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Abstract 

Matching business process models and their node labels plays an important role for business process 

management. Many matching algorithms using natural language processing (NLP) techniques exist 

but do not exploit the opportunities of machine learning though it is generally agreed that a learning 

approach has great potential in the field of NLP. Therefore, we develop a matching approach based 

on supervised learning using a language-driven similarity function in order to reproduce a human 

judgement. Additionally, we implement and evaluate our approach using established quality measures, 

consisting of precision, recall and F-measure. We conduct an evaluation based on real world process 

models that demonstrates the potential and the limitations of our machine learning approach. The 

results show a significant learning effect for matching unknown models without predefined rules. The 

matching quality is comparable to existing matchers. However, the matching quality seems to depend 

on the one hand on the available training data and on the other hand on the complexity of the chosen 

similarity function. Further research efforts have to be undertaken in order to improve our approach. 

This will include developing a more elaborate similarity function containing more linguistic charac-

teristics of a label as well as integrating contextual information. 
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1 Introduction 

Business process models (process models) represent valuable knowledge about the superstruction of 

business processes and their execution as a fundamental aspect of business process management. 

Nowadays organizations have to maintain huge repositories containing a plethora of these models. 

Thus, the analysis of the models is necessary for optimizing and managing the repositories. This par-

ticularly includes enabling reusability, modularity and avoiding redundancy. Hence, identifying corre-

spondences between process models is of major importance. In literature, the technique of business 

process matching has been proven to be an adequate mean to identify such correspondences (Weidlich 

et al. 2010). This is also reflected by the manifold matching approaches which have been recently 

submitted to a contest where twelve different approaches competed in a matching challenge (Antunes 

et al. 2015). As in the preceding matching contest (Cayoglu et al. 2013) and further matching evalua-

tions (Weidlich et al. 2010), the approaches have been measured via a gold standard which represents 

a set of reference correspondences derived by human judgement. The more correct correspondences, 

according to the gold standard, a matching approach identifies the better it is measured. 

Machine learning approaches applied in natural language processing (NLP), especially the fields of 

text recognition and word classification, have been proven effective (Cambria and White 2014; Sebas-

tiani and Fabrizio 2002) in order to reproduce human judgments. Basically machine learning is the 

genus of the artificial inference of knowledge from experience. Supervised machine learning ap-

proaches let the machine learn from training data containing problem-solution pairs and then these 

approaches use the gathered knowledge to process unknown test data (Mohri et al. 2012). Since the 

gold standard, which is the preferred result of a good matching approach, is based on human judge-

ment, we consider a machine learning based matching approach adequate in order to solve matching 

problems. We therefore propose a supervised machine learning approach using an NLP-based similar-

ity function. 

The research we conduct is based on a design-oriented approach, since we aim at creating an innova-

tive artifact in form of a novel matching algorithm. We implement our algorithm and embed the 

matcher based on this algorithm in our toolset (http://refmod-miner.dfki.de/) to make the algorithm 

serve a variety of functionalities dedicated to solving BPM problem, e.g., integrating models, refactor-

ing models and creating reference models inductively. Moreover, we evaluated the newly created arti-

fact using established evaluation methods for matching algorithms. Additionally, by using the datasets 

of the most recent matching contest (Antunes et al. 2015) for evaluation, we apply our approach to real 

world scenarios. The remainder of this paper is structured as follows: In section 2 we present existing 

matching approaches using natural language processing techniques. Then we introduce our novel lan-

guage-based machine learning approach for matching process models in section 3. We finally evaluate 

our concept in section 4 and give an outlook on future research. 

2 Related Work 

Process model matching originates from the field of schema matching and ontology matching 

(Euzenat and Shvaiko 2013; Bellahsene et al. 2011). The term Process Model Matching refers to an 

identification of corresponding nodes, which are contained in process models. In the context of pro-

cess model matching, these correspondences are called matches. Matching process models is used to 

support many use cases, e.g, determining model similarities (Dijkman et al. 2011), merging process 

models (La Rosa et al. 2010) and inductively generating reference process models (Rehse et al. 2015). 

Algorithms which are dedicated to the generation of matchings between process models are called 

matcher. A matcher usually consists of two parts. The first part consists in determining similarities 

between the elements of the respective process models while the second part represents the selection 

of matches according to these similarities. The similarity measures used in recent approaches vary and 

focus on manifold criteria of a process model, e.g., the language contained in the labels (Klinkmüller 

et al. 2013) or the process model structure (Gao et al. 2014). An overview of recent matchers is pro-
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vided by the process model matching contest (Antunes et al. 2015). In the contest and for further eval-

uations the performance measurement of a matcher is based on precision, recall and F-measure that are 

established measures in the context of information retrieval. This evaluation method requires a prede-

fined matching, which is called gold standard. However, since matching process models is considered 

an unstructured decision problem (Thaler et al. 2014), derived gold standards might be ambiguous.  

To our best knowledge, by now three approaches NSCM/NHCM (Cayoglu et al. 2013; Antunes et al. 

2015), VM2 (Antunes et al. 2015) and the approach of Klinkmüller et al. (2014) consider a matching 

problem as a set of process models that are matched. These matchers provide techniques, which ex-

ploit the information provided by a set of process models while the others only focus on pairs of pro-

cess models. Additionally, only (Klinkmüller et al. 2014) provides a learning technique that builds up 

on a user’s feedback. Hence, no matching approach exists that autonomously learns how to match. 

However, the approach introduced in this paper represents a learning approach, which requires gold 

standards as learning data. After a learning stage, it can be applied automatically to various data sets 

without requiring an interacting user. 

3 Matching Approach Using Machine Learning 

3.1 Related Learning Concepts 

Searching for a suitable machine learning approach for matching process models that accounts for our 

situation that we have only little training data, we choose similarity learning instead of the widespread 

concepts of deep learning with artificial neural networks (ANNs) (Karayiannis and Venetsanopoulos 

2013), reinforcement learning (Wiering and van Otterlo 2012) and evolutionary algorithms (Spears 

2013). ANNs learn from given examples by establishing relations between input and output data. Deep 

learning using ANNs imitates human learning but needs huge amounts of given observations to estab-

lish synapses. Deep learning methods became quite popular in the last years for solving pattern recog-

nition problems. But matching model labels required learning a whole language or at least a closed 

terminology. Our training data offers only a few example matches that are only a small segment of 

their semantic context. Reinforcement learning seeks to find a decision strategy by a reinforcement 

rule punishing bad decisions and rewarding good ones. This is not appropriate for the matching prob-

lem because there are too many possibilities to match words in the context of a model label. Learning 

a decision strategy is difficult in our case because the gold standard contains only matched model la-

bels and not the single words. Evolutionary algorithms optimize with a fitness function that evaluates a 

solution. Their strength is that solutions can be evolved over an unknown search space. Their weak-

ness is that they cannot profit from given examples. So, a fitness function could not usefully evaluate a 

new matching solution. 

3.2 Similarity Learning Approach 

In this section we introduce SMML (Semantic Matching based on Machine Learning), a n:m process 

model node label matching approach based on supervised similarity machine learning in order to learn 

the human judgement with help of a gold standard. We follow a similarity learning method: Learning 

a similarity function that measures how similar or related two objects are from given examples (Bellet 

et al. 2015). Finding a good similarity function is an approximate optimization problem, similar to a 

linear regression. Conceiving our learning approach we took an approved measure for word similarity 

(see 3.3) and reduced the learning problem to estimate only the difference or relatedness between two 

model labels. The difference between the gold standard matchings and the SMML matchings is to be 

minimized. The advantage of similarity is that it comes out with comparatively little training data. 
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Application Stage

 Preparation Stage of the Test Data

3) Match according to learned weights
TOKENIZE LABELS: {check, incoming, goods} 

TAGGING: {[VB]check, [VBG]incoming, [NNS]goods}
LEMMATIZE TOKENS: {check, incoming, good}

M
ap

pi
ng

M2:M1:

M1 M2

 

Figure 1. SMML stages: SMML matches two process models M1,M2 

Our approach consists of three stages (see figure 1): First all node labels are lexically and syntactically 

prepared for the learning stage in which a training dataset with a given gold standard is used to learn 

the similarity function that assigns a similarity value to two node labels of a process model, each node 

label consisting of a vector of tokens. Therefore, a token similarity measure is defined. The learning 

procedure optimizes the similarity function until a satisfying matching quality is reached. Then the 

learned similarity function is applied on the unknown test dataset, matching all tokens in each process 

model node pair. 

3.3 Preliminaries and Preparation Stage 

Speaking of matching process models, we refer to the technique of automatically identifying corre-

spondences between the activities of process models. For evaluating process matching techniques, in 

recent work three metrics have been established: precision, recall and F-measure (Weidlich et al. 

2010). These metrics quantify the difference between the achieved and the expected matching result. 

Precision is the fraction of matched node labels that coincides a matching from the gold standard. Re-

call is the fraction of the correctly matched node labels. The F-measure is the harmonic mean between 

precision and recall.  

In preparation of SMML, the Stanford tokenizer (Manning et al. 2014) is applied on the node labels of 

all process models to be matched and divides them in words respectively tokens (we refer to the to-

kenizer in the following as 𝑔𝑒𝑡𝑇𝑎𝑔(𝑡𝑜𝑘𝑒𝑛)). For each token its tag is determined by the Stanford 

tagger (Manning et al. 2014). Tags are “verb”, “noun”, “adjective” and so on. Then the tokens are 

lemmatized so that grammatical forms are neutralized. The tokens in a sentence form a style-

dependent structure formed by the respective token tags (Leopold 2013; Leopold et al. 2011). Hence 

the semantic of a sentence is based on that structure which makes the importance of tags in the context 

variable. Therefore, it is necessary to quantify/weight the influence of a certain tag for the sentence 

semantic. So we weight every token/tag combination differently which allows a verb to have another 

weight than, for example, a noun or an adjective.  

In respect to the complexity of semantic word relationships, the complexity of finding for example 

synonyms hypernyms, homonyms, polysyms, etc. in the context of a sentence, we focus on the syno-

nym respectively hypernym relationship between the lemma of two tokens. Finding this relationship is 

difficult because there can be several nearest common hypernyms candidates for two tokens. So, sim-

ultaneously to the tags, the influence of the token similarity measure has to be weighted.  

The advantage of learning weights for tokens and their similarity measure is that many possible con-

text dependent matching candidates for a node label can be considered. When sufficiently enough 

candidates were evaluated, the learned weights represent the knowledge of matching as the gold 

standard suggests. 
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3.4 Learning Application 

Given two models 𝑀1, 𝑀2, the resemblance of two tokens 𝑡1 ∈ 𝑀1, 𝑡2 ∈ 𝑀2 of different node labels is 

calculated by the similarity function sm(𝑡1, 𝑡2). sm is composed of the weighted path length 

𝑙𝑒𝑛𝑔𝑡ℎ(𝑡1, 𝑡2) between 𝑡1, 𝑡2 in WordNet by Miller and George (1995), the weighted LIN measure by 

Lin (1998) and the weights of the tokens tags. Principally, any lexical database/network of synonyms 

can be used here because the path length in a synonym network should be language-independent. We 

apply the LIN measure as it has been shown to reflect human judgment (Pittke et al. 2015) and weight 

it together with the path length. Each token receives a weight in combination with its tag. The LIN 

measure between two tokens is weighted by the weight of the tokens supertoken and the path length 

between both tokens 𝑙𝑒𝑛𝑔𝑡ℎ(𝑡1, 𝑡2), weighted by both tokens supertoken. The supertoken super (see 

definition 1, point 4) is the closest hypernym to both tokens in WordNet which is defined by the cen-

tral word on the shortest path (𝑃𝑎𝑡ℎ(𝑡1, 𝑡2). 𝑔𝑒𝑡𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝐸𝑙𝑒𝑚𝑒𝑛𝑡()) between the hypernyms of the 

original tokens (see definition 1, point 3). 

Definition 1: 

The form of sm for two tokens 𝑡1, 𝑡2 is: 

sm(𝑡1, 𝑡2) = 𝑤𝑙𝑒𝑛𝑔𝑡ℎ ∗ 𝑤(𝑠𝑢𝑝𝑒𝑟(𝑡1, 𝑡2)) ∗ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑡1, 𝑡2) + 𝑤𝐿𝐼𝑁 ∗ 𝑤(𝑠𝑢𝑝𝑒𝑟(𝑡1, 𝑡2)) ∗ 𝐿𝐼𝑁(𝑡1, 𝑡2) 

with, let w be a weight and 𝑡𝑖 a token: 

1. 𝑤(𝑡𝑖)  =  𝑤(𝑡𝑖, 𝑔𝑒𝑡𝑇𝑎𝑔(𝑡𝑖))  

2. 𝑃𝑎𝑡ℎ(𝑡1, 𝑡2)  =  The shortest path between the tokens 𝑡1, 𝑡2 considering only edges in WordNet 

that represent hypernym relations. 𝑙𝑒𝑛𝑔𝑡ℎ(𝑡1, 𝑡2) =  |𝑃𝑎𝑡ℎ(𝑡1, 𝑡2)| 

3. 𝑃𝑎𝑡ℎ(𝑡1, 𝑡2). 𝑔𝑒𝑡𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝐸𝑙𝑒𝑚𝑒𝑛𝑡() = 𝑃𝑎𝑡ℎ(𝑡1, 𝑡2). 𝑔𝑒𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝐴𝑡 (𝑟𝑜𝑢𝑛𝑑 (
|𝑃𝑎𝑡ℎ(𝑡1,𝑡2)|

2
)) 

       𝑃𝑎𝑡ℎ(𝑡1, 𝑡2). 𝑔𝑒𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝐴𝑡(𝑝) returns the 𝑝 th element of a path.  

4. 𝑠𝑢𝑝𝑒𝑟(𝑡1, 𝑡2) = 𝑃𝑎𝑡ℎ(𝑡1, 𝑡2). 𝑔𝑒𝑡𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝐸𝑙𝑒𝑚𝑒𝑛𝑡() 

 

Definition 2: 

𝑝𝑐𝑠 = {(𝑡1, 𝑤(𝑡1)), (𝑡2, 𝑤(𝑡2)), … , (𝑡𝑛, 𝑤(𝑡𝑛))} ∪ {𝑤𝐿𝐼𝑁, 𝑤𝑙𝑒𝑛𝑔𝑡ℎ, 𝑡ℎ} ∪ 

{(𝑡1, 𝑡2, 𝑠𝑢𝑝𝑒𝑟(𝑡1, 𝑡2)), (𝑡1, 𝑡3, 𝑠𝑢𝑝𝑒𝑟(𝑡1, 𝑡3)), … , (𝑡𝑛−1, 𝑡𝑛, 𝑠𝑢𝑝𝑒𝑟(𝑡𝑛−1, 𝑡𝑛))} with 𝑤𝐿𝐼𝑁, 𝑤𝑙𝑒𝑛𝑔𝑡ℎ, 𝑡ℎ ∈

[0; 1], tokens 𝑡 ∈ 𝑅 and 𝑛 = |𝑅|. R is the set of all tokens in all models.  

𝑡ℎ, 𝑤𝑙𝑒𝑛𝑔𝑡ℎ and 𝑤𝐿𝐼𝑁 and all w(𝑡𝑖) and all 𝑠𝑢𝑝𝑒𝑟(𝑡𝑖, 𝑡𝑗) are the parameters to be learned/optimized. 

We want to find the highest F-measure for each possible parameter combination pc out of pcs, where-

by pc.sm is the similarity function with the parameters from pc. Matching all node labels in the train-

ing dataset, a local search is performed on a high performance computing cluster (HPC) trying as 

many pcs as possible storing the combination reached the highest F-measure. Principally any complete 

search algorithm can be used to find the best pc. Now sm*, sm with the best found parameter combina-

tion can be applied to test data.  

After the best similarity function 𝑠𝑚* is learned, SMML determines for each mutual node label pair in 

process model M1 and M2 whether two process model node labels are matched or not. Two node la-

bels are matched if sm*(𝑡1, 𝑡2) for all mutual token pairs (t1, t2) reaches the learned threshold th*. The 

matching between M1 and M2 is then the set containing all tuples of matched node labels. A more 

detailed description of our algorithm can be viewed in figure 2. 

For each label pair, in the worst case, sm* has to be computed for each token pair in both labels. Simi-

lar WordNet queries can be executed in advance so that most weights in sm* are constants which re-

duces the overall computation effort.  
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3.5 Implementation 

Our SMML approach is implemented in Java within a prototypical software platform (http://refmod-

miner.dfki.de/) to demonstrate the concept applicability. The software platform offers tools for busi-

ness process management such as process model matching, model analysis and inductive reference 

modelling. Many input modelling languages like event driven process chains (EPCs), Business Pro-

cess Modeling and Notation and Petri nets are supported. After the models are imported, they are ab-

stractly represented in Java classes. For the tokenizer we use the implementation from (Manning et al. 

2014), a lemmatizer relying on word relations maintained in the Wiktionary Database (Zesch et al. 

2008) and the free available WordNet by Miller (1995). The pseudocode for the learning stage and for 

the application stage is presented in figure 2. The application stage is given a model corpus and puts 

out label mappings for each model combination. <M1, M2> is a pairwise model combination and <L1, 

L2> is a pairwise label combination. 

 

LEARNING_STAGE Output: optimal parameter combination sm* 

1: Let Fmeasures be a vector 

2: PCS = set of all possible parameter combinations  

3: Local_search(Test_parameter_combination) over PCS 

4: sm* = get pc associated with highest F-measure from Fmeasures 

5: Function Test_parameter_combination(pc) 

6:    Let matches be a vector 

7:    For each <M1, M2> Do 

8:         For each <L1, L2>, L1 in M1 and L2 in M2 Do 

9:             Lemmatize(Tokenize(L1), Tokenize(L2)) 

10:             For each token T1 in L1 and token T2 in L2 Do 

11:                  If pc.sm(T1, T2) < pc.th then 

12:                      break loop 

13:            matches.add(<M1, M2>, <L1, L2>) 

14:      Fmeasures.add(pc, mean F-measure of matches[<M1, M2>])  

APPLICATION_STAGE Output: matchings 

1: Let matches be a vector 

2: For each pairwise model combination <M1, M2> Do 

3:    For each <L1, L2> with L1 in M1 and L2 in M2 Do 

4:        For each token T1 in L1 and T2 in L2 Do 

5:            If sm*(T1, T2) < th* then 

6:                 break loop 

7:         matches.add(<M1, M2>, <L1, L2>) 

Figure 2. Pseudo code for the learning stage (left) and the application stage (right) 

4 Evaluation 

4.1 Evaluation Set-up and Use Case 

In order to evaluate SMML, we measure the reached matching quality with the in 3.3 introduced 

measures precision, recall and F-measure. For the evaluation set-up, SMML learns its weights on a 

training dataset consisting of all pairs of process models. The similarity function is learned for each 

model pair by searching those weights that reduces the F-measure difference between the gold stand-

ard and the SMML matching. When the similarity function for each model pair has been learned, the 

arithmetic mean of all weights forms the final similarity function.  

As an evaluation use case, we compare our matching approach to the results of the Process Model 

Matching Contest 2015 (Antunes et al. 2015). The contest consists of three equally sized, contentual 

different datasets with manually defined gold standards. Each dataset served as a different evaluation 

scenario in the matching contest. Dataset 1 contains 9 models concerning university admission pro-

cesses. Dataset 2 contains 9 models about birth registration. Dataset 3 has 9 models about asset man-

agement from the SAP Reference Model Collection. In order to show a learning effect, SMML passed 

four scenarios: S1) SMML was independently applied on each dataset with unlearned weights (all 

weights set to 1.0).S2) SMML learned from random 50% of the model combinations in dataset 1 and 

50% of dataset 2’s model combinations (training data) and was then applied to the third dataset (test 

data). S3) SMML learned from the whole dataset 1 and 2 and was applied and evaluated on the whole 

dataset 3. S4) SMML learned independently inside each dataset, ten percent-wise portions of the model 
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combinations and was then applied on the remaining model combinations of the respective dataset. 

For avoiding overfitting, mean weights are learned over the portion. As search for the best parameter 

combination, we used a simple hill climber that starts from multiple random parameter combinations 

and from each starting point, one randomly chosen parameter is changed per iteration. 

4.2 Results 

The results of our three scenarios are presented in table 1-3. As described in the set-up, for each da-

taset the reached average (AVG) precision, recall, F-measure and their respective standard deviation 

(SD) are outlined. Therefore we are able to compare our results to the results of the matching contest 

scenarios. The highest precision is reached for dataset 3 in all scenarios. Overall scenarios, the preci-

sion in dataset 2 and 3 is significantly higher than the respective recall. Scenario S1 resulted in a mean 

F-measure of 0.22, 0.24 and 0.25. In the second scenario we observe an improvement respectively 

learning effect of 0.43/0.24=1.79 in dataset 1, 0.36/0.22=1.64 in dataset 2 and 0.29/0.25=1.16 in da-

taset 3. The learning effect in scenario S3 towards scenario S1 amounts to 0.54/0.24=2.25 for dataset 

1, 0.38/0.22=1.73 for dataset 2 and 0.61/0.25=2.44 for dataset 3. The result of scenario S4 is shown in 

figure 3. For each portion of learned model combinations, the reached F-measure is plotted. For every 

dataset, the F-measure increases steadily without decrease. 

  

    PRECISION      RECALL   F-MEASURE 

 AVG SD  AVG SD  AVG SD 

S
1

 

dataset 1  0.46 0.32  0.16 0.37  0.24 0.17 

dataset 2  0.36 0.29  0.15 0.20  0.22 0.25 

dataset 3  1.00 0.00  0.14 0.35  0.25 0.35 

S
2

 

dataset 1  0.37 0.22  0.50 0.31  0.43 0.23 

dataset 2  0.46 0.14  0.29 0.22  0.36 0.16 

dataset 3  0.70 0.29  0.19 0.34  0.29 0.30 

S
3

 

dataset 1  0.51 0.24  0.58 0.34  0.54 0.25 

dataset 2  0.51 0.15  0.31 0.23  0.38 0.18 

dataset 3  0.80 0.30  0.49 0.42  0.61 0.37 

Table 1. Results for scenario S1-S3 

 

Figure 3. Results for scenario S4 (dataset1, datset2, dataset3) 

4.3 Discussion 

Comparing to the other contest approaches in (Antunes et al. 2015), SMML achieves an over-average 

precision and an average recall and F-measure for dataset 3. For dataset 1, SMML reaches a slightly 

over-average F-measure (0.54) and for dataset 2 SMML reaches an under-average F-measure (0.38). 
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For the second dataset, the other contest approaches resulted in worse F-measures than for the other 

datasets which might be caused by a particularly difficult language.  

Reaching the highest precision and recall, the third scenario outperforms the other scenarios. The 

learning effect in terms of the F-measure increase is maximal in the third scenario. That implies that 

the more training data has learned from, the higher the F-measure becomes because in scenario S2 was 

only learned from two half datasets. We see that also as an indicator for the found weights in the first 

two datasets to be representative for a variety of process models because the three datasets are from 

different domains. Especially the third dataset comprises varied models. This speaks for the applicabil-

ity of SMML in diverse domains. At this point, more training data is needed for improving our ap-

proach in respect to applicability and quality. Scenario S4 demonstrates that the matching quality 

steadily increases when more training data is provided. For datset1 and 2, the matching quality jumps 

up from 50% / 80% learned data so that we expect an over-linear trend for the learning effect over 

more training data. Scenario S3 and S4 show that the more training data from different domains was 

learned, the better SMML matches new/unknown data such as the SAP models in dataset 3. 

The limitation of our concept is the quality of this machine learning concept to highly depend on the 

quality of the training dataset and its gold standard. The tiny learning effect in dataset 2 shows that 

when only little or uniform training data is at hand, the learning effect is low or not significant. This 

can be also the case if SMML is applied on a completely unknown terminology, language or syntax. It 

is difficult to evaluate how SMML or a similar approach would perform if a few models featured a 

disparate syntax. Here it becomes necessary to explore the strengths and weaknesses of a more com-

plex similarity function with more weights. Here also the question rises if the arithmetic mean between 

the learned weights is appropriate for generalizing the similarity function. When more data is availa-

ble, the similarity function can become more complex. With only 3 datasets, the weights are estimated 

in a simple linear similarity function in order to avoid overfitting in new datasets. Overfitted weights 

would reach a high matching quality inside a dataset but would fail in new/unknown data. SMML cur-

rently does not consider the context of node labels in the process such as who is the actor in an process 

event. The consideration of the context of model labels is an essential next step in the development of 

SMML to improve the matching quality. 

5 Conclusion 

A central aspect in business process management is matching business process models and their node 

labels. There are effective matching techniques but recent research overlooks the great potential of 

machine learning. In this paper we present SMML, a semantic matching approach based on supervised 

similarity machine learning. SMML first learns from a training dataset and then matches node labels of 

an unknown dataset. We evaluated our SMML approach with three different datasets from various 

domains offered by the process model matching contest 2015 (Antunes et al. 2015). Our first imple-

mentation of SMML demonstrates hereby its potential to understand a human matcher by a gold stand-

ard and apply its learned knowledge to new and diverse process models. An evaluation shows that the 

more training data is provided, the better the matching quality becomes.  

Because our approach does not need predefined rules, we see great potential in similarity learning for 

matching business process models. With a more complex similarity function, we expect SMML to 

become a good matcher. Therefore, in future work we will develop a more elaborate similarity func-

tion, addressing additional linguistic characteristics of process models such as word frequency, choice 

of words and the underlying syntax (Leopold 2013). Additionally, the underlying graph structure and 

the topological context of a node label will be considered in the way that preceding and succeeding 

node labels will be used for determining similarity of a label. Hereby, the relation between referenced 

actors and resources of process events shall be understood over the whole process model. Therefore, 

the similarity learning concept will be extended by pattern recognition with neural networks respec-

tively Boltzmann machines (Ackley et al. 1985). Finally, we will enhance the search for optimal learn-

ing parameters and evaluate their efficiency.  
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