
Augmenting Ontology Alignment by Semantic
Embedding and Distant Supervision

Jiaoyan Chen1, Ernesto Jiménez-Ruiz2,3, Ian Horrocks1, Denvar Antonyrajah4,
Ali Hadian4, and Jaehun Lee5

1 Department of Computer Science, University of Oxford, UK
2 City, University of London, UK

3 SIRIUS, University of Oslo, Norway
4 Samsung Research, UK

5 Samsung Research, Korea

Abstract. Ontology alignment plays a critical role in knowledge inte-
gration and has been widely investigated in the past decades. State of the
art systems, however, still have considerable room for performance im-
provement especially in dealing with new (industrial) alignment tasks. In
this paper we present a machine learning based extension to traditional
ontology alignment systems, using distant supervision for training, on-
tology embedding and Siamese Neural Networks for incorporating richer
semantics. We have used the extension together with traditional sys-
tems such as LogMap and AML to align two food ontologies, HeLiS and
FoodOn, and we found that the extension recalls many additional valid
mappings and also avoids some false positive mappings. This is also veri-
fied by an evaluation on alignment tasks from the OAEI conference track.

Keywords: Ontology Alignment · Semantic Embedding · Distant Su-
pervision · Siamese Neural Network

1 Introduction

Ontologies are widely used to represent, manage and exchange (domain) knowl-
edge. However, the content of any single ontology is often incomplete even in a
single domain and, moreover, many real world applications rely on cross-domain
knowledge. Integration of multiple ontologies is therefore a critical task, and is
often implemented by identifying cross-ontology mappings between classes that
have an equivalent- or sub-class relationship. This process is known as ontology
alignment or ontology matching [29,8,26].6

Ontology alignment has been been investigated for many years. State of the
art (SOTA) systems such as LogMap [17,18] and AgreementMakerLight (AML)
[9] often combine multiple strategies such as lexical matching, structural match-
ing and logical reasoning. Such systems typically use lexical matching as their

6 Ontology alignment also includes mappings between individuals and properties, as
well as mappings with more complicated relationships beyond atomic subsumption
and equivalence. In this study we focus on mappings between equivalent classes.

2 J. Chen et al.

starting point, and while this captures string or token similarity, it fails to cap-
ture the contextual meaning of words. Logical reasoning can be used to improve
mapping quality, but this often wrongly rejects some valid mappings [27]. In
practice, such systems often need (combinations of) hand-craft matching meth-
ods to achieve good performance for a new task.

The last decade has seen an extensive investigation of semantic embed-
ding, a branch of machine learning (ML) techniques which can encode sym-
bols such as natural language words, ontology concepts, knowledge graph en-
tities and relations into vectors with their semantics (e.g., correlation with the
neighbours) [23,31,20]. This enables us to augment the aforementioned ontology
alignment systems with ML algorithms that can exploit richer semantics so as
to recall some missed mappings and avoid some false positives.

In this paper we present a ML extension that utilizes distant supervision
and semantic embedding, and that can be used to augment classic ontology
alignment systems. Briefly, it first uses the original ontology alignment system
plus class disjointness constraints (as heuristic rules) to generate high preci-
sion seed mappings, and then uses these mappings to train a Siamese Neural
Network (SiamNN) for predicting cross-ontology class mappings via semantic
embeddings in OWL2Vec∗— an ontology tailored language model [3]. We have
tested our ML-augmentation with the SOTA systems LogMap and AML in a
real world ontology alignment task identified by our industrial partner Samsung
Research UK, i.e., the alignment of two food ontologies: HeLiS [7] and FoodOn
[6]. The augmentation improved recall by more that 130% while at the same
time achieving small improvements in precision. Smaller but still significant im-
provements in precision and recall were also achieved on an alignment task from
the Ontology Alignment Evaluation Initiative (OAEI) [1].

In the remainder of this paper we use LogMap as a concrete example of our
ML extension, but the extension can be directly applied to AML and to any
other system that is capable of generating high precision mappings to be used
in the training phase.

2 Preliminaries and Related Work

2.1 LogMap

LogMap is a scalable logic-based ontology matching system [17,18]. It is often
one of the best performing systems for real-world tasks such as those in the
biomedical tracks of the OAEI [1].

Fig. 1 shows the procedure followed by LogMap to compute an alignmentM
given two input ontologies O1 and O2. LogMap first builds a lexical index for
each ontology based on its entity labels and label variations (e.g., synonyms).
These indexes are used to efficiently computing an over-estimation Mo of the
mappings between O1 and O2. Mappings in Mo are not necessarily correct,
but they link lexically-related entities and usually have a high recall, while still
representing a manageable subset of all possible mappings (i.e., the Cartesian
product of the sets of classes in the input ontologies) [16].

Augmenting Ontology Alignment 3

Lexical	
Indexation

Compute	
Mapping

Over-estimation
ℳ"

Extract	
Overlapping	Modules

Extract	
Anchor	

Mappings	
ℳ#

Process	and	Select	
Mappings	fromℳ"\ℳ#

Repair	Anchor	Mappings

Structural	Indexation

Final	
Repair

𝒪&
𝒪'

ℳ

Fig. 1: LogMap system in a nutshell [18]

From the mapping over-estimationMo, LogMap identifies a number of high-
confidence mappings called anchor mappings (Ma). These mappings are used
to assess the structural and logical compatibility of the remaining candidate
mappings in Mo via a structural index, which significantly reduces the cost of
answering taxonomic and disjointness queries. Mappings inMo are also assessed
according to the lexical similarity of the involved entities. Finally, LogMap out-
puts a set of selected mappings M between O1 and O2, and additionally gives
as output the anchor mappings Ma and the mapping over-estimation Mo.

2.2 Machine Learning for Ontology Alignment

Machine learning (ML) has recently been explored for ontology alignment. ML
should facilitate the exploitation of both class information (e.g., names and an-
notations) and their context in an ontology (i.e., their semantics). However, to
develop a robust model, several critical issues have to be addressed. Next we will
discuss these issues and current solutions, and compare our method with them.

Features. The symbolic information of a class, such as its textual label and
neighbourhood graph structure, should be transformed into real values before
they can be utilized by ML algorithms, and informative variables (i.e., features)
should be extracted to achieve high performance. One solution, as implemented
in, e.g., GLUE [5] and POMap++ [21], is extracting pre-defined features such
as edit distance between labels and syntactic similarity. Another solution, as
adopted by, e.g., Zhang et al. [33], DOME [13], OntoEmma [30], Bento et al. [2],
DeepFCA [22] and VeeAlign [15], is learning relevant features via representation
learning models such as neural networks, or/and using pre-trained semantic em-
beddings (i.e., vectors of characters, words or classes with their semantics kept
in the vector space). Some methods such as [25] and [30] adopt both pre-defined
features and semantic embeddings. Meanwhile, instead of word embeddings pre-
trained by an external corpus, tailored character embeddings or document em-
beddings have been explored. ERSOM [32] learns ontology tailored word embed-
dings via an Auto-Encoder and a similarity propagation method with the classes’

4 J. Chen et al.

meta information and context, while DeepAlignment [19] extends ERSOM by
incorporating the synonymy and antonymy word relationships.

Samples. With semantic embeddings, we can identify mappings by calculat-
ing the vector distance (or similarity) between classes as in [32,19]. However,
such an unsupervised approach depends on how the semantic embeddings are
learned. For ontology-tailored embeddings, which usually achieve better perfor-
mance than pre-trained embeddings, the vector spaces of the two to-be-aligned
ontologies are independent and thus two equivalent cross-ontology classes may
still have a large vector distance. To address the above issue and further im-
prove the performance, we can utilize (semi-)supervised ML solutions which rely
on labeled mappings (i.e., samples) to learn features and train models to pre-
dict mappings. Besides costly human annotation for the training samples, one
ML solution is transfer learning between tasks, i.e., re-using known mappings
from other aligned ontologies. For example, OntoEmma [30] trains the model
using 50, 523 positive mappings between the ontologies of the Unified Medical
Language System, while [25] transfers samples from tasks of one OAEI track to
another. However, the effectiveness of such sample transfer significantly depends
on the sources to be transferred, and it may be hard to find a suitable source for
a new alignment task. In practice, neither [30] nor [25] outperformed the classic
systems such as AML and LogMap on the evaluated OAEI tracks.

Scalable Mapping Prediction. Unlike ontology alignment systems based on
lexical indexes, an ML-based method usually needs to predict or calculate the
scores of all cross-ontology class pairs, which can lead to scalability problems with
large ontologies. One solution for this issue is to use blocking techniques such as
locality-sensitive hashing [11] and embedding-based lexical index clustering [16].
Another solution, adopted by ERSOM [32] and DeepAlignment [19], is to use
optimized search algorithms such as Stable Marriage. The prediction model can
also be deployed together with a set of traditional alignment systems, the union
of whose outputs can act as a reduced set of candidates with a good recall [25], or
with some logic-based constraints or rules which can filter out some candidates
and reduce the search space.

In our ML extension, we addressed the feature issue via the combination of
an ontology embedding method named OWL2Vec∗ [3], which is a neural language
model tailored to the ontology’s text, graph structure and logical axioms; and a
SiamNN, which learns features of the input classes and bridges the gap between
the two embedding spaces. Unlike current (semi-)supervised learning methods,
our ML extension addresses the sample shortage issue via a distant supervision
strategy, where some confident mappings derived by the to-be-extended system
(such as the anchor mappings of LogMap) are used to generate positive and neg-
ative samples, with some high-level class disjointness constraints used to improve
sample quality. To reduce the search space when aligning large ontologies, we
can optionally use the to-be-extended system (or some other traditional system)
to compute a set of candidate mappings with very high recall (similar to [25]);
in the case of LogMap we can use its so-called mapping over-estimation.

Augmenting Ontology Alignment 5

3 Use Case

Ontologies. In this section we present the use case of aligning HeLiS7 [7] and
FoodOn8 [6] — two large OWL9 ontologies. FoodOn captures detailed food
knowledge and other knowledge from relevant domains such as agriculture, chem-
istry and environment, with 359 instances, 28,182 classes and 241,581 axioms
within the description logic (DL) SRIQ. HeLiS captures general knowledge on
both food and healthy lifestyles with 20,318 instances, 277 classes and 172,213
axioms within the DL ALCHIQ(D). In order to facilitate alignment, HeLiS
instances were transformed into classes, with associated rdf:type triples being
transformed into rdfs:subClassOf triples. This transformation changes the on-
tology’s semantics, but the ontology integration still supports the knowledge
graph construction application in industry and does not impact the evaluation
of different systems.

A fragment of HeLiS and FoodOn is shown in Fig. 2, where each class is
represented by a short name/label for readability.

Motivations. By providing more complete and fine-grained knowledge covering
both food and lifestyles, an alignment of HeLiS and FoodOn can be used to
improve personalisation and can benefit popular applications in areas such as
sport, health and wellbeing. The alignment can also be used for ontology quality
assurance (QA) by identifying missing and logically inconsistent relationships
through cross checking. One QA example is discovering the missing subsumption
relationship between “Soybean Milk” and “Soybean Food Product” in FoodOn
(where “Soybean Milk” is only categorized as “Beverage”) by mapping them
to their HeLiS counterparts “SoyMilk” and “SoyProducts” whose subsumption
relationship is defined. We have identified more than 500 such new subsumption
relationships between FoodOn classes through aligning FoodOn and HeLiS [14].

Challenges. The technical challenges of aligning HeLiS and FoodOn lie in sev-
eral aspects. First, as in many ontology matching tasks, we need to address the
ambiguity between classes with similar names or with similar neighbourhood
structures, the logical inconsistency that can be caused by mappings, the very
large search space (with over 580 million candidate mappings), and so on. Second,
FoodOn is itself composed of multiple source ontologies, including NCBITaxon
and The Environment Ontology, and thus its class hierarchy includes branches
covering not only food categorization but also food source categorization (closely
related to biological taxonomy), chemical element categorization, etc. Similarly
HeLiS has branches of nutrients, food and so on. Similar names and local con-
texts (e.g., of food products and food sources) can lead to “branch conflicting”
mappings whose classes lie in branches with different meanings. One example
is the incorrect mapping between “Caesar’s Mushrooms” of HeLiS (a food) and
“Caesar’s Mushroom” of FoodOn (a food source) as illustrated in Fig. 2. Classic

7 HeLiS project: https://horus-ai.fbk.eu/helis/
8 FoodOn project: https://foodon.org/
9 Web Ontology Language: https://www.w3.org/TR/owl-features/

https://horus-ai.fbk.eu/helis/
https://foodon.org/
https://www.w3.org/TR/owl-features/

6 J. Chen et al.

Thing

Food

Mushrooms

Nutrient

Caesar's	
Mushrooms

Carbs

Fructose

Thing

Food	
Source

Fungus

Caesar's	
Mushroom

Food	Product	
Type

Chemical	
Entity

Mushroom	
Vegetable	Food

polyatomic	
entity

mushroom	
(canned)

Salt

fructose

Sugar

Canned	
Mushroom

mushroom	
(home	canned)

✓✗

HeLiS FoodOn

Salt

Fig. 2: Fragments of the HeLiS and FoodOn ontologies. The dash arrow means some
intermediate classes are hidden. The red (green resp.) arrow denotes false (true resp.)
mappings.

systems often fail to identify such errors, even when using logical assessment (as
in LogMap) due to missing class disjointness axioms in the source ontologies.

4 Methodology

We will present our ML extension w.r.t. LogMap, as shown in Fig. 3. It comprises
three steps: (i) compute the seed mappings starting from a set of high precision
mappings (such as LogMap’s “anchor” mappings) and applying class disjointness
constraints (branch conflicts) to further improve precision; (ii) construct samples
and train a mapping prediction model (a SiamNN whose input is a pair of classes
or their associated paths); and (iii) compute the output mappings, (optionally)
starting from a set of high recall candidate mappings (such as LogMap’s over-
estimation mappings) to reduce the search space. Note this extension can be
used with any “traditional” system that is capable of generating high precision
mappings for use in the training phase (in our evaluation we use AML as well
as LogMap).

4.1 Seed Mappings

To achieve high-confidence seed mappings (Ms) for training, we define a set of
disjointness constraints between cross ontology classes to filter out some false-
positive mappings from the LogMap anchor mappings (Ma). A disjointness con-
straint is denoted δ = (c1, c2), where c1 and c2 are typically very general classes
in O1 and O2 respectively, acting as the “root” classes of different knowledge
branches. For example, in Fig. 2, “Food” of HeLiS and “Food Source” of FoodOn
comprise one disjointness constraint, while “Food” of HeLiS and “Chemical En-
tity” of FoodOn comprise another constraint. The set of constraints, which we
denote ∆, together with the original alignment system act as heuristic rules in

Augmenting Ontology Alignment 7

Anchor Class	
Mappings	ℳ"

Over-estimation	
Class Mappings	ℳ#

Seed	Mappings	
ℳ$

Class
Disjointness SiamNN

Model

Sample &
Train

Mapping
Scores

Decision
Making

Class
Mappings

ℳ

LogMap
𝒪&

𝒪'

OWL2Vec*

OWL2Vec*

𝑐& (𝑝&)

𝑐' (𝑝')

𝑣&

𝑣'

NN

Normalized	
Distance

𝑓'

𝑓&
𝑑

NN

SiamNN

Prediction

Fig. 3: The ML extension for LogMap

normal distant supervision. In our HeLiS-FoodOn case study, we manually de-
fined four disjointness constraints based on knowledge of the domain and the
ontology architectures. Given that disjointness constraints typically involve only
very general classes, defining them does not require very detailed knowledge of
the domain; moreover, we can use statistical analysis of the mappings computed
by LogMap to identify candidate disjointness constraints, or even to fully auto-
mate the definition of ∆. For example, given two sibling classes c and c′ in O1

and a class s in O1, if there are n mappings from subclasses of c to subclasses of
s and n′ mappings from subclasses of c′ to subclasses of s, with n′ � n, then c′

is likely to be disjoint with s and (c′, s) can be used as a (candidate) disjointness
constraint.

When using ∆ to filter a mapping m = (c1, c2) ∈ Ma, we consider not just
c1 and c2, but all subsumers of c1 and c2 in the corresponding ontologies O1

and O2. For this purpose we use the OWL reasoner HermiT [12] to compute the
set of subsumers (both explicitly asserted and entailed) of a given class c, which
we denote Pc. Then, given a mapping m = (c1, c2) ∈ Ma, we discard m as a
false-positive if there is some (c′1, c

′
2) ∈ ∆ such that c′1 ∈ Pc1 and c′2 ∈ Pc2 ; if this

is not the case, then we add m to the set of seed mappings Ms.

4.2 Siamese Neural Network

We first generate positive and negative class mappings (samples), then embed
these samples as vectors using OWL2Vec∗, and finally we train a SiamNN as the
mapping prediction model. The seed mappings Ms are adopted as the positive
samples and are randomly divided into a training set Mt

s and a validation set
Mv

s by a given ratio γ. We then generate the corresponding negative sample
sets of Mt

s and Mv
s , denoted as Mt′

s and Mv′

s respectively, as follows. For each
mapping m = (c1, c2) in Mt

s or Mv
s , we generate one negative sample m′ by

replacing c1 with a class c′1 randomly selected from O1, and we generate a second

8 J. Chen et al.

negative sample m′′ by replacing c2 with a class c′2 randomly selected from O2.
Note that the random replacements could produce positive samples fromMs; we
discard any such negative samples. We also adopt those anchor mappings that
violate the class disjointness constraints, i.e.,Ma\Ms, as negative samples, and
randomly partition them into a training set Mt′

a and a validation set Mv′

a with
the same ratio of γ. We finally get the training samples as a tuple of Mt

s and
Mt′

s ∪Mt′

a to train the SiamNN, and the validation samples as a tuple of Mv
s

andMv′

s ∪Mv′

a to adjust the hyper parameters such as the network architecture
and the embedding option.

The OWL2Vec∗ embedding of an ontology is a language model tailored to
the given ontology. It can be first pre-trained with a large normal text corpus
such as Word2Vec and then fine-tuned with a corpus whose sequences include
walks over the ontology’s graph structure, the ontology’s axioms, the ontology’s
textual information (e.g., class labels, definitions and comments), etc. It can
also be directly trained with the ontology’s corpus. In this study, we evaluated
both training settings. The OWL2Vec∗ embedding encodes a class in two ways:
directly adopting the vector of the class’s URI or calculating the average word
vector of the words of the class labels. We prefer the latter as it can utilize
both pre-training and fine-tuning, and often performs better for ontologies with
rich textual information such as FoodOn. Please refer to [3] for more details on
OWL2Vec∗. Given a class c, we denote its OWL2Vec∗ embedding as v(c).

For each mapping sample m = (c1, c2) ∈ Mt
s, we consider two kinds of

embeddings to transform it into a tuple composed of two vectors. The first
option is directly adopting its OWL2Vec∗ embeddings v(c1) and v(c2), i.e.,
v(m) = {v(c1), v(c2)}. The second option is to augment the context of c1 and c2
by embedding the associated paths of c1 and c2, i.e., the sequences of classes ob-
tained by traversing the class hierarchy back to owl:Thing. As one class may have
multiple such paths, we randomly select at most two paths for each class, and
thus one class mapping sample leads to at most four path mapping samples. For
two paths associated with c1 and c2, denoted as p1 = (c1, ..., cn1

) ∈ P1 and p2 =
(c2, ..., cn2

) ∈ P2 respectively, the mapping embedding v(m) is calculated as ei-

ther
{

1
n1

∑cn1
ci=c1

v(ci),
1
n2

∑cn2
cj=c2

v(cj)
}

or {[v(c1), ..., v(cn1
)] , [v(c2), ..., v(cn2

)]},
where [·, ·] denotes the vector concatenation. The former embeds a path by av-
eraging the embeddings of its classes, while the latter embeds a path by con-
catenating the embeddings of its classes. In a given ontology, different paths can
have different lengths. To align the vectors of different samples, we fix the path
length for the ontology by setting it to the length of the longest path, and pad
the shorter paths with placeholders whose embeddings are zero vectors. Note
the path lengths of O1 and O2 can be different.

The SiamNN is composed of two networks that have the same architecture.
The two vectors of an input mapping are fed into the two networks respectively,
two features (denoted as f1 and f2) are then calculated accordingly, and their

normalized distance d = ‖f1−f2‖
‖f1‖+‖f2‖ is further calculated as the output, where ‖·‖

denotes the Euclidean norm of a vector. A smaller distance indicates that the
two classes corresponding to the two input vectors are more likely to constitute

Augmenting Ontology Alignment 9

a valid mapping, and vice versa. The two networks are learned together by
minimizing the following contrastive loss using the Adam optimizer:

Loss =

N∑
i=0

yi × di + (1− yi)×max {ε− di, 0}
2

(1)

where i denotes the ith mapping sample, di denotes its output distance, yi de-
notes its label (yi=1 if the mapping is positive, yi=0 otherwise), N denotes
the sample number and ε denotes a margin value. Note the insight behind the
SiamNN is to map the two input vectors into the same space via two networks
(non-linear transformations) which at the same time learn features.

Different network architectures can be adopted for feature learning. We evalu-
ated one simple network (Multi-layer Perception (MLP) with two hidden layers),
one classic sequence learning model (Bidirectional Recurrent Neural Networks
(BiRNN) with Gate Recurrent Units [4]), and the BiRNN with an additional
attention layer (AttBiRNN).

4.3 Prediction, Filtering and Ensemble

We can simply consider all cross-ontology class pairs to be candidate mappings,
but this leads to a very large number if the ontologies are large. In our extension
to LogMap, we adopt its over-estimation class mappings Mo as the candidates.
This reduces the potential number of candidates from around 580 million to
8, 891 when aligning HeLiS and FoodOn, and at the same time helps to avoid
false positive mappings. Each mapping m = (c1, c2) ∈ Mo is embeded into a
tuple of vectors in the same way as in training the SiamNN except that only one
path is randomly selected for each class if path embedding is adopted. A distance
d ∈ [0, 1] is then predicted by the SiamNN, and a score y is further calculated
as 1 − d. A higher score indicates a more likely mapping, and vice versa. A
score threshold θ is used to filter out unlikely mappings: m is accepted if y ≥ θ,
and rejected otherwise. To determine θ, we utilized the validation samples: the
threshold is increased from 0 to 1 with a small step (e.g., 0.02), and the value
leading to the best performance (e.g., the highest F1 score in aligning HeLiS and
FoodOn) on Mv

s and Mv′

s ∪Mv′

a is adopted. The resulting class mappings are
denoted as Mp (predicted mappings).

We filter out any predicted class mappings in Mp that violate class dis-
jointness constraints ∆ as when generating seed mappings (see Section 4.1). We
further filter the mappings inMp using a subsumption-based logical assessment.
Specifically, a class in one ontology cannot be equivalent to multiple classes that
are in a sub-class relationship in the other ontology. For example, “Canned
Mushroom” of HeLiS cannot be equivalent to both “mushroom (canned)” and
“mushroom (home canned)” in FoodOn in Fig. 2. If this happens, then the
mapping with a lower prediction score should be discarded. More formally, if
Mp includes two mappings (c1, c2) and (s1, s2) such that either c1 = s1 and c2
subsumes s2 in O2, or c2 = s2 and c1 subsumes s1 in O1, then we discard the

10 J. Chen et al.

mapping with the lower prediction score. The remaining mappings are denoted
as M′p.

M′p is merged with the seed mappingsMs to give the final ensemble output:
M = M′p ∪ Ms. Note that although the seed mappings are used as positive
samples for training, it is still possible that some of them will have low prediction
scores as embedding, learning and prediction is a probabilistic procedure.

5 Evaluation

5.1 HeLiS and FoodOn

Experiment Setting We first evaluate the ML extension10 for aligning HeLiS
and FoodOn, where we augment LogMap11 by using its anchor mappings for the
seeds. The augmented system is denoted as LogMapanc-ML. It is compared with
the original LogMap and another SOTA system AML v3.112 which has been
highly ranked in many OAEI tasks [10].

In order to precisely assess an alignment of two ontologies we would need a set
of gold standard (GS) mappings against which to measure precision and recall.
This is typically not available due to the cost of checking each of a potentially
very large number of possible mappings. In the case of HeLiS and FoodOn we
have a partial GS consisting of 372 mappings obtained by manually checking a
much larger set of candidate mappings computed by LogMap; however, this is
still (highly) incomplete, and clearly biased towards mappings that can be found
using the techniques employed in LogMap. Therefore, besides the recall of this
partial GS (denoted as RecallGS), we have computed approximate precision and
recall (denoted as Precision≈ and Recall≈, respectively) as follows.

First, given a (possibly empty) set of GS mappings G and a set of computed
mappings M , we estimate Precision≈ for G and M (denoted Precision≈G,M) by
selecting at random a set S ⊆M \G and manually checking the mappings in S
to identify the set Sv ⊆ S of valid mappings. We then compute:

Precision≈G,M =
TPG,M

|M |
=
|M ∩G|+ |Sv|

|S| × |M \G|
|M |

, (2)

where |·| denotes set cardinality, and TPG,M represents the approximate number
of true positive mappings. Note that, if G = ∅ (i.e., no gold standard is available),
then this becomes simply |Sv|/|S|; if M \ G = ∅ (i.e., all the output mappings
are among the GS), then this becomes precision w.r.t. the GS. For the recall, we
estimate the total number of valid mappings using the GS as well as the union
of the output mappings of all available systems (i.e., LogMapanc-ML, LogMap
and AML), which we denote M ′; then, for a given system that computes a set

10 Codes: https://github.com/KRR-Oxford/OntoAlign/tree/main/LogMap-ML
11 https://github.com/ernestojimenezruiz/loap-matcher
12 https://github.com/AgreementMakerLight/AML-Project

https://github.com/KRR-Oxford/OntoAlign/tree/main/LogMap-ML
https://github.com/ernestojimenezruiz/loap-matcher
https://github.com/AgreementMakerLight/AML-Project

Augmenting Ontology Alignment 11

Method Mappings # Precision≈ Recall≈ F1≈ RecallGS

LogMap (anchor mappings) 311 0.887 0.278 0.423 0.602

LogMap 417 0.676 0.284 0.400 0.712

AML 544 0.636 0.349 0.451 0.694

LogMapanc-ML (no ensemble) 1154 0.675 0.785 0.726 0.806

LogMapanc-ML 1207 0.685 0.833 0.752 0.839

Table 1: The results of aligning HeLiS and FoodOn

of mappings M , we estimate the recall of the system to be:

Recall≈ =
TPG,M

|G|+ |S′v|
|S′| × |M ′ \G|

, (3)

where S′ denotes a random set from M ′ \G and S′v ⊆ S′ are the valid mappings
in S′ (by manual checking). We further calculate an approximate F1 Score:

F1≈ =
2× Precision≈ × Recall≈

Precision≈ + Recall≈
. (4)

The settings of LogMapanc-ML are adjusted by optimizing the result on the
validation mapping setMv

s , which consists of 10% of all the seed mappings, and
the results in Table 1 are based on these optimized settings. For the validation
results of different settings, please see the ablation study in Section 5.3.

Results In Table 1 we can see that LogMapanc-ML without the ensemble to
the seed mappings outputs 1154 mappings — more than twice as many as the
original LogMap and AML — while the ensemble (i.e., including the seed map-
pings) adds 53 more mappings. LogMapanc-ML has much higher recall than AML
and LogMap; for example, Recall≈ is increased from 0.284 to 0.833 when the
ML extension is added to LogMap. This is consistent with our assumption that
SiamNN together with the OWL2Vec∗ embedding can consider more additional
contextual information and word semantics of two to-be-mapped classes. Mean-
while, LogMapanc-ML (no ensemble) has similar precision to LogMap and 6.1%
higher precision than AML, while the ensemble with the seed mappings further
improves precision from 0.675 to 0.685. As a result, F1≈ of LogMapanc-ML is
88.3% higher than LogMap and 67.0% higher than AML.

5.2 OAEI Conference Track

Experiment Setting We also evaluated our ML extension on all the 21 class
alignments of the 17 ontologies of the OAEI conference track,13 where the open
reference ra1 with 259 class mappings (i.e., the GS) is adopted to calculate the
standard precision, recall and F1 score. Note that we merge the output mappings

13 http://oaei.ontologymatching.org/2020/conference/

http://oaei.ontologymatching.org/2020/conference/

12 J. Chen et al.

Method Mappings # Precision Recall F1 Score

StringEquiv 148 0.935 0.498 0.650

AML 223 0.803 0.691 0.743

SANOMoaei 252 0.778 0.757 0.767

Wiktionaryoaei 184 0.821 0.583 0.682

VeeAlignoaei 253 0.791 0.772 0.781

DeepAlignment – 0.710 0.800 0.750

LogMapanc 139 0.892 0.479 0.629

LogMapanc-ML 157 0.917 0.555 0.691

LogMap 190 0.842 0.618 0.713

LogMap-ML 190 0.881 0.645 0.745

LogMapoaei 198 0.843 0.645 0.731

LogMapoaei-ML 197 0.875 0.665 0.756

AMLoaei 220 0.827 0.703 0.760

AMLoaei-ML 222 0.842 0.723 0.778

Table 2: The results of the OAEI conference track.

of the 21 alignments of each system and compare all the mappings to the GS
to directly calculate these metrics. The results are shown in Table 2. As the
output mappings of AML and LogMap available on the OAEI website of 2020
are slightly different from those generated by our local running of LogMap and
AML v3.1 (perhaps this is due to different parameter settings or versions), we
report both results, where the former is denoted by the superscript ‘oaei’.

Instead of processing each ontology alignment independently, we merged the
seed mappings of all the 21 alignments to train one prediction model and applied
this model to predict the candidate mappings of all the alignments. We did not
use the LogMap over-estimation mappings but adopted all the cross-ontology
class pairs of each alignment, as the total number (98, 688) did not cause scala-
bility issues. As well as LogMapanc-ML, we also report the results of LogMap-ML
and LogMapoaei-ML, which adopt the corresponding LogMap output mappings
for the seeds. To show the generality, we also applied the ML extension to AML,
which we denote AMLoaei-ML. Note that the output mappings of LogMap and
AML are adopted for training because they have high precision in this case. The
reported results of all the ML extensions are based on the class input embed-
ded by the pre-trained OWL2Vec∗ and the SiamNN with MLP. The baselines
include four classic systems (i.e., Wiktionary [28], SANOM [24], LogMap and
AML), two SOTA ML-based systems (i.e., VeeAlign [15] and DeepAlignment
[19]), and StringEquiv which labels a mapping as true if its class names are the
same (case insensitive). Note precision and recall are based on the average of sev-
eral repetitions of training and prediction, while F1 score is calculated with the
averaged precision and recall. The DeepAlignment result is from its paper [19].

Results From Table 2 we can first confirm the observation from HeLiS and
FoodOn, i.e., that the ML extension can improve both the recall and precision

Augmenting Ontology Alignment 13

of the original alignment system: the F1 score is improved by 9.9%, 4.3%, 3.4%
and 2.4% for LogMapanc, LogMap, LogMapoaei and AMLoaei respectively. The
improvements are not as large as in aligning HeLiS and FoodOn because the
to-be-aligned conference ontologies are much smaller and less complex, and the
original systems have already been highly optimized for these alignments. Sec-
ond, our augmented method LogMapoaei-ML is a bit worse than VeeAlignoaei14

and quite competitive to SANOMoaei, w.r.t. the F1 score. Note these two sys-
tems are ranked in the first positions in the 2020 and 2019 rankings, respectively.
LogMapoaei-ML also has a slightly higher F1 score than DeepAlignment. Mean-
while, the F1 score of the augmented AML, i.e., AMLoaei-ML is very competitive
to VeeAlignoaei and is better than the other baselines (e.g., 1.4% higher than
SANOMoaei). As the ML extension is trained based on the confident seed map-
pings from the original systems, the augmented AML and LogMap have much
higher precision than VeeAlignoaei, SANOMoaei and DeepAlignment.

5.3 Ablation Study

Experiment Setting We present the ablation study of the prediction model
with different embedding and neural network settings. To this end, standard
precision, recall, F1 score and accuracy of the trained model on the validation
mapping set are reported. The threshold θ is searched from 0 to 1 with a step of
0.02, and the reported results are based on the threshold that leads to the best
F1 score. All the four metrics are calculated by averaging the results of several
repetitions of training and validation. Note the model with the best F1 score
and its associated optimum θ are adopted in calculating the final output map-
pings as evaluated in Section 5.1. As the validation set, especially its generated
negative mappings, are quite simple in comparison with the candidate mappings
for prediction, the validation results in Table 3 are much better than the final
results in Table 1, but this does not impact our validation of different settings.

We evaluated (i) Word2Vec which was trained with a corpus of Wikipedia
articles from 2018, OWL2Vec∗ without pre-training and OWL2Vec∗ pre-trained
with the above Wikipedia corpus; (ii) different networks including the SiamNNs,
and the original networks (MLP, BiRNN and AttBiRNN) for which the two
input vectors are concatenated; and (iii) the class vs the path as the input. The
dimensions of Word2Vec, OWL2Vec∗ and the pre-trained OWL2Vec∗ are set to
200, 100 and 200 respectively. The hidden neural sizes of MLP and BiRNN are
both set to 200, while the attention size of AttBiRNN is set to 50. The epoch
number and the batch size are set to 14 and 8 in training.

Results On the one hand we find OWL2Vec∗ with pre-training has better per-
formance than the original Word2Vec and OWL2Vec∗ without pre-training; for
example, the best F1 scores of these three settings are 0.927, 0.903 and 0.911
respectively. This observation, which is consistent under different settings, is as
expected because the pre-trained OWL2Vec∗ incorporates words’ common sense

14 VeeAlign has been tailored to the Conference and Multifarm OAEI tracks [15].

14 J. Chen et al.

Embedding (Class) Neural Network Precision Recall F1 Score Accuracy

Word2Vec

MLP 0.809 0.798 0.803 0.869

BiRNN 0.741 0.940 0.827 0.869

AttBiRNN 0.790 0.941 0.859 0.897

SiamNN (MLP) 0.874 0.941 0.903 0.932

SiamNN (BiRNN) 0.808 0.952 0.874 0.909

SiamNN (AttBiRNN) 0.828 0.952 0.884 0.917

OWL2Vec∗

(Without

Pre-training)

MLP 0.769 0.869 0.815 0.869

BiRNN 0.751 0.929 0.830 0.873

AttBiRNN 0.708 0.976 0.820 0.857

SiamNN (MLP) 0.854 0.976 0.911 0.936

SiamNN (BiRNN) 0.924 0.833 0.874 0.921

SiamNN (AttBiRNN) 0.829 0.905 0.862 0.901

OWL2Vec∗

(With

Pre-training)

MLP 0.826 0.845 0.835 0.889

BiRNN 0.821 0.905 0.859 0.901

AttBiRNN 0.828 0.860 0.842 0.893

SiamNN (MLP) 0.952 0.905 0.927 0.952

SiamNN (BiRNN) 0.914 0.881 0.897 0.933

SiamNN (AttBiRNN) 0.854 0.893 0.871 0.913

Table 3: The results over the validation mapping set of different embedding and net-
work settings for aligning HeLiS and FoodOn. Class embedding is adopted as the input.

semantics and local context in the ontology. On the other hand we can find
the SiamNNs outperform their original networks, and the SiamNN with MLP
achieves the best performance. The former validates that the SiamNN archi-
tecture, which can align two embedding spaces according to the given training
mappings, is more suitable for this task. The latter means further feature learn-
ing by RNN over the embedding makes no additional contribution in comparison
with MLP. We also validated the above networks using path embedding as input,
and the results are worse than their correspondences using the class embedding
as input; for example, the best validation F1 score is 0.885 which is worse than
0.927 in Table 3. This may be due to the fact that the relevant predictive infor-
mation from the class subsumers has already been encoded by OWL2Vec∗.

6 Conclusion and Discussion

In this paper we presented a general ML extension to existing ontology alignment
systems such as LogMap and AML. Briefly, it first adopts the confident mappings
from an original system, such as the anchor mappings of LogMap, as well as some
external class disjointness constraints, to generate training samples, then uses
an ontology tailored language model OWL2Vec∗ and a SiamNN to train a model
and predict the candidate mappings, and finally filters out invalid mappings
according to their predicted scores and a subsumption-based logical assessment.
According to the evaluation on an industrial use case and the alignments of the

Augmenting Ontology Alignment 15

OAEI conference track, the ML extension is shown to be effective in improving
both precision and recall. We discuss below some more subjective observations
and possible directions for future work.

Running Time Computation of the ML extension mainly lies in training and
validation. With a laptop equipped by 2.3 GHz Intel Core i5 and 16 GB memory,
the training of the 6 networks as set out in Section 5.3 with the class input
using the pre-trained OWL2Vec∗ and the seeds from LogMap anchors takes 1.3
minutes for HeLiS and FoodOn, and 1.1 minutes for the OAEI conference track.
It is possible to achieve even better matching performance via an exhaustive
exploration of more settings, e.g., the network hidden layer size, but this requires
significantly more computation.

Seed Mappings In distant supervision we assume that the seed mappings used
for training are precise. In aligning HeLiS and FoodOn, we also considered ex-
tracting the seed mappings from the output mappings of LogMap and AML,
both of which have a larger size but lower precision (0.676 and 0.636 respec-
tively) compared to the LogMap anchors. However both lead to lower precision
and recall, and the approximate F1 score drops to 0.657 and 0.696 respectively.
Class disjointness constraints are also important for filtering out false-positive
mappings and generating high precision seeds mappings; in the future work we
plan to study semi-automatic neural-symbolic methods for deriving robust class
disjointness constraints.

References

1. Algergawy, A., et al.: Results of the Ontology Alignment Evaluation Initiative
2019. In: OM@ ISWC. pp. 46–85 (2019), http://oaei.ontologymatching.org/

2. Bento, A., Zouaq, A., Gagnon, M.: Ontology Matching Using Convolutional Neural
Networks. In: Proceedings of LREC. pp. 5648–5653 (2020)

3. Chen, J., Hu, P., Jimenez-Ruiz, E., Holter, O.M., Antonyrajah, D., Horrocks, I.:
OWL2Vec*: Embedding of OWL ontologies. CoRR (2020)

4. Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning phrase representations using RNN encoder–decoder for
statistical machine translation. In: EMNLP. pp. 1724–1734 (2014)

5. Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Ontology matching: A machine
learning approach. In: Handbook on ontologies, pp. 385–403. Springer (2004)

6. Dooley, D.M., Griffiths, E.J., Gosal, G.S., Buttigieg, P.L., Hoehndorf, R., Lange,
M.C., Schriml, L.M., Brinkman, F.S., Hsiao, W.W.: FoodOn: A harmonized food
ontology to increase global food traceability, quality control and data integration.
npj Science of Food 2(1), 1–10 (2018)

7. Dragoni, M., Bailoni, T., Maimone, R., Eccher, C.: HeLis: An ontology for sup-
porting healthy lifestyles. In: ISWC. pp. 53–69. Springer (2018)

8. Euzenat, J., Shvaiko, P.: Ontology Matching, Second Edition. Springer (2013)
9. Faria, D., Pesquita, C., Santos, E., Palmonari, M., Cruz, I., Couto, F.: The Agree-

mentMakerLight Ontology Matching System. In: On The Move (OTM) Federated
International Conference. vol. 8185, pp. 527–541. Springer (2013)

10. Faria, D., Pesquita, C., Tervo, T., Couto, F.M., Cruz, I.F.: AML and AMLC results
for OAEI 2019. OM@ISWC pp. 101–106 (2019)

http://oaei.ontologymatching.org/

16 J. Chen et al.

11. Gionis, A., Indyk, P., Motwani, R., et al.: Similarity search in high dimensions via
hashing. VLDB 99(6), 518–529 (1999)

12. Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: HermiT: An OWL 2
reasoner. Journal of Automated Reasoning 53(3), 245–269 (2014)

13. Hertling, S., Paulheim, H.: DOME results for OAEI 2019. OM@ ISWC (2019)
14. Horrocks, I., Chen, J., Jaehun, L.: Tool support for ontology design and quality

assurance. In: ICBO 2020 Integrated Food Ontology Workshop (IFOW) (2020)
15. Iyer, V., Agarwal, A., Kumar, H.: VeeAlign: A Supervised Deep Learning Approach

to Ontology Alignment. OM@ISWC (2020)
16. Jiménez-Ruiz, E., Agibetov, A., Chen, J., Samwald, M., Cross, V.: Dividing the

Ontology Alignment Task with Semantic Embeddings and Logic-based Modules.
In: ECAI (2020)

17. Jiménez-Ruiz, E., Cuenca Grau, B.: LogMap: Logic-based and scalable ontology
matching. In: ISWC. pp. 273–288. Springer (2011)

18. Jiménez-Ruiz, E., Cuenca Grau, B., Zhou, Y., Horrocks, I.: Large-scale Interactive
Ontology Matching: Algorithms and Implementation. In: ECAI (2012)

19. Kolyvakis, P., Kalousis, A., Kiritsis, D.: DeepAlignment: Unsupervised ontology
matching with refined word vectors. In: Proceedings of NAACL. pp. 787–798 (2018)

20. Kulmanov, M., Smaili, F.Z., Gao, X., Hoehndorf, R.: Semantic similarity and ma-
chine learning with ontologies. Briefings in Bioinformatics (2020)

21. Laadhar, A., Ghozzi, F., Bousarsar, I.M., Ravat, F., Teste, O., Gargouri, F.:
POMap++ results for OAEI 2019: fully automated machine learning approach
for ontology matching. In: OM@ISWC. pp. 169–174 (2019)

22. Li, G.: DeepFCA: Matching biomedical ontologies using formal concept analysis
embedding techniques. In: Proceedings of ICMHI. pp. 259–265 (2020)

23. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. CoRR (2013)

24. Mohammadi, M., Hofman, W., Tan, Y.H.: Simulated annealing-based ontology
matching. ACM Trans. on Manag. Inf. Syst. (TMIS) 10(1), 1–24 (2019)

25. Nkisi-Orji, I., Wiratunga, N., Massie, S., Hui, K.Y., Heaven, R.: Ontology align-
ment based on word embedding and random forest classification. In: ECML-PKDD.
pp. 557–572. Springer (2018)

26. Otero-Cerdeira, L., Rodŕıguez-Mart́ınez, F.J., Gómez-Rodŕıguez, A.: Ontology
matching: A literature review. Expert Systems with Applications 42(2) (2015)

27. Pesquita, C., Faria, D., Santos, E., Couto, F.M.: To repair or not to repair: recon-
ciling correctness and coherence in ontology reference alignments. In: OM@ ISWC.
pp. 13–24 (2013)

28. Portisch, J., Hladik, M., Paulheim, H.: Wiktionary matcher. In: OM@ISWC. pp.
181–188 (2019)

29. Shvaiko, P., Euzenat, J.: Ontology matching: State of the art and future challenges.
IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013)

30. Wang, L., Bhagavatula, C., Neumann, M., Lo, K., Wilhelm, C., Ammar, W.: On-
tology alignment in the biomedical domain using entity definitions and context.
In: Proceedings of the BioNLP 2018 workshop. pp. 47–55 (2018)

31. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: A survey
of approaches and applications. IEEE Trans. on Knowl. and Data Eng. 29(12),
2724–2743 (2017)

32. Xiang, C., Jiang, T., Chang, B., Sui, Z.: ERSOM: A structural ontology matching
approach using automatically learned entity representation. In: EMNLP (2015)

33. Zhang, Y., Wang, X., Lai, S., He, S., Liu, K., Zhao, J., Lv, X.: Ontology matching
with word embeddings. In: NLP-NABD, pp. 34–45. Springer (2014)

	 Augmenting Ontology Alignment by Semantic Embedding and Distant Supervision

