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Abstract The growing volume, variety and complexity of data being collected for
scientific purposes presents challenges for data integration. For data to be truly use-
ful, scientists need not only to be able to access it, but also be able to interpret and
use it. Doing this requires semantic context. Semantic Data Integration is an active
field of research, and this chapter describes the current challenges and how existing
approaches are addressing them. The chapter then provides an overview of several
active research areas within the semantic data integration field, including interactive
and collaborative schema matching, integration of geospatial and biomedical data,
and visualization of the data integration process. Finally, the need to move beyond
the discovery of simple 1-to-1 equivalence matches to the identification of more
complex relationships across datasets is presented and possible first steps in this
direction are discussed.

1 An Important Challenge

The world around us is an incredibly complex and interconnected system – one
filled with phenomena that cannot be understood in isolation. At the same time, the
volume and complexity of the data, theory, and models established to explain these
phenomena have led scientists to specialize further and further, to the point where
many researchers now spend their entire careers on extremely narrow topics, such as
the characteristics of one particular class of star, or the habits of a single species of
fish. While such specialization is important to increase humanity’s depth of knowl-
edge about many subjects, some of the greatest leaps forward in our understanding
come at the intersection of traditional scientific disciplines. These advances require
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the integration of data from many different scientific domains, and this integration
must be done in a way that preserves the detail, uncertainty, and above all the context
of the data involved.

Preserving these properties can be achieved through semantic data integration,
a process through which semantically heterogeneous data can be integrated with
minimal loss of information. This type of data integration is particularly relevant in
domains where data models are diverse and entity properties are heterogeneous. For
instance, health information systems, and in particular medical records employ a di-
versity of vocabularies to describe relevant entities. Health care facilities routinely
use different software providers for different aspects of their functioning (outpatient,
emergency, surgery, laboratory, billing, etc), each with their own set of vocabularies
that many times employ different labels and assign different properties to the same
entities. Moreover, the controlled vocabularies many times lack the information nec-
essary to understand the data they describe. For instance, if during an emergency
room visit the patient is assigned a primary diagnostic of ”Acute upper respira-
tory infection” using ICD-10, how can we understand that the results of the lab test
”Virus identified in Nose by Culture” coded using LOINC, are relevant for the diag-
nosis? Semantic data integration can provide the means to achieve the meaningful
integration of data necessary to support more complex analysis and conclusions.

Unfortunately, semantic data integration is a challenging proposition, particularly
for scientific data. Many obstacles stand in the way of synthesizing all of the data
about an entity. One of the most obvious of these is accessing the data in the first
place. Much of the data underpinning past and present scientific publications is not
readily accessible – it exists only in isolated databases, as files on a grad student’s
computer, or in tables within PDF documents. Moreover, there can be various ob-
stacles to retrieving this data, particularly due to a lack of consistency. For instance,
some repositories might be accessible via websites or structured query mechanisms
while others require a login and use of secure file transfer or copy protocols. Finan-
cial and legal concerns also inhibit data integration. Some data might be stored in
proprietary databases or file formats that require expensive software licenses to read,
and licenses indicating what users are allowed to do with the data can be missing
or restrictive, resulting in legal uncertainty. These types of concerns led to a push
towards Linked Open Data, which is described in the next section.

Of course, accessibility is only the first step to semantic data integration. For data
to be truly useful, scientists need to be able to interpret and use it after they acquire
it. Doing this requires semantic context. By semantic context, we mean the situation
in which a term or entity appears. As a simple example, ’chair’ would be considered
a piece of furniture if it was seen in close proximity to ’couch’ and ’table’, but as
a person if used in conjunction with ’dean’ and ’provost’. Similarly, if temperature
is included in a dataset that contains entirely Imperial units, it might be assumed to
be in Fahrenheit rather than Celsius, particularly if the values correspond to what
might be expected (e.g. values near 98 degrees for body temperatures). In relational
databases and spreadsheets, semantic context is sometimes lacking because impor-
tant information about what the various data fields mean and how they relate to one
another is often implicit in the names of database tables and column headers, some



Semantic Data Integration 3

of which are incomprehensible to anyone other than the dataset’s creator. What is
needed is a way to express the semantic connections between different pieces of
data in a way that is expressive enough to capture nuanced relationships while at the
same time formalized and restrictive enough to allow software as well as humans to
make inferences based on the links. Ontologies, described in Section 1.2, have been
proposed for this purpose.

Even when data is made accessible by following the Linked Open Data prin-
ciples and is organized according to a machine-readable ontology, challenges still
remain. An ontology imposes order on a domain of interest, but order is in the eye
of the beholder: if five different publishers of the same type of data were tasked to
develop an ontology with which to structure their data, the result would very likely
be five different ontologies. One obvious approach is to try to get all data publishers
from a domain to agree on a single ontology. This tends to be unfeasible in many
instances, for example due to a provider’s data causing a logical inconsistency when
it is shoe-horned into the agreed upon ontology. A “one ontology to structure them
all” approach also conflicts with the inherently distributed paradigm championed by
the Semantic Web. An alternative to this strategy is to allow data providers to create
or choose whatever ontology best suits their data, and then to establish links that
encode how elements of this ontology relate to those within other ontologies.

Establishing semantic links between ontologies and the data sets that they or-
ganize can be very difficult, particularly if the datasets are large and complex, as
is routinely the case in scientific domains. The fields of ontology alignment and
co-reference resolution seek to develop tools and techniques to facilitate the identi-
fication of links between datasets. Scientific datasets are particularly challenging to
align for several reasons. Perhaps most obviously, such datasets can be extremely
large, often over a petabyte of data, which is more than enough to swamp most ex-
isting data integration techniques. Additionally, scientific datasets generally have a
spatiotemporal aspect, but current alignment algorithms struggle with finding rela-
tionships across this type of data because of the variety of ways to express it. For
example, spatial regions can be represented by geopolitical entities (whose borders
change over time), by the names of nearby points of interest, or by polygons whose
points are given via latitude and longitude. Similarly, issues pertaining to measure-
ment resolution, time zones, the international dateline, etc. can confuse the compar-
ison of timestamps of data observations. Furthermore, scientific datasets frequently
involve data of very different modalities, from audio recordings of dolphin calls to
radar images of storms, to spectroscopy of cellular organisms. Such data is also col-
lected at widely differing scales, from micrometers to kilometers. And oftentimes
the data that needs to be integrated is from domains with only a small degree of
semantic overlap, as is the case with, for example, one dataset containing informa-
tion about NSF project awards and another with the salinity values for ocean water
collected during oceanography cruises, several of which were funded by NSF.

We have identified a number of challenges in semantic data integration, namely:
the accessibility of the data; providing data with semantic context to support its
interpretation; and the establishment of meaningful links between data. These chal-
lenges are expanded in the following subsections. Section 2 addresses several state
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of the art topics in semantic data integration, while section 3 lays out the path for-
wards in this area.

1.1 Linked Data

Tim Berners-Lee originally envisioned a world wide web that is equally accessible
to both humans and computers [5]. Unfortunately, even after several decades we
have yet to make this vision a reality. When we look at a webpage today, say, one
that presents data about the publications of a group of researchers, we are likely
to find that data within an HTML table with columns containing headers such as
“Researcher”, “Title”, “Journal”, “Publication Year”, etc. If we additionally want
to know which researchers are publishing in journals with a high impact factor, we
would need to look for the journal’s title in the appropriate column of the table,
search for the journal’s website using a search engine, and find the impact factor on
the journal’s website by looking for it (hopefully) on the journal’s homepage. This is
tedious for humans, but extremely difficult for computers. For example, recognizing
that the table contains information about researchers’ publications and identifying
the meaning of each of the columns requires background knowledge and natural
language processing, as does realizing that a journal’s impact factor is not in the
table. Pulling the journal’s title out of the HTML table and submitting it to a search
engine requires writing code that depends on the format of the table and the API
of the search engine, both of which are likely to break if the website or search
engine provider makes any changes to those resources. After the query has been
made, determining if a particular query result actually contains the impact factor for
the journal in question again requires natural language processing. Furthermore, the
provider of the data concerning these researchers’ publications may not consent to
its use for the type of analysis we seek to perform.

Publishing information as linked data alleviates many of these challenges. Linked
data builds upon existing web standards such as HTTP, RDF, and URIs to create web
pages that are machine-readable and, ideally, machine-understandable. According to
Berners-Lee1, the four rules of linked data are:

1. Use URIs to denote things.
2. Use HTTP URIs so that these things can be referred to and looked up (“derefer-

enced”) by people and user agents.
3. Provide useful information about the thing when its URI is dereferenced, lever-

aging standards such as RDF and SPARQL.
4. Include links to other related things (using their URIs) when publishing data on

the Web.

Linked data is generally published as RDF subject-predicate-object triples. For
instance, the following triple indicates an article with the URI cspublications.org/TheSemanticWeb
was written by Tim Berners-Lee.

1 http://www.w3.org/DesignIssues/LinkedData.html
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<www.w3.org/People/Berners-Lee>
swrc:author
<cspublications.org/TheSemanticWeb> .

Similarly, the triples below specify that the article is titled “The Semantic Web”,
that it was published in 2001, and that the journal it was published in has the URI
cspublications.org/ScientificAmerican.

<cspublications.org/TheSemanticWeb>
swrc:title
"The Semantic Web"@en .

<cspublications.org/TheSemanticWeb>
swrc:year
"2001"ˆˆxsd:date .

<cspublications.org/TheSemanticWeb>
swrc:journal
<scientificamerican.com> .

The expectation is that following the URI scientificamerican.com allows us to
learn more information about the journal in which this article was published even if
that information comes from an entirely different data source.

Publishing data as RDF rather than HTML separates information about data’s
meaning and context from information about how to format it for presentation. This
enables software applications to easily access the data. Additionally, it is possible to
express the terms of use for a data set as linked data as well, thus allowing software
agents to read and respect these constraints. While this detail is often overlooked,
legal issues are often as big of a hindrance to data re-use as technical concerns. For-
tunately, addressing this issue is not difficult. Many commonly used licenses have
already been encoded in RDF, and datasets can simply add the appropriate triple to
refer to them. For example, the triple below indicates that this dataset is available
according to the conditions of version 3.0 of the Creative Commons “Share-Alike”
license.

<cspublications.org/publications.rdf>
cc:license
<http://creativecommons.org/licenses/by-sa/3.0/> .

A very large amount of data has already been published as linked open data:
according to the most recent survey, there are hundreds of linked datasets, which
contain billions of facts about a wide variety of subjects, from music, to biology,
to social networks [93]. The website www.linkeddata.org contains pointers to many
such datasets. As the linked open data cloud continues to grow, the ability of data
providers to contextualize their data by linking it to already-existing data will en-
courage the creation of more linked data, creating a virtuous feedback loop.
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Keeping with our example of medical records, recent work has transformed
a clinical datawarehouse into a semantic clinical datawarehouse by applying the
Linked Data principles [78]. This enabled clinical data to be integrated with pub-
licly available biomedical repositories, enabling for instance the identification of
disease genes.

1.2 Ontologies

Tom Gruber, one of the early voices on knowledge representation (and the creator
of Siri), defines an ontology as a “specification of a conceptualization.” He elabo-
rates that an ontology defines the concepts and relationships within a domain [35].
Figure 1 shows a snippet of the Semantic Web for Research Communities (SWRC)
ontology [105]. The subset of entities shown represent key concepts within the pub-
lication domain. The entities shown in ovals, such as Person and Publication are
called classes. A class represents a grouping of objects with similar characteristics.
Classes are often arranged in a hierarchy using subclass relationships. For instance,
in our example Article and Proceedings are both subclasses of Publication (i.e. ev-
ery Article is a Publication but not every Publication is an Article). An instance
(also sometimes called an individual) is a particular object. An instance has a type
that is some class within the ontology. For example, an instance of type Article
may be Weaving the Semantic Web and an instance of type Person may be Tim
Berners-Lee. This is somewhat analogous to classes and instances of those classes
in object-oriented programming languages. Relationships between instances, such
as hasName and author, are called properties. All properties are directed binary re-
lations that map an instance with a type from the domain to something in the range.
These are represented as labeled arrows in Figure 1, with the arrow pointing from
the domain to the range. Properties that map an instance to another instance (e.g.
editor, which maps an instance of type Person to an instance of type Proceedings)
are object properties, whereas properties that map an instance to a literal value (e.g.
year, which maps an instance of type Publication to a date value) are datatype prop-
erties. Common data types include integers, doubles, strings, and dates. Both object
properties and data properties must involve an instance. A third type of property,
called an annotation property, can be used to describe relationships between any
types of entities (e.g. instances, classes or other properties).

Critically, an ontology should not require an agent, either human or computer, to
understand the entity labels in order to leverage the ontology for data publication
or consumption. Labels are human-centric, and the underlying goal of the Semantic
Web is to put humans and machines on equal footing. Instead of relying on labels to
convey meaning, the ontology designer should constrain the possible interpretation
of entity labels through judicious use of logical axioms. For example, DBPedia,
the linked data version of Wikipedia, contains a property called hasGender. The
vast majority of uses of this property are to express a person’s gender. However,
because the domain and range of this property are very vague (i.e. any T hing can
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Fig. 1 A snippet from the Semantic Web for Resource Community ontology.
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have a gender), some of the uses of hasGender are very different. For instance,
DBPedia asserts that the name “Alexander” hasGender “Alexandria” and that a sec-
ondary school in England hasGender “unisex education.” This can cause difficulty
for software applications that are attempting to use the hasGender property. Misun-
derstandings can be avoided if the axioms are added to the ontology to constrain the
possible meaning of the terms it uses. In this case, the domain of hasGender could
be changed to be something like LivingT hing, as shown below.

dbpedia:hasGender rdfs:domain dbpedia:LivingThing .

Constraints on ontology entities expressed through axioms, together with in-
stance data published relative to those entities, enables a piece of software called
a reasoner to infer additional facts that are not actually in the data. For example,
if the dataset contained the fact that Tim Berners-Lee wrote “The Semantic Web”
and the knowledge base contained an axiom stating that the domain of the prop-
erty wrote is Person, a reasoner would be able to infer that Berners-Lee is a person,
even if that fact was not explicitly in the knowledge base. A query to return all of
the Persons in the knowledge base would then correctly include Tim Berners-Lee
among the results. This is accomplished without any natural language processing,
which can be error-prone in many situations.

Because constraints make the meaning of entity names and relationships more
precise, they hold great potential to facilitate accurate data integration. Unfortu-
nately, many existing ontologies do not contain significant numbers of axioms.
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However, as we will see in the next section, many existing data and schema inte-
gration systems are already capable of leveraging such axioms when they do exist.

There is a balance to be struck here: too few axioms can lead to many different
interpretations of entities, making the ontology less useful; however, too many ax-
ioms can constrain the ontology so much that is only applicable in a narrow set of
circumstances. For instance, it may seem reasonable to create an axiom that man-
dates that a LivingT hing has exactly one gender, this is not the case for some beings.
Ontologies are often encoded in the Web Ontology Language (OWL) [69]. Besides
property domain and range and cardinality constraints, OWL allows one to state that
two entities are equivalent or disjoint, that a property is reflexive, symmetric, tran-
sitive, or functional, or that one property is the inverse of another. All of this infor-
mation: classes, properties, and axioms that restrict their interpretation, is called the
schema, or T-box (for terminology), of the ontology. Conversely, the instance data,
or A-box (for assertions), contains assertions about individuals using data from the
T-box.

A more formal and extensive treatment of ontology design and representation can
be found in [41]. Many ontologies exist today. Some of these, such as the Suggested
Upper Merged Ontology (SUMO) [82] and the Descriptive Ontology for Linguistic
and Cognitive Engineering (DOLCE) [32] begin modelling the world at the high-
est level of abstraction and working towards more detail. The top-level entities in
DOLCE, for instance, are Entity, Endurant, Perdurant, and Abstract. There are
also numerous domain-specific ontologies, such as the Gene Ontology, which mod-
els the structure and molecular processes of eukaryotic cells [2], and NASA’s Se-
mantic Web for Earth and Environmental Terminology (SWEET) ontology [86]. In
the clinical domain, many providers have begun migrating from simple terminolo-
gies (such as ICD-10) to more complex ones that have an ontological foundation
(such as SNOMED-CT)[14]. Lately many researchers have also begun to publish
ontology “snippets,” sometimes referred to as ontology design patterns, that model
much more constrained topic areas. The website ontologydesignpatterns.org cur-
rently has dozens of ontology snippets, including models of a Hazardous Situation,
a Species Habitat, and a Chess Game.

1.3 Ontology and Data Alignment

While the amount of linked data available on the Semantic Web has grown contin-
ually for more than a decade, the links between different datasets have not gown at
the same rate. These links provide the context that makes the data more useful. The
fields of ontology and data alignment attempt to discover links between datasets in
an automatic or semi-automatic way. Ontology alignment systems tend to focus on
finding relationships between schema-level entities, while co-reference resolution
systems attempt to identify cases in which the same individual is referred to via
different URIs.
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Fig. 2 A subset of the scientific publications ontology from the MAPEKUS project.
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1.3.1 Ontology Alignment

Engineering new ontologies is not a deterministic process – many design decisions
must be made, and the designers’ backgrounds and the application they are target-
ing will influence their decisions in different ways. The end result is that even two
ontologies that represent the same domain will not be the same. They may use syn-
onyms for the same concept or the same word for different concepts, they may be
at different levels of abstraction, they may not include all of the same concepts, and
they may not even be in the same language. And this is in the best case. In real-world
datasets there are often problems with missing information, inconsistent use of the
T-box when describing individuals, and logically inconsistent axioms. The goal of
ontology alignment is to determine when an entity in one ontology is semantically
related to an entity in another ontology (for a comprehensive discussion of ontology
alignment, including a formal definition, see [24]).

An alignment algorithm takes as input two ontologies and produces a set of
matches consisting of a URI specifying one entity from each ontology, a relation-
ship, and an optional confidence value that is generally in the range of 0 to 1, in-
clusive. For example, Figure 2 shows a second ontology describing publications.
This ontology was created as part of the MAPEKUS project.2 An alignment system
given the ontologies in Figures 1 and 2 might produce matches including:

mapekus:Person, swrc:Person, =, 1.0

2 http://mapekus.fiit.stuba.sk
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Fig. 3 General structure of an ontology alignment system.
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mapekus:Publication, swrc:Publication, =, 0.9
mapekus:references, swrc:cites, =, 0.8
mapekus:IndexTerm, swrc:Topic, <, 0.6

Note that matches can relate any type of entities, including classes (e.g. Person)
and properties (e.g. references, cites). Additionally, a match can indicate a vari-
ety of relationships. The most common are to state that two things are equivalent
(e.g. all mapekus:Publications are swrc:Publications and all swrc:Publications are
mapekus:Publications) or that one subsumes the other (e.g. all mapekus:IndexTerms
are swrc:Topics but all swrc:Topics are not mapekus:IndexTerms). Though not nec-
essary, in practice alignments are often interpreted under the closed world assump-
tion, in the sense that any entity pairs not mentioned in an alignment are assumed to
have no relationship.

Many alignment systems share a common general organization, shown in Figure
3. Because ontologies can contain millions of entities, it is often infeasible to com-
pare every entity in one ontology to every entity in the other. Therefore, alignment
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systems sometimes employ a filtering or hashing step to determine which entities to
compare [20, 40]. Alignment systems typically use a combination of three different
approaches to evaluate entity similarity: syntactic, semantic, and structural similar-
ity metrics. Entity similarity is related to how much two entities have in common;
it can be thought of as a measure of the degree one class, property, or individual
could be used in place of another. Syntactic metrics compare entities from each of
the ontologies to be aligned based on strings associated with the entities. The strings
are generally the entity label, but can also include comments or other annotations of
the entity. Semantic similarity metrics attempt to use the meanings of entity labels
rather than their spellings. External resources such as thesauri, dictionaries, ency-
clopedias, and web search engines are often used to calculate semantic similarity
[46, 107]. Structural techniques consider the neighborhoods of two entities when
determining their similarity. For instance, two entities with the same superclass that
share some common instances are considered more similar than entities that do not
have these things in common. Graph matching techniques are often used for this
[31, 18]. An alignment system may use zero or more of each type of similarity met-
ric. The values from multiple approaches may be combined to form a single measure
of similarity, or they may be used in a serial fashion to filter potential matches down
to the most likely candidates. At some point, a final list of related entities is gen-
erated, frequently by including any matches with a confidence (similarity) value
higher than some threshold. Additionally, alignment systems may use some form of
inconsistency checking and repair after the matching process in order to ensure a
merged ontology produced using the alignment is logically consistent [62, 90, 83].

Each year since 2005, the Ontology Alignment Evaluation Initiative has invited
researchers to compare the performance of their alignment systems on a set of
benchmark tasks. Current alignment systems have become very proficient at finding
1-to-1 equivalence relationships between classes and instances (the type of matches
contained within the benchmarks). In fact, the top-performing systems now attain
a 0.75 f-measure on one of the OAEI test sets that is designed to reflect real-world
matching tasks [10]. This is nearing the level of consensus that humans familiar with
ontology design have for alignment tasks involving this test set [12]. Unfortunately,
the performance on finding relationships between properties is not nearly as good as
that for classes and instances [13]. Additionally, there is some evidence that most of
the accuracy of existing alignment systems is due to basic string similarity measures
[11], which raises some concern that further gains may be more difficult to achieve.

1.3.2 Coreference Resolution

Coreference resolution algorithms attempt to determine when the same instance (i.e.
individual) is referred to using different URIs. Note that because the term “ontology
alignment” can either refer to aligning an entire ontology (the T-box and the A-box)
or just the T-box, this section uses the term “schema alignment system” to refer to
something that attempts to map only the T-box of an ontology.
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Coreference resolution differs from schema alignment in several ways. One key
difference is that the relationships sought by coreference resolution algorithms are
only 1-to-1 equivalences: two individuals are either the same or distinct, whereas
schema elements involve sets of individuals and can therefore have all of the tra-
ditional relationships that exist between sets, including subsumption, disjointness,
and partial overlap. Another important contrast between coreference resolution and
schema alignment is that the A-box of an ontology is often an order of magni-
tude larger than the T-box. This makes efficiency concerns even more important
for coreference resolution algorithms than for schema alignment systems. Another
distinction is that, while there is interplay in both directions between coreference
resolution and schema alignment, it can be argued that coreferences generally place
more constraints on schema alignments than the other way around. This is because
many existing schema alignment systems employ some extensional comparators
in the mapping process, i.e. they determine the likelihood that two schema ele-
ments are related by the degree of overlap between their instances. For example,
if it is determined that data1 : Tim Berners Lee in one dataset is equivalent to
data2 : TimothyLee in another dataset, and data1 : Tim Berners Lee is a data1 :
Scientist while data2 : TimothyLee is a data2 : ComputerProgrammer, a schema
alignment algorithm is more likely to conclude that the classes data1 : Scientist and
data2 : ComputerProgrammer are related in some way (i.e. that they are not dis-
joint). This is done for classes in [22] and for properties in [36]. Because equality
cannot be defined extensionally for individuals, questions about what it fundamen-
tally means for two things to be identical tend to arise in coreference resolution re-
search [37]. Coreference resolution can be thought of as data de-duplication, which
has been an area of research for decades. For instance, there has been extensive re-
search regarding recognizing the duplicate records, stretching back to at least 1969
[30]. Many of the approaches currently employed to resolve coreferences on the
Semantic Web are adapted from techniques that were established decades ago in
database integration systems. A good survey of such techniques can be found in
[21].

Of course, there are obviously differences between databases and linked data
published according to an ontology. The most obvious of these is that databases op-
erate under the “closed world” assumption, meaning that if something is not present
in the database, it is assumed not to exist. In contrast, the Semantic Web uses an open
world assumption. Also, as Castano and his colleagues point out in [9], the structure
of a linked dataset can differ greatly from a relational database that represents the
same domain due to the expressiveness of ontology specification languages such as
OWL compared to database table definition and column constraint capabilities. The
more complex relationships expressible in ontologies may convey implicit knowl-
edge that can be inferred by a reasoner. This additional information is not generally
available when integrating two databases. In terms of focus specifically on integrat-
ing linked data, schema alignment has more of a research history than coreference
resolution. For example, the annual Ontology Alignment Evaluation Initiative has
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existed since 2005, but it has only had a track dedicated to evaluating performance
on coreference resolution tasks since 2009.3

The general decisions made by the designer of a coreference resolution system
are: what instances to compare, how to compare them, and how to determine if the
result of that comparison implies that the two instances are equivalent.

As mentioned previously, there are generally many more instances in a dataset
than schema entities. As a result, it is not considered feasible to compare every in-
stance in one dataset to every instance in the other in order to determine if they
are the same. Instead, some method of deciding whether two instances are “close
enough” that they are worth comparing must be established. The choice of this
method reflects a trade-off between recall and utility, i.e. an overly zealous filter-
ing algorithm may miss some equivalences, while a conservative filtering approach
may cause the system to take a long time to generate results.

If the filtering step has decided that two instances are close enough to warrant
further scrutiny, the algorithm will compare them based on a selection of features.
In most current coreference resolution systems, these features are either property
values alone or property values together with property names. There is also a ques-
tion of how deep within an instance’s semantic neighborhood to go when extracting
features. For an example, in Figure 4 there are two instances, from different datasets.
A coreference resolution algorithm could either compare the values only (e.g. com-
pare “The Semantic Web” and “Tim Berners-Lee” from the instance on the left with
“The Semantic Web”, “Timothy” and “Berners-Lee” from the instance on the right),
or it could compare both the values and the property names. In the latter case, for
example, rather than an exact match on the title, the similarity would be slightly less
than perfect because the property for the title of an article is called “title” in the left
instance and “hasTitle” in the right.

Regardless of what features are compared, the most common method for com-
paring them is via string similarity metrics. This is because even when a property
is a non-string datatype, such as a date or URL, it is often expressed as a string in
datasets. Different string metrics are employed, primarily depending on the length
of the strings to be compared. A survey of string metrics commonly used by these
systems is provided in [11]. Note that global metrics, which based decision on char-
acteristics of the overall distribution of values in the dataset, are not generally fea-
sible due to the size of the A-box, but they may be employed based on a random
selection of the A-box. A decision must also be made on how much to weight each
feature. Various methods have been proposed for this, including both supervised
[87] and unsupervised [73] machine learning approaches.

Finally, the coreference resolution system must take the outcome of a compar-
ison of two instances and make a decision on whether or not those instances are
equivalent. This is often done by specifying thresholds and other parameters of the
algorithm. This is a somewhat neglected area of research – it is common for re-
searchers to report that these values were “determined empirically” for the particular
datasets being aligned. Among the small amount of work on this topic is an explo-

3 http://oaei.ontologymatching.org
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Fig. 4 A potential coreference
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ration by Paulheim and his colleagues of using interactive techniques to configure
the threshold by asking a user targeted questions regarding the validity of potential
matches with confidence values on either side of the current threshold and updating
it accordingly [81].

2 Current State-of-the-Art

In the face of the performance plateau on current alignment benchmarks, many re-
searchers have created innovative new alignment techniques that focus on various
aspects or subproblems under the general umbrella of semantic data integration.
This section explores a selection of this current work.

2.1 Interactive and Collaborative Approaches

While the performance of automated alignment systems is becoming quite good for
certain types of mapping tasks, in practice no existing system generates alignments
that are completely correct. Alignments tend to either lack some correct mappings,
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contain some incorrect mappings, or both. As a result, there is significant ongoing
research on alignment systems that allow users to contribute their knowledge and
expertise to the mapping process. These systems exist on a spectrum ranging from
entirely manual approaches to semi-automated techniques methods that ask humans
to chime in only when the automated system is unable to make a definitive decision.
Because entirely manual alignment is feasible only for small datasets, most cur-
rent research in this area focuses on semi-automated approaches. In contrast to fully
manual approaches, semi-automated systems interact with the user(s) only intermit-
tently, and then attempt to leverage this human-supplied knowledge to improve the
scope and quality of the alignment. Interactive systems of this type differ in terms of
what questions they ask users and how they make use of the responses. In addition
to being judged on precision (how many of the mappings they generate are correct)
and recall (how many of the correct mappings they generate), these systems are also
generally gauged based on how much effort they require from the humans interact-
ing with the system, in terms of the number of questions they must answer and the
difficulty inherent in coming up with each answer.

An obvious approach to leveraging user input in an alignment system is to first
use an automated approach to generate an alignment and then ask the user to verify
(a subset of) the matches that were created. Invalid matches can then be pruned
from the final alignment. ServOMBI implements this approach [52]. Clearly, this
approach is capable of improving precision, particularly if the user is asked about
matches that the automated system is most in doubt about, perhaps evidenced by
confidence values near the threshold. However, since the user involvement comes
at the end of the alignment process, this method cannot improve recall over what
the automatic component achieves. On the other hand, this approach is suitable for
adding an interactive component to any matching system, because it only require
the end product of the tool.

A variation of this technique is to move the interactive questioning to within the
matching process rather than conducting it at after the fact. This can have a very
large impact on both precision and recall because most alignment system will only
match an entity to one other entity, so any match that is incorrect may be doubly
bad by causing the correct match to be missed. Furthermore, when a match is found,
many algorithms use a technique called similarity flooding [63] to thoroughly ex-
plore the neighborhoods of both of the entities involved, sometimes with relaxed
match criteria on the theory that things related to equivalent entities are more likely
to also be equivalent. The general idea behind similarity flooding is that two entities
that are connected to similar things are most likely similar themselves. For exam-
ple, assume there is a class in one ontology called Man that is a subclass of Human
and the domain of a property called hasAge, and there is class in a second ontol-
ogy called Male that is a subclass of Person and the domain of a property called
hasYears. If Human and Person and hasAge and hasYears have already been found
to be highly similar, similarity flooding will increase the similarity value between
Man and Male. When using similarity flooding, an incorrect decision during the
matching process can cascade to cause a host of other incorrect decisions.
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Several interactive systems attempt to ask the user for guidance at critical deci-
sion points (and only these points) during the mapping process in order to maximize
their accuracy. One such system is LogMap 2, which arranges all potential mappings
that it is unsure about in partial order based on the value of similarity metrics em-
ployed by the system. Starting at the beginning of this list, the system asks the user
whether each potential mapping is valid, until the end of the list is reached or the
user halts the process. When a user approves a match for an entity, any other poten-
tial matches for that entity are discarded. Any matches suggested by the algorithm
that are logically inconsistent with the user-approved match are also discarded. Ex-
perimental results indicate that this interactive technique improves performance as
long as the user responds accurately at least 70% of the time [50].

The AgreementMaker alignment system takes a different approach to integrating
user feedback into the alignment process. Rather than choosing which mappings to
ask the user about based on a single or aggregate similarity score, AgreementMaker
asks about potential mappings on which its constituent matchers disagree. Specifi-
cally, the system uses four syntactic matchers, a structural matcher, and a semantic
matcher (according to the terminology presented in Section 1.3). If the matchers are
divided on a particular mapping, the user is asked to provide a decision. This de-
cision is then used to update the certainty values on other potential mappings with
the same pattern of matcher agreement/disagreement, and this update is considered
when deciding what question to ask the user next. In this manner the system is able
to significantly improve the alignment accuracy while asking relatively few ques-
tions overall [16].

The OAEI established an interactive matching track in 2013. Participating sys-
tems can make a programmatic call to an “oracle” that consists of a pair of URIs
and a relation (currently limited to either equivalence or subsumption) and receive
a true or false reply indicating whether or not the relation holds between the two
entities4. Beginning in 2015, the track included tests with an imperfect oracle, i.e.
the oracle was either correct all of the time, correct 90% of the time, 80% of the
time, or 70% of the time. Also in 2015, the alignment tasks were expanded from on-
tologies related to conference organization to other tasks, including mapping larger
biomedical ontologies. Four alignment systems have participated in this track each
year (though not always the same four), and the results have improved annually. In
2013, the average performance of the system when interactions were possible was
actually 3% worse in terms of f-measure than in a fully automatic setting. The best
system performed 8% better, for an f-measure of 0.72. Two years later, the average
performance was 20% better with interactions, and the best system performed 11%
better, for an f-measure of 0.818. The number of requests to the oracle required to
achieve these results has also decreased markedly since the first year [34, 19].

While the introduction of the interactive alignment track to the OAEI has clearly
been productive in terms of encouraging research in this area and driving the im-
provement of interactive alignment systems, this is not a perfect approach to eval-
uating such systems. In particular, the type of queries that systems can pose to the

4 http://oaei.ontologymatching.org/2013/interactive/index.html
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oracle is limited to asking yes or no questions regarding a particular match. One
can easily think of many other types of questions that would be worthwhile, such as
how certain a user is that a particular match is correct or how a user arrived at their
decision on the correctness of a match. As Paulheim and his colleagues point out,
the questions that are asked of a user and the way in which they are asked impact
the size of the burden placed on the user. For instance, asking a user what relation-
ship holds between two entities (or what other entity is equivalent to a given entity)
is likely a more difficult question for a user to answer than whether a particular
relationship holds [81]. Others have conducted more extensive evaluations of in-
teractive matching systems for the bioinformatics domain, including usability, time
requirements, and user satisfaction [55]. This type of user study is time consuming
however, and it has not been performed in a standardized way for a large number of
general matching systems.

Of course, the issue with the above methods is that ontology engineers and do-
main experts are generally very busy people, and they may not have much time
to devote to manual or semi-automated data integration projects. As a result, some
ontology alignment researchers have turned to generic large-scale crowdsourcing
platforms, such as Amazon’s Mechanical Turk.

Amazon publicly released Mechanical Turk in 2005. It is named for a famous
chess-playing “automaton” from the 1700s. The automaton actually concealed a
person inside who manipulated magnets to move the chess pieces. Similarly, Ama-
zons Mechanical Turk is based on the idea that some tasks remain very difficult for
computers but are easily solved by humans. Mechanical Turk therefore provides a
way to submit these types of problems, either through a web interface or program-
matically using a variety of programming languages, to Amazons servers, where
anyone with an account can solve the problem. In general, this person is compen-
sated with a small sum of money, often just a cent or two. The solution can then be
easily retrieved for further processing, again either manually or programmatically.
While there are few restrictions on the type of problems that can be submitted to
Mechanical Turk, they tend towards relatively simple tasks such as identifying the
subject of an image, retrieving the contents of receipts, business cards, old books, or
other documents that are challenging for OCR software, transcribing the contents of
audio recordings, etc. As of 2010, 47% of Mechanical Turk workers, called Turk-
ers, were from the United States while 34% were from India. Most are relatively
young (born after 1980), female, and have a Bachelors degree [44]. It is possible
for individuals asking questions via Mechanical Turk (called Requesters) to impose
qualifications on the Turkers who answer them. For instance, Requesters can specify
that a person lives in a particular geographic area, has answered a given number of
previous questions, has had a given percentage of their previous answers judged to
be of high quality, or pass a test provided by the Requester. In addition, Requesters
have the option to refuse to pay a Turker if they judge the Turkers answers to be of
poor quality.

A group of researchers from Stanford University has recently published several
papers on using Mechanical Turk to verify relationships within biomedical ontolo-
gies [67, 68, 66, 76]. Their results show that general purpose crowdsourcing plat-
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Fig. 5 An engraving of the original Mechanical Turk by Karl Gottlieb von Windisch. The Me-
chanical Turk was a famous chess-playing “automoton” from the 1700s that was actually operated
by a human nestled inside the cabinet. It is the namesake of Amazon’s Mechanical Turk platform,
which allows developers to harness a plethora of human workers to solve tasks that remain difficult
for computers.

forms can be used to answer questions about the relationships between ontology
entities, even if the domain modeled by the ontology is quite scientific. Mechanical
Turk has also been used to validate existing alignments [12, 13]. Additionally, there
is an interactive alignment system called CrowdMap that uses Mechanical Turk to
generate alignments between two ontologies [92].

All of these systems reported good results, though some were hampered by scam-
mers that answered questions randomly or with some other time-saving strategy in
order to maximize their profit-to-effort ratio [92, 76]. Additionally, there is some
indication that the way in which questions about potential mappings are asked may
have a large impact on the utility of the general crowdsourcing approach. In the work
described in [13], questions about potential equivalent properties were presented in
the following form: “Does property label A mean the same thing as property label
B?” Respondents were instructed to choose one of four options: they mean the same
thing, one is a more general or more specific term than the other, they are related
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in some other way, or there is no relation. In order to provide some context, the
questions provided information about the domain and range of each property and
up to five examples of instances with values for each property. The initial results
showed that the general response on these nuanced verification questions were not
very reliable. In all cases, the researchers responded by qualifying Turkers based on
their performance on a small simple set of questions regarding possible mappings
in order to gain access to the full range of tasks. This strategy proved reasonably
effective.

Another strategy for dealing with scammers is to take money out of the equation.
Instead of paying individuals to contribute to an alignment, the work can be pack-
aged as a game that the user plays in order to earn a good score. This is the approach
taken by the game SpotTheLink [109]. The game involves teaming up two random
players, presents them both with an entity from the source ontology along with a
description and image of the entity, if available, and asking them to collaboratively
find an entity in the target ontology that is related and how it is related (equivalent,
subclass, or superclass). Players only get points when they both agree. This game
was built on top of OntoGame, which is a Java plug-in framework that provides
services such as user login, randomly pairing users, and keeping score [99].

Another possible approach for avoiding scammers when crowdsourcing data
alignments is to require people who wish to make sure of that data resource to first
answer questions that contribute to its growth and quality (or to improve a separate,
related data resource). This is the approach suggested by [60]. McCann and his col-
leagues point out that for this technique to work, the data resource must either not
be available with no strings attached elsewhere, or it must be of a higher quality than
alternative sources for the information. Additionally, the users must only be asked a
limited number of questions, and they must have some control over when they will
answer those questions.

2.2 Visualizing the Data Integration Process

Involving humans in the data integration process, as described in the previous sec-
tion, requires some type of interface to enable those individuals to understand what
questions are being asked of them, be aware of the context necessary to accurately
answer those questions, and understand the implications of their answers. These
needs lead to a set of requirements for data alignment interfaces. Several researchers
have worked to enumerate these requirements. One of the first steps towards this was
work by Falconer [25], which was then built upon by several others. There are sev-
eral recurring points of emphasis in this work, which are addressed throughout the
remainder of this section.
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2.2.1 Presentation of Candidate Mappings

Users need a way to quickly see the mappings suggested by the automated mapping
component, why they have been selected, and which mappings have been validated,
refused, or remain to be considered. Because the number of candidate mappings
may be quite large, there needs to be some way to manage them, for instance by
clustering or by filter-based searching [33]. Logically organizing these potential
mappings is key, because often validating one mapping enables a user to validate
many additional mappings that have a similar underlying rationale [97].

VOAR is an application for working with ontology alignments that illustrates
several of these concepts [96]. VOAR does not have a built-in automated alignment
algorithm, but rather can call any such algorithm that implements a standard inter-
face. Users can also load in multiple existing alignments and merge them or compute
the intersection (i.e. only mappings that occur in all alignments are kept). When the
user is validating and/or creating mappings, the class hierarchies are shown on either
side of the interface, and a table of mappings, including the associated confidence
value, is in the middle. Clicking on a mapping will highlight the relevant entities in
the trees. VOAR also has another mode that allows users to visualize the alignment
as a whole (Figure 6). This shows which entities are involved in mappings, indi-
cating areas within each ontology that are densely or sparsely related to the other.
This view lists all entities from each ontology along the sides of the interface and
connects related entities with a line. To assist the user in following these correspon-
dences when there are many mappings, related entities and the line connecting them
are color-coded.

BioMixer, a tool designed to visualize mappings among more than two biomed-
ical ontologies at once, takes a different approach to showing an overview of all
mappings within an alignment [111]. This tool provides several different ways to
view mappings, including a matrix view in which the terms from each ontology are
listed in alphabetical order along the top and left side of the matrix, and a colored
square within the matrix indicates a mapping. This highlights clusters of mappings
for similarly-named terms (which often serve as anchor points upon which to build
more complete alignments). A different view enables the user to drill down into the
part of the ontology surrounding a particular entity. This part of the tool uses dis-
plays the entity, its neighbors in the ontology, and its relationship to entities in the
other ontology as a graph. The user is able to understand an entity’s context and
potentially identify missing mappings.

2.2.2 Presentation of the Ontologies

Presentation of the ontologies is also important. Most individuals will confirm the
validity of a mapping based upon the neighbors surrounding the entities in both on-
tologies, and once they validate one mapping they are often able to confirm several
others involving related entities [25]. For this reason, it is helpful to enable quick
navigation between the list of potential mappings and the relevant entities in both
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Fig. 6 A screenshot of the VOAR ontology alignment visualizaton tool. The entities from each
ontology that are involved in mappings are listed along the edges, and the lines between them
indicate equivalence relations.

ontologies. Further, by showing the entities in both ontologies that are involved in
one or more potential mapping, the user can focus on these areas first and thereby
improve their efficiency. Users also need to be able to add mappings that were miss-
ing from the list of suggestions. This necessitates the ability to navigate across both
ontologies at varying levels of abstraction, including drilling down to view the de-
tails of any entity, and filtering on a wide range of criteria [33]. This is the area of
visualization research that has received the most attention, as we will see later in
this section.

A tree-based presentation of an ontology is only capable of displaying hierar-
chical information, such as the class hierarchy within an ontology. Other types of
information contained in an ontology’s axioms, such as property domain and range
and cardinality constraints, are lost in a tree representation. This is particularly prob-
lematic for aligning the properties within ontologies [13]. To avoid this, many on-
tology visualization applications use a graph to display the ontologies. Kow and his
colleagues take this approach in [53]. In this tool, candidate mappings are shown
in a list that allows the user to accept or reject them. As with BioMixer, selecting a
mapping in the list displays the relevant entities and their neighbors within the on-
tologies in a detailed graph view. While limiting the graph to the nearby neighbors
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of the entities in question keeps them from becoming cluttered, the overall context
of the ontology is lost. A way to navigate across the ontologies at a high level of
abstraction is needed. Kow’s application enables this through a global view they
call an “information landscape”. This view shows all of the entities from both on-
tologies (color-coded red or green according to which ontology they belong), with
similar concepts placed near one another. Clumps of entities are labeled with terms
describing the group. The user can select areas of interest that seem likely to con-
tain related entities, which automatically filters the mappings shown in the list. This
method of filtering allows users to systematically explore an ontology at a high level
of detail without losing track of the big picture.

2.2.3 Demonstration of Mapping Implications

The individual mappings that together make up an alignment are not independent of
one another; there are some cases in which only one of two mappings can possibly
be true. Sometimes mappings will result in a class being unsatisfiable, meaning that
it is not possible for an instance to meet all of the requirements to be a member of
that class. In other cases, one or more mappings, when taken together, may lead to
an unintended and undesired inference. Visualization systems need to convey the
implications of a potential mapping to users. Potential ways to achieve this include
highlighting the relationships between mappings, allowing the user to temporarily
add a mapping and observing its impact [45], and providing a mechanism for the
user to indicate that a particular mapping is uncertain or subjective [25].

ContentMap is one application that attempts to provide details about the implica-
tions of mappings to users [49]. ContentMap uses several existing ontology align-
ment algorithms to generate a set of candidate mappings, which users can either
accept or reject. The system then computes the logical difference between the en-
tailments before and after the mappings are applied. Entailments that ContentMap
suspects may be unintended (because they hold in the merged ontology but not in
the individual ontologies) are presented to the user, who can indicate which ones
are in fact undesired. The system then runs a mapping repair algorithm that attempts
to remove the minimum number of axioms to alleviate the unintended entailments
while preserving the entailments the user indicated were valid. Because computing
the logical difference is quite difficult over expressive ontologies (there is no algo-
rithm to do this for OWL 2 or OWLDL), ContentMap focuses only on alignments
consisting entirely of subclass, equivalence, and disjointness relations.

Another data integration tool, MappingAssistant, takes a different approach to
providing feedback to the user regarding the implications of a mapping [103]. Map-
pingAssistant is based on the intuition that domain experts, who are not necessar-
ily familiar with formal modeling constructs like ontologies or with logical entail-
ments, nevertheless have a detailed understanding of the instance data. The system
therefore conveys the implication of schema-level mappings to the user by select-
ing (using a clustering algorithm) a set of instances affected by the mapping rule
and displaying them. Users can then indicate any instances that have been incor-
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rectly classified, and the application will present a series of questions (expressed in
natural language) to the user in order to determine which mapping has led to the
incorrect classification.

2.2.4 Scalable to Large Ontologies

Assisting user in aligning ontologies with a large number of entities or many axioms
constraining the relationships between entities can be particularly challenging for a
visual interface. A myriad of issues come into play. For instance, many alignment
systems display the class hierarchies as tree structures on either side of an interface,
with lines between the trees indicating potential mappings. If the number of poten-
tial mappings is very large, users can quickly be overwhelmed by such a presentation
[25]. Other interfaces display the ontologies and potential mappings in a graph, but
again, the size and complexity of the graph grows with that of the ontologies, and
the user can find this representation unwieldy [57]. Ivanova’s work on requirements
for large-scale ontology alignment make it clear that whatever strategy is used to
represent the ontologies and potential mappings, it must not only “scale” visually,
but also computationally – users cannot be made to wait after each interaction for
the interface to update [45]. Users also cannot always be expected to align large
ontologies by themselves in one setting. Consequently, tools should allow users to
save their progress and to divide up the alignment task among multiple contributors
[33].

One approach to dealing with the overwhelming complexity of a graph-based
global view of an ontology is through employing a clustering algorithm to raise
the level of abstraction at which the ontology is shown in the graph. Even though
AlViz, developed in 2006, is older than many of the other visualization applications
discussed in this section, we use it as an example of this approach since new work
in the field still frequently cites it as a source of inspiration [57]. AlViz shows each
ontology in its own graph and uses color coding of nodes to indicate areas of sim-
ilarity and difference between the two. A slider on the side of each graph controls
the level of abstraction. The size of a node gives an indication of the number of
entities aggregated within it. Nodes are aggregated based on the similarity metric of
an integrated alignment algorithm. Small world graphs such as those used by AlViz
typically use a spring layout, which is known to have a cubic time complexity. Still,
the original AlViz system was capable of displaying ontologies with 1000 entities
and respond to user interactions without a lag.

The alignment system AML employs a different strategy to handle the complex-
ity of graph-based views [84]. AML combines both ontologies and mappings in
a single graph. However, instead of showing the full ontologies and alignment, it
shows only a subgraph centered on a selected mapping, for which the neighborhood
of classes and mappings between them can be shown up to five edges distance.
This allows for a better understanding of neighboring mappings than typical tree-
based visualizations, and is particularly relevant in the visualization of biomedical
ontologies where multiple inheritance and the existence of different kinds of rela-
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tions between classes is common. Users can then navigate the list of mappings to
visualize the different subgraphs, mark mappings as correct or incorrect, and add
new mappings.

The alignment system SAMBO implements several features to assist users in
aligning large ontologies [56]. In particular, the tool allows users to cease calcula-
tions of mapping suggestions at any time and begin to approve or reject any of the
mappings that have been suggested at that point. The user can also save their work
and resume it later. Each saved session contains information about how many map-
pings have been validated, how many remain, and the last date the user worked on
the alignment. Users also have the option to preprocess data in between sessions, to
save time when they resume their work. The preprocessing step uses the class hier-
archies of both ontologies to partition the ontologies into “mappable parts” such that
the set of entities from the first ontology that are in a partition are highly likely to be
mapped to an element from the second ontology that is also in the same partition.
As a result, similarity metrics do not have to be applied between all pairs of entites,
but only between those in the same partition. Furthermore, users can focus their
attention on one partition rather than being overwhelmed by the entire ontologies.
While the authors do not state this, these partitions might also be a way to divide the
mapping validation task among multiple people.

Several researchers who have considered the requirements for a visualization system
intended to facilitate data integration have also mentioned the need to allow users to
annotate a particular mapping with its rationale and additional metadata as required
for the particular use case, and a mechanism to debate or vote on mappings [33, 45].
Unfortunately, this information is not collected in as anything other than free text
by most data integration tools. This issue is the subject of Section 3.3.

2.3 Integrating Geospatial Data

Many data sets, from user reviews of hotels and restaurants, to oceanographic mea-
surements, to economic data, have a spatial component. Integrating data based on
location can lead to important cross-domain insights relevant to a particular region.
However, as mentioned in the introduction, spatial data is particularly difficult to
align. There are many reasons for this. Of course, spatial data sets have all of the
normal issues related to schema. For instance, one data set may refer to a building’s
location using the property “Address” while another one may use two properties:
“City” and “State.” There are also challenges specifically related to spatial data be-
cause of the many ways to express it. For example, location can be specified with
an address, with latitude and longitude, or in reference to a nearby point of interest.
There are also many ways to express a spatial region. For example, spatial regions
can be represented by geopolitical entities (whose borders change over time), by
polygons whose points are given via latitude and longitude, or by a point and a ra-
dius. Another issue is that spatial data is collected at widely different scales and
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with different resolution and coverage, which raise quality concerns when integrat-
ing several data resources. Furthermore, for both technical and social reasons, many
spatial data sets are stored in relational databases, as images, or as vector data. These
different representation formats necessitate different approaches to integration. This
section surveys some of the current research related to integrating geospatial data.

2.3.1 Representing Geospatial Data

Many geospatial datasets have been published on the Semantic Web. Two of the
largest and most well-known are GeoNames and LinkedGeoData. GeoNames has
information about over 8 million geographic entities from around the world, includ-
ing place name, coordinates, elevation and population. Much of the data was origi-
nally imported from official public sources, but it can now be edited by individuals.
GeoNames is organized according to a relatively simple ontology involving nine
features and 645 feature codes.5 LinkedGeoData is based on the data from the Open-
StreetMap project. OpenStreetMap’s goal is to build a geographic knowledge base
from the ground up, by allowing contributors to use aerial imagery and GPS devices
to create and verify information.6 GeoNames and LinkedGeoData are interlinked
with one another and with DBPedia. Other geospatial datasets are region-specific.
For instance, the UK Ordnance Survey, Great Britain’s national mapping agency,
has published gazetteer and administrative boundary information as linked data as
part of the “Making Public Data Public” initiative within that country.7 Publishing
geospatial data according to the linked open data principles allows it to be integrated
more easily. Consequently, useful applications that levereage linked geospatial data
have begun to emerge, including for disaster management [80] and wildlife moni-
toring [54].

Much of the geospatial data that is currently available is represented using the
Geography Markup Language (GML).8 GML was created by the Open Geospatial
Consortium (OGC) and has become an ISO standard. The schema is centered on the
class Feature. A Feature can have a Geometry, such as point, line, polygon, curve
or surface. GML also supports specifying a Feature’s location, using a coordinate
reference system. Another way to represent geospatial data is using GeoSPARQL,
which is an RDF vocabulary and a set of extensions to SPARQL to support spa-
tial queries.9 The GeoSPARQL vocabulary currently leverages many elements of
GML, together with well-known text (WKT), to represent vector geometry objects
on a map; simple feature, which contains spatial relationships such as intersects
and within; region connected calculus (RCC8), to represent relationships between

5 http://www.geonames.org
6 linkedgeodata.org
7 http://data.ordnancesurvey.co.uk
8 http://www.opengeospatial.org/standards/gml
9 http://www.opengeospatial.org/standards/geosparql
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two regions such as tangential or partially overlapping; and DE-9IM, to represent
topology.

Other OGC standards are closely related, including Keyhole Markup Language
(KML) to specify how display geographic information on a map or other visualiza-
tion.10 Several ontologies have also been developed to represent higher-level con-
cepts with a strong spatial element, such as a “Semantic Trajectory” to describe
movement through space [43] and “Stimulus-Sensor-Observation” to model obser-
vations of phenomena collected at a particular time and place [47].

2.3.2 Querying Geospatial Data

One way to query geographical data is by using the Web Feature Service (WFS).11

This OGC standard can return results in GML or as shapefiles, a vector format
dictated by the Environmental Systems Research Institute (Esri) and used by the
popular GIS software platform ArcGIS. Examples of WFS queries are: “return the
name of all towns that are along this line” and “return the name of all mountains
within this bounding box.” GeoSPARQL supports these types of queries as well, but
over the full RDF vocabulary expressed in the GeoSPARQL standard.

Many datasets with a geospatial component are stored in relational databases
rather than published as linked data. There are several reasons for this: databases
are often an established part of a scientist’s workflow, existing data analysis tools
may require the data to be stored in a database, or collection systems may automat-
ically publish to a database. However, there is still a need to incorporate semantics
into queries of this data. One approach to achieving this is to allow users of the
data to query it based on an ontology, and then to translate those queries into the
language required by the database. This area of research is sometimes known as
ontology-based data access (OBDA). An example of this is the work of Zhao and
his colleages, described in [114]. Their system uses an RDF ontology to enable se-
mantic queries on a standard relational database containing geospatial data. Their
approach is to translate queries based on their RDF ontology to WFS queries on the
underlying database. There are some limitations to this approach. In particular, the
ontology needs to be created manually for each dataset and application domain, and
a table in the database can only map to one class in the ontology. Also, the ontol-
ogy is specified in RDF rather than OWL in order to simplify the query rewriting.
Later work supports more complex queries while extending this semantic querying
capability to multiple geospatial datasets stored as GML [110].

10 http://www.opengeospatial.org/standards/kml
11 http://www.opengeospatial.org/standards/wfs
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2.3.3 Coreference Resolution and Alignment

Regardless of how it is stored, coreference resolution of geospatial data is partic-
ularly challenging due to noise and difference in coverage and resolution. Even
extracting appropriate features on which to base the data integration task can be dif-
ficult, though recent work in that area by projects such as Brainwash show promise
[1]. Once features have been collected, it has been common to use machine learning
approaches to weight features of geospatial datasets such as location name, location
type (e.g. mountain, desert, island) and coordinates, which are then used in standard
classifiers such as SVMs and linear regression models [95]. More recent work takes
a very similar approach. For instance, McKenzie and his colleagues integrate data
from FourSquare and Yelp using a weighted combination of location name, loca-
tion category (e.g. seafood restaurant, casual dining), geographic location, and an
unstructured textual description. Their results were impressive, with 98% of places
of interests correctly aligned. An interesting element of their work was that a sys-
tem based only on geographic coordinates was only 57% accurate. They indicate
that this may be due to inaccuracies of mobile devices using GPS or wireless to
calculate position [61]. Similarly, Li et. al. merged point of interest data from Baidu
(a search engine) and Sina (a social networking site) based on name, category and
location. Their weighting method was based on the entropy of the various attributes.
This method was chosen because the attribute values exhibited a non-linear similar-
ity metric characteristic [58].

Aligning the schema of geospatial datasets can actually be somewhat easier than
in the more general case. While geospatial datasets often have different labels for the
same properties (e.g. “state” versus “administrative district”), labels of geospatial
properties are selected from a smaller domain than are general properties. Further-
more, geospatial datasets typically have a large A-box, making extensional matching
techniques useful when aligning the T-Box. For example, if one dataset has a prop-
erty called “CensusCount” and another has a property called “Population,” values
for particular cities contained in both datasets allow an automated alignment system
to conclude that these properties are likely equivalent.

2.3.4 Assessing Quality

When integrating data from multiple sources, quality becomes an important con-
cern. This is particularly important for geospatial datasets. Whenever any continu-
ous entity is measured, there will be inaccuracies inherent in the measured values
due to limitations of coverage and resolution. Typical quality indicators include lin-
eage, positional accuracy, attribute accuracy, logical consistency and completeness
[7]. Additionally, interviews with consumers of geospatial data indicate the impor-
tance of metadata when assessing quality, such as the reputation of the data provider
and the number of citations. Unfortunately, the majority of geospatial datasets do not
have any quality information associated with them [59].



28 Michelle Cheatham and Catia Pesquita

There have been some efforts to automatically derive quality information for
geospatial datasets that lack it. For instance, work by Thakkar et. al. is targeted to-
ward situations in which many geographical datasets are being integrated, and only
some of them have associated quality metrics. Quality is based upon completeness
and positional accuracy. Completeness is the percentage of features that the source
contains information on. Thakkar gives the following example: if there are 100 hos-
pitals in an area and a source contains 25 of them, then the source is 25% complete.
Positional accuracy is determined based on the number of features within a given
bound, i.e. the location of 40% of the hospitals is accurate to within 10 meters. They
automatically assess the quality of an unknown data source by identifying a source
with known quality that provides the same attribute and has at least some instances
in common. The quality of the new source is then based upon comparison of a sam-
ple of the common subset. Once that source’s quality has been evaluated, it can then
be checked for overlap with any other sources within the system whose quality was
previously unknown and used to assess their quality [108].

There has also been considerable research on assessing the quality of volunteered
geographic information. For example, in 2010 Mooney and his colleagues evalu-
ated OpenStreetMap data from 11 European countries based on sampling density
and metadata tagging and their utility in correctly representing the shape of features
such as lakes and forests (and found the quality to be quite low overall) [65]. Balla-
tore and Zipf take a higher level approach and consider the quality of the schemas
used to organize the geospatial data. They argue that maintaining conceptual quality
is straightforward when data producers and consumers are all colleagues, but that
quality suffers when producers and consumers don’t know one another, as is the
case with volunteered geographic information. Their framework includes accuracy
(existence of entities, categories and attributes necessary to accurately describe the
geospatial features of interest), granularity (ability to describe the features at the de-
sired level of abstraction), completeness (ability to describe all the features of inter-
est), consistency (similar features are described with similar classes and properties),
compliance (agreement of this schema with another one), and richness (number and
variety of dimensions with which to describe a feature) [4].

2.4 Integrating Biomedical Data

Massive amounts of multimodal and diverse data are currently being generated by
researchers, hospitals and mobile devices around the world, and their combined
analysis presents unique opportunities for healthcare, science and society. The data
can range from molecular to phenotypic, behavioral to clinical, individual to pop-
ulation, genetic to environmental. Maximizing the potential of this data through its
meaningful integration can enable new directions for research, for instance discov-
ering new drugs or determining the factors causing human disease.

Biomedical Big Data goes well beyond the recognized challenges in handling
large volumes of data or large numbers of data sources, and presents specific chal-
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lenges pertaining to the heterogeneity and complexity of data as well as to the com-
plexity of its subsequent analysis. The availability of over 500 open biomedical on-
tologies in BioPortal [77] and dozens of biomedical datasets as Linked Open Data
represents a unique opportunity to integrate clinical and biomedical data.

A first step in supporting the semantic integration of biomedical data is by mak-
ing it available as Linked Data and having the entities and relationships referred to in
the Linked Data defined according to ontologies. Exposing datasets as Linked Data
enables the interconnection of distinct data items across providers, facilitating the
integration of high volume and heterogeneous data sources (i.e. experimental data,
libraries, databases) and also provides an aggregated view of biomedical data in a
way that is machine interpretable and reusable, as well as semantically-enriched via
links to ontologies. These links support the classification of data according to the
concepts defined by a given ontology, which provides a perspective on the data.

The same data can be described under different ontologies, which provide dif-
ferent perspectives. For instance, patient data described under the Disease Ontology
[94] will provide a view of the diseases and disorders affecting the patient, while
the same patient data described under the Symptom Ontology [3], will provide in-
formation about signs and symptoms but not the underlying causes. However, even
when focusing on a single perspective, lets say diseases, the multitude of ontologies
and controlled vocabularies currently in use to describe them impedes the seam-
less integration of data. Multiple ontologies for the same or closely related domains
can and do exist, due to several reasons ranging from disconnected development,
to development focusing on particular applications. This is especially true in the
biomedical domain where there are for instance nine ontologies that describe neu-
rological disease, ranging from highly specific ontologies covering a single disease
(e.g. epilepsy, Alzheimers) to ontologies covering all kinds of human disease, such
as the Disease Ontology. This results in several ontologies describing the same con-
cepts under slightly different models.

These challenges are being addressed at several levels by the application of Se-
mantic Web technologies.

2.4.1 Linked Biomedical Data

There have been several efforts to expose biomedical data as Linked Data, with
the aim of providing structured and integrated access to the massive amounts of
biomedical data distributed in numerous repositories [8, 88, 89, 64, 112]. This is
a challenging endeavor since each biomedical dataset has a unique structure and
vocabulary.

The Bio2RDF project [8] defines a set of simple conventions that allow the cre-
ation of a knowledge space of RDF documents as Linked Data. It uses a mashup ap-
proach that leverages normalized URIs and a common ontology, integrating publicly
available data from some of the most popular databases in bioinformatics. However,
few biomedical repositories expose their data as RDF, so the project built a toolbox
to generate RDF files from locally stored databases or directly from HTML docu-
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ments accessed via http requests. Although Bio2RDF facilitates the integration of
heterogeneous datasets, achieving a complete syntactic and semantic normalization
is not yet a reality. One of the reasons behind this, is that Linked Data serialized
as RDF does not support the complex formal semantics that allow the inference of
relationships between data items from heterogeneous datasets. This prevents a fuller
integration, namely at the level of relations or types.

Another related project is Neurocommons [88], which is dedicated to creating an
open source knowledge management platform for biological research and is specif-
ically working on an open knowledge base of annotations to biomedical abstracts
(in RDF) and the integration of major neuroscience databases into the annotation
graph. Neurocommons is grounded in Semantic Web technologies, integrating OWL
ontologies, RDF and SPARQL endpoints.

BioPortal also publishes their ontologies as RDF [89]. This dataset contains over
190 million triples, representing both metadata and content of the ontologies. It also
publishes over 10 million mappings between ontologies, generated via both manual
and automatic methods.

2.4.2 Cross-references and mappings

To promote and facilitate integration, some biomedical ontologies already provide
cross-references to equivalent or related concepts in other ontologies. These can be
used not only for integrating ontologies, but also for the integration of data items
described with the ontologies.

One notable effort in increasing the interoperability of biomedical ontologies
has been the creation of logical definitions [71]. This is an initiative of the Open
Biomedical Ontologies Foundry [101], a collective of ontology developers whose
mission is to develop a family of interoperable ontologies that are both logically
well-formed and scientifically accurate. One issue of biomedical ontologies is that
although almost all classes have a textual definition, which can be interpreted by
a human user, this is not accessible to a computer without sophisticated natural
language processing. Therefore, efforts have been made to transform these defini-
tions into a computable form as a set of logical definitions. Such logical definitions
facilitate automated access to an ontology and complement text definitions. They
could also potentially be used to reason over an ontology or to automatically derive
relationships between classes, thus contributing to the integration of different on-
tologies. Developing and maintaining these computable definitions requires a lot of
manual labor, leading to the development of strategies to partially automate the pro-
cess [70]. More recently, the definition of composite relations as class expressions
has also been explored through the alignment of classes in biomedical ontologies
with foundational classes in a top-level ontology [42].

Another relevant resource is the UMLS [6], which provides a mapping structure
among over 100 controlled vocabularies in the biomedical sciences, covering over 1
million biomedical concepts and 5 million concept names. UMLS is not originally
available as RDF, but BioPortal through its UMLS2RDF project [89] has trans-
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formed the UMLS MySQL release into RDF triples. BioPortal also provides a set
of 3.1 million mappings between the terms in UMLS vocabularies.

While these projects are contributing to the utility of biomedical data on the
Semantic Web by establishing links between datasets, in many cases such mappings
are unavailable, giving rise to the need to derive them automatically using ontology
matching techniques.

2.4.3 Ontology Matching for Biomedical Ontologies

The specific characteristics of biomedical ontologies need to be taken into account
when developing tools and techniques to explore them:

• large size: biomedical ontologies commonly have thousands of classes, which
can represent both a computational and a visualization challenge. In Bioportal
there are over fifty ontologies with more than ten thousand classes.

• complex vocabulary: biomedical ontologies typically encode several names for
the same class, including one main label and several synonyms of different kinds
(e.g., narrow synonym, broad synonym). This represents a challenge for lexical
matchers, which need to be able to handle multiple labels and at different close-
ness degrees.

• multiple related domains with different points of view: it is fairly common to
have the same biomedical domain being described according to different mod-
els. This can cause logical incoherences when two ontologies with different
models are integrated. For instance, Figure 7 illustrates a logical incoherence
caused by two mappings between the National Cancer Institute Thesaurus On-
tology and the Foundation Model of Anatomy Ontology. The logical incoher-
ence arises because upon integration, Fibrilar Actin becomes a subclass of both
Anatomic Structure System or Substance and Gene Product, which are disjoint
classes. Solving these incoherences is far from trivial [83]

• rich axioms: biomedical ontologies have been evolving towards greater semantic
richness establishing different kinds of relations between classes (e.g., regulates,
adjacent to, participate in) and complex axioms (e.g., ’human patient and (has
Age some float [>= 8]) participant in ’WHO standard treatment for human bru-
cellosis in adults and children eight years of age and older). Typically, ontology
matching systems either just focus on taxonomic relations, or do not differenti-
ate between different types of relations. This is especially relevant for structural
matchers.

The relevance of ontology matching for biomedical ontologies has been recog-
nized by the community, and the Ontology Alignment Evaluation Initiative [10]
currently contains two tracks dedicated to biomedical ontologies: the anatomy track,
and the large biomedical ontologies track. Both tracks illustrate the above mentioned
challenges, and in the last few years some ontology matching systems have been
quite successful in addressing the challenges of matching biomedical ontologies.
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Fig. 7 Alignment between portions of the National Cancer Institute Thesaurus Ontology and the
Foundation Model of Anatomy Ontology illustrating a logical incoherence.

Regarding size and scalability, a well studied challenge [51], systems have had to
evolve from the traditional encoding of the matching problem as a matrix of similar-
ities to more efficient data structures. For instance, AgreementMaker [15], a system
successfully used for matching biomedical ontologies [17] struggled with more than
a few thousand classes, which inspired the development of AgreementMakerLight
(AML) [29], based on more scalable data structures that can handle over 100 thou-
sand classes in an ontology.

The complexity of the vocabulary in biomedical ontologies has also been ad-
dressed by several systems, which combine several matchers capable of exploiting
different string and lexical similarities [15, 29, 72]. Some systems take this further
by leveraging external resources as a source of synonyms. For instance, AML in-
cludes specifically tailored approaches to exploiting the rich synonyms of biomed-
ical ontologies [85], that can use cross-references to extend synonyms and apply
lexical techniques to derive new synonyms. It also contains high performing strate-
gies to automatically select and utilize external ontologies as background knowledge
[28]. Other systems use pre-defined external resources. For instance LogMap [48]
makes use of external lexicons to derive spelling variants, and GOMMA [39] can
explore external ontologies for synonyms.

Regarding the ability to handle logical incoherence, few ontology systems cur-
rently support it, and even fewer at a scale conforming to biomedical ontologies’
typical size. The most basic approach is filters out any mappings that violate a se-
ries of semantic rules (e.g. [72]). More sophisticated approaches rely on automated
procedures which are able to identify the mappings involved in the logical incoher-
ence and select which ones to remove to achieve coherence. Both AML [91] and
LogMap support this, and their application to the mappings in BioPortal has proven
successful [27].
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Finally, the ability to process rich axioms is still not a focus of current ontol-
ogy matching systems. Despite the growing complexity of biomedical ontologies,
systems are still lacking in this respect. A recent effort in this area has been the
development of a compound matching approach [79], that is able to capture equiv-
alence mappings between one class from one ontology and an expression involving
two classes from two other ontologies, forming a ternary mapping. For example,
HP : aorticStenosis is equivalent to an FMA : aorta that is PATO : constricted This
novel matching paradigm needs to be able to handle the much larger search space
(three ontologies instead of two) and be able to not only identify the equivalence
mapping but compose the expression as well.

3 The Path Forward

Work such as that described in Section 2 has already begun to pay dividends. Tech-
niques for semantic data integration have reached a level of maturity that has al-
lowed them to be incorporated into commercial and open source tools from orga-
nizations such as Oracle, Apache and Microsoft. For example, Oracle 11g provides
support for storing data as RDF, querying data from disparate sources seamlessly via
SPARQL, and performing reasoning via SWRL-like rules [113]. Various aspects of
the performance of these industry systems is being evaluated by the academic com-
munity [98] as well as utilized for domain-specific research [100, 26]. Additionally,
these systems are being used by other commercial enterprises for applications rang-
ing from entertainment media management to national intelligence [113]. However,
many challenges clearly stand in the way of accurate and efficient data integration in
the general case. This section considers some research threads that could potentially
lead to future breakthroughs in semantic data integration.

3.1 Moving Beyond 1-to-1 Equivalence Mappings

Ideally, alignment systems should be able to uncover any entity relationships across
two ontologies that can exist within a single ontology. Such relationships have a
wide range of complexity, as shown in Figure 8. The simplest type of relationship
is 1-to-1 equivalence or disjointness of two entities (i.e. all instances of A are also
instances of B or an instance of A is definitely not an instance of B). Assume that we
have two ontologies, ont1 and ont2,that model a university. The relation ont1:Course
= ont2:Class is an example of a 1-to-1 equivalence match, while ont1:registeredFor
disjoint ont2:Teaching (i.e. someone cannot both register to take a course and teach
it) is an example of a 1-to-1 disjointness relationship. The next complexity level
is subsumption relationships, i.e. that an entity in one ontology is a subclass or
superclass of an entity in another ontology. ont1:Faculty ⊂ ont2:Employee is an
example of this. Even harder to find are 1-to-many equivalence or subsumption re-
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Fig. 8 Complexity range of entity relationships between ontologies.
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lationships between entities, such as the union of ont2:AsstProf, ont2:AssocProf,
and ont2:FullProf is equivalent to ont1:Professor. This causes a complexity prob-
lem. To find 1-to-1 relationships, an exhaustive search needs to compare every entity
in the first ontology to every entity in the second ontology, which may be feasible
for small ontologies. To find 1-to-m relationships an exhaustive approach would
need to compare each entity in the first ontology to all possible combinations of m
entities in the second ontology, which is not generally possible. Finding arbitrary n-
to-m relationships is the most complex alignment task. By “arbitrary,” we mean any
type of relationship, not restricted to equivalence, disjointness, or subsumption. An
example of this might be that a ont1:Professor with an ont1:hasRank value of “As-
sistant” is equivalent to an ont2:AsstProf. Such complex relationships would need
to be expressed as logical rules or axioms.

Nearly all existing alignment systems fall at the simplest end of this scale. A few
systems, including BLOOMS [46] and PARIS [104], are capable of finding sub-
sumption relationships across ontologies. CSR [102] and TaxoMap [38] attempt
to find 1-to-m equivalence and subsumption relationships. There has also been
some preliminary explorations into identifying ternary compound mappings across
biomedical ontologies [79]. In general though, most research activity in the field
of ontology alignment remains focused on finding 1-to-1 equivalence relations be-
tween ontologies.

As mentioned previously, the performance of current alignment systems on tasks
that focus on the identification of 1-to-1 equivalence relations has become quite
good. However, alignment research may be in danger of becoming stuck in a “local
maximum”, and it might be time to make a concerted push towards discovering
more complex semantic relationships. The computational complexity of this task
makes it very unlikely that existing approaches to mapping discovery can be used
to discover complex relationships. It is possible that existing algorithms from the
fields of data mining and machine learning might be applied for this purpose, but
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significant effort will likely be required to identify appropriate techniques and tailor
them for this application.

3.2 Advancing Alignment Evaluation

The Ontology Alignment Evaluation Initiative (OAEI) is now over a decade old,
and it has been extremely successful by many different measures: participation,
accuracy, and the variety of problems handled by alignment systems have all in-
creased, while runtimes have decreased [23]. The OAEI benchmarks have become
the standard for evaluating general-purpose (and in some cases domain-specific or
problem-specific) alignment systems. In fact, you would be hard-pressed to find a
publication on an ontology alignment system in the last ten years that did not use
these benchmarks. They allow researchers to measure their systems performance
on different types of matching problems in a way that is considered valid by most
reviewers for publication. They also enable comparison of a new systems perfor-
mance to that of other alignment systems without the need to obtain and run the
other systems. This is a huge boon for ontology alignment research.

Of course, benchmarks need to evolve over time in order to remain relevant. The
OAEI suite of benchmarks contains eight tracks that test alignment systems in a
range of contexts in which they might be used, but currently none of these tracks
contain any complex relationships. In addition, the details of some of the test sets
have led to the incorporation of behaviors in some alignment systems that may not
be optimal. For instance, in several OAEI tracks an entity can be involved in at most
one match, which may not be realistic for some real-world datasets. Similarly, enti-
ties are only matched to other entities of the same type in some tracks, e.g. classes
to classes, instances to instances, etc. This is not realistic in all cases, particularly
when the decision of when to represent something as an instance versus a class is
not always clear cut.

As a specific example of the limitations of current alignment benchmarks, con-
sider the case of property matching. Performance of current alignment systems on
matching classes is on average three times better than on matching properties [13].
Researchers have suggested various reasons for this, including that the parts-of-
speech used in property names differs from that used for class names [106], that
taxonomies of properties are much less common that those of classes [106, 75], and
that properties are reified in different cases than are classes [75]. Perhaps uncoinci-
dentally, only one of the eight OAEI tracks involves any matches between proper-
ties, and those matches make up a small percentage of the total. This is a big cause
for concern because many influential real-world linked datasets, such as DBPedia
(the linked data version of Wikipedia) and YAGO, are strongly property-centric.

The OAEI is a community-driven effort, and its organizers are very willing to
incorporate new benchmarks into the evaluation. Establishing new benchmarks is far
from easy, however. Some of the existing OAEI testsets are synthetic, which means
that the reference alignments are completely accurate. Synthetic benchmarks may
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not accurately reflect the type of challenges alignment systems face “in the wild”
though. On the other hand, several of the OAEI testsets are based on real-world
ontologies. The reference alignments were developed primarily by three graduate
students, with feedback from “Consensus Workshops” held after each OAEI for
several years. This method of benchmark creation is very resource-intensive and is
therefore only feasible for small ontologies. In order to create the large reference
alignments comprised of complex mappings needed to drive the field forward, more
scalable methods of benchmark construction need to be explored.

As mentioned in Section 2.1, some researchers have turned to crowdsourcing
platforms such as Amazon’s Mechanical Turk to facilitate scalable ontology align-
ment. It may be possible to use such platforms to generate alignment benchmarks
as well. However, there is some well-founded skepticism regarding the trustwor-
thiness of crowdsourced alignment benchmarks. In particular, there is concern that
the results may be very sensitive to how the question is asked. For instance, how
much context from each ontology are users provided with? Are they able to rush
through the work, or does some mechanism force or encourage them to give due
consideration to each potential match? Does the best method for question presen-
tation depend on the characteristics of the ontologies being aligned? How does the
amount of monetary payment and bonuses affect performance? These are all very
important questions, and if researchers in the ontology alignment field are going to
accept work on complex alignments evaluated via crowdsourcing or a crowdsourced
benchmark as valid, they must be addressed.

Another obstacle is that when creating an ontology alignment benchmark, one
has to start from somewhere. It is too resource intensive to try to verify every poten-
tial relationship across all entities in both ontologies, even in the 1-to-1 equivalence
case. This is a complete non-starter for complex alignments. The standard approach
to this problem is to employ an ensemble of existing high-performing alignment
systems to align the ontologies and then manually refine the results to create the
reference alignment for the benchmark [92]. Unfortunately, this approach is not
feasible for the creation of some types of benchmarks due to the lack of current
alignment systems that attempt to the type of relationships required. It is something
of a chicken-and-egg problem. For instance, it is very difficult to create a benchmark
containing complex relationships when there are no alignment systems capable of
identifying such relationships that can be used to create the benchmark. Solving this
problem is an open area of research in this field.

3.3 Contextualizing Alignments

Data and schema integration is done for some purpose, and the mappings that should
be included in a particular alignment are a function of that purpose. For example,
alignments can be done to support distributed querying, or they can be used for
logical reasoning. The characteristics for each type of alignment are different. For
querying, recall (i.e. returning the relevant results) is generally an important aspect
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of the application using the alignment. This means that alignments to support query-
centric applications arguably need to err on the side of expressing relationships that
generally hold, even if some outliers lead those relationships to cause logical incon-
sistencies that confound reasoners. Conversely, applications that intend to employ
a reasoner on the integrated data cannot generally make use of an alignment that
contains any logical inconsistencies

Current alignment systems support these different use cases to some degree. For
instance, AgreementMakerLight has the ability to detect and repair mapping incon-
sistencies, but it is also capable of leaving these in place [91]. However, there is
currently no way to express in an alignment, after it has been created, which use
case was targeted. It can be argued that the user of the alignment can simply check
to see if it contains any inconsistencies, but this assumes that the user is employ-
ing the alignment, which may be only for the T-box of the ontologies, to the same
A-box that was in place when the alignment was created, and that the A-box hasn’t
changed over time. Additionally, there are many applications that an alignment may
have been created for beyond the simple query-versus-reasoning divide. A way to
express the situations in which an alignment applies is needed.

In addition to a mechanism for expressing the applicability of an alignment, a
standardized way to represent the rationale behind individual mappings within an
alignment is also needed. For example, if an alignment asserts that Johnathan Smith
who works at IBM is the same person as John Smith who organized the ABC Con-
ference, it is helpful for the consumers of that alignment to know how this was
determined. Perhaps in this case it is known that IBM was the primary sponsor of
the ABC Conference and that John is a common nickname for Johnathan. Making
this type of provenance available at the level of individual mappings is important
for enabling consumers to make informed decisions about how to use the mappings
within an alignment and how much confidence to place in them. While this need has
been noted by both researchers and practitioners [74, 97], how best to represent this
information is not currently clear.

By far the most common manner in which ontology alignment and coreference
resolution systems represent their results is the Alignment API format. In this repre-
sentation, each relationship between two ontologies (cell) is a “first-class citizen. In
particular, each cell contains the URI of the entity that is the source of the relation-
ship, the URI of the target entity, the relationship that holds between them (equality,
subsumption, etc.), and the strength of that relationship (a decimal value between 0
and 1, inclusive). However, it also seems obvious that storing provenance informa-
tion regarding who created a coreference and when would also be extremely useful.
The creators of the Alignment API intended for such provenance information to be
stored at the alignment level rather than at the level of individual cells. This is not
well suited to projects in which coreferences may come from a variety of sources,
including both people and automated algorithms, over a period of weeks, months,
or years. Noy and her colleagues came to the same conclusion while collecting
community-based mappings for the BioPortal ontology collection [74]. That work
also reified coreferences, but it stored significantly more provenance information
about the individual relations, including discussion and user comments, application



38 Michelle Cheatham and Catia Pesquita

context (conditions under which the relationship holds), mapping dependency (to
express that this mapping holds if and only if some other mapping holds), map-
ping algorithm, creation date, creator (the person who uploaded the mapping), and
external references (e.g. relevant publications). Unfortunately, this information is
currently encoded largely as free-text, which violates the underlying Semantic Web
principle that information about data and how it relates should be accessible to both
humans and machines. Establishing an appropriate method for representing prove-
nance and contextual information for alignments and individual mappings remains
an important challenge for the field of semantic data integration.
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