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Abstract. We present a novel approach to denote mappings between
EL-based ontologies which are defeasible in the sense that such a map-
ping only applies to individuals if this does not cause an inconsistency.
This provides the advantage of handling exceptions automatically and
thereby avoiding logical inconsistencies that may be caused due to the
traditional type of mappings. We consider the case where mappings from
many possibly heterogeneous ontologies are one way links towards an
overarching ontology. Questions can then be asked in terms of the con-
cepts in the overarching ontology. We provide the formal semantics for
the defeasible mappings and show that reasoning under such a setting
is decidable even when the defeasible axioms apply to unknowns. Fur-
thermore, we show that this semantics actually is strongly related to the
idea of answer sets for logic programs.

1 Introduction

Description logic (DL) based knowledge representation is gaining in popularity
and with that the number of domain ontologies is also on the rise. Especially
in the medical domain, tractable fragments of DLs are heavily used. For exam-
ple, SNOMED CT is a medical ontology which consists of more than 300,000
concepts, and which can be described in the description logic EL [1]. Smaller
fragments of DLs are especially interesting for application scenarios where fast
and efficient reasoning may be critical.

In this paper, we provide a formal framework for dealing with defeasible
reasoning for smaller fragments of DLs, especially in the context of ontology
alignment. In particular we consider a language ER⊥,O which allows for con-
junction, existentials, role chains, disjointness of concepts and ABox statements
and provide a semantics for one-way (defeasible) alignments from terms in sev-
eral ontologies to one overarching ontology such that queries can be asked in
terms of this overarching ontology, while answers may contain instances from
several lower level ontologies. For defeasibility we take motivation from default
logic [21] and define the semantics along similar lines. It turns out that combin-
ing DLs with default-like semantics is not very straightforward as unrestricted
default applications may result in undecidability [2,22]. Previously, decidability
was usually obtained for such logics by restricting defeasibility to known individ-
uals, i.e. to a finite set of entities. In this paper, we show that the combination



Veg uNonVeg v ⊥ (1)

∃consumes.EggFood v NonVeg (2)

contains ◦ consumes v consumes (3)

{juliet} v Veg (4)

{romeo} v Eggetarian (5)

Eggetarian v Vegetarian (6)

Eggetarian v ∃eats.Egg (7)

Eggetarian uNonVegetarian v ⊥ (8)

{caesar} v Vegetarian (9)

{caesar} v NotEggetarian (10)

NotEggetarian u Eggetarian v ⊥ (11)

Vegetarian ≡ Veg (12)

NonVeg ≡ NonVegetarian (13)

EggFood ≡ Egg (14)

eats v consumes (15)

Fig. 1. Example mapping with selected axioms.

of defeasible mappings with DLs presented here is decidable even without this
type of restriction. Decidability in our setting results from our restriction to a
tractable language in the EL family, together with the avoidance of recursion
through the defeasible axioms resulting from our specific, but practically impor-
tant application scenario, namely the one-way alignment of ontologies.

Indeed, similar concepts appear in several ontologies from heterogeneous do-
mains, but these concepts may slightly differ semantically. The motivation of
using defeasible axioms as alignments stems from the need to handle such het-
erogeneity among various data models. As we discuss in our previous work [22],
DL axioms are semantically too rigid to be able to deal with alignments in such
heterogeneous settings, in particular in the light of the fact that ontology align-
ment systems mostly rely on string similarity matching [7]. For example, the
concept that represents those human beings who consume only vegetarian food
may be part of two different domain ontologies but the notion of what vegetarian
food means might slightly differ depending on the context, e.g. in some places
eggs might be part of a typical vegetarian diet while in others this may not be
so. Aligning these different world views appropriately cannot be done by simply
mapping the respective concepts representing a “vegetarian person” in different
ontologies, as claiming that they were equivalent may lead to inconsistencies.

For example consider the axioms in Figure 1 (see section 2 for explanations
of the notation). Axioms 1–4 represent one ontology and axioms 5–11 another
ontology. An alignment system may give alignments similar to axioms 12–15.
Since romeo is an Eggetarian (axiom 5) he is also a Vegetarian (axiom 6). And
since every Vegetarian is also a Veg as per the mapping axiom 12, romeo is a
Veg. From axioms 5, 7, 14, 15 and 2 we obtain that romeo is also a NonVeg.
But Veg and NonVeg are disjoint classes, so this results in an inconsistency. But
applying the same rules to caesar does not cause an inconsistency. The usual
process of repairing alignments like this is to remove mappings that cause the



inconsistency [13]. But we would then lose the conclusion that caesar is also
a Veg. If we replace the mapping axioms with defeasible axioms as introduced
below, then we could achieve this outcome where we carry over the similarities
while respecting the differences.

The paper is organized as follows. In section 2, we set the preliminaries by
describing the language ER⊥,O. The context of ontology mappings as well as the
syntax and the semantics of defeasible mapping axioms along with the discussion
on decidability is presented in section 3. Section 4 contains a description of the
relation of the semantics of this approach with that of answer set programming
for logic programs. Finally we discuss related work in section 5 and provide
closing remarks in section 6.

2 The Description Logic ER⊥,O

We consider the DL ER⊥,O (see [1] for further background). Let NC be a set of
atomic concepts (or atomic classes), let NR be a set of roles and let NI be a set
of individuals, which contains an element ιR,D for each pair (R,D) ∈ NR ×NC .
These ιR,D are called auxilliary individuals. Complex class expressions (short,
complex classes) in ER⊥,O are defined using the grammar

C ::= A | > | ⊥ | C1 u C2 | ∃R.C | {a},
where A ∈ NC , R ∈ NR and C1, C2, C are complex class expressions. Further-
more, a nominal class (short, nominal) is represented as {a}, where a ∈ NI . A
TBox in ER⊥,O is a set of general class inclusion (GCI ) axioms of the form
C v D, where C and D are complex classes. C ≡ D abbreviates two GCIs
C v D and D v C. An RBox in ER⊥,O is a set of role inclusion (RI ) axioms of
the form R1 ◦ · · · ◦Rn v R, where R1, . . . , Rn, R ∈ NR. An ABox in ER⊥,O is a
set of GCIs of the form {a} v C and {a} v ∃R.{b} where {a}, {b} are nominals
and C is a complex class.

An ER⊥,O knowledge base or ontology is a set of TBox, RBox and ABox
statements which furthermore satisfy the condition that nominals occur only in
ABox statements. This condition is a restriction of ER⊥,O as compared to, e.g.,
the allowed use of nominals in OWL 2 EL: While we allow for a full ABox, the
TBox remains free of nominals. In particular, axioms such as A v ∃R.{a}, with
A an atomic or complex class other than a nominal, are not allowed.

An initial ER⊥,O knowledge base is an ER⊥,O knowledge base which does
not contain any auxiliary individuals.

Example 1. The following is an example of an (initial) ER⊥,O knowledge base.

Bird v Fly
Penguin v Bird

Penguin u Fly v ⊥
{tom} v ∃hasPet.Penguin

Next, we describe the semantics of the language ER⊥,O using the notion
of interpretation. An interpretation I of an ER⊥,O knowledge base KB is a
pair (∆I , .I) where ∆I is a non-empty set of elements called the domain of
interpretation and .I is the interpretation function that maps every individual



Axiom Semantics

> ∆I

⊥ ∅
{a} {aI}
C uD CI ∩DI

C v D CI ⊆ DI

C v ∃R.D CI = {x | there exists some y with (x, y) ∈ RI and y ∈ DI}
R1 ◦R2 v R RI

1 ◦RI
2 ⊆ RI

{a} v C aI ∈ CI

{a} v ∃R.D (aI , bI) ∈ RI

Table 1. Semantics of the language ER⊥,O

in KB to an element of ∆I , every concept in KB to a subset of ∆I , and every role
to a subset of ∆I ×∆I . An interpretation I is a model of an ER⊥,O knowledge
base KB if it satisfies all the TBox, RBox and ABox axioms in the sense of
Table 1.

It is well-known that any such knowledge base can be cast into normal form,
as follows.

Definition 1. An initial ER⊥,O knowledge base is in normal form if it contains
axioms of only the following forms, where C,C1, C2, D ∈ NC , R,R1, R2 ∈ NR
and a, b ∈ NI

C v D
∃R.C v D

C v ∃R.D

C1 u C2 v D
C1 u C2 v ⊥

R1 v R

R1 ◦R2 v R
{a} v C
{a} v ∃R.{b}

Theorem 1. For every initial ER⊥,O knowledge base KB there exists a knowl-
edge base KB ′ in normal form such that KB |= Ā v B if and only if KB ′ |= Ā v
B, where Ā is a class name or a nominal and B is a class name occurring in
KB.

Definition 2. Given an initial ER⊥,O knowledge base KB in normal form, we
define the following:
1. Completion: the completion comp(KB) of KB is obtained from KB by exhaus-

tively applying the completion rules from Figure 2.
2. Clash: a completion comp(KB) of KB contains a clash if {a} v ⊥ ∈

comp(KB), for some nominal class {a}.

It is easily verified that repeated applications of completion rules on an initial
ER⊥,O knowledge base produces only axioms which are also in normal form, with
one exception: Axioms of the form {a} v ∃R.D, with R ∈ NR and D ∈ NC , can
also appear.

It is straightforward to show that comp(KB) is well-defined and that the
completion process has a polynomial time complexity. This and the soundness



Ā v C,C v D 7→ Ā v D (16)

Ā v C1, Ā v C2, C1 u C2 v D 7→ Ā v D (17)

Ā v C,C v ∃R.D 7→ Ā v ∃R.D (18)

Ā v ∃R.B̄, B̄ v C, ∃R.C v D 7→ Ā v D (19)

C̄ v ∃R.D̄, D̄ v ⊥ 7→ C̄ v ⊥ (20)

Ā v ∃R.B̄,R v S 7→ Ā v ∃S.B̄ (21)

Ā v ∃R1.B̄, B̄ v ∃R2.C̄, R1 ◦R2 v R 7→ Ā v ∃R.C̄ (22)

Fig. 2. ER⊥,O completion rules. New axioms resulting from the rules are added to the
existing axioms in KB . Symbols of the form Ā can be either a class name or a nominal
class. We initialize comp(KB) with KB and C v C, ⊥ v C, ⊥ v ⊥ for all named classes
C ∈ NC .

and completeness results below are adapted from [1]. Since the proofs are relevant
to understanding the discussions in this paper, we include them in the appendix.

Theorem 2. (soundness and completeness) Let KB be an initial ER⊥,O knowl-
edge base in normal form. Then every model of KB is a model of comp(KB).
Furthermore, if comp(KB) contains a clash then KB is inconsistent.

Conversely, if A is a classname or a nominal and B is a classname such that
KB |= A v B, then A v B ∈ comp(KB). Furthermore, if KB is inconsistent then
comp(KB) contains a clash.

Note now that the ER⊥,O knowledge base given in Example 1 is inconsistent.

Central to the proof of Theorem 2 is the following construction, which we
will also use later in this paper.

Given an ER⊥,O knowledge base KB , let I = I(KB) be defined as the fol-
lowing interpretation of comp(KB).

∆I = {a, xC | C is a class name in KB and a is an individual in KB}

AI =


∅, if A v ⊥ ∈ comp(KB)

{xC | C v A ∈ comp(KB)} ∪ {x{a} | {a} v A ∈ comp(KB)},
if A v ⊥ 6∈ comp(KB)

{a}I =

{
∅, if {a} v ⊥ ∈ comp(KB)

{x{a}}, if {a} v ⊥ 6∈ comp(KB)

RI = {(xC , xD) | C v ∃R.D ∈ comp(KB)} ∪
{(x{a}, xD) | {a} v ∃R.D ∈ comp(KB)} ∪
{(x{a}, x{b}) | {a} v ∃R.{b} ∈ comp(KB)}

The proof of Theorem 2 shows that I is a model of both comp(KB) and KB .



3 Mapping Ontologies with ER⊥,O-Defaults

We consider a rather specific but fundamentally important scenario, namely the
integration of ontology-based information by means of an overarching ontology,
as laid out and applied e.g. in [14,20] – see also the discussion of this in [22]. One
of the central issues related to this type of information integration is how to ob-
tain the mappings of the to-be-integrated ontologies to the overarching ontology,
as the manual creation of these mappings is very costly for large ontologies.

However, methods for the automated creation of such mappings – commonly
refered to as ontology alignment – are still rather crude [7,12], and are therefore
prone to lead to inconsistencies of the integrated ontologies, as discussed in sec-
tion 1. In order to deal with this, we introduce a defeasible mechanism to deal
with such mappings. For simplicity of presentation we consider only two ontolo-
gies, with one taking the role of the overarching ontology. The other ontology
can be considered the disjoint union of the ontologies which are to be integrated.

The following notion is going to be central.

Definition 3. (defeasible axiom) A defeasible axiom is of the form C vd D or
R vd S, where C,D are class names and R,S are roles.

Intuitively speaking, our intention with defeasible axioms is the following: It
shall function just like a class inclusion axiom, unless it causes an inconsistency,
in which case it should not apply to individuals causing this inconsistency. In a
sense, such defeasible axioms act as a type of semantic debugging of mappings:
The semantics itself encodes the removal of inconsistencies. More specifically
speaking, given a defeasible axiom C vd D, instances of C will also be instances
of D, except those instances of C which cause an inconsistency when also an
instance of D. Such Cs are usually known as exceptions. Of course this intuitive
understanding of defeasible axioms is not entirely straightforward to cast into a
formal semantics.1 We will give such a formal semantics in section 3.1 below.

Definition 4. (mappings) Let O1,O2 be two consistent ER⊥,O knowledge bases.
A ( defeasible) mapping from O1 to O2 is a defeasible axioms with the left hand
side of the axiom a concept or role from O1, and the right hand side a concept
or role from O2.

Note that here we restrict the mappings to axioms involving roles and atomic
classes. However, we do so without loss of generality as C vd D, for complex
classes C, D, can be replaced by adding the axiom C v A to O1 and the axiom
B v D to O2, where A and B are new concept names, and replacing C vd D in
δ by A vd B. Similarly, our approach encompasses the specific case ofontology
population, where O1 is empty and all mappings are of the form {a} vd C.

Definition 5. (mapped-tuple) Let O1,O2 be two ontologies in ER⊥,O with δ the
set of defeasible mappings from O1 to O2. Then the tuple (O1,O2, δ) is called a
mapped-tuple.

1 Different ways how to do this lead to different non-monotonic logics. This is a well-
studied subfield of artificial intelligence, from which we take inspiration.



3.1 Semantics and Decidability

Given a mapped-tuple (O1,O2, δ), we define the formal semantics of the map-
pings following our intuitive reading as discussed above. Informally speaking, the
semantics of C vd D is similar to that of normal defaults as in Reiter’s default
logic [21]: if x is in C, then it can be assumed that x is also in D, unless it causes
an inconsistency with respect to the current knowledge.

We define the semantics formally as follows. For each mapping axiom C vd D
in δ we define a set Cand that represents the set of axioms that could be possibly
added to the completion of O2 as a result of the mapping axiom.

Cand(C vd D) ={{a} v D | {a} v C ∈ comp(O1)} (23)

Furthermore, we define the set Candn as the power set of Cand for each
mapping axiom.

Candn(C vd D) ={X | X ⊆ Cand(C vd D)} (24)

Similarly, we define the corresponding sets CandR and CandnR for mapping ax-
ioms involving roles.

CandR(R vd S) ={{a} v ∃S.{b} | {a} v ∃R.{b} ∈ comp(O1)} (25)

CandnR(R vd S) ={X | X ⊆ CandR(R vd S)} (26)

Note that a and b may be auxiliary individuals.

Definition 6. (mapped ontology) Let (O1,O2, δ) be a mapped-tuple. Define se-
lections and the corresponding mapped ontology as follows:

(i) For each mapping axiom of the form C vd D ∈ δ, a selection for C vd D
is any ΣCvdD ⊆ Candn(C vd D).

(ii) For each mapping axiom of the form R vd S ∈ δ, a selection for R vd S
is any ΣRvdS ⊆ CandnR(R vd S)

(iii) Given selections for all mappings µ ∈ δ, we use Σ to denote their union
Σ =

⋃
µ∈δ Σµ, and call Σ a selection for the given mapped-tuple.

(iv) OΣ2 = comp(O2) ∪
⋃
X∈Σ X is then called a mapped ontology.

Note that each mapped-tuple (O1,O2, δ) can give rise to only a finite number
of corresponding mapped ontologies, and the number is bounded by |Candn(C vd
D)||δ1| × |CandnR(R vd S)||δ2|, where δ1 (respectively, δ2) is the set of class
(respectively, role) mappings contained in δ.

Definition 7. (preferred mapping) Let (O1,O2, δ) be a mapped-tuple. Then for

any two mapped ontologies OΣi2 ,OΣj2 we say OΣi2 � OΣj2 or OΣi2 is preferred

over OΣj2 , if all of the following hold.
- Σi

µ ⊇ Σj
µ, for all µ ∈ δ

- Σi
µ ⊃ Σj

µ, for some µ ∈ δ
Note that µ can be of the form C vd D or R vd S.



The notion of preferred mapping is used to identify the individuals to which the
defeasible axioms maximally apply.

Definition 8. (mapped completion and mapped entailment) Given a mapped-
tuple (O1,O2, δ), let OΣ2 be a mapped ontology obtained from some selection Σ.
Then the completion comp(OΣ2 ) obtained by exhaustively applying the rules in
Figure 2 is said to be a mapped completion of (O1,O2, δ) if OΣ2 is consistent

and there is no consistent mapped ontology OΣi2 such that OΣi2 � OΣ2 holds.
Furthermore, let α an axiom of the form {a} v {b} or {a} v ∃R.{b}. Then

α is entailed by (O1,O2, δ), written (O1,O2, δ) |=d α, if α ∈ comp(OΣ2 ) for each
mapped completion OΣ2 of (O1,O2, δ).

Lemma 1. A mapped-tuple (O1,O2, δ) always has a mapped completion.

Proof. There are two conditions for obtaining a mapped completion comp(OΣ2 ):
(1) OΣ2 is consistent, and (2) OΣ2 is maximal with respect to �. It is clear
that there is at least one Σ such that OΣ2 is consistent, namely Σ = ∅. If this
is the only Σ producing a consistent mapped ontology, then comp(OΣ2 ) is the
corresponding mapped completion. Now let S be the set of all selections which
produce a consistent mapped ontology. We already know that S is finite, and so
the set of corresponding consistent mapped ontologies is also finite, and therefore
contains maximal elements with respect to the preference relation ≺. Each of
these maximal elements is then a mapped completion of (O1,O2, δ).

Theorem 3. The problem of entailment checking for a mapped-tuple (O1,O2, δ)
is decidable.

Proof. In order to check entailment, it suffices to obtain all the possible mapped
completions as per definition 8. Since there is only a finite number of possible
selections for (O1,O2, δ), then as argued in the proof of Lemma 1 there is only
a finite number of corresponding mapped ontologies, and furthermore we know
that exhaustive application of the completion rules terminates. Hence the task
is decidable. ut

3.2 Applying Defeasible Mappings to Unknowns

So far we have defined the semantics of defeasible mappings and a way to derive
entailments. Using these mappings, queries can be asked in terms of concepts of
the ontology which is being mapped to.

For instance let the ontology O1 have axioms

{john} v USCitizen {john} v Traveler

USCitizen v ∃hasPassport.USPassport,

let the ontology O2 have axioms

Tourist v ∃hasPP.Passport
∃hasPP.AmericanPassport v EuVisaNotRequired,



and let δ consist of the mappings

Traveler vd Tourist hasPassport vd hasPP
USPassport vd AmericanPassport.

We can then ask questions in terms of the concepts and roles of O2 like “list all
the tourists,” i.e., all instances that belong to the class Tourist, and we would
get the answer john. But if we look carefully, we would also expect john as an
instance of the class EuVisaNotRequired.

However, as per the semantics we have defined in the previous section, we
would not be able to derive this conclusion. This is because the defeasible map-
pings do not apply to unknowns. In this case the unknown in question is john’s
USPassport. We address this issue by modifying the semantics in order to apply
the mappings to unknowns as well.

First of all, recall that the set NI already contains the auxiliary individuals
ιRC for every R ∈ NR and C ∈ NC – we have not yet made use of them, but
we will do so now. In fact, we now modify the completion rules in Figure 2 by
adding two additional rules as follows, and where a ∈ NI , i.e. a may also be an
auxiliary individual.

{a} v ∃R.D 7→ {a} v ∃R.{ιRD} (27)

{a} v ∃R.D 7→ {ιRD} v D (28)

Furthermore, we retain all the definitions from section 3.1 starting from Cand,
CandR but using the completion compu(O1) obtained by applying the completion
rules in Figure 2 in conjunction with the new rules when producing selections.
We still use comp, the previous version without the new rules, for all other steps.

Returning to the example above, compu(O1) now becomes

{john} v USCitizen {john} v Traveler
USCitizen v ∃hasPassport.USPassport {ιhpp,usp} v USPassport
{john} v ∃hasPassport.{ιhpp,usp},

and from the mappings we obtain

OΣ2 = comp(O2) ∪ { {john} v Tourist, {john} v ∃hasPP.{ιhpp,usp},
{ιhpp,usp} v AmericanPassport} }.

Note, that this OΣ2 is the only maximal mapped ontology. When we apply the
completion rules of Figure 2 on OΣ2 , rule 19 will produce the axiom {john} v
EuVisaNotRequired.

We now show that, under this new version, default mappings behave just as
ordinary mappings provided no inconsistencies arise. This is of course exactly
what we would like to obtain, i.e., the new semantics is conservative in this
respect and “kicks in” only if needed due to inconsistencies.

Theorem 4. Let (O1,O2, δ) be a mapped-tuple such that for any selection Σ,
OΣ2 is consistent. Let α be an ER⊥,O axiom of the form {a} v C or {a} v



∃R.{b}, where a, b are named individuals from O1 and C,R are class names,
respectively role names, from O2. Then (O1,O2, δ) |= α if and only if O1 ∪O2 ∪
δ̄ |= α, where δ̄ is exactly the same as δ but with all vd replaced by v.

Proof. In this case there is only one relevant selection Σ, namely the full selec-
tion, since for every possible Σ, OΣ2 is consistent.

Consider an interpretation I = I(OΣ2 ) of OΣ2 , defined as at the end of Section
2, and recall that I |= OΣ2 .

Let I ′ be an interpretation of O1 ∪ OΣ2 which extends I such that ∆I′
=

∆I∪{xC | C ∈ NO1

C }, and for all C ∈ NO1

C and R ∈ NO1

R , CI′
and DI′

are
constructed from compu(O1) exactly as it is done for I from comp(OΣ2 ). Then
clearly I ′ |= OΣ2 ∪O1. Furthermore, axioms of the form {a} v C, {a} v ∃R.{b}
where a, b ∈ NO1

I , C ∈ NO2

C and R ∈ NO2

R are only produced from the axioms of
OΣ2 .

Moreover, I ′ |= O1 ∪ O2 ∪ δ̄ holds. To prove this it suffices to show that
I ′ satisfies all axioms C v D ∈ δ̄ and R v S ∈ δ̄ since we already know that
I ′ |= O1 ∪ O2. And indeed, for every axiom C v D ∈ δ̄ (which also means
C vd D ∈ δ), we know that if {a} v C ∈ compu(O1) then {a} v D ∈ OΣ2 .
Hence, by definition of I ′, a ∈ CI′∩DI′

. Similarly, for every axiomR v S ∈ δ̄, we
know that whenever {a} v ∃R.{b} ∈ compu(O1), we have {a} v ∃S.{b} ∈ OΣ2 ,
and by definition of I ′, we obtain (a, b) ∈ RI′

, SI′
.

So now, in particular, if O1 ∪O2 ∪ δ̄ |= α then I ′ |= α, and therefore I |= α,
since α does not contain any class or role names from O1. By definition of I, we
then obtain α ∈ comp(OΣ2 ) and consequently (O1,O2, δ) |= α as required.

Conversely, consider an interpretation I = I(O) of O = O1∪O2∪ δ̄ obtained
as defined at the end of Section 2, and recall that I |= O.

Now consider O′ = compu(O1) ∪ comp(O2) ∪ δ ∪ Σ and note that OΣ2 =
comp(O2) ∪ Σ ⊆ O′ and also that O ⊆ O′. Let I ′ = I(O′) be obtained as
defined at the end of Section 2, and recall that I ′ |= O′. By construction, we
also obtain I ′ |= OΣ2 and also that I ′ and I coincide on the signature of O.

So now, in particular, if (O1,O2, δ) |= α, for α as in the statement of the
theorem, then I ′ |= α, and therefore I |= α, and by definition of I we obtain
α ∈ comp(O1 ∪ O2 ∪ δ̄). Consequently, O1 ∪ O2 ∪ δ̄ |= α as required. ut

4 Relationship with Answer sets

The above semantics is inspired by Reiter’s default logic, as already mentioned.
Formally, we show that it is very closely related with the prominent answer set
semantics from logic programming, which in turn has a well-established rela-
tionship to Reiter’s default logic. We first recall the definition of answer sets
from [10], see [11] for exhaustive background reading.

Definition 9. (answer sets) An extended program is a logic program that con-
tains rules of the form

L1, . . . , Lm, not Lm+1, . . . , not Ln → L0,



Axiom Rule

1 C v D C(x)→ D(x)
2 C v ⊥ C(x)→ ¬C(x)
3 ∃R.C v D R(x, y) ∧ C(y)→ D(x)
4 C1 u C2 vd D C1(x) ∧ C2(x)→ D(x)
5 C1 u C2 vd ⊥ C1(x)→ ¬C2(x), C2(x)→ ¬C1(x)
6 R1 uR R1(x, y)→ R(x, y)
7 R1 ◦R2 v R R1(x, y) ∧R2(y, z)→ R(x, z)
8 {a} v C → C(a)
9 {a} v ∃R.{b} → R(a, b)

Table 2. Rewriting of axioms to rules

where 0 ≤ m ≤ n and each Li is a literal A or ¬A. ¬ denotes so-called classical
negation, as opposed to not which denotes default negation.

For Π an extended program that contains no variables and does not contain
not , let Lit be the set of ground literals in the language of Π. The answer set
α(Π) of Π is the smallest subset S of Lit such that
1. for any rule L1, . . . , Lm → L0 ∈ Π, if L1, . . . L2 ∈ S, then L0 ∈ S, and
2. if S contains a pair of complementary literals, then S = Lit.

ForΠ a (general) extended program and Lit the set of all literals in the lan-
guage of Π, define ΠS, for a set S ⊆ Lit, as the extended program obtained by
deleting, from Π,
1. each rule that has some not L in its body with L ∈ S, and
2. all expressions of the form not L in the bodies of the remaining rules.

Finally, S is an answer set of Π if S = α(ΠS).

Let (O1,O2, δ) be a mapped-tuple. We now define an extended program
Π(O1,O2, δ) as follows. For every axiom of the form C vd D ∈ δ and for all
{a} v C ∈ comp(O1), we add rules of the following form to Π(O1,O2, δ).

→C(a) (29)

C(a), not ¬D(a)→D(a) (30)

For mapping axioms of the form R vd S ∈ δ, we add the following rules.

→R(a, b) (31)

R(a, b), not ¬S(a, b)→S(a, b) (32)

Furthermore, we add toΠ(O1,O2, δ) all possible groundings of the rules obtained
by rewriting comp(O2) as per the rules in Table 2, using all the individuals that
occur in O1,O2.

It should be noted that we do not provide a transformation for axioms of the
form C v ∃R.D in Table 2. This is because for representing defeasible axioms
in logic programs we need the classical negation [10] and to represent axioms
with existentials on the right hand side we require existential rules. Although
a stable model semantics for existential rules has been defined in [17], it is not



{a} v C (33)

{a} v B (34)

C vd D (35)

B vd E (36)

D u E v ⊥ (37)

D v F (38)

E v F (39)

Fig. 3. Example mapping

defined for extended programs with classical negation. Furthermore, it is not
straightforward to extend the approach from [17] to extended programs. So we
restrict ourselves to showing that our reduction works for the case when axioms
of the form C v ∃R.D are not present. This is sufficient to show that our
approach aligns well with the answer set programming semantics.

Example 2. Consider the axioms listed in Figure 3 where axioms 33, and 34
are from O1, axioms 37, 38, and 39 are from O2 and the axioms 35, and 36
represent the set δ of defeasible mappings. The corresponding extended program
Π(O1,O2, δ) is as follows.

→ C(a) C(a) ∧ not ¬D(a)→ D(a)

→ B(a) B(a) ∧ not ¬E(a)→ E(a)

D(a)→ ¬E(a) D(a)→ F (a)

E(a)→ ¬D(a) E(a)→ F (a)

Note there are two answer sets, S1 = {C(a), B(a), D(a),¬E(a), F (a)} and
S2 = {C(a), B(a), E(a),¬B(a), F (a)}, for Π(O1,O2, δ).

Definition 10. Let OΣ2 be a mapped ontology for (O1,O2, δ), and let comp(OΣ2 )
be a corresponding mapped completion. Then we define the mapped answer set
S(OΣ2 ) to be the following set.

{C(a) | C vd D ∈ δ and {a} v C ∈ comp(O1)} ∪
{R(a, b) | R vd S ∈ δ and {a} v ∃R.{b} ∈ comp(O1) ∪

{C(a) | {a} v C ∈ comp(OΣ2 )} ∪

{¬D(a) | C vd D ∈ δ, {a} v C ∈ comp(O1) and {a} v D 6∈ comp(OΣ2 )} ∪

{R(a, b) | {a} v ∃R.{b} ∈ comp(OΣ2 )} ∪

{¬S(a, b) | R vd S ∈ δ, {a} v ∃R.{b} ∈ comp(O1) and {a} v ∃S.{b} 6∈ comp(OΣ2 )}

Lemma 2. Let OΣ2 be a mapped ontology for (O1,O2, δ), and let comp(OΣ2 ) be
a corresponding mapped completion. Then the mapped answer set S(OΣ2 ) is an
answer set of Π(O1,O2, δ).

The proofs of this lemma and the next can be found in the appendix.

Lemma 3. Let (O1,O2, δ) be a mapped-tuple and let S be an answer set
of Π(O1,O2, δ) = Π. Then S = S(OΣ2 ) for some mapped ontology OΣ2 of
(O1,O2, δ).

The following theorem is a now direct consequence of Lemmas 2 and 3.

Theorem 5. Let (O1,O2, δ) be a mapped-tuple. Then (O1,O2, δ) |=d {a} v
C if, and only if, Π(O1,O2, δ) |=S C(a), where |=S represents stable model
entailment.



5 Related Work

This work is relevant to at least two areas of work, (1) advancing the use of
non-monotonic logics in description logics, and especially in the EL family, and
(2) providing a robust mapping language.

We introduced the use of defeasible semantics to denote mappings in [22],
but therein we had to impose a rather significant restriction that exceptions to
the default rules may occur only in the known individuals, a restriction which
we could completely lift with the approach and setting described in the earlier
sections of this work.

With respect to repairing ontology alignments there are approaches like
[1,16,19]. The work in [19] is specifically close in spirit to our approach, though
we provide a much more detailed semantic treatment which is closely related
to Reiter’s defaults and answer set programming. Furthermore, we also include
defeasible axioms for roles and obtain a mild tractability result. Our approach
also forms a basis for a mapping language rather than focusing on the repairing
of ontology alignments.

In terms of integration of non-monotonic logics with DLs, recent work [6,4,5]
has been proposed in integrating the semantics of rational closure and KLM
style semantics to DLs. These are alternative semantics to defaults and thus
give a different perspective for apply defeasible logic to DLs. A plethora of other
proposals have been made for the integration of non-monotonic logics with DLs,
and we refer the reader to [15] which provides pointers to most of the prominent
relevant work.

Similar in spirit to to our approach, though on a different logic, is also [3].

6 Conclusion

In this paper we provide an extension for the description logic ER⊥,O with
the ability to have defeasible mappings between ontologies. This work should
be easily extendable to other logics in the EL family,provided soundness and
completeness proofs can be obtained for the base logic along similar lines. We
show a reduction from our semantics of defeasible mappings to that of answer
set programming. This shows that the approach outlined here is very close to
the original notion of defaults. Furthermore, the application of defaults is not
limited to named individuals but also applies to unknowns that are implicitly
referred to in the knowledge base due to existentials.

Of course, our resulting logic appears to be no longer tractable. However,
it should be remarked that the application of a monotonic semantics is com-
pletely impossible in the context of inconsistencies coming from the mappings,
and repair approaches currently require human intervention and are generally
employed at the level of axioms, rather than individuals. Some form of paracon-
sistent reasoning [18] may be a more efficient contender, but then paraconsistent
approaches such as [18] tend to miss many desired consequences.

As a part of future work we consider a smart algorithmization for entail-
ment checking that would perform with reasonable efficiency. One such approach



would be to find a method to generate rules that act as templates which could
be used to check which selections used to create the mapped ontologies would
lead to inconsistencies without actually running the completion algorithm on
the mapped ontologies. We also plan to implement the algorithm and perform
a detailed evaluation of its performance with respect to time when compared
to the monotonic extensions and also with respect to the quality of entailments
obtained by defeasible mappings compared to traditional alignments produced
by automatic alignment systems. We could make use of data made available by
the ontology alignment evaluation initiative [8,9]. Good results would lead to
a solid framework towards a robust mapping language for tractable ontology
languages.
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Appendix

A Proof of Theorem 2

Theorem 2. (soundness and completeness) Let KB be an initial ER⊥,O knowl-
edge base in normal form. Then every model of KB is a model of comp(KB).
Furthermore, if comp(KB) contains a clash then KB is inconsistent.

Conversely, if A is a classname or a nominal and B is a classname such that
KB |= A v B, then A v B ∈ comp(KB). Furthermore, if KB is inconsistent then
comp(KB) contains a clash.

Proof. There are two cases to consider one in which comp(KB) does not contain
a clash and other in which comp(KB) contains a clash. We first consider the case
when there is no clash. Let I be a model of KB . Hence, I satisfies all the axioms
in KB . It suffices to show that if the Left hand side (LHS) of a completion rule
holds under I then so does the right hand side then by induction on the rule
application I is also a model of comp(KB).

For rule 16, we have from the LHS I |= C v D, Ā v C. Ā can be either
a concept or a nominal. If Ā is a concept then CI ⊆ DI and AI ⊆ CI from
which we get AI ⊆ DI . Therefore, I |= A v D. If Ā is a nominal CI ⊆ DI and
aI ∈ CI from which we get aI ∈ CI . Therefore, I |= {a} v D.

For rule 17, we have from the LHS I |= C1 u C2 v D, Ā v C1, Ā v C2,
if Ā is a concept then CI

1 ∩ CI
2 ⊆ DI , AI ⊆ CI

1 , and AI ⊆ CI
2 . Therefore,

we have AI ⊆ DI and consequently I |= A v D. If Ā is a nominal then
CI

1 ∩ CI
2 ⊆ DI , aI ∈ CI

1 , and aI ∈ CI
2 . Therefore, we have aI ∈ DI and

consequently I |= {a} v D.
For rule 18, we have from the LHS I |= C v ∃R.D, Ā v C. If Ā is a

concept then, CI ⊆ (∃R.D)I , AI ⊆ CI . Therefore, we have AI ⊆ (∃R.D)I and
consequently I |= A v ∃R.D. However, if Ā is a nominal then CI ⊆ (∃R.D)I ,
aI ∈ CI . Therefore, we have aI ∈ (∃R.D)I and consequently I |= {a} v ∃R.D.

For rule 19, from the LHS we have I |= ∃R.C v D, Ā v ∃R.B̄, B̄ v C,
then we have three possible cases. Both Ā, B̄ are concepts A,B respectively,
then BI ⊆ CI , AI ⊆ (∃R.B)I , (∃R.C)I ⊆ DI . Consider, AI ⊆ (∃R.B)I , which
means AI ⊆ {x ∈ ∆I | there exists a y ∈ ∆I with (x, y) ∈ RI and y ∈ BI},
and since BI ⊆ CI , we get, AI ⊆ {x ∈ ∆I | there exists a y ∈ ∆I with (x, y) ∈
RI and y ∈ CI}, which means AI ⊆ (∃R.C)I . And since, (∃R.C)I ⊆ DI , we
get AI ⊆ DI . Therefore, I |= A v D. If Ā is a nominal {a} and B̄ is a concept
B. The proof of this case is similar to that of the first case and can be obtained
by replacing all occurances of AI ⊆ with aI ∈ and A v with {a} v. Finally if,
Ā, B̄ are nominals {a}, {b} respectively. Again, we can reuse the arguments of
the first case, we replace all occurances of AI ⊆ with aI ∈, A v with {a} v,
and all the occurances of B with {b} and BI with {bI}.

For rule 20, from LHS we have C̄ v ∃R.D̄, D̄ v ⊥. If C̄, D̄ are concepts C,D
respectively, we get CI = {x | there exists a y ∈ DI such that (x, y) ∈ RI},
but DI = ∅. Hence, CI = ∅. The other two cases can be proved in a similar
manner.



For rule 21, from LHS we have I |= R v S and Ā v ∃R.B̄, then again we have
three cases. Ā, B̄ are concepts A,B respectively. We have, AI ⊆ (∃R.B)I , which
means AI ⊆ {x ∈ ∆I | there exists a y ∈ ∆I with (x, y) ∈ RI and y ∈ BI},
and since RI ⊆ SI , we get, AI ⊆ {x ∈ ∆I | there exists a y ∈ ∆I with (x, y) ∈
SI and y ∈ BI}, subsequently, AI ⊆ (∃S.B)I . Therefore, I |= A v ∃S.C. The
other two cases are similar to that of Rule - 19 and the proofs can be obtained
in the similar manner as done for Rule - 19.

For rule 22, from LHS we have Ā v ∃R1.B̄, B̄ v ∃R2C̄, R1 ◦ R2 v R.
Ā, B̄, C̄ are concepts A,B,C respectively, then BI ⊆ {v ∈ ∆I | there exists a
w ∈ ∆I such that (v, w) ∈ RI

2 and w ∈ CI} and AI ⊆ {u ∈ ∆I | there
exists a v ∈ ∆I such that (u, v) ∈ RI

1 and v ∈ BI}. Therefore, AI ⊆ {u ∈ ∆I |
there exists a v ∈ ∆I such that (u, v) ∈ RI

1 and v ∈ {v ∈ ∆I | there exists a
w ∈ ∆I such that (v, w) ∈ RI

2 and w ∈ CI}}. And since, RI
1 ◦ RI

2 ⊆ RI , we
have, AI ⊆ {u ∈ ∆I | there exists a w ∈ ∆I with (u,w) ∈ RI and w ∈ CI},
which means AI ⊆ (∃R.C)I , therefore I |= A v ∃R.C.

Note in the rest of the cases we can have a similar proof with adjustments
similar to that in the proofs of the previous rules. We simply list down all the
possibilities. Ā is a nominal {a}, and B̄, C̄ are concepts B,C, respectively. Ā, B̄
are nominals {a}, {b}, respectively and C̄ is a concept C. Ā, B̄, C̄ are nominals
{a}, {b}, {c}, respectively.

Now, if comp(KB) contains a clash of the form {a} v ⊥, then as shown
above any model of KB should also satisfy all the axioms of comp(KB), therefore
KB |= {a} v ⊥. KB is inconsistent.

This shows the first part of the theorem.

For the converse, consider an interpretation I of comp(KB) as follows:

∆I = {xC | C ∈ NC} ∪ {x{a} | {a} ∈ KB}

AI =


∅, if A v ⊥ ∈ comp(KB)

{xC | C v A ∈ comp(KB)} ∪ {x{a} | {a} v A ∈ comp(KB)},
if A v ⊥ 6∈ comp(KB)

{a}I =

{
∅, if {a} v ⊥ ∈ comp(KB)

{x{a}}, if {a} v ⊥ 6∈ comp(KB)

RI = {(xC , xD) | C v ∃R.D ∈ comp(KB)} ∪
{(x{a}, xD) | {a} v ∃R.D ∈ comp(KB)} ∪
{(x{a}, x{b}) | {a} v ∃R.{b} ∈ comp(KB)}

We now show that I is also a model of comp(KB) whenever comp(KB) is clash
free, and thereby, also a model of KB ⊆ comp(KB). Let α ∈ comp(KB). If α is
of the form C v D, C v ⊥, {a} v D, C v ∃R.D, {a} v ∃R.D, {a} v ∃R.{b},
there is nothing to show.

For α of the form C1uC2 v D, let xC ∈ CI
1 ∩CI

2 , then C v C1 ∈ comp(KB),
and C v C2 ∈ comp(KB), and thus C v D ∈ comp(KB) by rule - 16. Hence,
xC ∈ D as required. For α of the form ∃R.A v B, let (xC , xD) ∈ RI and



xD ∈ AI , then D v A ∈ comp(KB) and C v ∃R.D ∈ comp(KB) and by rule -
19 we have C v B and thus xC ∈ BI as required.

For α of the form R v S, let (xC , xD) ∈ RI , C v ∃R.D ∈ comp(KB), and
from rule - 21, we have C v ∃S.D, and thus (xC , xD) ∈ SI as required. For α
of the form R1 ◦R2 v R, let (xC , xD) ∈ RI

1 , (xD, xE) ∈ RI
2 . Then C v ∃R1.D ∈

comp(KB) and D v ∃R2.E ∈ comp(KB), then by rule - 22, we get C v ∃R.E,
and thus (xC , xE) ∈ RI .

For α of the form C1uC2 v ⊥, we prove by contradiction. Let xC ∈ CI
1 ∩CI

2 ,
then C v C1, C v C2 ∈ comp(KB), Then from rule 17, we get C v ⊥ but as per
definition of I we have CI = ∅.

Let A v B 6∈ comp(KB), then we know xA ∈ AI and xA 6∈ BI since A v
B 6∈ comp(KB). Then xA ∈ BI \AI and I 6|= A v B, therefore KB 6|= A v B.

Let {a} v B 6∈ comp(KB), then we know x{a} ∈ {a}I and clearly x{a} 6∈ BI

as {a} v B 6∈ comp(KB), thus I 6|= {a} v B and KB 6|= {a} v B.
Let comp(KB) be clash free then there is no axiom of the form {a} v ⊥, then

as shown above I is a model of comp(KB),KB , thus KB is consistent.
The claim is proven by contraposition.

B Another worked example

In the following we show another example of the working of the semantics of the
defeasible mappings.

Example 3. Consider O1 = {{a} v A,A v ∃R.B,B v ∃R.D}, O2 = {∃R′.D′ v
E′,∃R′.E′ v F ′} and δ = {R vd R′, D vd D′}

In that case,

compu(O1) =O1∪
{{a} v ∃R.B}∪
{{a} v ∃R.{ιRB}, {ιRB} v B}∪
{{ιRB} v ∃R.{ιRD}, {ιRD v D}}

(40)

Cand(D vd D′) = {{ιRD} v D′} (41)

CandR(R vd R′) = {{a} v ∃R′.{ιRB}, {ιRB} v ∃R′.{ιRD}} (42)

Note that there will be only one OΣ2 for which we get mapped completion, it
is the one corresponding to the maximum selection for each mapping which does
not result in an inconsistency. In this case Σ = Cand(D v D′)∪CandR(R v R′)
is the only maximal selection that leads to a consistent mapped completion.
Therefore, we have just one comp(OΣ2 ),

comp(OΣ2 ) = comp(O2) ∪Σ ∪ {{ιRB} v E′, {a} v F ′}. (43)

Therefore, (O1,O2, δ) |= {a} v F ′, which is what we would expect when
defeasible mappings also apply to unknowns. If we did not have the auxiliary
individuals in compu(O1), then this would not have been possible.



C Proofs of Lemmas from Section 4

Lemma 2. Let OΣ2 be a mapped ontology for (O1,O2, δ), and let comp(OΣ2 ) be
a corresponding mapped completion. Then the mapped answer set S(OΣ2 ) is an
answer set of Π(O1,O2, δ).

Proof. We use Π as a short notation for Π(O1,O2, δ). We need to show that (1)

S(OΣ2 ) ⊆ Lit (the set of all literals inΠ), (2) S(OΣ2 ) = α(Π
S(OΣ2 )

). Condition (1)

trivially holds. For condition (2), we first assume that δ = ∅ then Π
S(OΣ2 )

= Π,
since Π does not contain any not in the rules. For this case all the rules of Π
are constructed using the rules of Table 2 followed by grounding. We show that
S(OΣ2 ) = α(Π) by showing that S(OΣ2 ) satisfies the conditions of definition 9.
We only need to show that S(OΣ2 ) satisfies condition (1), since O2 is consistent.
For all rules in Π of the form C(a)→ D(a) generated using the transformation
1 of table 2, S(OΣ2 ) satisfies the condition: if C(a) ∈ S(OΣ2 ) then D(a) ∈ S(OΣ2 ).
C(a) ∈ S(OΣ2 ) whenever {a} v C ∈ comp(OΣ2 ) and if C v D ∈ comp(OΣ2 ) then
{a} v D ∈ comp(OΣ2 ), therefore, D(a) ∈ S(OΣ2 ) by definition of S(OΣ2 ).

For rules of the form C(a)→ ¬C(a) in Π generated using transformation 2,
S(OΣ2 ) trivially satisfies the condition: if C(a) ∈ S(OΣ2 ) then ¬C(a) ∈ S(OΣ2 )
as OΣ2 is consistent, therefore, no axiom of the form {a} v ⊥ ∈ comp(OΣ2 ).

For rules of the form R(x, y) ∧ C(y) → D(x) in Π generated using trans-
formation 3, S(OΣ2 ) satisfies the condition: if R(a, b), C(b) ∈ S(OΣ2 ) then
D(a) ∈ S(OΣ2 ). We have ∃R.C v D ∈ comp(OΣ2 ) by definition of the transforma-
tion rule. R(a, b), C(b) ∈ S(OΣ2 ) whenever {a} v ∃R.{b}, {b} v C ∈ comp(OΣ2 )
respectively by definition of S(OΣ2 ). Then {a} v D ∈ comp(OΣ2 ) should hold by
rule 19 of the completion rules of ER⊥,O. Hence, D(a) ∈ S(OΣ2 ).

For rules of the form C1(a) ∧ C2(a) → D(a) in Π generated using trans-
formation 4, S(OΣ2 ) satisfies the condition: if C1(a), C2(a) ∈ S(OΣ2 ) then
D(a) ∈ S(OΣ2 ). This is because C1(a), C2(a) ∈ S(OΣ2 ) whenever {a} v C1, {a} v
C2 ∈ comp(OΣ2 ), since C1 u C2 v D ∈ comp(OΣ2 ), {a} ∈ D should be in
comp(OΣ2 ), therefore, D(a) ∈ S(OΣ2 ).

Again for rules in Π generated using transformation 5 are trivially satisfied
by S(OΣ2 ) since OΣ2 is consistent.

For rules of the form R1(a, b)→ R(a, b) in Π generated using transformation
6, S(OΣ2 ) satisfies the condition: if R1(a, b) ∈ S(OΣ2 ) then R(a, b) ∈ S(OΣ2 ).
R1(a, b) ∈ S(OΣ2 ) whenever {a} v ∃R1.{b} ∈ comp(OΣ2 ) and since, R1 v R ∈
comp(OΣ2 ), {a} v ∃R.{b} ∈ comp(OΣ2 ) should hold, therefore, R(a, b) ∈ S(OΣ2 ).

For rules of the form R1(a, b)∧R2(b, c)→ R(a, c) in Π generated using trans-
formation 7, S(OΣ2 ) satisfies the condition: if R1(a, b), R2(b, c) ∈ S(OΣ2 ) then
R(a, c) ∈ S(OΣ2 ). R1(a, b), R2(b, c) ∈ S(OΣ2 ) whenever {a} v ∃R1.{b}, {b} v
∃R2.{c} ∈ comp(OΣ2 ) and since R1 ◦ R2 v R ∈ comp(OΣ2 ), we have {a} v
∃R.C ∈ comp(OΣ2 ). Hence, R(a, c) ∈ S(OΣ2 ).

For rules in Π generated using transformations 8 and 9, it is easy to see that
S(OΣ2 ) trivially satisfy these rules since it follows directly from the definition of
S(OΣ2 ).



Now consider the case when δ 6= ∅. The mappings in δ gives rise to rules in Π
of the form of rules in 29, 30, 31 and 32. For rules of type 29, 31 there is nothing
to show and S(OΣ2 ) satisfies such rules (facts) by definition of S(OΣ2 ). Now rules

of type 30, 32 are the only rules that contain not. Now consider Π
S(OΣ2 )

as
per the transformations in definition 9. Rules of type 30 are either deleted or
they transformed to the form C(a) → D(a). S(OΣ2 ) satisfies rules of this form
since C(a) ∈ S(OΣ2 ) if C vd D ∈ δ and {a} v C ∈ comp(O1). Note that for
such cases there are only two possibilities D(a) ∈ S(OΣ2 ) or ¬D(a) ∈ S(OΣ2 ).
Clearly, ¬D(a) 6∈ S(OΣ2 ), otherwise the rule would have been deleted. Hence,
D(a) ∈ S(OΣ2 ). Similarly, rules of the form 32 are either deleted or transformed
into R(a, b)→ S(a, b). R(a, b) ∈ S(OΣ2 ) holds if R vd S ∈ δ and {a} v ∃R.{b} ∈
comp(O1). Clearly S(a, b) ∈ S(OΣ2 ) otherwise the rule would have been deleted.
Note the arguments made above for the case of δ = ∅ still hold and thereby

S(OΣ2 ) = α(Π
S(OΣ2 )

). It can also be seen from the definition of S(OΣ2 ), it is in
fact the smallest subset of Lit satisfying these conditions. ut

Lemma 3. Let (O1,O2, δ) be a mapped-tuple and let S be an answer set
of Π(O1,O2, δ) = Π. Then S = S(OΣ2 ) for some mapped ontology OΣ2 of
(O1,O2, δ).

Proof. First we construct OΣ2 from S. Let ΣCvdD = {{a} v D | D(a) ∈ S} for
each mapping axiom C vd D ∈ δ and ΣRvdS = {{a} v ∃S.{b} | R(a, b) ∈ S}
for each mapping axiom R vd S ∈ δ. Let Σ be the collection of all such ΣCvdD
and ΣRvdS . Then OΣ2 = comp(O2)∪ {X | X ∈ Σ} is a mapped ontology as per
definition 6. It remains to be shown that comp(OΣ2 ) is a mapped completion.

We assume OΣ2 is not a mapped completion which means there is some OΣi2

with comp(OΣi2 ) a mapped completion and OΣi2 � OΣ2 . Therefore, for some
mapping axiom C vd D ∈ δ or R vd S ∈ δ we have Σi

CvdD � ΣCvdD or

Σi
RvdS � ΣRvdS . For the case when Σi

CvdD � ΣCvdD then there is an axiom

{a} v D with {a} v C ∈ comp(O1) and {a} v D ∈ OΣi2 , {a} v D 6∈ OΣ2 . For

the case when Σi
RvdS � ΣRvdS there is an axiom {a} v ∃S.{b} ∈ OΣi2 with

{a} v ∃R.{b} ∈ comp(O1) and {a} v ∃S.{b} 6∈ OΣ2 . Also from lemma 2, S(OΣi2 )

is an answer set of Π with D(a) ∈ S(OΣi2 ) or S(a, b) ∈ S(OΣi2 ). But that could

not be the case since S ⊂ S(OΣi2 ) is an answer set of Π and an answer set should
be the minimal subset of Lit satisfying the rules of Π as per definition 9. ut


