, 2010.

Z.Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and
R. Soricut. ALBERT: A lite BERT for self-supervised
learning of language representations. In Proc. ICLR 20,
2020.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy,
M. Lewis, L. Zettlemoyer, and V. Stoyanov. RoOBERTa: A
robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

Z. Miao, Y. Li, X. Wang, and W.-C. Tan. Snippext:
Semi-supervised opinion mining with augmented data. In
Proc. WWW ’20, 2020.

R. Mihalcea and P. Tarau. TextRank: Bringing order into
text. In Proc. EMNLP 04, pages 404-411, 2004.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and

J. Dean. Distributed representations of words and phrases
and their compositionality. In Proc. NIPS ’13, pages
3111-3119, 2013.

S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park,

G. Krishnan, R. Deep, E. Arcaute, and V. Raghavendra. Deep
learning for entity matching: A design space exploration. In
Proc. SIGMOD 18, pages 19-34, 2018.

G. Papadakis, D. Skoutas, E. Thanos, and T. Palpanas.
Blocking and filtering techniques for entity resolution: A
survey. arXiv preprint arXiv:1905.06167, 2019.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,

G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,

et al. PyTorch: An imperative style, high-performance deep
learning library. In Proc. NeurIPS ’19, pages 8024-8035,
2019.

J. Pennington, R. Socher, and C. D. Manning. Glove: Global
vectors for word representation. In Proc. EMNLP ’14, pages
1532-1543, 2014.

A. Primpeli, R. Peeters, and C. Bizer. The WDC training
dataset and gold standard for large-scale product matching.
In Companion Proc. WWW ’19, pages 381-386, 2019.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and

I. Sutskever. Language models are unsupervised multitask
learners. 2019.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and

L. Sutskever. Language models are unsupervised multitask
learners. OpenAl Blog, 1(8):9, 2019.

N. Reimers and I. Gurevych. Sentence-BERT: Sentence
embeddings using Siamese BERT-networks. In Proc.
EMNLP-IJCNLP ’19, pages 3982-3992, 2019.

A. M. Rush, S. Chopra, and J. Weston. A neural attention
model for abstractive sentence summarization. In Proc.
EMNLP 15, 2015.

V. Sanh, L. Debut, J. Chaumond, and T. Wolf. DistilBERT, a
distilled version of BERT: smaller, faster, cheaper and
lighter. In Proc. EMC? ’19, 2019.

S. Sarawagi and A. Bhamidipaty. Interactive deduplication
using active learning. In Proc. KDD ’02, pages 269-278,
2002.

R. Singh, V. V. Meduri, A. Elmagarmid, S. Madden,

P. Papotti, J.-A. Quiané-Ruiz, A. Solar-Lezama, and N. Tang.

https://sites.google.com/site/anhaidgroup/projects/data
https://sites.google.com/site/anhaidgroup/projects/data

Synthesizing entity matching rules by examples. PVLDB,
11(2):189-202, 2017.

[39] Spacy. https://spacy.io/api/entityrecognizer.

[40] Y. Sun, S. Wang, Y. Li, S. Feng, X. Chen, H. Zhang, X. Tian,
D. Zhu, H. Tian, and H. Wu. ERNIE: Enhanced
representation through knowledge integration. arXiv preprint
arXiv:1904.09223, 2019.

[41] I Tenney, D. Das, and E. Pavlick. BERT rediscovers the
classical NLP pipeline. In Proc. ACL ’19, pages 4593-4601,
2019.

[42] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and 1. Polosukhin. Attention is all
you need. In Proc. NIPS ’17, pages 5998-6008, 2017.

[43] J. Wang, T. Kraska, M. J. Franklin, and J. Feng. CrowdER:
crowdsourcing entity resolution. PVLDB, 5(11):1483-1494,
2012.

[44] J. Wang, G. Li, J. X. Yu, and J. Feng. Entity matching: How
similar is similar. PVLDB, 4(10):622—-633, 2011.

[45] Q. Wang, M. Cui, and H. Liang. Semantic-aware blocking for
entity resolution. TKDE, 28(1):166—180, 2015.

[46] X. Wang, X. He, Y. Cao, M. Liu, and T.-S. Chua. KGAT:
Knowledge graph attention network for recommendation. In
Proc. KDD 19, page 9504A5958, 2019.

[47] WDC Product Data Corpus.
http://webdatacommons.org/largescaleproductcorpus/v2.

[48] J. Wei and K. Zou. EDA: Easy data augmentation techniques
for boosting performance on text classification tasks. In Proc.
EMNLP-IJCNLP ’19, pages 6382-6388, 2019.

[49] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue,

A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz, et al.
Huggingface’s Transformers: State-of-the-art natural
language processing. arXiv preprint arXiv:1910.03771, 2019.

[50] Q. Xie, Z. Dai, E. Hovy, M.-T. Luong, and Q. V. Le.
Unsupervised data augmentation. arXiv preprint
arXiv:1904.12848, 2019.

[51] B. Yang and T. Mitchell. Leveraging knowledge bases in
LSTMs for improving machine reading. In Proc. ACL ’17,
pages 14361446, 2017.

[52] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov,
and Q. V. Le. XLNet: Generalized autoregressive pretraining
for language understanding. In Proc. NeurIPS 19, pages
5754-5764, 2019.

[53] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz.
mixup: Beyond empirical risk minimization. In Proc. ICLR
'18,2018.

[54] Z.Zhang, X. Han, Z. Liu, X. Jiang, M. Sun, and Q. Liu.
ERNIE: Enhanced language representation with informative
entities. In Proc. ACL ’19, pages 1441-1451, 2019.

[55] C.Zhao and Y. He. Auto-EM: End-to-end fuzzy
entity-matching using pre-trained deep models and transfer
learning. In Proc. WWW 19, pages 2413-2424, 2019.

	1 Introduction
	2 Background and Architecture
	2.1 Pre-trained language models
	2.2 Fine-tuning pre-trained language models
	2.3 Serializing the data entries for Ditto

	3 Optimizations in Ditto
	3.1 Leveraging Domain Knowledge
	3.2 Summarizing long entries
	3.3 Augmenting training data

	4 Experiments
	4.1 Benchmark datasets
	4.2 Implementation and experimental setup
	4.3 Main results
	4.4 Ablation study

	5 Case Study: Employer Matching
	6 Related Work
	7 Conclusion
	8 References

