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Abstract. One of the main challenges in the Data Web is the iden-
tification of instances that refer to the same real-world entity. Choos-
ing the right framework for this purpose remains tedious, as current
instance matching benchmarks fail to provide end users and develop-
ers with the necessary insights pertaining to how current frameworks
behave when dealing with real data. In this paper, we present Lance,
a domain-independent instance matching benchmark generator which
focuses on benchmarking instance matching systems for Linked Data.
Lance is the first Linked Data benchmark generator to support com-
plex semantics-aware test cases that take into account expressive OWL
constructs, in addition to the standard test cases related to structure and
value transformations. Lance supports the definition of matching tasks
with varying degrees of difficulty and produces a weighted gold standard,
which allows a more fine-grained analysis of the performance of instance
matching tools. It can accept any linked dataset and its accompanying
schema as input to produce a target dataset implementing test cases
of varying levels of difficulty. We provide a comparative analysis with
Lance benchmarks to assess and identify the capabilities of state of the
art instance matching systems as well as an evaluation to demonstrate
the scalability of Lance’s test case generator.

1 Introduction

Instance matching (IM), refers to the problem of identifying instances that de-
scribe the same real-world object (alternative names include entity resolution [1],
duplicate detection [2], record linkage [3] and object identification in the context
of databases [4]). With the increasing adoption of Semantic Web Technologies
and the publication of large interrelated RDF datasets and ontologies that form
the Linked Data Cloud,1 it is crucial to develop IM techniques adapted to this
setting that is characterized by an unprecedented number of sources across which
to detect matches, a high degree of heterogeneity both at the schema and at the
? This work was partially supported by the EU FP7 projects LDBC (FP7-ICT-2011-8
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instance level, and rich semantics that accompany schemas defined in terms of
expressive languages such as OWL, OWL 2, and RDFS. For such data, many
IM techniques have recently been proposed (e.g., [5,6], survey in [7]).

Clearly, the large variety of IM techniques requires their comparative evalu-
ation to determine which technique is best suited for a given application. Per-
forming such an assessment generally requires well-defined and widely accepted
benchmarks to determine the weak and strong points of the methods or sys-
tems and to motivate the development of better systems in order to overcome
identified weak points. Hence, suited benchmarks help push the limit of existing
systems, advancing both research and technology. A number of benchmarks have
already been proposed, both for relational and XML data [8] and, more recently,
for RDF data, the type of data prevalent in the Web of Data [9,10,11,12].

This paper presents the Linked Data Instance Matching Benchmark Gener-
ator2 (Lance), a novel IM benchmark generator for assessing IM techniques for
RDF data with an associated schema. The main features of Lance are:
Wider set of test cases. Lance supports a set of test cases based on trans-
formations that distinguish different types of matching entities. Similarly to
existing IM benchmarks, Lance supports the value-based (typos, date/number
formats, etc.) and structure-based (deletion of classes/properties, aggregations,
splits, etc.) test cases. Lance is the first benchmark generator to support ex-
plicitly advanced semantics-aware test cases that go beyond the standard RDFS
constructs. These test cases test the use of RDFS/OWL semantics to identify
matches, and include tests involving instance (in)equality, class and property
equivalence and disjointness, property constraints, as well as complex class defi-
nitions. Lance also supports simple combination (SC) test cases (implemented
using the aforementioned transformations applied on different triples pertaining
to the same instance), as well as complex combination (CC) test cases (imple-
mented by combinations of individual transformations on the same triple).
Similarity score and fine-grained evaluation metrics. Lance provides an
enriched, weighted gold standard and related evaluation metrics, which allow a
more fine-grained analysis of the performance of systems for tests with varying
difficulty. In particular, the ground truth (or gold standard, i.e., pairs consisting
of an entity in the source dataset and its matching entity in the target dataset) is
enriched with annotations specific to the test case that generated each pair, i.e.,
the type of test case it represents, the property on which a transformation was
applied, and a similarity score (or weight) that essentially quantifies the difficulty
of finding a particular match. This detailed information, which is not provided by
previous benchmarks, allows Lance to adopt more detailed views and evaluation
metrics to assess the completeness, soundness, and overall matching quality of
an IM system. In particular, Lance uses the average similarity score of the
gold standard in combination with the standard deviation of the weight of each
pair from the average score in order to asses the benchmark’s level of difficulty.
This fine-grained analysis allows Lance users to more easily identify the reasons

2 http://www.ics.forth.gr/isl/lance
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underlying the obtained performance results, and thereby supports IM systems’
debugging and extension.
High level of customization and scalability testing. Lance provides the
ability to build a benchmark on top of any dataset, thereby allowing the imple-
mentation of diverse test cases for different domains, dataset sizes and morphol-
ogy. This makes Lance highly customizable and domain-independent. Perhaps
more importantly, this feature allows also systematic scalability testing of IM
systems, a feature which is not available in most state-of-the-art IM benchmarks.

The rest of the paper is structured as follows: in Section 2, we discuss related
work; Section 3 describes the different components of our benchmark generator;
Section 4 demonstrates the suitability of our benchmark generator in assessing
and identifying the capabilities of an IM system; Section 5 concludes the paper.

2 Related Work

Several benchmarks have been proposed for testing the performance of IM sys-
tems for Linked Data. These benchmarks were the first to consider structure-
based test cases, as previous benchmarks for relational and XML data primarily
focused on value-based ones. A summary of the benchmarks relevant for Lance
is shown in Table 1; a more complete survey can be found in [13].

Benchmark VOL VAL STR SEM ML

Synthetic IM benchmarks

IIMB (2009) [14]* 2K
√ √

ltd

IIMB (2010) [15]* 14K
√ √

ltd

PR (2010) [16]* 9K
√ √

IIMB (2011) [17]* 4K
√ √

ltd

Sandbox (2012) [18]* 4K
√

IIMB (2012) [18]* 2K
√ √

ltd

RDFT (2013) [19]* 4K
√ √ √

ID-REC (2014) [20]* 3K
√

ONTOBI (2010) [10] 14K
√ √

ltd
√

Lance (2015)
√ √ √ √ √

Real IM benchmarks

ARS (2009) [14]* 1M
√ √

DI (2010) [15]* 6K
√ √

DI (2011) [17]* N/A
√ √

Table 1. IM benchmark summary showing dataset
size (VOL), supported test cases (value-based
(VAL), structure-based (STR), semantics-aware
(SEM)) and support for multilinguality (ML). A star
(*) indicates a benchmark proposed by OAEI [9].

Our approach is based
on the test cases proposed
by our previous work SPIM-
BENCH [12] but unlike SPIM-
BENCH, Lance is a domain-
independent benchmark gen-
erator.
OAEI. The most impor-
tant initiative regarding IM
benchmarks is the Ontology
Alignment Evaluation Initia-
tive (OAEI) [9] that orga-
nizes a related annual track
since 2009. OAEI proposes
benchmarks based on both
real and synthetic datasets.
Synthetic datasets are mostly
small (up to a few thou-
sand instances) but allow a
more accurate evaluation of
the matching quality of IM
systems, since they provide an
accurate gold standard that
is automatically constructed.
Real datasets are much larger
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(millions of instances) and allow evaluating the scalability of IM frameworks; nev-
ertheless, the provided gold standard is error-prone, as it is practically infeasible
to identify the complete and correct set of matches either manually (ARS [14])
or semi-automatically (DI 2010 [15], DI 2011 [17]). Thus, evaluating the abil-
ity of IM methods to scale comes at the price of a less accurate evaluation of
matching quality. Lance avoids this trade-off, as it generates the datasets along
with the gold standard containing the matched instances. Most OAEI bench-
marks consider both value-based and structure-based test cases (see Table 1).
The support for semantics-aware test cases is limited to the IIMB benchmarks:
IIMB 2009 considered only simple features such as class hierarchies and the
OWL sameAs, whereas later versions used the SWING benchmark data genera-
tor [21] to support more complex cases, but still in a limited fashion compared to
Lance. Multilinguality (an important feature in practice) supported by Lance,
is considered by RDFT [19] only.
ONTOBI. ONTOBI is a synthetic IM benchmark that uses the DBpedia on-
tology (v.3.4) to propose 16 different test cases that include spelling mistakes,
suppressed comments, change in date and number formats, deleted data types,
language modifications, random names changes, synonym-based changes, dis-
junct dataset and flattening/expansion of the structure. ONTOBI is a domain-
specific benchmark that supports mainly value and structure based test cases,
as well as a limited amount of semantics-aware ones. It considers larger datasets
than OAEI, but still in the range of a few thousand triples.
SWING. The SWING benchmark data generator [21] provides a general frame-
work for creating IM benchmarks; it supports various test cases based on value
and structure transformations at the instance level. The semantics-aware test
cases are built upon class and property subsumption hierarchies, class disjoint-
ness and inverse properties. Lance builds on SWING to implement most of the
value-based test cases, but is also applying some novel value-based transforma-
tions, as well as a richer set of structure-based and semantics-aware test cases.
SWING generates an artificial benchmark (without size limitations) and the cor-
responding gold standard, based on a given schema, thus allowing the creation
of domain-independent benchmarks suitable for both scalability and matching
quality evaluation. However, unlike Lance, SWING does not support weighted
gold standards and thus provides less insights for developers to debug or improve
their IM system.

3 LANCE

3.1 Transformation-based Test Cases

In Lance we propose a set of value-based, structure-based, and semantics-aware
test cases. The former two are implemented using transformations as proposed
in Ferrara et. al [21] on data and object type properties respectively; the last
refers to the use of a subset of OWL semantic constructs. Value and structure-
based test cases are produced by applying the appropriate transformation(s) on
a source instance to obtain a target instance. The same principle holds in the case
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of semantics-aware test cases, with the difference that appropriate instance-level
triples are constructed and added in the target dataset to consider the respective
OWL constructs. This pair of instances is then used as input for the instance
matching system (along with the gold standard) to test its performance.
Value-based Test Cases refer to scenarios implemented using transformations
on instance data type properties that consider mainly typographical errors and
the use of different data formats. In Lance we extended the transformations of
SWING [21], by adding antonyms, country abbreviations and multilinguality.

vt1 Blank char. Addition/Deletion

vt2 Random char. Addition/Deletion/Modification

vt3 Token Addition/Deletion/Shuffle

vt4 Date Formats

vt5 Country & Simple Abbreviations

vt6 Synonym/Antonym

vt7 Stem of a Word

vt8 Multilinguality

Table 2. Lance value-based transformations

Table 2 presents the trans-
formations implemented in
Lance. Each transformation
takes as input a data type
property and a severity that
determines how severe this
modification is. Transforma-
tions vt1-vt3 can be per-
ceived as different cases of
misspellings. vt4 addresses
the use of different date for-
mats; Abbreviations are ad-
dressed by vt5: Lance sup-
ports abbreviations that are

very common in texts (such as “United States of America” vs “USA”), as well
as those of SWING. vt6 refers to the use of synonyms and antonyms taken from
Wordnet3. Stemming is applied using transformation vt7. Lance also supports
multilinguality (transformation vt8) from English to 64 languages.
Structure-based Test Cases are based on transformations applied on object
and data type properties of instances such as splitting, aggregation, deletion and
addition. Splitting refers to expanding properties whereas aggregation refers to
merging a number of properties to a single oneaddition to property aggregation
we support all the structure-based transformations that are proposed and im-
plemented in SWING. These transformations are a superset of those considered
in other IM benchmarks (see Section 2).
Semantics-aware Test Cases are primarily used to examine if the matching
systems take into consideration OWL and OWL 2 axioms to discover matches
between instances that can be found only when considering schema information.
The axioms that we consider in Lance are:
• class and property equivalence (equivalentClass, equivalentProperty)
• instance (in)equality (sameAs, differentFrom)
• class and property disjointness (disjointWith, AllDisjointClasses, property-
DisjointWith, AllDisjointProperties)
• class and property hierarchies (subClassOf, subPropertyOf)
• property constraints (FunctionalProperty, InverseFunctionalProperty)
• complex class definitions (unionOf, intersectionOf)

3 http://wordnet.princeton.edu/
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source dataset target dataset schema triples gs
ltSubC (u1, rdf:type, C1) (u′

1, rdf:type, C
′
1) (C1, subClassOf, C

′
1) (u1, u

′
1)

ltEqC (u1, rdf:type, C1) (u′
1, rdf:type, C

′
1) (C1, equivalentClass, C

′
1) (u1, u

′
1)

ltSameAs1

(u′
1, rdf:type, C1) (u1, u

′
1)

(u1, rdf:type, C1) (u′
2, rdf:type, C1) (u1, u

′
2)

(u2, rdf:type, C1) (u′
1, sameAs, u

′
2) (u2, u

′
2)

(u2, u
′
1)

ltDiff (u1, rdf:type, C1)
(u′

1, rdf:type, C1)
(u1, u

′
1)(u′′

1 , rdf:type, C1)
(u′

1, differentFrom, u
′′
1 )

ltDisjC (u1, rdf:type, C1) (u′
1, rdf:type, C

′
1) (C1, disjointWith, C

′
1) —

ltFuncP (u1, p1, o1) (u1, p1, o
′
1)

(p1, rdf:type
(o1, o

′
1)

FunctionalProperty)

ltInvFuncP (u1, p1, o1) (o1, p1, u
′
1)

(p, rdf:type,
(u1, u

′
1)

InverseFunctionalProperty)

ltUnionOf (u1, rdf:type, C1) (u′
1, rdf:type, C

′
1) (C′

1, unionOf, {C1, C2, . . .) (u1, u
′
1)

ltIntersect1 (u1, rdf:type, C1) (u′
1, rdf:type, C

′
1)

(C1, intersectionOf, S) (u1, u
′
1)

(C′
1, intersectionOf, S)

ltIntersect2 (u1, rdf:type, C1) (u′
1, rdf:type, C

′
1)

(C1, intersectionOf, S)
(u1, u

′
1)(C′

1, intersectionOf, S
′)

S′ ⊂ S

Table 3. Semantics-aware test cases

Table 3 shows some of these semantics-aware test cases: column schema
triples refers to schema triples that the instance matcher under test should
take into consideration when performing the matching tasks and gs shows the
pairs of matches (u, u′) that will be included in the gold standard. In all the
tables we write u to refer interchangeably to an RDF instance and its URI. The
rules in Table 3 should not be viewed as inference rules, but as hints for a system
to derive that a match holds.

Class Hierarchy & Equivalence: test cases ltSubC, ltEqC shown in Table 3
consider the subClassOf and equivalentClass constructs respectively. Given a
source URI u1, instance of class C1, we create target URI u′1, instance of class
C ′1 by copying all the properties of u1 (except rdf:type triples) to create u′1. For
ltSubC, C1 is a subclass of C ′1 (schema triple (C1, subClassOf, C ′1)) and u1 and
u′1 are considered as matches in the gold standard since they are of similar type
due to the subClassOf semantics that specify that a class contains all instances
of its subclasses. For ltEqC, C1 and C ′1 are equivalent classes (schema triple
(C1, equivalentClass, C ′1)), so the two instances are considered matches since
they are of the same type due to the semantics of class equivalence, according
to which two equivalent classes have the same set of instances.
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The rationale for properties is exactly the same since subPropertyOf and equi-

valentProperty axioms have similar semantics as their class counterparts. Test
cases for subClassOf and subPropertyOf hierarchies are supported by the IM
benchmarks that provide a limited support for this type of tests [10,14,15,17,18].

Instance (in)equality : test case ltSameAs1 shown in Table 3 is a complex test
for OWL construct sameAs; for this case we consider two source URIs u1 and u2

instances of the same class C1; for u1 and u2, we create target instances u′1 and
u′2. These are added in the target dataset along with triple ( u′1, sameAs, u′2 ). A
matcher that understands the semantics of sameAs should report all possible four
matches between instances u1, u′1, u2 and u′2, otherwise it will report matches
( u1, u′1 ) and ( u2, u′2 ). OWL construct differentFrom is used to explicitly
state that two resources refer to different real world objects. Test case ltDiff
shown in Table 3 follows the same lines as the test case for sameAs construct:
for a source instance u1, we create two target instances u′1 and u′′1 by copying
all the properties of u1 (including the rdf:type property). Target instance u′′1 is
obtained by applying additional value and structure transformations to u′1. Triple
(u′1, differentFrom, u′′1) is also added in the target dataset. If the matcher does
not take under consideration the differentFrom construct it should produce a
match between instances u1 and u′′1 when it should not, since there is an explicit
statement that these two instances refer to a different real world object (u1,
differentFrom, u′′1). Note that for all the test cases concerning sameAs and dif-

ferentFrom OWL constructs, we assume that the source and target instances are
of the same type (i.e., belong to the same class).

Class Disjointness: test case ltDisjC shown in Table 3 addresses class disjoint-
ness. To implement this test we produce target instance u′1 from source instance
u1 as discussed before; these are instances of two disjoint classes C1 and C ′1 -
schema triple (C1, disjointWith, C ′1) - respectively. In this case, the matcher
should not return any match since according to the OWL semantics, two dis-
joint classes cannot share the same set of instances. Disjointness of properties
follows the same rationale as disjointness of classes. Test cases for AllDisjoint-

Classes and AllDisjointProperties follow the same principles for disjointWith

and propertyDisjointWith respectively.

Functional & Inverse Functional Properties: A functional property is a property
that can have only one (unique) value y for each instance x. Inverse functional
properties are useful to denote values that uniquely identify an entity. Note that,
due to the fact that the semantics of OWL do not include the Unique Name
Assumption, inverse functional properties should not be viewed as integrity con-
straints, because they cannot directly (by themselves) lead to contradictions.
Instead, they force us to assume (infer) that certain individuals are the same as
declared by the OWL semantics. ltFuncP test case shown in Table 3 considers
FunctionalProperty: for a source instance u1, subject of triple (u1, p1, o1) with
p1 being a functional property (schema triple (p1, rdf:type, FunctionalProper-
ty)) we produce a triple (u1, p1, o′1 ) in the target dataset, where o′1 is obtained
by applying a set of value and structure based transformations. If the matcher
takes into consideration the fact that p1 is a functional property, then it should
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produce a match between instances o1 and o′1 since according to the semantics of
FunctionalProperty if a property p is declared as functional, then an instance u
cannot have two properties p with different values. The same rationale is followed
for ltInvFuncP test case that addresses InverseFunctionalProperty.

Complex Class Definitions: Lance supports test cases for the unionOf and in-

tersectionOf constructs shown in Table 3. As with all OWL constructs, the
semantics of unionOf are intentional: unionOf implies a subsumption relationship
between the constituents of the union, and the union itself. Therefore, if a class
A is defined as a union of A1, A2, . . ., Ak then all instances that are known to
be instances of any Ai,...,Ak will also be instances of their union. In ltUnionOf
we assume that C ′1 is defined as a union of a set of classes C1, C2, . . . Ck. For
this test, we create for u1 instance of class C1 in the source dataset, u′1 instance
of class C ′1 in the target dataset. According to the unionOf semantics, u′1 is an
instance of class C ′1, and hence we go back to the subClassOf test case. Hence,
we add (u1, u′1) as matched instances in the gold standard.

Similar to unionOf, intersectionOf semantics are also intentional: if a class
A is defined as an intersection of A1, A2, . . ., Ak then A contains exactly those
instances that are common to all classes. In addition, A is defined as the subclass
of A1, A2, ... Ak. In ltIntersect1, u1 is an instance of class C1 in the source
dataset and u′1 is an instance of class C ′1 in the target dataset. C1 and C ′1 are
defined as the intersection of the same set of classes S. In that case, u1 and
u′1 have the same type, and we include pair (u1, u′1) in the gold standard. In
ltIntersect2, classes C1 and C ′1 are defined as the intersection of two different
sets of classes S and S′, the latter being a subset of the former. Instances u1 and
u′1 are again reported as matches in the gold standard since they have the same
type (through the semantics of intersectionOf).
Simple and Complex Combination Test Cases In Lance we consider com-
binations of the aforementioned test cases. We distinguish between simple combi-
nation (SC) test cases based on value, structure based and semantics-aware test
cases, applied on different triples pertaining to one class instance. For example,
for an instance u, we can perform a value-based transformation on its triple (u1,
p1, o1) where p1 is a data type property and a structure-based transformation
on its triple (u1, p2, o2). We also consider complex combination (CC) test cases
that are based on combinations of test cases applied to a single triple along
with a transformation applied to the class of the instance. For instance, when
a semantics-aware test case is considered, then for a triple (u1, p1, o1) we can
produce a triple (u1, p′1, o′1) where p1 is a subproperty of p′1 and o′1 is obtained
by applying a value transformation on o1.

3.2 Weighted Gold Standard

In the following, we present the weighted gold standard generated by Lance. We
begin by presenting how we store the transformations that were used to generate
a target instance u′i based on a source instance ui. Thereafter, we present our
approach to computing similarity scores for each pair (ui, u

′
i).
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Computing the similarity scores To improve the debugging of instance
matching tools and algorithms, we assign a similarity score (weight) to each
pair of instances that should be matched. In essence, the weight of a match
(ui, u

′
i) quantifies how similar the source and target instances are. We adopt an

information-theoretical approach to compute the weight w of (ui, u
′
i) by measur-

ing the information loss that results from applying transformations to the source
data to generate the target data. The basic idea behind our approach is to apply
a multi-relational learning (MRL) approach L to the input knowledge base K
and the transformed knowledge base K ′. By comparing the description of ui in
L(K) and u′i in L(K ′), we should then be able to quantify how much information
was lost through the transformation of K to K ′. We implement this insight in
the current version of Lance by using RESCAL [22,23] as MRL approach.

The idea behind RESCAL is that each RDF graph K can be represented as a
tensor T of order 3 and dimensions |R|× |R|× |P |, where R is the set of all RDF
resources, P is the set of all RDF properties and T (i, j, k) = 1 iff < ui, pk, uj >∈
K. Let T (·, ·, k) be the kth |R| × |R|-matrix that makes up T , i.e., the matrix
that is such that T (·, ·, k)ij = 1 iff < ui, pk, uj >∈ K. RESCAL approximates
the matrix A which minimizes the error ||T (·, ·, k)−XkAX

>
k ||2F over all T (·, ·, k)

simultaneously. Based on A and the Xk matrices, we can approximate the whole
of T to a tensor T̃ with T̃ (·, ·, k) = XkAX

>
k . As shown in previous work [23],

each matrix T̃ (i, ·, ·) contains all predicted relations of the resource ui. Hence,
it can be regarded as a complete description of ui. The similarity in information
content of ui and u′i can thus be computed by using the squared cosine of the
angle between the matrices T̃ (i, ·, ·), T̃ ′(i, ·, ·), where T̃ ′(i, ·, ·) is the tensor that
results from applying the transformations above to the input (K):

cos2(T̃ (i, ·, ·), T̃ ′(i, ·, ·)) =

∑
jk

T̃ (i, j, k)T̃ ′(i, j, k)

||T̃ (i, ·, ·)||2F ||T̃ ′(i, ·, ·)||2F
. (1)

A squared cosine value close to 1 suggests that ui and u′i contain similar in-
formation and that the information loss due to the transformation was small.
Hence, it should be easier for an instance matching framework to detect this
match than a match with a smaller squared cosine similarity.

On the hardware used for our evaluation of Lance (see Section 4), RESCAL’s
performance grew linearly with the size of the benchmark. In particular, the
approach required approximately 6 minutes to compute T̃ for 104 triples. While
the corresponding waiting times are acceptable for up to medium-sized datasets
(i.e., data sets in orders of magnitude up to 105 triples), they are too large to
be used when generating large benchmarks with more than 106 triples. We thus
extended the approach above to be used on larger data sets by using sampling.

The idea behind our sampling approach is to partition the input knowledge
base K into n partitions K1 . . .Kn of the same size and run the approach above
on user-selected partitions. Now for each pair of resources (ui, u

′
i) from the gold

standard that belongs to the user-chosen partitions, we can compute a weight
where instance ui, and its transformed instance ui are stored in partitions Ki
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(input knowledge base) and K ′
i (transformed knowledge base). In addition, we

know how many transformations of which type were used to generate u′i out of
ui. Based on this information, we can compute how much each transformation
contributes to the information loss that occurs when generating ui out of u′i
by solving the corresponding linear regression problem. Note that the matrices
generated when applying our approach are commonly degenerate and that we
thus use a numerical solver based on gradient descent to detect an approximate
solution.

3.3 Metrics

The performance metric(s) in a benchmark determine the effectiveness and effi-
ciency of the IM systems and tools. Traditionally, IM benchmarks focus on the
quality of the output in terms of standard metrics such as precision, recall and
f-measure [24]. In Lance, opportunities for more sophisticated metrics arise due
to the use of a weighted gold standard, which records, for each match, the sim-
ilarity (or weight) of its source and target instances that is in the range 0 . . . 1,
and essentially quantifies the difficulty for an IM system to find this match.

In particular, a weight close to 1 means that the two instances are similar
i.e., practically no transformations were applied to the source instances in order
to generate the target instance; this match can be discovered relatively “eas-
ily” by an IM system and is hence considered a low-difficulty match. On the
other hand, a weight close to 0 means that the target instance was obtained by
applying complex transformations such as changing the topology of the graph
through semantics-aware test cases (i.e., changing the class type of an instance),
together with structure-based ones. This is a difficult match to discover for an
IM system, since it needs to use effective similarity algorithms and be aware
of possibly complex constraints or lower the employed threshold consequently
affecting negatively precision.

In particular, by knowing the similarities of the matched instances recorded
in the gold standard of a Lance benchmark (say wi), we can compute its av-
erage similarity score and the standard deviation of its similarities. These two
numbers describe the average “difficulty” of the matched instances (i.e., of the
test cases implemented in the benchmark) and the spread of the similarity scores
(difficulty) in their range (0 . . . 1).

A benchmark with a high average similarity score contains matched instances
that are easier to find (easier cases have weights close to 1); a benchmark with a
high standard deviation means that the weights are spread out from the average,
so there is a larger variety of weights in the gold standard. The formulas are:

µ = 1
N

∑N
i=1 wi σ = 1

N

∑N
i=1(wi − µ)2

In a similar fashion, we can compute the average and standard deviation of
the true positives of a tested IM system (returned matches that are also in the
gold standard). By comparing these numbers with the corresponding numbers
for the benchmark, we can get a more fine-grained understanding of the system’s
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effectiveness. In particular, comparing the averages, we can determine whether
the IM system was able to find the easier or the more difficult matches; comparing
the standard deviations gives an indication of whether the system is good for
a specific range of transformations (as indicated by a deviation that is smaller
than the benchmark’s standard deviation) or for many different ones.

4 Evaluation

Applicability and scalability Our evaluation focused on demonstrating the
capability of our benchmark generator in assessing and identifying the strengths
and weaknesses of instance matching systems. For this purpose, we evaluated
LogMap Version 2.4 [25] using the MoRe [26] reasoner, OtO [27] and LIMES [6]
running the EAGLE [28] algorithm (Section 4.1). We chose these tools because
they are prototypical working instances of existing IM systems4. LogMap con-
siders both schema and instance level matching; hence it should perform well
on all variations of the benchmark. OtO on the other hand, needs to be config-
ured manually to implement instance matching tasks, so we assume that it will
perform well on tasks with value transformations. The same holds for EAGLE,
which can learn specifications and focuses on instance matching tasks only; we
expect EAGLE to have a hard time at finding matches when faced with semantic
transformations. We also report on the scalability aspect of Lance (Section 4.1).
The purpose of this experiment is to show that Lance can be used for source
datasets of arbitrary size and can generate target datasets that implement a
large number of test cases without any additional processing overhead.
Datasets We used as source datasets those generated by LDBC’s5 SPIMBEN-
CH [12]. Nevertheless, various data generators can be used in order to pro-
duce the source datasets. Indicatively we name Berlin SPARQL Benchmark
(BSBM) [31], the DBpedia SPARQL Benchmark [32] and UOBM [33]. Due to
space constraints we only present results achieved when using SPIMBENCH
datasets. We produced two datasets, one with 10K triples and around 500 in-
stances, and a larger one with 50K triples and around 2500 instances. All exper-
iments were conducted on an Intel(R) Core(TM) 2 Duo CPU E8400 @3.00GHz
with 8G of main memory running Windows 7 (64-bit).
Implementation of LANCE Lance6 is a highly configurable instance match-
ing benchmark generator for Linked Data that consists of two components : (i) an
RDF repository that stores the source datasets and (ii) a test case generator (see
Figure 1). The test case generator takes as input a source dataset and produces
a target dataset that implements various test cases according to the specified
4 Attempts to evaluate Lance benchmarks with systems such as RiMOM-IM [29],

COMA++ [30] and CODI [17] were not successful. We were not able to work
with RiMOM-IM due to incomplete information regarding the use of the system;
COMA++ supports instance-based ontology matching but does not aim for instance
matching per se. Finally CODI is no longer supported by the development team.

5 LDBC Semantic Publishing Benchmark: http://ldbcouncil.org/developer/spb
6 The code of Lance is available at https://github.com/jsaveta/Lance

http://ldbcouncil.org/developer/spb
https://github.com/jsaveta/Lance
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Fig. 1. Lance System Architecture

configuration parameters to be used for testing instance matching tools. It con-
sists of the Initialization, Resource Generator and the Resource Transformation
modules. The first reads the test case generation parameters and retrieves by
means of SPARQL queries the schema information (e.g., schema classes and
properties) from the RDF repository that will be used for producing the target
dataset. The Resource Generator uses this input to retrieve instances of those
schema constructs from the RDF repository and passes those (along with the
configuration parameters) to the Resource Transformation Module. The latter
returns for a source instance ui the transformed instance u′i and stores this in
the target dataset; this module is also responsible in producing an entry in the
gold standard. Once Lance has performed all the requested transformations,
the Weight Computation Module calculates the similarity scores of the produced
matches as discussed in Section 3.2. The configuration parameters specify the
part of the schema and data to consider when producing the different test cases
as well as the the percentage and the type of transformations to consider. More
specifically, parameters for value-based test cases specify the kind and severity of
transformation to be applied; for structure and semantics-aware test cases the
parameters specify the type of transformation to be considered. The idea be-
hind configuration parameters is to allow one to tune the benchmark generator
into producing benchmarks of varying degrees of difficulty which test different
aspects of an instance matching tool. Lance is implemented in Java and in the
current version we use OWLIM Version 2.7.3. as our RDF repository.

4.1 Experimental Results

Applicability of LANCE In order to show that Lance is well suited to
identify strong and weak points of state-of-the-art IM systems, we provided the
tools at hand with difficult tasks and allowed the whole of the source dataset to
be transformed so as to obtain the target dataset. Figure 2 reports the results
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for the different types of test cases and for datasets up to 10K and 50K triples.
In all cases, we measured recall, precision, f-measure along with the similarity
score and standard deviation we introduced in Section 3.3.
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Fig. 2. Applicability experiments for LogMap, EAGLE and OtO

As expected, LogMap responds well to the value-based test cases having
a high precision and recall (close to 0.75) but its performance degrades when
the instances are involved in semantics-aware test cases with precision and
recall (below 0.4). Still, the large number of transformations applied to the
source dataset to generate the target dataset suggest that LogMap does in-
deed perform sufficiently well when faced with semantics-aware transformations.

Fig. 3. Standard Deviation for LogMap, EA-
GLE, OtO, for 10K and semantics-aware test
cases. The standard deviation of the gold stan-
dard is also shown (column Lance).

OtO gives very good precision re-
sults for the value-based test cases
but faces many issues concerning
all the others as in some cases is
not able to find any match (recall
is below 0.1). EAGLE also reacts
as expected. The algorithm per-
forms well when faced with syn-
tactic transformations. Increasing
changes to the topology of the un-
derlying RDF graphs (the case of
semantics-aware test cases) leads to
a degradation of the performance
of the algorithm. The performance
of EAGLE is not consistent since it
is non-deterministic and uses unsu-
pervised learning. We ran EAGLE
thrice for both datasets. The sim-
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ilarity scores as well as the standard deviation of the results returned by the
instance matching systems provide insights on the ability of the systems to
address the challenges proposed by Lance benchmarks. Figures 3 and 4 give
the standard deviation and similarity scores for all three systems and for the
semantics-aware test cases in the case of the 10K triples dataset. They also show
the corresponding quantities for the benchmark itself for comparison. We can see
that LogMap reports scores and standard deviation close to the ones given by
Lance verifying that it can address the “difficult” test cases. EAGLE and OtO
report lower similarity scores and standard deviation, meaning that they cannot
address the challenges imposed by the, harder, semantics-aware test cases. In
summary, we conclude that Lance is able to determine the capabilities of the
IM systems and also reflect the difficulty of the test cases through the weighted
gold standard.

Fig. 4. Similarity score distribution for LogMap, EAGLE, OtO, for 10K and semantics-
aware test cases. The similarity score of the benchmark is also shown (column Lance).

Scalability We also studied the scalability of the test case generator by mea-
suring the runtime required by our framework to generate the target datasets
for all different test cases, for various dataset sizes and percentages of source
instances to be transformed. This time also includes the time required to re-
trieve the source instances from the RDF repository as previously discussed. We
observe that the time for the data transformation is linear to the dataset size.

5 Conclusions

This paper presents Lance, an instance matching benchmark generator focus-
ing on benchmarking instance matching systems for Linked Data. Lance is a
domain-independent, highly modular and configurable generator that can accept
as input any linked dataset and its accompanying schema to produce a target
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dataset implementing matching tasks of varying levels of difficulty. Lance is
the first Linked Data benchmark generator to support complex semantics-aware
test cases that take into account expressive OWL constructs, in addition to the
standard test cases related to structure and value transformations. The former
type is largely absent in previous efforts. Lance also produces a provably cor-
rect gold standard that allows a more fine-grained analysis of the performance
of instance matching tools. This is in contrast to other benchmarks which are
either based on manually generated gold standards, or based on gold standards
produced semi-automatically (and are thus limited by the quality of the used ap-
proach, often producing inaccurate gold standards). Moreover, Lance proposes
the use of a weighted gold standard which records the similarity between a pair
of matched instances as well as information on the type of transformation that
was used to produce said match. This motivates the developers of IM systems to
try benchmarks of varying levels of difficulty, and helps them identify the weak
points of their systems, explain benchmark performance and more easily debug
them. In the future, we plan to extend Lance to work with spatial and stream-
ing data; we also intend to work with datasets that include blank nodes thereby
creating more challenging tasks for instance matching tools. Last, we plan to
evaluate the frequency of appearance of the various types of transformations in
existing datasets that would help us create realistic test cases.
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